1
|
Barrera-Vázquez OS, Escobar-Ramírez JL, Magos-Guerrero GA. Network Pharmacology Approaches Used to Identify Therapeutic Molecules for Chronic Venous Disease Based on Potential miRNA Biomarkers. J Xenobiot 2024; 14:1519-1540. [PMID: 39449424 PMCID: PMC11503387 DOI: 10.3390/jox14040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic venous disease (CVD) is a prevalent condition in adults, significantly affecting the global elderly population, with a higher incidence in women than in men. The modulation of gene expression through microRNA (miRNA) partly regulated the development of cardiovascular disease (CVD). Previous research identified a functional analysis of seven genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1, and PABPC3) as targets of miRNAs related to CVD. In this context, miRNAs emerge as essential candidates for CVD diagnosis, representing novel molecular and biological knowledge. This work aims to identify, by network analysis, the miRNAs involved in CVD as potential biomarkers, either by interacting with small molecules such as toxins and pollutants or by searching for new drugs. Our study shows an updated landscape of the signaling pathways involving miRNAs in CVD pathology. This latest research includes data found through experimental tests and uses predictions to propose both miRNAs and genes as potential biomarkers to develop diagnostic and therapeutic methods for the early detection of CVD in the clinical setting. In addition, our pharmacological network analysis has, for the first time, shown how to use these potential biomarkers to find small molecules that may regulate them. Between the small molecules in this research, toxins, pollutants, and drugs showed outstanding interactions with these miRNAs. One of them, hesperidin, a widely prescribed drug for treating CVD and modulating the gene expression associated with CVD, was used as a reference for searching for new molecules that may interact with miRNAs involved in CVD. Among the drugs that exhibit the same miRNA expression profile as hesperidin, potential candidates include desoximetasone, curcumin, flurandrenolide, trifluridine, fludrocortisone, diflorasone, gemcitabine, floxuridine, and reversine. Further investigation of these drugs is essential to improve the treatment of cardiovascular disease. Additionally, supporting the clinical use of miRNAs as biomarkers for diagnosing and predicting CVD is crucial.
Collapse
Affiliation(s)
| | | | - Gil Alfonso Magos-Guerrero
- Department of Pharmacology, Faculty of Medicine, University National Autonomous of Mexico (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (J.L.E.-R.)
| |
Collapse
|
2
|
Sonkar P, Purwar S, Bhargva P, Singh RP, Alkahtani J, Al-Hashimi A, Dwiningsih Y, Khan S. In silico profiling, docking analysis, and protein interactions of secondary metabolites in Musa spp. Against the SGE1 protein of Fusarium oxysporum f. sp. cubense. Comput Biol Chem 2024; 113:108230. [PMID: 39418820 DOI: 10.1016/j.compbiolchem.2024.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Banana Fusarium Wilt (BFW), caused by Fusarium oxysporum f. sp. cubense (Foc), threatens banana crops globally, with the pathogen's virulence partially regulated by the Sge1 transcription factor, which enhances disease severity. Certain Musa species display resistance to Foc, suggesting inherent genetic traits that confer immunity against Sge1Foc. This study utilized bioinformatics tools to investigate the mechanisms underlying this resistance in Musa accuminata subsp. aalaccensis. Through in silico analyses, we explored interactions between Musa spp. and Foc, focusing on the Sge1 protein. Tools such as Anti-SMASH, AutoDockVina 4.0, STRING, and Phoenix facilitated the profiling of secondary metabolites in Musa spp. and the identification of biosynthetic gene clusters involved in defense. Our results indicate that secondary metabolites, including saccharides, terpenes, and polyketides, are crucial to the plant's immune response. Molecular docking studies of selected Musa metabolites, such as 3-Phenylphenol, Catechin, and Epicatechin, revealed 3-Phenylphenol as having the highest binding affinity to the Sge1Foc protein (-6.7 kcal/mol).Further analysis of gene clusters associated with secondary metabolite biosynthesis in Musa spp. identified key domains like Chalcone synthase, Phenylalanine ammonia-lyase, Aminotran 1-2, and CoA-ligase, which are integral to phenylpropanoid production-a critical pathway for secondary metabolites. The study highlights that the phenylpropanoid pathway and secondary metabolite biosynthesis are vital for Musa spp. resistance to Foc. Flavonoids and lignin may inhibit Sge1 protein formation, potentially disrupting Foc's cellular processes. These findings emphasize the role of phenylpropanoid pathways and secondary metabolites in combating BFW and suggest that targeting these pathways could offer innovative strategies for enhancing resistance and controlling BFW in banana crops. This research lays the groundwork for developing sustainable methods to protect banana cultivation and ensure food security.
Collapse
Affiliation(s)
- Preeti Sonkar
- Department of Basic and Social Science, Banda University of Agriculture and Technology, Banda, Uttar Pradesh 210001, India
| | - Shalini Purwar
- Department of Basic and Social Science, Banda University of Agriculture and Technology, Banda, Uttar Pradesh 210001, India.
| | - Prachi Bhargva
- Institute of Agricultural Sciences and Technology, Shri Ramswroop Memorial University, Barabanki, Uttar Pradesh 225003, India
| | - Ravindra Pratap Singh
- Department of Biochemistry (School of Sciences), Uttar Pradesh Rajarshi Tandon Open University Prayagraj, Uttar Pradesh 211021, India
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yheni Dwiningsih
- Department of Crop, Soil and Environmental Sciences; University of Arkansas, Fayetteville, AR, United States
| | - Salim Khan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Gervais NC, Shapiro RS. Discovering the hidden function in fungal genomes. Nat Commun 2024; 15:8219. [PMID: 39300175 DOI: 10.1038/s41467-024-52568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
New molecular technologies have helped unveil previously unexplored facets of the genome beyond the canonical proteome, including microproteins and short ORFs, products of alternative splicing, regulatory non-coding RNAs, as well as transposable elements, cis-regulatory DNA, and other highly repetitive regions of DNA. In this Review, we highlight what is known about this 'hidden genome' within the fungal kingdom. Using well-established model systems as a contextual framework, we describe key elements of this hidden genome in diverse fungal species, and explore how these factors perform critical functions in regulating fungal metabolism, stress tolerance, and pathogenesis. Finally, we discuss new technologies that may be adapted to further characterize the hidden genome in fungi.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Pardo-Medina J, Dahlmann TA, Nowrousian M, Limón MC, Avalos J. The RNAi Machinery in the Fungus Fusarium fujikuroi Is Not Very Active in Synthetic Medium and Is Related to Transposable Elements. Noncoding RNA 2024; 10:31. [PMID: 38804363 PMCID: PMC11130915 DOI: 10.3390/ncrna10030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Small RNAS (sRNAs) participate in regulatory RNA interference (RNAi) mechanisms in a wide range of eukaryotic organisms, including fungi. The fungus Fusarium fujikuroi, a model for the study of secondary metabolism, contains a complete set of genes for RNAi pathways. We have analyzed by high-throughput sequencing the content of sRNAs in total RNA samples of F. fujikuroi grown in synthetic medium in the dark or after 1 h of illumination, using libraries below 150 nt, covering sRNAs and their precursors. For comparison, a parallel analysis with Fusarium oxysporum was carried out. The sRNA reads showed a higher proportion of 5' uracil in the RNA samples of the expected sizes in both species, indicating the occurrence of genuine sRNAs, and putative miRNA-like sRNAs (milRNAS) were identified with prediction software. F. fujikuroi carries at least one transcriptionally expressed Ty1/copia-like retrotransposable element, in which sRNAs were found in both sense and antisense DNA strands, while in F. oxysporum skippy-like elements also show sRNA formation. The finding of sRNA in these mobile elements indicates an active sRNA-based RNAi pathway. Targeted deletion of dcl2, the only F. fujikuroi Dicer gene with significant expression under the conditions tested, did not produce appreciable phenotypic or transcriptomic alterations.
Collapse
Affiliation(s)
- Javier Pardo-Medina
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain;
| | - Tim A. Dahlmann
- Department of Molecular and Cellular Botany, Ruhr-University Bochum, ND 7/176 Universitätsstr. 150, 44780 Bochum, Germany; (T.A.D.); (M.N.)
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-University Bochum, ND 7/176 Universitätsstr. 150, 44780 Bochum, Germany; (T.A.D.); (M.N.)
| | - M. Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain;
| | - Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain;
| |
Collapse
|
5
|
Fan X, Gao X, Zang H, Liu Z, Jing X, Liu X, Guo S, Jiang H, Wu Y, Huang Z, Chen D, Guo R. Transcriptional dynamics and regulatory function of milRNAs in Ascosphaera apis invading Apis mellifera larvae. Front Microbiol 2024; 15:1355035. [PMID: 38650880 PMCID: PMC11033319 DOI: 10.3389/fmicb.2024.1355035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
In the present study, small RNA (sRNA) data from Ascosphaera apis were filtered from sRNA-seq datasets from the gut tissues of A. apis-infected Apis mellifera ligustica worker larvae, which were combined with the previously gained sRNA-seq data from A. apis spores to screen differentially expressed milRNAs (DEmilRNAs), followed by trend analysis and investigation of the DEmilRNAs in relation to significant trends. Additionally, the interactions between the DEmilRNAs and their target mRNAs were verified using a dual-luciferase reporter assay. In total, 974 A. apis milRNAs were identified. The first base of these milRNAs was biased toward U. The expression of six milRNAs was confirmed by stem-loop RT-PCR, and the sequences of milR-3245-y and milR-10285-y were validated using Sanger sequencing. These miRNAs grouped into four significant trends, with the target mRNAs of DEmilRNAs involving 42 GO terms and 120 KEGG pathways, such as the fungal-type cell wall and biosynthesis of secondary metabolites. Further investigation demonstrated that 299 DEmilRNAs (novel-m0011-3p, milR-10048-y, bantam-y, etc.) potentially targeted nine genes encoding secondary metabolite-associated enzymes, while 258 (milR-25-y, milR-14-y, milR-932-x, etc.) and 419 (milR-4561-y, milR-10125-y, let-7-x, etc.) DEmilRNAs putatively targeted virulence factor-encoded genes and nine genes involved in the MAPK signaling pathway, respectively. Additionally, the interaction between ADM-B and milR-6882-x, as well as between PKIA and milR-7009-x were verified. Together, these results not only offer a basis for clarifying the mechanisms underlying DEmilRNA-regulated pathogenesis of A. apis and a novel insight into the interaction between A. apis and honey bee larvae, but also provide candidate DEmilRNA-gene axis for further investigation.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuze Gao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhitan Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Jiang
- Jilin Apicultural Research Institute, Jilin, China
| | - Ying Wu
- Jilin Apicultural Research Institute, Jilin, China
| | - Zhijian Huang
- Animal Husbandry Terminus of Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
6
|
Regmi R, Newman TE, Khentry Y, Kamphuis LG, Derbyshire MC. Genome-wide identification of Sclerotinia sclerotiorum small RNAs and their endogenous targets. BMC Genomics 2023; 24:582. [PMID: 37784009 PMCID: PMC10544508 DOI: 10.1186/s12864-023-09686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Several phytopathogens produce small non-coding RNAs of approximately 18-30 nucleotides (nt) which post-transcriptionally regulate gene expression. Commonly called small RNAs (sRNAs), these small molecules were also reported to be present in the necrotrophic pathogen Sclerotinia sclerotiorum. S. sclerotiorum causes diseases in more than 400 plant species, including the important oilseed crop Brassica napus. sRNAs can further be classified as microRNAs (miRNAs) and short interfering RNAs (siRNAs). Certain miRNAs can activate loci that produce further sRNAs; these secondary sRNA-producing loci are called 'phased siRNA' (PHAS) loci and have only been described in plants. To date, very few studies have characterized sRNAs and their endogenous targets in S. sclerotiorum. RESULTS We used Illumina sequencing to characterize sRNAs from fungal mycelial mats of S. sclerotiorum spread over B. napus leaves. In total, eight sRNA libraries were prepared from in vitro, 12 h post-inoculation (HPI), and 24 HPI mycelial mat samples. Cluster analysis identified 354 abundant sRNA clusters with reads of more than 100 Reads Per Million (RPM). Differential expression analysis revealed upregulation of 34 and 57 loci at 12 and 24 HPI, respectively, in comparison to in vitro samples. Among these, 25 loci were commonly upregulated. Altogether, 343 endogenous targets were identified from the major RNAs of 25 loci. Almost 88% of these targets were annotated as repeat element genes, while the remaining targets were non-repeat element genes. Fungal degradome reads confirmed cleavage of two transposable elements by one upregulated sRNA. Altogether, 24 milRNA loci were predicted with both mature and milRNA* (star) sequences; these are both criteria associated previously with experimentally verified miRNAs. Degradome sequencing data confirmed the cleavage of 14 targets. These targets were related to repeat element genes, phosphate acetyltransferases, RNA-binding factor, and exchange factor. A PHAS gene prediction tool identified 26 possible phased interfering loci with 147 phasiRNAs from the S. sclerotiorum genome, suggesting this pathogen might produce sRNAs that function similarly to miRNAs in higher eukaryotes. CONCLUSIONS Our results provide new insights into sRNA populations and add a new resource for the study of sRNAs in S. sclerotiorum.
Collapse
Affiliation(s)
- Roshan Regmi
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia
- Present address: Microbiome for One Systems Health, CSIRO, Urrbrae, South Australia, Australia
| | - Toby E Newman
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia
| | - Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
7
|
Hirpara DG, Gajera HP. Intracellular metabolomics and microRNAomics unveil new insight into the regulatory network for potential biocontrol mechanism of stress-tolerant Tricho-fusants interacting with phytopathogen Sclerotium rolfsii Sacc. J Cell Physiol 2023; 238:1288-1307. [PMID: 37021806 DOI: 10.1002/jcp.31009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023]
Abstract
The present study employed microRNA (miRNA) sequencing and metabolome profiling of Trichoderma parental strains and fusants during normal growth and interaction with the phytopathogen Sclerotium rolfsii Sacc. In-vitro antagonism indicated that abiotic stress-tolerant Tricho-fusant FU21 was examined as a potent biocontroller with mycoparasitic action after 10 days. During interaction with the test pathogen, the most abundant uprising intracellular metabolite was recognized as l-proline, which corresponds to held-down l-alanine, associated with arginine and proline metabolism, biosynthesis of secondary metabolites, and nitrogen metabolism linked to predicted genes controlled by miRNAs viz., cel-miR-8210-3p, hsa-miR-3613-5p, and mml-miR-7174-3p. The miRNAs- mml-miR-320c and mmu-miR-6980-5p were found to be associated with phenylpropanoid biosynthesis, transcription factors, and signal transduction pathways, respectively, and were ascertained downregulated in potent FU21_IB compared with FU21_CB. The amino benzoate degradation and T cell receptor signaling pathways were regulated by miRNAs cel-miR-8210 and tca-miR-3824 as stress tolerance mechanisms of FU21. The intracellular metabolites l-proline, maleic acid, d-fructose, Myo-inositol, arabinitol, d-xylose, mannitol, and butane were significantly elevated as potential biocontrol and stress-tolerant constituents associated with miRNA regulatory pathways in potent FU21_IB. A network analysis between regulatory miRNA-predicted genes and intracellular metabolomics acknowledged possible biocontrol pathways/mechanisms in potent FU21_IB to restrain phytopathogen.
Collapse
Affiliation(s)
- Darshna G Hirpara
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Harsukh P Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India
| |
Collapse
|
8
|
Johnson NR, Larrondo LF, Álvarez JM, Vidal EA. Comprehensive re-analysis of hairpin small RNAs in fungi reveals loci with conserved links. eLife 2022; 11:e83691. [PMID: 36484778 PMCID: PMC9757828 DOI: 10.7554/elife.83691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
RNA interference is an ancient mechanism with many regulatory roles in eukaryotic genomes, with small RNAs acting as their functional element. While there is a wide array of classes of small-RNA-producing loci, those resulting from stem-loop structures (hairpins) have received profuse attention. Such is the case of microRNAs (miRNAs), which have distinct roles in plants and animals. Fungi also produce small RNAs, and several publications have identified miRNAs and miRNA-like (mi/milRNA) hairpin RNAs in diverse fungal species using deep sequencing technologies. Despite this relevant source of information, relatively little is known about mi/milRNA features in fungi, mostly due to a lack of established criteria for their annotation. To systematically assess mi/milRNA characteristics and annotation confidence, we searched for publications describing mi/milRNA loci and re-assessed the annotations for 41 fungal species. We extracted and normalized the annotation data for 1727 reported mi/milRNA loci and determined their abundance profiles, concluding that less than half of the reported loci passed basic standards used for hairpin RNA discovery. We found that fungal mi/milRNA are generally more similar in size to animal miRNAs and were frequently associated with protein-coding genes. The compiled genomic analyses identified 25 mi/milRNA loci conserved in multiple species. Our pipeline allowed us to build a general hierarchy of locus quality, identifying more than 150 loci with high-quality annotations. We provide a centralized annotation of identified mi/milRNA hairpin RNAs in fungi which will serve as a resource for future research and advance in understanding the characteristics and functions of mi/milRNAs in fungal organisms.
Collapse
Affiliation(s)
- Nathan R Johnson
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
| | - Luis F Larrondo
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiagoChile
| | - José M Álvarez
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
- Centro de Biotecnología Vegetal, Facultad de Ciencias, Universidad Andrés BelloSantiagoChile
| | - Elena A Vidal
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
| |
Collapse
|
9
|
Regmi R, Penton CR, Anderson J, Gupta VVSR. Do small RNAs unlock the below ground microbiome-plant interaction mystery? Front Mol Biosci 2022; 9:1017392. [PMID: 36406267 PMCID: PMC9670543 DOI: 10.3389/fmolb.2022.1017392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2023] Open
Abstract
Over the past few decades, regulatory RNAs, such as small RNAs (sRNAs), have received increasing attention in the context of host-microbe interactions due to their diverse roles in controlling various biological processes in eukaryotes. In addition, studies have identified an increasing number of sRNAs with novel functions across a wide range of bacteria. What is not well understood is why cells regulate gene expression through post-transcriptional mechanisms rather than at the initiation of transcription. The finding of a multitude of sRNAs and their identified associated targets has allowed further investigation into the role of sRNAs in mediating gene regulation. These foundational data allow for further development of hypotheses concerning how a precise control of gene activity is accomplished through the combination of transcriptional and post-transcriptional regulation. Recently, sRNAs have been reported to participate in interkingdom communication and signalling where sRNAs originating from one kingdom are able to target or control gene expression in another kingdom. For example, small RNAs of fungal pathogens that silence plant genes and vice-versa plant sRNAs that mediate bacterial gene expression. However, there is currently a lack of evidence regarding sRNA-based inter-kingdom signalling across more than two interacting organisms. A habitat that provides an excellent opportunity to investigate interconnectivity is the plant rhizosphere, a multifaceted ecosystem where plants and associated soil microbes are known to interact. In this paper, we discuss how the interconnectivity of bacteria, fungi, and plants within the rhizosphere may be mediated by bacterial sRNAs with a particular focus on disease suppressive and non-suppressive soils. We discuss the potential roles sRNAs may play in the below-ground world and identify potential areas of future research, particularly in reference to the regulation of plant immunity genes by bacterial and fungal communities in disease-suppressive and non-disease-suppressive soils.
Collapse
Affiliation(s)
- Roshan Regmi
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| | - C. Ryan Penton
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Jonathan Anderson
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Canberra, SA, Australia
| | - Vadakattu V. S. R. Gupta
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| |
Collapse
|
10
|
Small RNA Analyses of a Ceratobasidium Isolate Infected with Three Endornaviruses. Viruses 2022; 14:v14102276. [PMID: 36298830 PMCID: PMC9610886 DOI: 10.3390/v14102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Isolates of three endornavirus species were identified co-infecting an unidentified species of Ceratobasidium, itself identified as a symbiont from within the roots of a wild plant of the terrestrial orchid Pterostylis vittata in Western Australia. Isogenic lines of the fungal isolate lacking all three mycoviruses were derived from the virus-infected isolate. To observe how presence of endornaviruses influenced gene expression in the fungal host, we sequenced fungus-derived small RNA species from the virus-infected and virus-free isogenic lines and compared them. The presence of mycoviruses influenced expression of small RNAs. Of the 3272 fungus-derived small RNA species identified, the expression of 9.1% (300 of 3272) of them were up-regulated, and 0.6% (18 of 3272) were down-regulated in the presence of the viruses. Fourteen novel micro-RNA-like RNAs (Cer-milRNAs) were predicted. Gene target prediction of the differentially expressed Cer-milRNAs was quite ambiguous; however, fungal genes involved in transcriptional regulation, catalysis, molecular binding, and metabolic activities such as gene expression, DNA metabolic processes and regulation activities were differentially expressed in the presence of the mycoviruses.
Collapse
|
11
|
Comparative Small RNA and Degradome Sequencing Provides Insights into Antagonistic Interactions in the Biocontrol Fungus Clonostachys rosea. Appl Environ Microbiol 2022; 88:e0064322. [PMID: 35695572 PMCID: PMC9275246 DOI: 10.1128/aem.00643-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Necrotrophic mycoparasitism is an intricate process involving recognition, physical mycelial contact, and killing of host fungi (mycohosts). During such interactions, mycoparasites undergo a complex developmental process involving massive regulatory changes of gene expression to produce a range of chemical compounds and proteins that contribute to the parasitism of the mycohosts. Small RNAs (sRNAs) are vital components of posttranscriptional gene regulation, although their role in gene expression regulation during mycoparasitisms remain understudied. Here, we investigated the role of sRNA-mediated gene regulation in mycoparasitism by performing sRNA and degradome tag sequencing of the mycoparasitic fungus Clonostachys rosea interacting with the plant-pathogenic mycohosts Botrytis cinerea and Fusarium graminearum at two time points. The majority of differentially expressed sRNAs were downregulated during the interactions with the mycohosts compared to a C. rosea self-interaction control, thus allowing desuppression (upregulation) of mycohost-responsive genes. Degradome analysis showed a positive correlation between high degradome counts and antisense sRNA mapping and led to the identification of 201 sRNA-mediated potential gene targets for 282 differentially expressed sRNAs. Analysis of sRNA potential gene targets revealed that the regulation of genes coding for membrane proteins was a common response against both mycohosts. The regulation of genes involved in oxidative stress tolerance and cellular metabolic and biosynthetic processes was exclusive against F. graminearum, highlighting common and mycohost-specific gene regulation of C. rosea. By combining these results with transcriptome data collected during a previous study, we expand the understanding of the role of sRNA in regulating interspecific fungal interactions and mycoparasitism. IMPORTANCE Small RNAs (sRNAs) are emerging as key players in pathogenic and mutualistic fungus-plant interactions; however, their role in fungus-fungus interactions remains elusive. In this study, we employed the necrotrophic mycoparasite Clonostachys rosea and the plant-pathogenic mycohosts Botrytis cinerea and Fusarium graminearum and investigated the sRNA-mediated gene regulation in mycoparasitic interactions. The combined approach of sRNA and degradome tag sequencing identified 201 sRNA-mediated putative gene targets for 282 differentially expressed sRNAs, highlighting the role of sRNA-mediated regulation of mycoparasitism in C. rosea. We also identified 36 known and 13 novel microRNAs (miRNAs) and their potential gene targets at the endogenous level and at a cross-species level in B. cinerea and F. graminearum, indicating a role of cross-species RNA interference (RNAi) in mycoparasitism, representing a novel mechanism in biocontrol interactions. Furthermore, we showed that C. rosea adapts its transcriptional response, and thereby its interaction mechanisms, based on the interaction stages and identity of the mycohost.
Collapse
|
12
|
Marin FR, Dávalos A, Kiltschewskij D, Crespo MC, Cairns M, Andrés-León E, Soler-Rivas C. RNA-Seq, Bioinformatic Identification of Potential MicroRNA-like Small RNAs in the Edible Mushroom Agaricus bisporus and Experimental Approach for Their Validation. Int J Mol Sci 2022; 23:4923. [PMID: 35563314 PMCID: PMC9100230 DOI: 10.3390/ijms23094923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Although genomes from many edible mushrooms are sequenced, studies on fungal micro RNAs (miRNAs) are scarce. Most of the bioinformatic tools are designed for plants or animals, but the processing and expression of fungal miRNAs share similarities and differences with both kingdoms. Moreover, since mushroom species such as Agaricus bisporus (A. bisporus, white button mushroom) are frequently consumed as food, controversial discussions are still evaluating whether their miRNAs might or might not be assimilated, perhaps within extracellular vesicles (i.e., exosomes). Therefore, the A. bisporus RNA-seq was studied in order to identify potential de novo miRNA-like small RNAs (milRNAs) that might allow their later detection in diet. Results pointed to 1 already known and 37 de novo milRNAs. Three milRNAs were selected for RT-qPCR experiments. Precursors and mature milRNAs were found in the edible parts (caps and stipes), validating the predictions carried out in silico. When their potential gene targets were investigated, results pointed that most were involved in primary and secondary metabolic regulation. However, when the human transcriptome is used as the target, the results suggest that they might interfere with important biological processes related with cancer, infection and neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco R. Marin
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research—CIAL (UAM + CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)—Food, CEI UAM + CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco, 28049 Madrid, Spain; (A.D.); (M.C.C.)
| | - Dylan Kiltschewskij
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.K.); (M.C.)
| | - Maria C. Crespo
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)—Food, CEI UAM + CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco, 28049 Madrid, Spain; (A.D.); (M.C.C.)
| | - Murray Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.K.); (M.C.)
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López Neyra”, Spanish National Research Council (CSIC), 18016 Granada, Spain;
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research—CIAL (UAM + CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
13
|
Exploring the Effectiveness and Durability of Trans-Kingdom Silencing of Fungal Genes in the Vascular Pathogen Verticillium dahliae. Int J Mol Sci 2022; 23:ijms23052742. [PMID: 35269884 PMCID: PMC8910871 DOI: 10.3390/ijms23052742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Host-induced gene silencing (HIGS) based on trans-kingdom RNA interference (RNAi) has been successfully exploited to engineer host resistance to pests and pathogens, including fungi and oomycetes. However, revealing the mechanisms underlying trans-kingdom RNAi between hosts and pathogens lags behind applications. The effectiveness and durability of trans-kingdom silencing of pathogenic genes are uncharacterized. In this study, using our transgenic 35S-VdH1i cotton plants in which dsVdH1-derived small RNAs (siVdH1) accumulated, small RNA sequencing analysis revealed that siVdH1s exclusively occur within the double-stranded (ds)VdH1 region, and no transitive siRNAs were produced beyond this region in recovered hyphae of Verticillium dahliae (V. dahliae). Accordingly, we found that VdH1 silencing was reduced over time in recovered hyphae cultured in vitro, inferring that once the fungus got rid of the 35S-VdH1i cotton plants would gradually regain their pathogenicity. To explore whether continually exporting dsRNAs/siRNAs from transgenic plants into recipient fungal cells guaranteed the effectiveness and stability of HIGS, we created GFP/RFP double-labeled V. dahliae and transgenic Arabidopsis expressing dsGFP (35S-GFPi plants). Confocal images visually demonstrate the efficient silencing of GFP in V. dahliae that colonized host vascular tissues. Taken together, our results demonstrate that HIGS effectively triggers long-lasting trans-kingdom RNAi during plant vasculature V. dahliae interactions, despite no amplification or transitivity of RNAi being noted in this soil-borne fungal pathogen.
Collapse
|
14
|
Jeseničnik T, Štajner N, Radišek S, Mishra AK, Košmelj K, Kunej U, Jakše J. Discovery of microRNA-like Small RNAs in Pathogenic Plant Fungus Verticillium nonalfalfae Using High-Throughput Sequencing and qPCR and RLM-RACE Validation. Int J Mol Sci 2022; 23:900. [PMID: 35055083 PMCID: PMC8778906 DOI: 10.3390/ijms23020900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Verticillium nonalfalfae (V. nonalfalfae) is one of the most problematic hop (Humulus lupulus L.) pathogens, as the highly virulent fungal pathotypes cause severe annual yield losses due to infections of entire hop fields. In recent years, the RNA interference (RNAi) mechanism has become one of the main areas of focus in plant-fungal pathogen interaction studies and has been implicated as one of the major contributors to fungal pathogenicity. MicroRNA-like RNAs (milRNAs) have been identified in several important plant pathogenic fungi; however, to date, no milRNA has been reported in the V. nonalfalfae species. In the present study, using a high-throughput sequencing approach and extensive bioinformatics analysis, a total of 156 milRNA precursors were identified in the annotated V. nonalfalfae genome, and 27 of these milRNA precursors were selected as true milRNA candidates, with appropriate microRNA hairpin secondary structures. The stem-loop RT-qPCR assay was used for milRNA validation; a total of nine V. nonalfalfae milRNAs were detected, and their expression was confirmed. The milRNA expression patterns, determined by the absolute quantification approach, imply that milRNAs play an important role in the pathogenicity of highly virulent V. nonalfalfae pathotypes. Computational analysis predicted milRNA targets in the V. nonalfalfae genome and in the host hop transcriptome, and the activity of milRNA-mediated RNAi target cleavage was subsequently confirmed for two selected endogenous fungal target gene models using the 5' RLM-RACE approach.
Collapse
Affiliation(s)
- Taja Jeseničnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, 3310 Žalec, Slovenia;
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic;
| | - Katarina Košmelj
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| |
Collapse
|
15
|
Piombo E, Dubey M. Computational Analysis of HTS Data and Its Application in Plant Pathology. Methods Mol Biol 2022; 2536:275-307. [PMID: 35819611 DOI: 10.1007/978-1-0716-2517-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput sequencing is a basic tool of biological research, and it is extensively used in plant pathology projects. Here, we describe how to handle data coming from a variety of sequencing experiments, focusing on the analysis of Illumina reads. We describe how to perform genome assembly and annotation with DNA reads, correctly analyze RNA-seq data to discover differentially expressed genes, handle amplicon sequencing data from microbial communities, and utilize small RNA sequencing data to predict miRNA sequences and their putative targets.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
16
|
Munhoz da Rocha IF, Martins ST, Amatuzzi RF, Zamith-Miranda D, Nosanchuk JD, Rodrigues ML, Alves LR. Cellular and Extracellular Vesicle RNA Analysis in the Global Threat Fungus Candida auris. Microbiol Spectr 2021; 9:e0153821. [PMID: 34908466 PMCID: PMC8672890 DOI: 10.1128/spectrum.01538-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Emerging and reemerging pathogens are a worldwide concern, and it is predicted that these microbes will cause severe outbreaks. Candida auris affects people with weakened immune systems, particularly those who are hospitalized or are in health care facilities. Extracellular vesicles (EVs) are lipid bilayer structures released by organisms from all domains of life. EVs can deliver functional molecules to target cells, including proteins and nucleic acids, especially RNA molecules. EVs from several pathogenic fungi species play diverse biological roles related to cell-cell communication and pathogen-host interaction. In this study, we describe a data set which we produced by sequencing the RNA content of EVs from C. auris under normal growth conditions and in the presence of the antifungal caspofungin, a first-line drug to treat this fungus. To generate a more complete data set for future comparative studies, we also sequenced the RNA cellular content of EVs under the same conditions. This data set addresses a previously unexplored area of fungal biology regarding cellular small RNA and EV RNA. Our data will provide a molecular basis for the study of the aspects associated with antifungal treatment, gene expression response, and EV composition in C. auris. These data will also allow the exploration of small RNA content in the fungal kingdom and might serve as an informative basis for studies on the mechanisms by which molecules are directed to fungal EVs. IMPORTANCE Candida auris, a relevant emerging human-pathogenic yeast, is the first fungus to be called a global public health threat by the WHO. This is because of its rapid spread on all inhabited continents, together with its extremely high frequency of drug and multidrug resistance. In our study, we generated a large data set for 3 distinct strains of C. auris and obtained cellular small RNA fraction as well as extracellular vesicle RNA (EV-RNA) during normal growth conditions and after treatment with caspofungin, the first-line drug used to treat C. auris infection.
Collapse
Affiliation(s)
| | - Sharon T. Martins
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Fiocruz Paraná, Curitiba, Brazil
| | - Rafaela F. Amatuzzi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Fiocruz Paraná, Curitiba, Brazil
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Marcio L. Rodrigues
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Fiocruz Paraná, Curitiba, Brazil
- Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lysangela R. Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Fiocruz Paraná, Curitiba, Brazil
| |
Collapse
|
17
|
Kwasiborski A, Bastide F, Hamon B, Poupard P, Simoneau P, Guillemette T. In silico analysis of RNA interference components and miRNAs-like RNAs in the seed-borne necrotrophic fungus Alternaria brassicicola. Fungal Biol 2021; 126:224-234. [DOI: 10.1016/j.funbio.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/01/2022]
|
18
|
Tr-milRNA1 Contributes to Lignocellulase Secretion under Heat Stress by Regulating the Lectin-Type Cargo Receptor Gene Trvip36 in Trichoderma guizhouence NJAU 4742. J Fungi (Basel) 2021; 7:jof7120997. [PMID: 34946980 PMCID: PMC8704016 DOI: 10.3390/jof7120997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background: MicroRNA plays an important role in multifarious biological processes by regulating their corresponding target genes. However, the biological function and regulatory mechanism of fungal microRNA-like RNAs (milRNAs) remain poorly understood. Methods: In this study, combined with deep sequencing and bioinformatics analysis, milRNAs and their targets from Trichoderma guizhouence NJAU 4742 were isolated and identified under solid-state fermentation (SSF) by using rice straw as the sole carbon source at 28 °C and 37 °C, respectively. Results: A critical milRNA, TGA1_S04_31828 (Tr-milRNA1), was highly expressed under heat stress (37 °C) and adaptively regulated lignocellulase secretion. Overexpression of Tr-milRNA1 (OE-Tr-milRNA1) did not affect vegetative growth, but significantly increased lignocellulose utilization under heat stress. Based on the bioinformatics analysis and qPCR validation, a target of Tr-milRNA1 was identified as Trvip36, a lectin-type cargo receptor. The expression of Tr-milRNA1 and Trvip36 showed a divergent trend under SSF when the temperature was increased from 28 °C to 37 °C. In addition, the expression of Trvip36 was suppressed significantly in Tr-milRNA1 overexpression strain (OE-Tr-milRNA1). Compared with the wild type, deletion of Trvip36 (ΔTrvip36) significantly improved the secretion of lignocellulases by reducing the retention of lignocellulases in the ER under heat stress. Conclusions: Tr-milRNA1 from NJAU 4742 improved lignocellulose utilization under heat stress by regulating the expression of the corresponding target gene Trvip36. These findings might open avenues for exploring the mechanism of lignocellulase secretion in filamentous fungi.
Collapse
|
19
|
Piombo E, Vetukuri RR, Broberg A, Kalyandurg PB, Kushwaha S, Funck Jensen D, Karlsson M, Dubey M. Role of Dicer-Dependent RNA Interference in Regulating Mycoparasitic Interactions. Microbiol Spectr 2021; 9:e0109921. [PMID: 34549988 PMCID: PMC8557909 DOI: 10.1128/spectrum.01099-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Dicer-like proteins (DCLs) play a vital role in RNA interference (RNAi), by cleaving RNA filament into small RNAs. Although DCL-mediated RNAi can regulate interspecific communication between pathogenic/mutualistic organisms and their hosts, its role in mycoparasitic interactions is yet to be investigated. In this study, we deleted dcl genes in the mycoparasitic fungus Clonostachys rosea and characterize the functions of DCL-dependent RNAi in mycoparasitism. Deletion of dcl2 resulted in a mutant with reduced secondary metabolite production, antagonism toward the plant-pathogenic fungus Botrytis cinerea, and reduced ability to control Fusarium foot rot disease on wheat, caused by Fusarium graminearum. Transcriptome sequencing of the in vitro interaction between the C. rosea Δdcl2 strain and B. cinerea or F. graminearum identified the downregulation of genes coding for transcription factors, membrane transporters, hydrolytic enzymes, and secondary metabolites biosynthesis enzymes putatively involved in antagonistic interactions, in comparison with the C. rosea wild-type interaction. A total of 61 putative novel microRNA-like RNAs (milRNAs) were identified in C. rosea, and 11 were downregulated in the Δdcl2 mutant. In addition to putative endogenous gene targets, these milRNAs were predicted to target B. cinerea and F. graminearum virulence factor genes, which showed an increased expression during interaction with the Δdcl2 mutant incapable of producing the targeting milRNAs. In summary, this study constitutes the first step in elucidating the role of RNAi in mycoparasitic interactions, with important implications for biological control of plant diseases, and poses the base for future studies focusing on the role of cross-species RNAi regulating mycoparasitic interactions. IMPORTANCE Small RNAs mediated RNA interference (RNAi) known to regulate several biological processes. Dicer-like endoribonucleases (DCLs) play a vital role in the RNAi pathway by generating sRNAs. In this study, we investigated a role of DCL-mediated RNAi in interference interactions between mycoparasitic fungus Clonostachys rosea and the two fungal pathogens Botrytis cinerea and Fusarium graminearum (here called mycohosts). We found that the dcl mutants were not able to produce 11 sRNAs predicted to finetune the regulatory network of genes known to be involved in production of hydrolytic enzymes, antifungal compounds, and membrane transporters needed for antagonistic action of C. rosea. We also found C. rosea sRNAs putatively targeting known virulence factors in the mycohosts, indicating RNAi-mediated cross-species communication. Our study expanded the understanding of underlying mechanisms of cross-species communication during interference interactions and poses a base for future works studying the role of DCL-based cross-species RNAi in fungal interactions.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pruthvi B. Kalyandurg
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sandeep Kushwaha
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
20
|
Thieron H, Singh M, Panstruga R. One microRNA-like small RNA - two silencing pathways? THE NEW PHYTOLOGIST 2021; 232:464-467. [PMID: 34453746 DOI: 10.1111/nph.17652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Hannah Thieron
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, 52056, Germany
| | - Mansi Singh
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, 52056, Germany
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, 52056, Germany
| |
Collapse
|
21
|
Ji H, Mao H, Li S, Feng T, Zhang Z, Cheng L, Luo S, Borkovich K, Ouyang S. Fol-milR1, a pathogenicity factor of Fusarium oxysporum, confers tomato wilt disease resistance by impairing host immune responses. THE NEW PHYTOLOGIST 2021; 232:705-718. [PMID: 33960431 PMCID: PMC8518127 DOI: 10.1111/nph.17436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/14/2021] [Indexed: 05/03/2023]
Abstract
Although it is well known that miRNAs play crucial roles in multiple biological processes, there is currently no evidence indicating that milRNAs from Fusarium oxysporum f. sp. lycopersici (Fol) interfere with tomato resistance during infection. Here, using sRNA-seq, we demonstrate that Fol-milR1, a trans-kingdom small RNA, is exported into tomato cells after infection. The knockout strain ∆Fol-milR1 displays attenuated pathogenicity to the susceptible tomato cultivar 'Moneymaker'. On the other hand, Fol-milR1 overexpression strains exhibit enhanced virulence against the resistant cultivar 'Motelle'. Several tomato mRNAs are predicted targets of Fol-milR1. Among these genes, Solyc06g007430 (encoding the CBL-interacting protein kinase, SlyFRG4) is regulated at the posttranscriptional level by Fol-milR1. Furthermore, SlyFRG4 loss-of-function alleles created using CRISPR/Cas9 in tomato ('Motelle') exhibit enhanced disease susceptibility to Fol, further supporting the idea that SlyFRG4 is essential for tomato wilt disease resistance. Notably, our results using immunoprecipitation with specific antiserum suggest that Fol-milR1 interferes with the host immunity machinery by binding to tomato ARGONAUTE 4a (SlyAGO4a). Furthermore, virus-induced gene silenced (VIGS) knock-down SlyAGO4a plants exhibit reduced susceptibility to Fol. Together, our findings support a model in which Fol-milR1 is an sRNA fungal effector that suppresses host immunity by silencing a disease resistance gene, thus providing a novel virulence strategy to achieve infection.
Collapse
Affiliation(s)
- Hui‐Min Ji
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJS225009China
| | - Hui‐Ying Mao
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJS225009China
| | - Si‐Jian Li
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJS225009China
| | - Tao Feng
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJS225009China
| | - Zhao‐Yang Zhang
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJS225009China
| | - Lu Cheng
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJS225009China
| | - Shu‐Jie Luo
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJS225009China
| | - Katherine A. Borkovich
- Department of Microbiology and Plant PathologyInstitute for Integrative Genome BiologyUniversity of California900 University AvenueRiversideCA92521USA
| | - Shou‐Qiang Ouyang
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJS225009China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhouJS225009China
| |
Collapse
|
22
|
Qiao Y, Xia R, Zhai J, Hou Y, Feng L, Zhai Y, Ma W. Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:265-288. [PMID: 34077241 DOI: 10.1146/annurev-phyto-121520-023514] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host-pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host-pathogen interface are discussed.
Collapse
Affiliation(s)
- Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Jixian Zhai
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Li Feng
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zhai
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK;
| |
Collapse
|
23
|
Prathi NB, Durga Rani CV, Balachandran SM, Prakasam V, Chandra Mohan Y, Nagalakshmi S, Srivastava SK, Sundaram RM, Mangrauthia SK. Genome-Wide Expression Profiling of Small RNAs in Indian Strain of Rhizoctonia solani AG1-1A Reveals Differential Regulation of milRNAs during Pathogenesis and Crosstalk of Gene Regulation. J Fungi (Basel) 2021; 7:jof7070561. [PMID: 34356939 PMCID: PMC8304579 DOI: 10.3390/jof7070561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/26/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Rhizoctonia solani AG1-1A is a necrotrophic fungus that causes sheath blight disease in rice. The reliable resistant source against this phytopathogenic fungus is not available in the gene pool of rice. Better understanding of pathogen genomics and gene regulatory networks are critical to devise alternate strategies for developing resistance against this noxious pathogen. In this study, miRNA-like RNAs (milRNAs) of an Indian strain of R. solani were identified by deep sequencing of small RNAs. We identified 128 known and 22 novel milRNAs from 20,963,123 sequence reads. These milRNAs showed 1725 target genes in the fungal genome which include genes associated with growth, development, pathogenesis and virulence of R. solani. Notably, these fungal milRNAs showed their target genes in host (rice) genome also which were later verified by qRT-PCR. The host target genes are associated with auxin metabolism, hypersensitive response, defense genes, and genes related to growth and development of rice. Osa-vacuolar-sorting receptor precursor: Rhi-milR-13, Osa-KANADI1:Rhi-milR-124, Osa-isoflavone reductase: Rhi-milR-135, Osa-nuclear transcription factor Y:Rhi-milR-131, Osa-NB-ARC domain containing protein: Rhi-milR-18, and Osa-OsFBX438: Rhi-milR-142 are notable potential regulons of host target genes: fungal milRNAs that need to be investigated for better understanding of the crosstalk of RNAi pathways between R. solani and rice. The detailed expression analysis of 17 milRNAs by qRT-PCR was analysed during infection at different time points of inoculation, at different growth stages of the host, in four different genotypes of the host, and also in four different strains of fungi which revealed differential regulation of milRNAs associated with pathogenesis and virulence. This study highlights several important findings on fungal milRNAs which need to be further studied and characterized to decipher the gene expression and regulation of this economically important phytopathogen.
Collapse
Affiliation(s)
- Naresh Babu Prathi
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad 500030, India; (N.B.P.); (C.V.D.R.); (Y.C.M.)
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Chagamreddy Venkata Durga Rani
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad 500030, India; (N.B.P.); (C.V.D.R.); (Y.C.M.)
| | - Sena Munuswamy Balachandran
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Vellaisamy Prakasam
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Yeshala Chandra Mohan
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad 500030, India; (N.B.P.); (C.V.D.R.); (Y.C.M.)
| | - Sanivarapu Nagalakshmi
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Sunil K. Srivastava
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, Alipur, Delhi 110036, India;
| | - Raman Meenakshi Sundaram
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Satendra K. Mangrauthia
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
- Correspondence: or ; Tel.: +91-40-24591342
| |
Collapse
|
24
|
Xu D, Zhou Q, Yan B, Ma A. Identification and physiological function of one microRNA ( Po-MilR-1) in oyster mushroom Pleurotus ostreatus. MYCOSCIENCE 2021; 62:182-188. [PMID: 37091326 PMCID: PMC9157778 DOI: 10.47371/mycosci.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 01/08/2023]
Abstract
MicroRNAs are essential regulators of gene expression and have been extensively studied in plants and animals; however, few reports have been published in mushrooms. Po-MilR-1 is a novel microRNA with a length of 22 bp in Pleurotus ostreatus. The secondary structures of five precursors and the target genes of Po-MilR-1 were predicted. Expression profile analysis showed Po-MilR-1 had specific expression in the primordium and fruiting body. To explore its physiological function, Po-MilR-1 was overexpressed in P. ostreatus. The transformants showed slow mycelium growth rate and abnormal pileus with irregular edge, which suggested Po-MilR-1 plays an important role in P. ostreatus development. Additionally, Po-MilR-1 and one of its target hydrophobin genes POH1 had opposite temporal expression profiles in the primordium and fruiting body, which revealed that Po-MilR-1 may perform its physiological function through the negative regulation of POH1. This study explored the development-related function of a mushroom microRNA and will provide a reference for other microRNAs.
Collapse
Affiliation(s)
- Danyun Xu
- College of Food Science and Technology, Huazhong Agricultural University
| | - Qixia Zhou
- College of Food Science and Technology, Huazhong Agricultural University
| | - Biyun Yan
- College of Food Science and Technology, Huazhong Agricultural University
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Huazhong Agricultural University
| |
Collapse
|
25
|
Galvão-Lima LJ, Morais AHF, Valentim RAM, Barreto EJSS. miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools. Biomed Eng Online 2021; 20:21. [PMID: 33593374 PMCID: PMC7885381 DOI: 10.1186/s12938-021-00857-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, microRNAs (miRNAs) have emerged as important molecules associated with the regulation of gene expression in humans and other organisms, expanding the strategies available to diagnose and handle several diseases. This paper presents a systematic review of literature of miRNAs related to cancer development and explores the main techniques used to quantify these molecules and their limitations as screening strategy. The bibliographic research was conducted using the online databases, PubMed, Google Scholar, Web of Science, and Science Direct searching the terms "microRNA detection", "miRNA detection", "miRNA and prostate cancer", "miRNA and cervical cancer", "miRNA and cervix cancer", "miRNA and breast cancer", and "miRNA and early cancer diagnosis". Along the systematic review over 26,000 published papers were reported, and 252 papers were returned after applying the inclusion and exclusion criteria, which were considered during this review. The aim of this study is to identify potential miRNAs related to cancer development that may be useful for early cancer diagnosis, notably in the breast, prostate, and cervical cancers. In addition, we suggest a preliminary top 20 miRNA panel according to their relevance during the respective cancer development. Considering the progressive number of new cancer cases every year worldwide, the development of new diagnostic tools is critical to refine the accuracy of screening tests, improving the life expectancy and allowing a better prognosis for the affected patients.
Collapse
Affiliation(s)
- Leonardo J. Galvão-Lima
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Avenue Senador Salgado Filho 1559, Natal, RN 59015-000 Brazil
| | - Antonio H. F. Morais
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Avenue Senador Salgado Filho 1559, Natal, RN 59015-000 Brazil
| | - Ricardo A. M. Valentim
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Campus Lagoa Nova, Natal, RN Brazil
| | - Elio J. S. S. Barreto
- Division of Oncology and Hematology, Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Campus Lagoa Nova, Natal, RN Brazil
| |
Collapse
|
26
|
Feng H, Xu M, Gao Y, Liang J, Guo F, Guo Y, Huang L. Vm-milR37 contributes to pathogenicity by regulating glutathione peroxidase gene VmGP in Valsa mali. MOLECULAR PLANT PATHOLOGY 2021; 22:243-254. [PMID: 33278058 PMCID: PMC7814965 DOI: 10.1111/mpp.13023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 05/22/2023]
Abstract
MicroRNAs play important roles in various biological processes by regulating their corresponding target genes. However, the function and regulatory mechanism of fungal microRNA-like RNAs (milRNAs) are still largely unknown. In this study, a milRNA (Vm-milR37) was isolated and identified from Valsa mali, which causes the most serious disease on the trunk of apple trees in China. Based on the results of deep sequencing and quantitative reverse transcription PCR, Vm-milR37 was found to be expressed in the mycelium, while it was not expressed during the V. mali infection process. Overexpression of Vm-milR37 did not affect vegetative growth, but significantly decreased pathogenicity. Based on degradome sequencing, the target of Vm-milR37 was identified as VmGP, a glutathione peroxidase. The expression of Vm-milR37 and VmGP showed a divergent trend in V. mali-apple interaction samples and Vm-milR37 overexpression transformants. The expression of VmGP could be suppressed significantly by Vm-milR37 when coexpressed in tobacco leaves. Deletion of VmGP showed significantly reduced pathogenicity compared with the wild type. VmGP deletion mutants showed more sensitivity to hydrogen peroxide. Apple leaves inoculated with Vm-milR37 overexpression transformants and VmGP deletion mutant displayed increased accumulation of reactive oxygen species compared with the wild type. Thus, Vm-milR37 plays a critical role in pathogenicity by regulating VmGP, which contributes to the oxidative stress response during V. mali infection. These results provide important evidence to define the roles of milRNAs and their corresponding target genes in pathogenicity.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Yuqi Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jiahao Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Feiran Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
27
|
Munhoz da Rocha IF, Amatuzzi RF, Lucena ACR, Faoro H, Alves LR. Cross-Kingdom Extracellular Vesicles EV-RNA Communication as a Mechanism for Host-Pathogen Interaction. Front Cell Infect Microbiol 2020; 10:593160. [PMID: 33312966 PMCID: PMC7708329 DOI: 10.3389/fcimb.2020.593160] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023] Open
Abstract
The extracellular vesicle (EVs) traffic has been highlighted as a very important pathway of cellular communication. EVs are produced by prokaryotes and eukaryotes organisms and can carry molecules to help maintain homeostasis, responding to general disbalance, infections, and allowing rapid modulation of the immune system. In the context of infection, EVs from both the host and the pathogen have been identified as playing roles in the recruitment of immunological molecules that can lead to the resolution of the infection or the host’s defeat. Bacterial vesicles RNA cargo play roles in the host cell by regulating gene expression and modulating immune response. In fungi the RNA molecules present in EVs are diverse and participate in communication between the host and pathogenic fungi. Little is known about how cross-kingdom sRNA trafficking occurs, although in recent years, there has been an increase in studies that relate EV participation in sRNA delivery. This review aims to elucidate and update the reader concerning the role of extracellular vesicles, with emphasis in the RNA content. We describe the EVs during infection from the host point-of-view, as well as the bacteria and fungi pathogens producing EVs that help the establishment of the disease.
Collapse
Affiliation(s)
| | - Rafaela Ferreira Amatuzzi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Aline Castro Rodrigues Lucena
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| |
Collapse
|
28
|
Wang Q, Yang Y, Lu G, Sun X, Feng Y, Yan S, Zhang H, Jiang Q, Zhang H, Hu Z, Chen R. Genome-wide identification of microRNAs and phased siRNAs in soybean roots under long-term salt stress. Genes Genomics 2020; 42:1239-1249. [PMID: 32939614 DOI: 10.1007/s13258-020-00990-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Salinity stress, as the key limiting factor for agricultural productivity, can activate a series of molecular responses and alter gene expression in plants. Endogenous regulatory small RNAs, such as microRNAs (miRNAs) and phased siRNAs (phasiRNAs), play crucial roles during stress adaptation and prevent the injury from environmental circumstances. OBJECTIVE To identify long-term salt stress responsive miRNAs and phasiRNAs as well as their associated genes and pathways in soybean roots. METHODS Small RNA and degradome sequencing strategies were applied to genome widely investigate miRNAs and phasiRNAs in soybean roots under control and long-term salt stress conditions. RESULTS In this study, stringent bioinformatic analysis led to the identification of 253 conserved and 38 novel miRNA candidates. Results of expression profiling, target and endogenous target mimics predictions provided valuable clues to their functional roles. Furthermore, 156 genes were identified to be capable of generating 21 nt and 24 nt phasiRNAs, in which 37 candidates were confirmed by degradome data for miRNA-directed cleavage. Approximately 90% of these phasiRNA loci were protein coding genes. And GO enrichment analysis pointed to "signal transduction" and "ADP binding" entries and reflected the functional roles of identified phasiRNA genes. CONCLUSION Taken together, our findings extended the knowledge of salt responsive miRNAs and phasiRNAs in soybean roots, and provided valuable information for a better understanding of the regulatory events caused by small RNAs underlying plant adaptations to long-term salt stress.
Collapse
Affiliation(s)
- Qian Wang
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Yingxia Yang
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Guoqing Lu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Xianjun Sun
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Youren Feng
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Huiyuan Zhang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiyan Jiang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheng Hu
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Rui Chen
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| |
Collapse
|
29
|
Xia Z, Wang Z, Kav NNV, Ding C, Liang Y. Characterization of microRNA-like RNAs associated with sclerotial development in Sclerotinia sclerotiorum. Fungal Genet Biol 2020; 144:103471. [PMID: 32971275 DOI: 10.1016/j.fgb.2020.103471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Abstract
Sclerotinia sclerotiorum is a model necrotrophic pathogen causing great economic losses worldwide. Sclerotia are dormant structures that play significant biological and ecological roles in the life and disease cycles of S. sclerotiorum and other species of sclerotia-forming fungi. microRNA-like RNAs (milRNAs) as non-coding small RNAs play regulatory roles in fungal development and pathogenicity. Therefore, milRNAs associated with sclerotial development in S. sclerotiorum were investigated in this study. A total of 275 milRNAs with induced expression during sclerotia development were identified, in which 51 were differentially expressed. The target genes of all milRNAs were predicted. The putative functions of the targets regulated by milRNAs were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The expression levels of six selected milRNAs that coordinated with their corresponding targets were validated by qRT-PCR. Among these six milRNAs, Ssc-milR-240 was potentially associated with sclerotial development by epigenetic regulation of its target histone acetyltransferase. This study will facilitate the better understanding of the milRNA regulation associated with sclerotial development in S. sclerotiorum and even other sclerotia-forming fungi. This work will provide novel insights into the molecular regulations of fungal morphogenesis and the candidate targets of milRNAs used for the sustainable management of plant diseases caused by S. sclerotiorum.
Collapse
Affiliation(s)
- Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China
| | - Zehao Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Chengsong Ding
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
30
|
Xu M, Guo Y, Tian R, Gao C, Guo F, Voegele RT, Bao J, Li C, Jia C, Feng H, Huang L. Adaptive regulation of virulence genes by microRNA-like RNAs in Valsa mali. THE NEW PHYTOLOGIST 2020; 227:899-913. [PMID: 32222083 DOI: 10.1111/nph.16561] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
MicroRNAs play important roles in the regulation of gene expression in plants and animals. However, little information is known about the action mechanism and function of fungal microRNA-like RNAs (milRNAs). In this study, combining deep sequencing, molecular and histological assays, milRNAs and their targets in the phytopathogenic fungus Valsa mali were isolated and identified. A critical milRNA, Vm-milR16, was identified to adaptively regulate the expression of virulence genes. Fourteen isolated milRNAs showed high expression abundance. Based on the assessment of a pathogenicity function of these milRNAs, Vm-milR16 was found to be a critical milRNA in V. mali by regulating sucrose non-fermenting 1 (VmSNF1), 4,5-DOPA dioxygenase extradiol (VmDODA), and a hypothetical protein (VmHy1). During V. mali infection, Vm-milR16 is downregulated, while its targets are upregulated. Overexpression of Vm-milR16, but not mutated Vm-milR16, significantly reduces the expression of targets and virulence of V. mali. Furthermore, deletion of VmSNF1, VmDODA and VmHy1 significantly reduce virulence of V. mali. All three targets seem to be essential for oxidative stress response and VmSNF1 is required for expression of pectinase genes during V. mali-host interaction. Our results demonstrate Vm-milRNAs contributing to the infection of V. mali on apple trees by adaptively regulating virulence genes.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feiran Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ralf T Voegele
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, 70599, Stuttgart, Germany
| | - Jiyuan Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenjing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Conghui Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
31
|
Silvestri A, Turina M, Fiorilli V, Miozzi L, Venice F, Bonfante P, Lanfranco L. Different Genetic Sources Contribute to the Small RNA Population in the Arbuscular Mycorrhizal Fungus Gigaspora margarita. Front Microbiol 2020; 11:395. [PMID: 32231650 PMCID: PMC7082362 DOI: 10.3389/fmicb.2020.00395] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/26/2020] [Indexed: 01/01/2023] Open
Abstract
RNA interference (RNAi) is a key regulatory pathway of gene expression in almost all eukaryotes. This mechanism relies on short non-coding RNA molecules (sRNAs) to recognize in a sequence-specific manner DNA or RNA targets leading to transcriptional or post-transcriptional gene silencing. To date, the fundamental role of sRNAs in the regulation of development, stress responses, defense against viruses and mobile elements, and cross-kingdom interactions has been extensively studied in a number of biological systems. However, the knowledge of the “RNAi world” in arbuscular mycorrhizal fungi (AMF) is still limited. AMF are obligate mutualistic endosymbionts of plants, able to provide several benefits to their partners, from improved mineral nutrition to stress tolerance. Here we described the RNAi-related genes of the AMF Gigaspora margarita and characterized, through sRNA sequencing, its complex small RNAome, considering the possible genetic sources and targets of the sRNAs. G. margarita indeed is a mosaic of different genomes since it hosts endobacteria, RNA viruses, and non-integrated DNA fragments corresponding to mitovirus sequences. Our findings show that G. margarita is equipped with a complete set of RNAi-related genes characterized by the expansion of the Argonaute-like (AGO-like) gene family that seems a common trait of AMF. With regards to sRNAs, we detected populations of sRNA reads mapping to nuclear, mitochondrial, and viral genomes that share similar features (25-nt long and 5′-end uracil read enrichments), and that clearly differ from sRNAs of endobacterial origin. Furthermore, the annotation of nuclear loci producing sRNAs suggests the occurrence of different sRNA-generating processes. In silico analyses indicate that the most abundant G. margarita sRNAs, including those of viral origin, could target transcripts in the host plant, through a hypothetical cross-kingdom RNAi.
Collapse
Affiliation(s)
- Alessandro Silvestri
- Department of Life Sciences and Systems Biology, School of Nature Sciences, University of Turin, Turin, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, Italian National Research Council, Turin, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, School of Nature Sciences, University of Turin, Turin, Italy
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, Italian National Research Council, Turin, Italy
| | - Francesco Venice
- Department of Life Sciences and Systems Biology, School of Nature Sciences, University of Turin, Turin, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, School of Nature Sciences, University of Turin, Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, School of Nature Sciences, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Jin Y, Zhao JH, Zhao P, Zhang T, Wang S, Guo HS. A fungal milRNA mediates epigenetic repression of a virulence gene in Verticillium dahliae. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180309. [PMID: 30967013 DOI: 10.1098/rstb.2018.0309] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MiRNAs in animals and plants play crucial roles in diverse developmental processes under both normal and stress conditions. miRNA-like small RNAs (milRNAs) identified in some fungi remain functionally uncharacterized. Here, we identified a number of milRNAs in Verticillium dahliae, a soil-borne fungal pathogen responsible for devastating wilt diseases in many crops. Accumulation of a V. dahliae milRNA1, named VdmilR1, was detected by RNA gel blotting. We show that the precursor gene VdMILR1 is transcribed by RNA polymerase II and is able to produce the mature VdmilR1, in a process independent of V. dahliae DCL (Dicer-like) and AGO (Argonaute) proteins. We found that an RNaseIII domain-containing protein, VdR3, is essential for V. dahliae and participates in VdmilR1 biogenesis. VdmilR1 targets a hypothetical protein-coding gene, VdHy1, at the 3'UTR for transcriptional repression through increased histone H3K9 methylation of VdHy1. Pathogenicity analysis reveals that VdHy1 is essential for fungal virulence. Together with the time difference in the expression patterns of VdmilR1 and VdHy1 during fungal infection in cotton plants, our findings identify a novel milRNA, VdmilR1, in V. dahliae synthesized by a noncanonical pathway that plays a regulatory role in pathogenicity and uncover an epigenetic mechanism for VdmilR1 in regulating a virulence target gene. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Yun Jin
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Jian-Hua Zhao
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Pan Zhao
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Tao Zhang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Sheng Wang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 College of Life Sciences, University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hui-Shan Guo
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 College of Life Sciences, University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
33
|
milRNApredictor: Genome-free prediction of fungi milRNAs by incorporating k-mer scheme and distance-dependent pair potential. Genomics 2019; 112:2233-2240. [PMID: 31884158 DOI: 10.1016/j.ygeno.2019.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/05/2019] [Accepted: 12/25/2019] [Indexed: 11/22/2022]
Abstract
MicroRNA-like small RNAs (milRNAs) with length of 21-22 nucleotides are a type of small non-coding RNAs that are firstly found in Neurospora crassa in 2010. Identifying milRNAs of species without genomic information is a difficult problem. Here, knowledge-based energy features are developed to identify milRNAs by tactfully incorporating k-mer scheme and distance-dependent pair potential. Compared with k-mer scheme, features developed here can alleviate the inherent curse of dimensionality in k-scheme once k becomes large. In addition, milRNApredictor built on novel features performs comparably to k-mer scheme, and achieves sensitivity of 74.21%, and specificity of 75.72% based on 10-fold cross-validation. Furthermore, for novel miRNA prediction, there exists high overlap of results from milRNApredictor and state-of-the-art mirnovo. However, milRNApredictor is simpler to use with reduced requirements of input data and dependencies. Taken together, milRNApredictor can be used to de novo identify fungi milRNAs and other very short small RNAs of non-model organisms.
Collapse
|
34
|
Bui DC, Kim JE, Shin J, Lim JY, Choi GJ, Lee YW, Seo JA, Son H. ARS2 Plays Diverse Roles in DNA Damage Response, Fungal Development, and Pathogenesis in the Plant Pathogenic Fungus Fusarium graminearum. Front Microbiol 2019; 10:2326. [PMID: 31681199 PMCID: PMC6803386 DOI: 10.3389/fmicb.2019.02326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Abstract
Arsenite-resistance protein 2 (Ars2) is an important nuclear protein involved in various RNA metabolisms in animals and plants, but no Ars2 ortholog has been studied in filamentous fungi. Although it is an essential gene in most model eukaryotes, FgARS2 null mutants were viable in the plant pathogenic fungus Fusarium graminearum. The deletion of FgARS2 resulted in pleiotropic defects in various fungal developmental processes. Fgars2 mutants were irregular in nuclear division, and conidial germination was significantly retarded, causing the fungus to manifest its hypersensitive phenotypes under DNA damage stress. While FgARS2 deletion caused abnormal morphologies of ascospores and defective ascospore discharge, our data revealed that FgARS2 was not closely involved in small-non-coding RNA production in F. graminearum. The dominant nuclear localization of FgArs2-green fluorescent proteins (GFP) and abnormal nuclear division in FgARS2 deletion mutant implicated that FgArs2 functions in the nucleus. Intriguingly, we found that FgArs2 established a robust physical interaction with the cap binding complex (CBC) to form a tertiary complex CBC-Ars2 (CBCA), and disruption of any CBCA complex subunit drastically attenuated the virulence of F. graminearum. The results of the study indicate that Ars2 regulates fungal development, stress response, and pathogenesis via interaction with CBC in F. graminearum and provide a novel insight into understanding of the biological functions of Ars2 in filamentous fungi.
Collapse
Affiliation(s)
- Duc-Cuong Bui
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,School of Systems Biomedical Science, Soongsil University, Seoul, South Korea
| | - Jung-Eun Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jiyoung Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Yun Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, South Korea
| | - Gyung Ja Choi
- Therapeutic & Biotechnology Division, Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, South Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
35
|
Derbyshire M, Mbengue M, Barascud M, Navaud O, Raffaele S. Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance. MOLECULAR PLANT PATHOLOGY 2019; 20:1279-1297. [PMID: 31361080 PMCID: PMC6715603 DOI: 10.1111/mpp.12841] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fungal plant pathogens secrete effector proteins and metabolites to cause disease. Additionally, some species transfer small RNAs (sRNAs) into plant cells to silence host mRNAs through complementary base pairing and suppress plant immunity. The fungus Sclerotinia sclerotiorum infects over 600 plant species, but little is known about the molecular processes that govern interactions with its many hosts. In particular, evidence for the production of sRNAs by S. sclerotiorum during infection is lacking. We sequenced sRNAs produced by S. sclerotiorum in vitro and during infection of two host species, Arabidopsis thaliana and Phaseolus vulgaris. We found that S. sclerotiorum produces at least 374 distinct highly abundant sRNAs during infection, mostly originating from repeat-rich plastic genomic regions. We predicted the targets of these sRNAs in A. thaliana and found that these genes were significantly more down-regulated during infection than the rest of the genome. Predicted targets of S. sclerotiorum sRNAs in A. thaliana were enriched for functional domains associated with plant immunity and were more strongly associated with quantitative disease resistance in a genome-wide association study (GWAS) than the rest of the genome. Mutants in A. thaliana predicted sRNA target genes SERK2 and SNAK2 were more susceptible to S. sclerotiorum than wild-type, suggesting that S. sclerotiorum sRNAs may contribute to the silencing of immune components in plants. The prediction of fungal sRNA targets in plant genomes can be combined with other global approaches, such as GWAS, to assist in the identification of plant genes involved in quantitative disease resistance.
Collapse
Affiliation(s)
- Mark Derbyshire
- Centre for Crop and Disease ManagementCurtin UniversityPerthWestern AustraliaAustralia
| | - Malick Mbengue
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Marielle Barascud
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Olivier Navaud
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| |
Collapse
|
36
|
Peres da Silva R, Longo LGV, Cunha JPCD, Sobreira TJP, Rodrigues ML, Faoro H, Goldenberg S, Alves LR, Puccia R. Comparison of the RNA Content of Extracellular Vesicles Derived from Paracoccidioides brasiliensis and Paracoccidioides lutzii. Cells 2019; 8:cells8070765. [PMID: 31340551 PMCID: PMC6678485 DOI: 10.3390/cells8070765] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/12/2022] Open
Abstract
Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis. We have previously characterized the <200-nt RNA sub-populations contained in fungal extracellular vesicles (EVs) from P. brasiliensis Pb18 and other pathogenic fungi. We have presently used the RNA-seq strategy to compare the <200- and >200-nt RNA fractions contained in EVs isolated from culture supernatants of P. brasiliensis Pb18, Pb3, and P. lutzii Pb01. Shared mRNA sequences were related to protein modification, translation, and DNA metabolism/biogenesis, while those related to transport and oxidation-reduction were exclusive to Pb01. The presence of functional full-length mRNAs was validated by in vitro translation. Among small non-coding (nc)RNA, 15 were common to all samples; small nucleolar (sno)RNAs were enriched in P. brasiliensis EVs, whereas for P. lutzii there were similar proportions of snoRNA, rRNA, and tRNA. Putative exonic sRNAs were highly abundant in Pb18 EVs. We also found sRNA sequences bearing incomplete microRNA structures mapping to exons. RNA-seq data suggest that extracellular fractions containing Pb18 EVs can modulate the transcriptome of murine monocyte-derived dendritic cells in a transwell system. Considering that sRNA classes are involved in transcription/translation modulation, our general results may indicate that differences in virulence among fungal isolates can be related to their distinct EV-RNA content.
Collapse
Affiliation(s)
- Roberta Peres da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo 04023-062, Brazil
| | - Larissa G V Longo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo 04023-062, Brazil
| | - Julia P C da Cunha
- Laboratório Especial de Ciclo Celular-Center of Toxins, Immune Response and Cell Signaling-Center (CeTICS), Butantan Institute, São Paulo 05503-900, Brazil
| | - Tiago J P Sobreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Marcio L Rodrigues
- Instituto Carlos Chagas-FIOCRUZ PR, Curitiba 81350-010, Brazil
- Instituto de Microbiologia da Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Helisson Faoro
- Instituto Carlos Chagas-FIOCRUZ PR, Curitiba 81350-010, Brazil
| | | | | | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo 04023-062, Brazil.
| |
Collapse
|
37
|
Thody J, Folkes L, Medina-Calzada Z, Xu P, Dalmay T, Moulton V. PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules. Nucleic Acids Res 2019; 46:8730-8739. [PMID: 30007348 PMCID: PMC6158750 DOI: 10.1093/nar/gky609] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022] Open
Abstract
Small RNAs (sRNAs) are short, non-coding RNAs that play critical roles in many important biological pathways. They suppress the translation of messenger RNAs (mRNAs) by directing the RNA-induced silencing complex to their sequence-specific mRNA target(s). In plants, this typically results in mRNA cleavage and subsequent degradation of the mRNA. The resulting mRNA fragments, or degradome, provide evidence for these interactions, and thus degradome analysis has become an important tool for sRNA target prediction. Even so, with the continuing advances in sequencing technologies, not only are larger and more complex genomes being sequenced, but also degradome and associated datasets are growing both in number and read count. As a result, existing degradome analysis tools are unable to process the volume of data being produced without imposing huge resource and time requirements. Moreover, these tools use stringent, non-configurable targeting rules, which reduces their flexibility. Here, we present a new and user configurable software tool for degradome analysis, which employs a novel search algorithm and sequence encoding technique to reduce the search space during analysis. The tool significantly reduces the time and resources required to perform degradome analysis, in some cases providing more than two orders of magnitude speed-up over current methods.
Collapse
Affiliation(s)
| | - Leighton Folkes
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Ping Xu
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
38
|
Paschoal AR, Lozada-Chávez I, Domingues DS, Stadler PF. ceRNAs in plants: computational approaches and associated challenges for target mimic research. Brief Bioinform 2019; 19:1273-1289. [PMID: 28575144 DOI: 10.1093/bib/bbx058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/27/2017] [Indexed: 11/13/2022] Open
Abstract
The competing endogenous RNA hypothesis has gained increasing attention as a potential global regulatory mechanism of microRNAs (miRNAs), and as a powerful tool to predict the function of many noncoding RNAs, including miRNAs themselves. Most studies have been focused on animals, although target mimic (TMs) discovery as well as important computational and experimental advances has been developed in plants over the past decade. Thus, our contribution summarizes recent progresses in computational approaches for research of miRNA:TM interactions. We divided this article in three main contributions. First, a general overview of research on TMs in plants is presented with practical descriptions of the available literature, tools, data, databases and computational reports. Second, we describe a common protocol for the computational and experimental analyses of TM. Third, we provide a bioinformatics approach for the prediction of TM motifs potentially cross-targeting both members within the same or from different miRNA families, based on the identification of consensus miRNA-binding sites from known TMs across sequenced genomes, transcriptomes and known miRNAs. This computational approach is promising because, in contrast to animals, miRNA families in plants are large with identical or similar members, several of which are also highly conserved. From the three consensus TM motifs found with our approach: MIM166, MIM171 and MIM159/319, the last one has found strong support on the recent experimental work by Reichel and Millar [Specificity of plant microRNA TMs: cross-targeting of mir159 and mir319. J Plant Physiol 2015;180:45-8]. Finally, we stress the discussion on the major computational and associated experimental challenges that have to be faced in future ceRNA studies.
Collapse
Affiliation(s)
| | - Irma Lozada-Chávez
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Germany
| | - Douglas Silva Domingues
- Department of Botany, Institute of Biosciences, S~ao Paulo State University (UNESP) in Rio Claro, Brazil
| | | |
Collapse
|
39
|
Hu W, Luo H, Yang Y, Wang Q, Hong N, Wang G, Wang A, Wang L. Comprehensive analysis of full genome sequence and Bd-milRNA/target mRNAs to discover the mechanism of hypovirulence in Botryosphaeria dothidea strains on pear infection with BdCV1 and BdPV1. IMA Fungus 2019; 10:3. [PMID: 32647612 PMCID: PMC7325678 DOI: 10.1186/s43008-019-0008-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/06/2019] [Indexed: 11/23/2022] Open
Abstract
Pear ring rot disease, mainly caused by Botryosphaeria dothidea, is widespread in most pear and apple-growing regions. Mycoviruses are used for biocontrol, especially in fruit tree disease. BdCV1 (Botryosphaeria dothidea chrysovirus 1) and BdPV1 (Botryosphaeria dothidea partitivirus 1) influence the biological characteristics of B. dothidea strains. BdCV1 is a potential candidate for the control of fungal disease. Therefore, it is vital to explore interactions between B. dothidea and mycovirus to clarify the pathogenic mechanisms of B. dothidea and hypovirulence of B. dothidea in pear. A high-quality full-length genome sequence of the B. dothidea LW-Hubei isolate was obtained using Single Molecule Real-Time sequencing. It has high repeat sequence with 9.3% and DNA methylation existence in the genome. The 46.34 Mb genomes contained 14,091 predicted genes, which of 13,135 were annotated. B. dothidea was predicted to express 3833 secreted proteins. In bioinformatics analysis, 351 CAZy members, 552 transporters, 128 kinases, and 1096 proteins associated with plant-host interaction (PHI) were identified. RNA-silencing components including two endoribonuclease Dicer, four argonaute (Ago) and three RNA-dependent RNA polymerase (RdRp) molecules were identified and expressed in response to mycovirus infection. Horizontal transfer of the LW-C and LW-P strains indicated that BdCV1 induced host gene silencing in LW-C to suppress BdPV1 transmission. To investigate the role of RNA-silencing in B. dothidea defense, we constructed four small RNA libraries and sequenced B. dothidea micro-like RNAs (Bd-milRNAs) produced in response to BdCV1 and BdPV1 infection. Among these, 167 conserved and 68 candidate novel Bd-milRNAs were identified, of which 161 conserved and 20 novel Bd-milRNA were differentially expressed. WEGO analysis revealed involvement of the differentially expressed Bd-milRNA-targeted genes in metabolic process, catalytic activity, cell process and response to stress or stimulus. BdCV1 had a greater effect on the phenotype, virulence, conidiomata, vertical and horizontal transmission ability, and mycelia cellular structure biological characteristics of B. dothidea strains than BdPV1 and virus-free strains. The results obtained in this study indicate that mycovirus regulates biological processes in B. dothidea through the combined interaction of antiviral defense mediated by RNA-silencing and milRNA-mediated regulation of target gene mRNA expression.
Collapse
Affiliation(s)
- Wangcheng Hu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| | - Hui Luo
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| | - Yuekun Yang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| | - Qiong Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| | - Guoping Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3 Canada
| | - Liping Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| |
Collapse
|
40
|
Curcio JSD, Batista MP, Paccez JD, Novaes E, Soares CMDA. In silico characterization of microRNAs-like sequences in the genome of Paracoccidioides brasiliensis. Genet Mol Biol 2019; 42:95-107. [PMID: 30776047 PMCID: PMC6428129 DOI: 10.1590/1678-4685-gmb-2018-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells have different mechanisms of post-transcriptional regulation.
Among these mechanisms, microRNAs promote regulation of targets by cleavage or
degradation of the mRNA. Fungi of the Paracoccidioides complex
are the etiological agents of the main systemic mycosis of Latin America. These
fungi present a plasticity to adapt and survive in different conditions, and the
presence of microRNAs-like molecules could be part of the mechanisms that
provide such plasticity. MicroRNAs produced by the host influence the
progression of this mycosis in the lungs besides regulating targets involved in
apoptosis in macrophage, activation of T and B cells and the production of
cytokines. Therefore, this work analyzed the presence of regions in the genome
of this fungus with a potential to encode microRNAs-like molecules. Here we show
by analysis of sequence similarity the presence of 18 regions, putatively coding
for microRNAs-like molecules in the Paracoccidioides
brasiliensis genome. We also described the conservation of dicer
and argonaut proteins and the cognate transcripts induced in the yeast parasitic
phase. This work represents a starting point for the analysis of the presence of
those molecules in the morphological stages of the fungus and their role in
fungal development.
Collapse
Affiliation(s)
- Juliana S de Curcio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, Goiânia, GO, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brazil
| | - Mariana P Batista
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, Goiânia, GO, Brazil
| | - Juliano D Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, Goiânia, GO, Brazil
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Minas Gerais, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, Goiânia, GO, Brazil
| |
Collapse
|
41
|
Dubey H, Kiran K, Jaswal R, Jain P, Kayastha AM, Bhardwaj SC, Mondal TK, Sharma TR. Discovery and profiling of small RNAs from Puccinia triticina by deep sequencing and identification of their potential targets in wheat. Funct Integr Genomics 2019; 19:391-407. [PMID: 30618015 DOI: 10.1007/s10142-018-00652-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/30/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
Cross-kingdom RNAi is a well-documented phenomenon where sRNAs generated by host and pathogens may govern resistance or susceptible phenotypes during host-pathogen interaction. With the first example of the direct involvement of fungal generated sRNAs in virulence of plant pathogenic fungi Botrytis cinerea and recently from Puccinia striiformis f. sp. tritici, we attempted to identify sRNAs in Puccinia triticina (P. triticina). Four sRNA libraries were prepared and sequenced using Illumina sequencing technology and a total of ~ 1-1.28 million potential sRNAs and two microRNA-like small RNA (mil-RNAs) candidates were identified. Computational prediction of targets using a common set of sRNAs and P. triticina mil-RNAs (pt-mil-RNAs) within P. triticina and wheat revealed the majority of the targets as repetitive elements in P. triticina whereas in wheat, the target genes were identified to be involved in many biological processes including defense-related pathways. We found 9 receptor-like kinases (RLKs) and 14 target genes of each related to reactive oxygen species (ROS) pathway and transcription factors respectively, including significant numbers of target genes from various other categories. Expression analysis of twenty selected sRNAs, targeting host genes pertaining to ROS related, disease resistance, metabolic processes, transporter, apoptotic inhibitor, and transcription factors along with two pt-mil-RNAs by qRT-PCR showed distinct patterns of expression of the sRNAs in urediniospore-specific libraries. In this study, for the first time, we report identification of novel sRNAs identified in P. triticina including two pt-mil-RNAs that may play an important role in biotrophic growth and pathogenicity.
Collapse
Affiliation(s)
- Himanshu Dubey
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.,School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kanti Kiran
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 160071, India
| | - Priyanka Jain
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, 171009, India
| | - Tapan Kumar Mondal
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Tilak Raj Sharma
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India. .,National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 160071, India.
| |
Collapse
|
42
|
Wang L, Xu X, Yang J, Chen L, Liu B, Liu T, Jin Q. Integrated microRNA and mRNA analysis in the pathogenic filamentous fungus Trichophyton rubrum. BMC Genomics 2018; 19:933. [PMID: 30547762 PMCID: PMC6295003 DOI: 10.1186/s12864-018-5316-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Trichophyton rubrum (T. rubrum) is an important model organism of dermatophytes, which are the most common fungal pathogens worldwide. Despite the severity and prevalence of the infection caused by these pathogens, current therapies are not sufficient. MicroRNA (miRNA) is a class of small noncoding RNAs that are key factors in the regulation of gene expression. These miRNAs are reported to be highly conserved in different organisms and are involved in various essential cellular processes. In this study, we performed an integrated analysis of microRNA-like RNAs (milRNAs) and mRNAs between conidial and mycelial stages to investigate the roles of milRNAs in regulating the expression of target genes in T. rubrum. RESULTS A total of 158 conserved milRNAs and 12 novel milRNAs were identified in our study, corresponding to 5470 target genes, which were involved in various essential biological pathways. In addition, 137 target genes corresponding to 21 milRNAs were concurrent differentially expressed between the conidial and mycelial stages. Among these 137 target genes, 64 genes showed the opposite trend to their corresponding milRNAs in expression difference between the two stages, indicating possible negative regulation. Furthermore, 46% of differentially expressed target genes are involved in transcription, transcriptional and post-transcriptional regulation. Our results indicate that milRNAs might associate with other regulatory elements to control gene expression at both transcriptional and post-transcriptional level. CONCLUSIONS This study provides the first analysis of milRNA expression profile in T. rubrum as well as dermatophytes in general. The results revealed the roles of milRNAs in regulating gene expression between the two major growth stages of this fungus. Our study deepens our understanding of T. rubrum and will serve as a foundation for further investigations to combat this fungus.
Collapse
Affiliation(s)
- Lingling Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xingye Xu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihong Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
43
|
Lee Marzano SY, Neupane A, Domier L. Transcriptional and Small RNA Responses of the White Mold Fungus Sclerotinia sclerotiorum to Infection by a Virulence-Attenuating Hypovirus. Viruses 2018; 10:E713. [PMID: 30558121 PMCID: PMC6315951 DOI: 10.3390/v10120713] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Mycoviruses belonging to the family Hypoviridae cause persistent infection of many different host fungi. We previously determined that the white mold fungus, Sclerotiniasclerotiorum, infected with Sclerotinia sclerotiorum hypovirus 2-L (SsHV2-L) exhibits reduced virulence, delayed/reduced sclerotial formation, and enhanced production of aerial mycelia. To gain better insight into the cellular basis for these changes, we characterized changes in mRNA and small RNA (sRNA) accumulation in S.sclerotiorum to infection by SsHV2-L. A total of 958 mRNAs and 835 sRNA-producing loci were altered after infection by SsHV2-L, among which >100 mRNAs were predicted to encode proteins involved in the metabolism and trafficking of carbohydrates and lipids. Both S. sclerotiorum endogenous and virus-derived sRNAs were predominantly 22 nt in length suggesting one dicer-like enzyme cleaves both. Novel classes of endogenous small RNAs were predicted, including phasiRNAs and tRNA-derived small RNAs. Moreover, S. sclerotiorum phasiRNAs, which were derived from noncoding RNAs and have the potential to regulate mRNA abundance in trans, showed differential accumulation due to virus infection. tRNA fragments did not accumulate differentially after hypovirus infection. Hence, in-depth analysis showed that infection of S. sclerotiorum by a hypovirulence-inducing hypovirus produced selective, large-scale reprogramming of mRNA and sRNA production.
Collapse
Affiliation(s)
- Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
| | - Leslie Domier
- United States Department of Agriculture, Agricultural Research Service, Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
44
|
Calcino AD, Fernandez-Valverde SL, Taft RJ, Degnan BM. Diverse RNA interference strategies in early-branching metazoans. BMC Evol Biol 2018; 18:160. [PMID: 30382896 PMCID: PMC6211395 DOI: 10.1186/s12862-018-1274-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/08/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Micro RNAs (miRNAs) and piwi interacting RNAs (piRNAs), along with the more ancient eukaryotic endogenous small interfering RNAs (endo-siRNAs) constitute the principal components of the RNA interference (RNAi) repertoire of most animals. RNAi in non-bilaterians - sponges, ctenophores, placozoans and cnidarians - appears to be more diverse than that of bilaterians, and includes structurally variable miRNAs in sponges, an enormous number of piRNAs in cnidarians and the absence of miRNAs in ctenophores and placozoans. RESULTS Here we identify thousands of endo-siRNAs and piRNAs from the sponge Amphimedon queenslandica, the ctenophore Mnemiopsis leidyi and the cnidarian Nematostella vectensis using a computational approach that clusters mapped small RNA sequences and annotates each cluster based on the read length and relative abundance of the constituent reads. This approach was validated on 11 small RNA libraries in Drosophila melanogaster, demonstrating the successful annotation of RNAi-associated loci with properties consistent with previous reports. In the non-bilaterians we uncover seven new miRNAs from Amphimedon and four from Nematostella as well as sub-populations of candidate cis-natural antisense transcript (cis-NAT) endo-siRNAs. We confirmed the absence of miRNAs in Mnemiopsis but detected an abundance of endo-siRNAs in this ctenophore. Analysis of putative piRNA structure suggests that conserved localised secondary structures in primary transcripts may be important for the production of mature piRNAs in Amphimedon and Nematostella, as is also the case for endo-siRNAs. CONCLUSION Together, these findings suggest that the last common ancestor of extant animals did not have the entrained RNAi system that typifies bilaterians. Instead it appears that bilaterians, cnidarians, ctenophores and sponges express unique repertoires and combinations of miRNAs, piRNAs and endo-siRNAs.
Collapse
Affiliation(s)
- Andrew D Calcino
- School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.,Present address: Department of Integrative Zoology, University of Vienna, Althanstraße 1, 4A-1090, Vienna, Austria
| | - Selene L Fernandez-Valverde
- School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.,Present address: CONACYT, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio). CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Ryan J Taft
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.,Illumina Inc, San Diego, California, 92122, USA
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
45
|
Discovery of microRNA-like RNAs during early fruiting body development in the model mushroom Coprinopsis cinerea. PLoS One 2018; 13:e0198234. [PMID: 30231028 PMCID: PMC6145500 DOI: 10.1371/journal.pone.0198234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
Coprinopsis cinerea is a model mushroom particularly suited for the study of fungal fruiting body development and the evolution of multicellularity in fungi. While microRNAs (miRNAs) have been extensively studied in animals and plants for their essential roles in post-transcriptional regulation of gene expression, miRNAs in fungi are less well characterized and their potential roles in controlling mushroom development remain unknown. To identify miRNA-like RNAs (milRNAs) in C. cinerea and explore their expression patterns during the early developmental transition of mushroom development, small RNA libraries of vegetative mycelium and primordium were generated and putative milRNA candidates were identified following the standards of miRNA prediction in animals and plants. Two out of 22 novel predicted milRNAs, cci-milR-12c and cci-milR-13e-5p, were validated by northern blot and stem-loop reverse transcription real-time PCR. Cci-milR-12c was differentially expressed whereas the expression levels of cci-milR-13e-5p were similar in the two developmental stages. Target prediction of the validated milRNAs resulted in genes associated with fruiting body development, including pheromone, hydrophobin, cytochrome P450, and protein kinase. Essential genes for miRNA biogenesis, including three coding for Dicer-like (DCL), one for Argonaute (AGO), one for AGO-like and one for quelling deficient-2 (QDE-2) proteins, were also identified in the C. cinerea genome. Phylogenetic analysis showed that the DCL and AGO proteins of C. cinerea were more closely related to those in other basidiomycetes and ascomycetes than to those in animals and plants. Taken together, our findings provided the first evidence for milRNAs in the model mushroom and their potential roles in regulating fruiting body development. New information on the evolutionary relationship of milRNA biogenesis proteins across kingdoms has also provided new insights for guiding further functional and evolutionary studies of miRNAs.
Collapse
|
46
|
Kusch S, Frantzeskakis L, Thieron H, Panstruga R. Small RNAs from cereal powdery mildew pathogens may target host plant genes. Fungal Biol 2018; 122:1050-1063. [PMID: 30342621 DOI: 10.1016/j.funbio.2018.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
Small RNAs (sRNAs) play a key role in eukaryotic gene regulation, for example by gene silencing via RNA interference (RNAi). The biogenesis of sRNAs depends on proteins that are generally conserved in all eukaryotic lineages, yet some species that lack part or all the components of the mechanism exist. Here we explored the presence of the RNAi machinery and its expression as well as the occurrence of sRNA candidates and their putative endogenous as well as host targets in phytopathogenic powdery mildew fungi. We focused on the species Blumeria graminis, which occurs in various specialized forms (formae speciales) that each have a strictly limited host range. B. graminis f. sp. hordei and B. graminis f. sp. tritici, colonizing barley and wheat, respectively, have genomes that are characterized by extensive gene loss. Nonetheless, we find that the RNAi machinery appears to be largely complete and expressed during infection. sRNA sequencing data enabled the identification of putative sRNAs in both pathogens. While a considerable part of the sRNA candidates have predicted target sites in endogenous genes and transposable elements, a small proportion appears to have targets in planta, suggesting potential cross-kingdom RNA transfer between powdery mildew fungi and their respective plant hosts.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Lamprinos Frantzeskakis
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Hannah Thieron
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| |
Collapse
|
47
|
Zeng W, Wang J, Wang Y, Lin J, Fu Y, Xie J, Jiang D, Chen T, Liu H, Cheng J. Dicer-Like Proteins Regulate Sexual Development via the Biogenesis of Perithecium-Specific MicroRNAs in a Plant Pathogenic Fungus Fusarium graminearum. Front Microbiol 2018; 9:818. [PMID: 29755439 PMCID: PMC5932338 DOI: 10.3389/fmicb.2018.00818] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/10/2018] [Indexed: 11/23/2022] Open
Abstract
Ascospores act as the primary inoculum of Fusarium graminearum, which causes the destructive disease Fusarium head blight (FHB), or scab. MicroRNAs (miRNAs) have been reported in the F. graminearum vegetative stage, and Fgdcl2 is involved in microRNA-like RNA (milRNA) biogenesis but has no major impact on vegetative growth, abiotic stress or pathogenesis. In the present study, we found that ascospore discharge was decreased in the Fgdcl1 deletion mutant, and completely blocked in the double-deletion mutant of Fgdcl1 and Fgdcl2. Besides, more immature asci were observed in the double-deletion mutant. Interestingly, the up-regulated differentially expressed genes (DEGs) common to ΔFgdcl1 and ΔFgdcl1/2 were related to ion transmembrane transporter and membrane components. The combination of small RNA and transcriptome sequencing with bioinformatics analysis predicted 143 novel milRNAs in wild-type perithecia, and 138 of these milRNAs partly or absolutely depended on Fgdcl1, while only 5 novel milRNAs were still obtained in the Fgdcl1 and Fgdcl2 double-deletion mutant. Furthermore, 117 potential target genes were predicted. Overall, Fgdcl1 and Fgdcl2 genes were partly functionally redundant in ascospore discharge and perithecium-specific milRNA generation in F. graminearum, and these perithecium-specific milRNAs play potential roles in sexual development.
Collapse
Affiliation(s)
- Wenping Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
48
|
Zhang W, Li X, Ma L, Urrehman U, Bao X, Zhang Y, Zhang CY, Hou D, Zhou Z. Identification of microRNA-like RNAs in Ophiocordyceps sinensis. SCIENCE CHINA-LIFE SCIENCES 2018; 62:349-356. [DOI: 10.1007/s11427-017-9277-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/29/2017] [Indexed: 01/07/2023]
|
49
|
Biselli C, Bagnaresi P, Faccioli P, Hu X, Balcerzak M, Mattera MG, Yan Z, Ouellet T, Cattivelli L, Valè G. Comparative Transcriptome Profiles of Near-Isogenic Hexaploid Wheat Lines Differing for Effective Alleles at the 2DL FHB Resistance QTL. FRONTIERS IN PLANT SCIENCE 2018; 9:37. [PMID: 29434615 PMCID: PMC5797473 DOI: 10.3389/fpls.2018.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 01/09/2018] [Indexed: 05/07/2023]
Abstract
Fusarium head blight (FHB), caused by the fungus Fusarium graminearum, represents one of the major wheat diseases worldwide, determining severe yield losses and reduction of grain quality due to the accumulation of mycotoxins. The molecular response associated with the wheat 2DL FHB resistance QTL was mined through a comprehensive transcriptomic analysis of the early response to F. graminearum infection, at 3 days post-inoculation, in spikelets and rachis. The analyses were conducted on two near isogenic lines (NILs) differing for the presence of the 2DL QTL (2-2618, resistant 2DL+ and 2-2890, susceptible null). The general response to fungal infection in terms of mRNAs accumulation trend was similar in both NILs, even though involving an higher number of DEGs in the susceptible NIL, and included down-regulation of the primary and energy metabolism, up-regulation of enzymes implicated in lignin and phenylpropanoid biosynthesis, activation of hormons biosynthesis and signal transduction pathways and genes involved in redox homeostasis and transcriptional regulation. The search for candidate genes with expression profiles associated with the 2DL QTL for FHB resistance led to the discovery of processes differentially modulated in the R and S NILs related to cell wall metabolism, sugar and JA signaling, signal reception and transduction, regulation of the redox status and transcription factors. Wheat FHB response-related miRNAs differentially regulated were also identified as putatively implicated in the superoxide dismutase activities and affecting genes regulating responses to biotic/abiotic stresses and auxin signaling. Altered gene expression was also observed for fungal non-codingRNAs. The putative targets of two of these were represented by the wheat gene WIR1A, involved in resistance response, and a gene encoding a jacalin-related lectin protein, which participate in biotic and abiotic stress response, supporting the presence of a cross-talk between the plant and the fungus.
Collapse
Affiliation(s)
- Chiara Biselli
- CREA–Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
- *Correspondence: Chiara Biselli
| | - Paolo Bagnaresi
- CREA–Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Primetta Faccioli
- CREA–Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Xinkun Hu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Margaret Balcerzak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Maria G. Mattera
- Plant Breeding Department, Institute for Sustainable Agriculture, Cordoba, Spain
- Department of Genetics–ETSIAM, University of Cordoba, Cordoba, Spain
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Therese Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Luigi Cattivelli
- CREA–Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Giampiero Valè
- CREA–Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
- CREA–Research Centre for Cereal and Industrial Crops, Vercelli, Italy
| |
Collapse
|
50
|
Jiang X, Qiao F, Long Y, Cong H, Sun H. MicroRNA-like RNAs in plant pathogenic fungus Fusarium oxysporum f. sp. niveum are involved in toxin gene expression fine tuning. 3 Biotech 2017; 7:354. [PMID: 29062675 DOI: 10.1007/s13205-017-0951-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-like RNAs (milRNAs) are short non-coding regulatory sRNAs which play an important role in regulating gene expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. To explore the presence of milRNAs in Fusarium oxysporum f. sp. niveum (Fon) and analyze their expression at different propagules, two categories of sRNAs were identified from Fon hyphae and microconidia using illumina sequencing. A total of 650,960 and 561,114 unique sRNAs were obtained from the hyphae and microconidia samples. With a previously constructed pipeline to search for microRNAs, 74 and 56 milRNA candidates were identified in hyphae and microconidia, respectively, based on the short hairpin structure analysis. Global expression analysis showed an extensively differential expression of sRNAs between the two propagules. Altogether, 78 significantly differently expressed milRNAs were identified in two libraries. Target prediction revealed two interesting genes involved in trichothecene production, necrosis and ethylene-inducing peptide 1 (NEP1) biosynthesis and in silico analysis indicated that they were down-regulated by Fon-miR7696a-3p and Fon-miR6108a. The expression levels of these two milRNAs were further validated by qRT-PCR and the results were consistent. The negative correlation of the expression levels between these two milRNAs and their potential target genes imply that they play a role in trichothecene and NEP1 biosynthesis. And this negative regulation for toxin-related gene expression is more specific in microconidia. The present study provides the first large-scale characterization of milRNAs in Fon and the comparison between hyphae and microconidia propagules gives an insight into how milRNAs are involve in toxin biosynthesis.
Collapse
|