1
|
Cornejo J, Sierra-Garcia JE, Gomez-Gil FJ, Weitzenfeld A, Acevedo FE, Escalante I, Recuero E, Wehrtmann IS. Bio-inspired design of hard-bodied mobile robots based on arthropod morphologies: a 10 year systematic review and bibliometric analysis. BIOINSPIRATION & BIOMIMETICS 2024; 19:051001. [PMID: 38866026 DOI: 10.1088/1748-3190/ad5778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
This research presents a 10-year systematic review based on bibliometric analysis of the bio-inspired design of hard-bodied mobile robot mechatronic systems considering the anatomy of arthropods. These are the most diverse group of animals whose flexible biomechanics and adaptable morphology, thus, it can inspire robot development. Papers were reviewed from two international databases (Scopus and Web of Science) and one platform (Aerospace Research Central), then they were classified according to: Year of publication (January 2013 to April 2023), arthropod group, published journal, conference proceedings, editorial publisher, research teams, robot classification according to the name of arthropod, limb's locomotion support, number of legs/arms, number of legs/body segments, limb's degrees of freedom, mechanical actuation type, modular system, and environment adaptation. During the screening, more than 33 000 works were analyzed. Finally, a total of 174 studies (90 journal-type, 84 conference-type) were selected for in-depth study: Insecta-hexapods (53.8%), Arachnida-octopods (20.7%), Crustacea-decapods (16.1%), and Myriapoda-centipedes and millipedes (9.2%). The study reveals that the most active editorials are the Institute of Electrical and Electronics Engineers Inc., Springer, MDPI, and Elsevier, while the most influential researchers are located in the USA, China, Singapore, and Japan. Most works pertained to spiders, crabs, caterpillars, cockroaches, and centipedes. We conclude that 'arthrobotics' research, which merges arthropods and robotics, is constantly growing and includes a high number of relevant studies with findings that can inspire new methods to design biomechatronic systems.
Collapse
Affiliation(s)
- José Cornejo
- Department of Electromechanical Engineering, University of Burgos, 09006 Burgos, Spain
| | | | | | - Alfredo Weitzenfeld
- Biorobotics Laboratory, Department of Computer Science and Engineering, University of South Florida, Tampa, FL, United States of America
| | - Flor E Acevedo
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America
| | - Ignacio Escalante
- Department of Biological Sciences, University of Illinois-Chicago, 845 W Taylor St, Chicago, IL 60607, United States of America
| | - Ernesto Recuero
- Department of Plant & Environmental Sciences, 277 Poole Agricultural Center, Clemson University, Clemson, SC 29634-0310, United States of America
| | - Ingo S Wehrtmann
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| |
Collapse
|
2
|
Liu Z, Gu Y, Yu L, Yang X, Ma Z, Zhao J, Gu Y. Locomotion Control of Cyborg Insects by Charge-Balanced Biphasic Electrical Stimulation. CYBORG AND BIONIC SYSTEMS 2024; 5:0134. [PMID: 38975251 PMCID: PMC11223913 DOI: 10.34133/cbsystems.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024] Open
Abstract
The integration of electronic stimulation devices with insects in the context of cyborg insect systems has great application potential, particularly in the fields of environmental monitoring, urban surveillance, and rescue missions. Despite considerable advantages compared to the current robot technology, including flexibility, durability, and low energy consumption, this integration faces certain challenges related to the potential risk of charge accumulation caused by prolonged and repetitive electrical stimulations. To address these challenges, this study proposes a universal system for remote signal output control using infrared signals. The proposed system integrates high-precision digital-to-analog converters capable of generating customized waveform electrical stimulation signals within defined ranges. This enhances the accuracy of locomotion control in cyborg insects while maintaining real-time control and dynamic parameter adjustment. The proposed system is verified by experiments. The experimental results show that the signals generated by the proposed system have a success rate of over 76.25% in controlling the turning locomotion of cyborg insects, which is higher than previously reported results. In addition, the charge-balanced characteristics of these signals can minimize muscle tissue damage, thus substantially enhancing control repeatability. This study provides a comprehensive solution for the remote control and monitoring of cyborg insects, whose flexibility and adaptability can meet various application and experimental requirements. The results presented in this study lay a robust foundation for further advancement of various technologies, particularly those related to cyborg insect locomotion control systems and wireless control mechanisms for cyborg insects.
Collapse
Affiliation(s)
- Zhong Liu
- School of Computing and Artificial Intelligence,
Beijing Technology and Business University, Beijing 100048, China
| | - Yongxia Gu
- School of Computing and Artificial Intelligence,
Beijing Technology and Business University, Beijing 100048, China
| | - Li Yu
- School of Mechanical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Xiang Yang
- School of Computing and Artificial Intelligence,
Beijing Technology and Business University, Beijing 100048, China
| | - Zhiyun Ma
- School of Mechanical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Jieliang Zhao
- School of Mechanical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yufei Gu
- New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
3
|
Owaki D, Dürr V, Schmitz J. A hierarchical model for external electrical control of an insect, accounting for inter-individual variation of muscle force properties. eLife 2023; 12:e85275. [PMID: 37703327 PMCID: PMC10499373 DOI: 10.7554/elife.85275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Cyborg control of insect movement is promising for developing miniature, high-mobility, and efficient biohybrid robots. However, considering the inter-individual variation of the insect neuromuscular apparatus and its neural control is challenging. We propose a hierarchical model including inter-individual variation of muscle properties of three leg muscles involved in propulsion (retractor coxae), joint stiffness (pro- and retractor coxae), and stance-swing transition (protractor coxae and levator trochanteris) in the stick insect Carausius morosus. To estimate mechanical effects induced by external muscle stimulation, the model is based on the systematic evaluation of joint torques as functions of electrical stimulation parameters. A nearly linear relationship between the stimulus burst duration and generated torque was observed. This stimulus-torque characteristic holds for burst durations of up to 500ms, corresponding to the stance and swing phase durations of medium to fast walking stick insects. Hierarchical Bayesian modeling revealed that linearity of the stimulus-torque characteristic was invariant, with individually varying slopes. Individual prediction of joint torques provides significant benefits for precise cyborg control.
Collapse
Affiliation(s)
- Dai Owaki
- Department of Robotics, Graduate School of Engineering, Tohoku UniversitySendaiJapan
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld UniversityBielefeldGermany
- Centre for Cognitive Interaction Technology, Bielefeld UniversityBielefeldGermany
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld UniversityBielefeldGermany
- Centre for Cognitive Interaction Technology, Bielefeld UniversityBielefeldGermany
| |
Collapse
|
4
|
Püffel F, Johnston R, Labonte D. A biomechanical model for the relation between bite force and mandibular opening angle in arthropods. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221066. [PMID: 36816849 PMCID: PMC9929505 DOI: 10.1098/rsos.221066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Bite forces play a key role in animal ecology: they affect mating behaviour, fighting success, and the ability to feed. Although feeding habits of arthropods have a significant ecological and economical impact, we lack fundamental knowledge on how the morphology and physiology of their bite apparatus controls bite performance, and its variation with mandible gape. To address this gap, we derived a biomechanical model that characterizes the relationship between bite force and mandibular opening angle from first principles. We validate this model by comparing its geometric predictions with morphological measurements on the muscoloskeletal bite apparatus of Atta cephalotes leaf-cutter ants, using computed tomography (CT) scans obtained at different mandible opening angles. We then demonstrate its deductive and inductive utility with three examplary use cases: Firstly, we extract the physiological properties of the leaf-cutter ant mandible closer muscle from in vivo bite force measurements. Secondly, we show that leaf-cutter ants are specialized to generate extraordinarily large bite forces, equivalent to about 2600 times their body weight. Thirdly, we discuss the relative importance of morphology and physiology in determining the magnitude and variation of bite force. We hope that a more detailed quantitative understanding of the link between morphology, physiology, and bite performance will facilitate future comparative studies on the insect bite apparatus, and help to advance our knowledge of the behaviour, ecology and evolution of arthropods.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Richard Johnston
- School of Engineering, Materials Research Centre, Swansea University, Swansea SA2 8PP, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
5
|
Liu P, Ma S, Liu S, Li Y, Li B. Omnidirectional Jump Control of a Locust-Computer Hybrid Robot. Soft Robot 2023; 10:40-51. [PMID: 35333662 DOI: 10.1089/soro.2021.0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Jumping locomotion is critical for microrobots to overcome obstacles. Among the microjumping robots, the development of an omnidirectional jumping mechanism is challenging. To avoid the complicated microfabrication process, we present an insect-computer hybrid robot by controlling the locomotions of an Oriental Migratory Locust (Locusta migratoria manilensis, Meyen 1835). The insect-computer hybrid robot achieves repetitive omnidirectional jumps of ∼100 mm high. A series of experiments on jumping control, turning control, and collaborative directional jumping control are carried out. We also demonstrate the implementation of a wireless stimulator backpack that provides remote locomotion control, which transforms the insect into a hybrid robot. Moreover, a feedback jump control system is subsequently presented. The results indicate that the hybrid robot could easily achieve an omnidirectional jump and maintain body righting after landing. This robot is well-suited for applications that require locomotion on uneven terrains, such as environmental surveillance and search and rescue.
Collapse
Affiliation(s)
- Peng Liu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, China
| | - Songsong Ma
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, China.,State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shen Liu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, China
| | - Yao Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, China
| | - Bing Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, China.,State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
6
|
Webster-Wood VA, Guix M, Xu NW, Behkam B, Sato H, Sarkar D, Sanchez S, Shimizu M, Parker KK. Biohybrid robots: recent progress, challenges, and perspectives. BIOINSPIRATION & BIOMIMETICS 2022; 18:015001. [PMID: 36265472 DOI: 10.1088/1748-3190/ac9c3b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The past ten years have seen the rapid expansion of the field of biohybrid robotics. By combining engineered, synthetic components with living biological materials, new robotics solutions have been developed that harness the adaptability of living muscles, the sensitivity of living sensory cells, and even the computational abilities of living neurons. Biohybrid robotics has taken the popular and scientific media by storm with advances in the field, moving biohybrid robotics out of science fiction and into real science and engineering. So how did we get here, and where should the field of biohybrid robotics go next? In this perspective, we first provide the historical context of crucial subareas of biohybrid robotics by reviewing the past 10+ years of advances in microorganism-bots and sperm-bots, cyborgs, and tissue-based robots. We then present critical challenges facing the field and provide our perspectives on the vital future steps toward creating autonomous living machines.
Collapse
Affiliation(s)
- Victoria A Webster-Wood
- Mechanical Engineering, Biomedical Engineering (by courtesy), McGowan Institute of Regenerative Medicine, Carnegie Mellon University, Pittsburgh, PA 15116, United States of America
| | - Maria Guix
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nicole W Xu
- Laboratories for Computational Physics and Fluid Dynamics, U.S. Naval Research Laboratory, Code 6041, Washington, DC, United States of America
| | - Bahareh Behkam
- Department of Mechanical Engineering, Institute for Critical Technology and Applied Science, Blacksburg, VA 24061, United States of America
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 65 Nanyang Drive, Singapore, 637460, Singapore
| | - Deblina Sarkar
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Samuel Sanchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Avda. Lluis Companys 23, 08010 Barcelona, Spain
| | - Masahiro Shimizu
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-machi, Toyonaka, Osaka, Japan
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
7
|
Yu L, Zhao J, Ma Z, Wang W, Yan S, Jin Y, Fang Y. Experimental Verification on Steering Flight of Honeybee by Electrical Stimulation. CYBORG AND BIONIC SYSTEMS 2022. [DOI: 10.34133/2022/9895837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The artificial locomotion control strategy is the fundamental technique to ensure the accomplishment of the preset assignments for cyborg insects. The existing research has recognized that the electrical stimulation applied to the optic lobes was an appropriate flight control strategy for small insects represented by honeybee. This control technique has been confirmed to be effective for honeybee flight initiation and cessation. However, its regulation effect on steering locomotion has not been fully verified. Here, we investigated the steering control effect of honeybee by applying electrical stimulation signals with different duty cycles and frequencies on the unilateral optic lobes and screened the stimulus parameters with the highest response successful rate. Moreover, we confirmed the effectiveness of steering control by verifying the presence of rotation torque on tethered honeybees and the body orientation change of crawling honeybees. Our study will contribute some reliable parameter references to the motion control of cyborg honeybees.
Collapse
Affiliation(s)
- Li Yu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jieliang Zhao
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiyun Ma
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenzhong Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shaoze Yan
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yue Jin
- Institute of Apicultural Research, Chinese Academy of Agricultural Science, 100193, China
| | - Yu Fang
- Institute of Apicultural Research, Chinese Academy of Agricultural Science, 100193, China
| |
Collapse
|
8
|
In vivo closed-loop control of a locust's leg using nerve stimulation. Sci Rep 2022; 12:10864. [PMID: 35760828 PMCID: PMC9237135 DOI: 10.1038/s41598-022-13679-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/10/2022] [Indexed: 01/17/2023] Open
Abstract
Activity of an innervated tissue can be modulated based on an acquired biomarker through feedback loops. How to convert this biomarker into a meaningful stimulation pattern is still a topic of intensive research. In this article, we present a simple closed-loop mechanism to control the mean angle of a locust’s leg in real time by modulating the frequency of the stimulation on its extensor motor nerve. The nerve is interfaced with a custom-designed cuff electrode and the feedback loop is implemented online with a proportional control algorithm, which runs solely on a microcontroller without the need of an external computer. The results show that the system can be controlled with a single-input, single-output feedback loop. The model described in this article can serve as a primer for young researchers to learn about neural control in biological systems before applying these concepts in advanced systems. We expect that the approach can be advanced to achieve control over more complex movements by increasing the number of recorded biomarkers and selective stimulation units.
Collapse
|
9
|
Vo-Doan TT, Dung VT, Sato H. A Cyborg Insect Reveals a Function of a Muscle in Free Flight. CYBORG AND BIONIC SYSTEMS 2022; 2022:9780504. [PMID: 36285304 PMCID: PMC9494732 DOI: 10.34133/2022/9780504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
While engineers put lots of effort, resources, and time in building insect scale micro aerial vehicles (MAVs) that fly like insects, insects themselves are the real masters of flight. What if we would use living insect as platform for MAV instead? Here, we reported a flight control via electrical stimulation of a flight muscle of an insect-computer hybrid robot, which is the interface of a mountable wireless backpack controller and a living beetle. The beetle uses indirect flight muscles to drive wing flapping and three major direct flight muscles (basalar, subalar, and third axilliary (3Ax) muscles) to control the kinematics of the wings for flight maneuver. While turning control was already achieved by stimulating basalar and 3Ax muscles, electrical stimulation of subalar muscles resulted in braking and elevation control in flight. We also demonstrated around 20 degrees of contralateral yaw and roll by stimulating individual subalar muscle. Stimulating both subalar muscles lead to an increase of 20 degrees in pitch and decelerate the flight by 1.5 m/s2 as well as an induce in elevation of 2 m/s2.
Collapse
Affiliation(s)
- T. Thang Vo-Doan
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore
- University of Freiburg, Institute of Biology I, Germany
| | - V. Than Dung
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore
| | - Hirotaka Sato
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore
| |
Collapse
|
10
|
Ma S, Liu P, Liu S, Li Y, Li B. Launching of a Cyborg Locust via Co-Contraction Control of Hindleg Muscles. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2022.3152102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
|
12
|
Yip JK, Sarkar D, Petersen AP, Gipson JN, Tao J, Kale S, Rexius-Hall ML, Cho N, Khalil NN, Kapadia R, McCain ML. Contact photolithography-free integration of patterned and semi-transparent indium tin oxide stimulation electrodes into polydimethylsiloxane-based heart-on-a-chip devices for streamlining physiological recordings. LAB ON A CHIP 2021; 21:674-687. [PMID: 33439202 PMCID: PMC7968549 DOI: 10.1039/d0lc00948b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controlled electrical stimulation is essential for evaluating the physiology of cardiac tissues engineered in heart-on-a-chip devices. However, existing stimulation techniques, such as external platinum electrodes or opaque microelectrode arrays patterned on glass substrates, have limited throughput, reproducibility, or compatibility with other desirable features of heart-on-a-chip systems, such as the use of tunable culture substrates, imaging accessibility, or enclosure in a microfluidic device. In this study, indium tin oxide (ITO), a conductive, semi-transparent, and biocompatible material, was deposited onto glass and polydimethylsiloxane (PDMS)-coated coverslips as parallel or point stimulation electrodes using laser-cut tape masks. ITO caused substrate discoloration but did not prevent brightfield imaging. ITO-patterned substrates were microcontact printed with arrayed lines of fibronectin and seeded with neonatal rat ventricular myocytes, which assembled into aligned cardiac tissues. ITO deposited as parallel or point electrodes was connected to an external stimulator and used to successfully stimulate micropatterned cardiac tissues to generate calcium transients or propagating calcium waves, respectively. ITO electrodes were also integrated into the cantilever-based muscular thin film (MTF) assay to stimulate and quantify the contraction of micropatterned cardiac tissues. To demonstrate the potential for multiple ITO electrodes to be integrated into larger, multiplexed systems, two sets of ITO electrodes were deposited onto a single substrate and used to stimulate the contraction of distinct micropatterned cardiac tissues independently. Collectively, these approaches for integrating ITO electrodes into heart-on-a-chip devices are relatively facile, modular, and scalable and could have diverse applications in microphysiological systems of excitable tissues.
Collapse
Affiliation(s)
- Joycelyn K Yip
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Debarghya Sarkar
- Ming Hsieh Department of Electrical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Andrew P Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jennifer N Gipson
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jun Tao
- Ming Hsieh Department of Electrical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Salil Kale
- Ming Hsieh Department of Electrical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Megan L Rexius-Hall
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Nathan Cho
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Natalie N Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Rehan Kapadia
- Ming Hsieh Department of Electrical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA. and Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
13
|
Appiah C, Arndt C, Siemsen K, Heitmann A, Staubitz A, Selhuber-Unkel C. Living Materials Herald a New Era in Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807747. [PMID: 31267628 DOI: 10.1002/adma.201807747] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/07/2019] [Indexed: 05/22/2023]
Abstract
Living beings have an unsurpassed range of ways to manipulate objects and interact with them. They can make autonomous decisions and can heal themselves. So far, a conventional robot cannot mimic this complexity even remotely. Classical robots are often used to help with lifting and gripping and thus to alleviate the effects of menial tasks. Sensors can render robots responsive, and artificial intelligence aims at enabling autonomous responses. Inanimate soft robots are a step in this direction, but it will only be in combination with living systems that full complexity will be achievable. The field of biohybrid soft robotics provides entirely new concepts to address current challenges, for example the ability to self-heal, enable a soft touch, or to show situational versatility. Therefore, "living materials" are at the heart of this review. Similarly to biological taxonomy, there is a recent effort for taxonomy of biohybrid soft robotics. Here, an expansion is proposed to take into account not only function and origin of biohybrid soft robotic components, but also the materials. This materials taxonomy key demonstrates visually that materials science will drive the development of the field of soft biohybrid robotics.
Collapse
Affiliation(s)
- Clement Appiah
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
| | - Christine Arndt
- Institute for Materials Science, University of Kiel, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Katharina Siemsen
- Institute for Materials Science, University of Kiel, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Anne Heitmann
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
| | - Anne Staubitz
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
- Otto-Diels-Institute for Organic Chemistry, University of Kiel, Otto-Hahn-Platz 4, D-24118, Kiel, Germany
| | | |
Collapse
|
14
|
Zheng N, Ma Q, Jin M, Zhang S, Guan N, Yang Q, Dai J. Abdominal-Waving Control of Tethered Bumblebees Based on Sarsa With Transformed Reward. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:3064-3073. [PMID: 29994492 DOI: 10.1109/tcyb.2018.2838595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyborg insects have attracted great attention as the flight performance they have is incomparable by micro aerial vehicles and play a critical role in supporting extensive applications. Approaches to construct cyborg insects consist of two major issues: 1) the stimulating paradigm and 2) the control policy. At present, most cyborg insects are constructed based on invasive methods, requiring the implantation of electrodes into neural or muscle systems, which would harm the insects. As the control policy is basically manual control, the shortcomings of which lie in the requirement of excessive amount of experiments and focused attention. This paper presents the design and implementation of a noninvasive and much safer cyborg insect system based on visual stimulation. The tethered paradigm is adopted here and we look at controlling the flight behavior of bumblebees, especially the abdominal-waving behavior, in the context of a model-free reinforcement learning problem. The problem is formulated as a finite and deterministic Markov decision process, where the agent is designed to change the abdominal-waving behavior from the initial state to the target state. Sarsa with transformed reward function which can speed up the learning process is employed to learn the optimal control policy. Learned policies are compared to the stochastic one by evaluating the results of ten bumblebees, demonstrating that abdominal-waving state can be modulated to approximate the target state quickly with small deviation.
Collapse
|
15
|
Le DL, Tnee CK, Vo Doan TT, Arai S, Suzuki M, Sou K, Sato H. Neurotransmitter-Loaded Nanocapsule Triggers On-Demand Muscle Relaxation in Living Organism. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37812-37819. [PMID: 30372017 DOI: 10.1021/acsami.8b11079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper reports the on-demand artificial muscle relaxation using a thermosensitive liposome encapsulating γ-aminobutyric acid (GABA) inhibitory neurotransmitter. Muscle relaxation is not feasible in principle, although muscle contraction can be easily induced by electrical stimulation. Herein, thermosensitive liposomes (phase transition temperature = 40 °C) were synthesized to encapsulate GABA and were injected into a leg of a living beetle. The leg was wrapped around by a Ni-Cr wire heater integrated with a thermocouple to enable the feedback control and to manipulate the leg temperature. The injected leg was temporarily immobilized by heating it up to 45 °C. The leg did not swing even by electrically stimulating the leg muscle. Subsequently, the leg recovered to swing. The result indicates that GABA was released from liposomes and fed to the leg muscle, enabling temporal muscle relaxation.
Collapse
Affiliation(s)
- Duc Long Le
- School of Mechanical & Aerospace Engineering , Nanyang Technological University 50 Nanyang Avenue , 639798 , Singapore
| | - Chin Kiat Tnee
- School of Mechanical & Aerospace Engineering , Nanyang Technological University 50 Nanyang Avenue , 639798 , Singapore
| | - T Thang Vo Doan
- School of Mechanical & Aerospace Engineering , Nanyang Technological University 50 Nanyang Avenue , 639798 , Singapore
| | - Satoshi Arai
- Research Institute for Science and Engineering , Waseda University , 3-4-1 Ohkubo , Shinjuku, Tokyo 169-8555 , Japan
- PRIME, Japan Agency for Medical Research and Development , Tokyo 100-0004 , Japan
| | - Madoka Suzuki
- Research Institute for Science and Engineering , Waseda University , 3-4-1 Ohkubo , Shinjuku, Tokyo 169-8555 , Japan
- PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi, Saitama 332-0012 , Japan
- Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita, Osaka 565-0871 , Japan
| | - Keitaro Sou
- Waseda Bioscience Research Institute in Singapore (WABIOS) , 11 Biopolis Way , 138667 , Singapore
- Organization for University Research Initiatives , Waseda University , 513 Waseda Tsurumaki-cho , Shinjuku, Tokyo 162-0041 , Japan
| | - Hirotaka Sato
- School of Mechanical & Aerospace Engineering , Nanyang Technological University 50 Nanyang Avenue , 639798 , Singapore
| |
Collapse
|
16
|
Abstract
An insect–computer hybrid robot, often referred to as a biological machine or an insect cyborg, is the fusion of a living insect platform and artificial microdevices, including stimulators, sensors, and computers. When compared with the artificial robots, a hybrid robot can be operated as an autonomous mobile machine with low energy consumption and hardware costs. A hybrid machine can verify various biological hypotheses, such as function determination, by stimulating a muscle or any other structure.
Collapse
Affiliation(s)
- Yao Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
17
|
Abstract
In this study, we describe the most ultralightweight living legged robot to date that makes it a strong candidate for a search and rescue mission. The robot is a living beetle with a wireless electronic backpack stimulator mounted on its thorax. Inheriting from the living insect, the robot employs a compliant body made of soft actuators, rigid exoskeletons, and flexure hinges. Such structure would allow the robot to easily adapt to any complex terrain due to the benefit of soft interface, self-balance, and self-adaptation of the insect without any complex controller. The antenna stimulation enables the robot to perform not only left/right turning but also backward walking and even cessation of walking. We were also able to grade the turning and backward walking speeds by changing the stimulation frequency. The power required to drive the robot is low as the power consumption of the antenna stimulation is in the order of hundreds of microwatts. In contrast to the traditional legged robots, this robot is of low cost, easy to construct, simple to control, and has ultralow power consumption.
Collapse
Affiliation(s)
- Tat Thang Vo Doan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , Singapore, Singapore
| | - Melvin Y W Tan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , Singapore, Singapore
| | - Xuan Hien Bui
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , Singapore, Singapore
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , Singapore, Singapore
| |
Collapse
|
18
|
Li Y, Cao F, Vo Doan TT, Sato H. Role of outstretched forelegs of flying beetles revealed and demonstrated by remote leg stimulation in free flight. J Exp Biol 2017; 220:3499-3507. [PMID: 28754717 DOI: 10.1242/jeb.159376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/24/2017] [Indexed: 11/20/2022]
Abstract
In flight, many insects fold their forelegs tightly close to the body, which naturally decreases drag or air resistance. However, flying beetles stretch out their forelegs for some reason. Why do they adopt this posture in flight? Here, we show the role of the stretched forelegs in flight of the beetle Mecynorrhina torquata Using leg motion tracking and electromyography in flight, we found that the forelegs were voluntarily swung clockwise in yaw to induce counter-clockwise rotation of the body for turning left, and vice versa. Furthermore, we demonstrated remote control of left-right turnings in flight by swinging the forelegs via a remote electrical stimulator for the leg muscles. The results and demonstration reveal that the beetle's forelegs play a supplemental role in directional steering during flight.
Collapse
Affiliation(s)
- Yao Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Feng Cao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Tat Thang Vo Doan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
19
|
Vo Doan TT, Sato H. Insect-machine Hybrid System: Remote Radio Control of a Freely Flying Beetle (Mercynorrhina torquata). J Vis Exp 2016:54260. [PMID: 27684525 PMCID: PMC5091978 DOI: 10.3791/54260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024] Open
Abstract
The rise of radio-enabled digital electronic devices has prompted the use of small wireless neuromuscular recorders and stimulators for studying in-flight insect behavior. This technology enables the development of an insect-machine hybrid system using a living insect platform described in this protocol. Moreover, this protocol presents the system configuration and free flight experimental procedures for evaluating the function of the flight muscles in an untethered insect. For demonstration, we targeted the third axillary sclerite (3Ax) muscle to control and achieve left or right turning of a flying beetle. A thin silver wire electrode was implanted on the 3Ax muscle on each side of the beetle. These were connected to the outputs of a wireless backpack (i.e., a neuromuscular electrical stimulator) mounted on the pronotum of the beetle. The muscle was stimulated in free flight by alternating the stimulation side (left or right) or varying the stimulation frequency. The beetle turned to the ipsilateral side when the muscle was stimulated and exhibited a graded response to an increasing frequency. The implantation process and volume calibration of the 3 dimensional motion capture camera system need to be carried out with care to avoid damaging the muscle and losing track of the marker, respectively. This method is highly beneficial to study insect flight, as it helps to reveal the functions of the flight muscle of interest in free flight.
Collapse
Affiliation(s)
- T Thang Vo Doan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University;
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University;
| |
Collapse
|
20
|
Electrical Stimulation of Coleopteran Muscle for Initiating Flight. PLoS One 2016; 11:e0151808. [PMID: 27050093 PMCID: PMC4822953 DOI: 10.1371/journal.pone.0151808] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/10/2016] [Indexed: 11/19/2022] Open
Abstract
Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.
Collapse
|
21
|
Cao F, Zhang C, Choo HY, Sato H. Insect-computer hybrid legged robot with user-adjustable speed, step length and walking gait. J R Soc Interface 2016; 13:20160060. [PMID: 27030043 PMCID: PMC4843679 DOI: 10.1098/rsif.2016.0060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/03/2016] [Indexed: 11/12/2022] Open
Abstract
We have constructed an insect-computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g., gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e., applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed.
Collapse
Affiliation(s)
- Feng Cao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Chao Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Hao Yu Choo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
22
|
Shoji K, Akiyama Y, Suzuki M, Nakamura N, Ohno H, Morishima K. Biofuel cell backpacked insect and its application to wireless sensing. Biosens Bioelectron 2015; 78:390-395. [PMID: 26655178 DOI: 10.1016/j.bios.2015.11.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 11/26/2022]
Abstract
This study investigated an enzymatic biofuel cell (BFC) which can be backpacked by cockroaches. The BFC generates electric power from trehalose in insect hemolymph by the trehalase and glucose dehydrogenase (GDH) reaction systems which dehydrogenate β-glucose obtained by hydrolyzing trehalose. First, an insect-mountable BFC (imBFC) was designed and fabricated with a 3D printer. The electrochemical reaction of anode-modified poly-L-lysine, vitamin K3, diaphorase, nicotinamide adenine dinucleotide, GDH and poly(sodium 4-styrenesulfonate) in the imBFC was evaluated and an oxidation current of 1.18 mAcm(-2) (at +0.6 V vs. Ag|AgCl) was observed. Then, the performance of the imBFC was evaluated and a maximum power output of 333 μW (285 μW cm(-)(2)) (at 0.5 V) was obtained. Furthermore, driving of both an LED device and a wireless temperature and humidity sensor device were powered by the imBFC. These results indicate that the imBFC has sufficient potential as a battery for novel ubiquitous robots such as insect cyborgs.
Collapse
Affiliation(s)
- Kan Shoji
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yoshitake Akiyama
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masato Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Nobuhumi Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Hiroyuki Ohno
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Keisuke Morishima
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Japan.
| |
Collapse
|
23
|
Erickson JC, Herrera M, Bustamante M, Shingiro A, Bowen T. Effective Stimulus Parameters for Directed Locomotion in Madagascar Hissing Cockroach Biobot. PLoS One 2015; 10:e0134348. [PMID: 26308337 PMCID: PMC4550421 DOI: 10.1371/journal.pone.0134348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/09/2015] [Indexed: 02/04/2023] Open
Abstract
Swarms of insects instrumented with wireless electronic backpacks have previously been proposed for potential use in search and rescue operations. Before deploying such biobot swarms, an effective long-term neural-electric stimulus interface must be established, and the locomotion response to various stimuli quantified. To this end, we studied a variety of pulse types (mono- vs. bipolar; voltage- vs. current-controlled) and shapes (amplitude, frequency, duration) to parameters that are most effective for evoking locomotion along a desired path in the Madagascar hissing cockroach (G. portentosa) in response to antennal and cercal stimulation. We identified bipolar, 2 V, 50 Hz, 0.5 s voltage controlled pulses as being optimal for evoking forward motion and turns in the expected contraversive direction without habituation in ≈50% of test subjects, a substantial increase over ≈10% success rates previously reported. Larger amplitudes for voltage (1–4 V) and current (50–150 μA) pulses generally evoked larger forward walking (15.6–25.6 cm; 3.9–5.6 cm/s) but smaller concomitant turning responses (149 to 80.0 deg; 62.8 to 41.2 deg/s). Thus, the radius of curvature of the initial turn-then-run locomotor response (≈10–25 cm) could be controlled in a graded manner by varying the stimulus amplitude. These findings could be used to help optimize stimulus protocols for swarms of cockroach biobots navigating unknown terrain.
Collapse
Affiliation(s)
- Jonathan C. Erickson
- Department of Physics-Engineering, Washington and Lee University, Lexington, Virginia, United States of America
- * E-mail:
| | - María Herrera
- Department of Physics-Engineering, Washington and Lee University, Lexington, Virginia, United States of America
| | - Mauricio Bustamante
- Department of Physics-Engineering, Washington and Lee University, Lexington, Virginia, United States of America
| | - Aristide Shingiro
- Department of Physics-Engineering, Washington and Lee University, Lexington, Virginia, United States of America
| | - Thomas Bowen
- Department of Physics-Engineering, Washington and Lee University, Lexington, Virginia, United States of America
| |
Collapse
|
24
|
Oral dosing of chemical indicators for in vivo monitoring of Ca2+ dynamics in insect muscle. PLoS One 2015; 10:e0116655. [PMID: 25590329 PMCID: PMC4295878 DOI: 10.1371/journal.pone.0116655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/04/2014] [Indexed: 12/02/2022] Open
Abstract
This paper proposes a remarkably facile staining protocol to visually investigate dynamic physiological events in insect tissues. We attempted to monitor Ca2+ dynamics during contraction of electrically stimulated living muscle. Advances in circuit miniaturization and insect neuromuscular physiology have enabled the hybridization of living insects and man-made electronic components, such as microcomputers, the result of which has been often referred as a Living Machine, Biohybrid, or Cyborg Insect. In order for Cyborg Insects to be of practical use, electrical stimulation parameters need to be optimized to induce desired muscle response (motor action) and minimize the damage in the muscle due to the electrical stimuli. Staining tissues and organs as well as measuring the dynamics of chemicals of interest in muscle should be conducted to quantitatively and systematically evaluate the effect of various stimulation parameters on the muscle response. However, existing staining processes require invasive surgery and/or arduous procedures using genetically encoded sensors. In this study, we developed a non-invasive and remarkably facile method for staining, in which chemical indicators can be orally administered (oral dosing). A chemical Ca2+ indicator was orally introduced into an insect of interest via food containing the chemical indicator and the indicator diffused from the insect digestion system to the target muscle tissue. We found that there was a positive relationship between the fluorescence intensity of the indicator and the frequency of electrical stimulation which indicates the orally dosed indicator successfully monitored Ca2+ dynamics in the muscle tissue. This oral dosing method has a potential to globally stain tissues including neurons, and investigating various physiological events in insects.
Collapse
|