1
|
Fock E, Parnova R. Omega-3 polyunsaturated fatty acids in the brain and visual system: Focus on invertebrates. Comp Biochem Physiol B Biochem Mol Biol 2025; 275:111023. [PMID: 39154851 DOI: 10.1016/j.cbpb.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
A critical role of omega-3 polyunsaturated fatty acids (PUFA), mainly docosahexaenoic acid 22:6ω3 (DHA), in the development and function of the brain and visual system is well established. DHA, the most abundant omega-3 PUFA in the vertebrate brain, contributes to neuro- and synaptogenesis, neuronal differentiation, synaptic transmission and plasticity, neuronal network formation, memory and behaviour formation. Based on these data, the unique importance of DHA and its irreplaceability in neural and retinal tissues has been postulated. In this review, we consider omega-3 PUFA composition in the brain and retina of various invertebrates, and show that DHA has only been found in marine mollusks and crustaceans. A gradual decrease in the DHA content until its disappearance can be observed in the brain lipids of the series marine-freshwater-terrestrial crustaceans and marine-terrestrial mollusks, suggesting that the transition to the land lifestyle in the evolution of invertebrates, but not vertebrates, was accompanied by a loss of DHA. As with terrestrial crustaceans and mollusks, DHA was not found in insects, either terrestrial or aquatic, or in nematodes. We show that the nervous and visual systems of various DHA-free invertebrates can be highly enriched in alpha-linolenic acid 18:3ω3 or eicosapentaenoic acid 20:5ω3, which affect neurological and visual function, stimulating synaptogenesis, synaptic transmission, visual processing, learning and even cognition. The review data show that, in animals at different levels of organization, omega-3 PUFA are required for the functioning of the nervous and visual systems and that their specific needs can be met by various omega-3 PUFA.
Collapse
Affiliation(s)
- Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia
| | - Rimma Parnova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia.
| |
Collapse
|
2
|
Menzel R, Zhang X, Pietrucik T, Bathelt A, Ruess L. Omega-3 PUFA and the fitness and cognition of the nematode Caenorhabditis elegans under different environmental conditions. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110925. [PMID: 38040326 DOI: 10.1016/j.cbpb.2023.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Many invertebrate species possess the metabolic ability to synthesize long-chain ω3 polyunsaturated fatty acids (PUFA) de novo. Due to their diverse effects on membrane architecture, neuroplasticity, growth and reproduction, PUFA have a high potential to positively influence the fitness of an organism. But how and when do these supposed advantages actually come into play? Other species, that are often closely related, pass natural selection without this special metabolic ability. The ω3-PUFA rich model organism Caenorhabditis elegans (Nematoda) and its mutant fat-1(wa9), lacking these PUFA, are a suitable test system. We analyzed potential impairments in reproduction and growth in a soil assay. Further, chemotaxis after aversive olfactory, associative learning and integration of a second sensory signal were assessed on agar plates. Moreover, we analyzed the phospholipid pattern of both C. elegans strains and further free-living nematodes species at different temperatures. While the phenotypic effects were rather small under standard conditions, lowering the temperature to 15 or even 10 °C or reducing the soil moisture, led to significant limitations, with the investigated parameters for neuroplasticity being most impaired. The ω3-PUFA free C. elegans mutant strain fat-1 did not adapt the fatty acid composition of its phospholipids to a decreasing temperature, while ω3-PUFA containing nematodes proportionally increased this PUFA group. In contrats, other ω3-PUFA free nematode species produced significantly more ω6-PUFA. Thus, the ability to synthesize long-chain ω3-PUFA de novo likely is fundamental for an increase in neuroplasticity and an efficient way for regulating membrane fluidity to maintain their functionality.
Collapse
Affiliation(s)
- Ralph Menzel
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany.
| | - Xuchao Zhang
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Tamara Pietrucik
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Antonia Bathelt
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Liliane Ruess
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
3
|
O'Farrell F, Aleyakpo B, Mustafa R, Jiang X, Pinto RC, Elliott P, Tzoulaki I, Dehghan A, Loh SHY, Barclay JW, Martins LM, Pazoki R. Evidence for involvement of the alcohol consumption WDPCP gene in lipid metabolism, and liver cirrhosis. Sci Rep 2023; 13:20616. [PMID: 37996473 PMCID: PMC10667215 DOI: 10.1038/s41598-023-47371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Biological pathways between alcohol consumption and alcohol liver disease (ALD) are not fully understood. We selected genes with known effect on (1) alcohol consumption, (2) liver function, and (3) gene expression. Expression of the orthologs of these genes in Caenorhabditis elegans and Drosophila melanogaster was suppressed using mutations and/or RNA interference (RNAi). In humans, association analysis, pathway analysis, and Mendelian randomization analysis were performed to identify metabolic changes due to alcohol consumption. In C. elegans, we found a reduction in locomotion rate after exposure to ethanol for RNAi knockdown of ACTR1B and MAPT. In Drosophila, we observed (1) a change in sedative effect of ethanol for RNAi knockdown of WDPCP, TENM2, GPN1, ARPC1B, and SCN8A, (2) a reduction in ethanol consumption for RNAi knockdown of TENM2, (3) a reduction in triradylglycerols (TAG) levels for RNAi knockdown of WDPCP, TENM2, and GPN1. In human, we observed (1) a link between alcohol consumption and several metabolites including TAG, (2) an enrichment of the candidate (alcohol-associated) metabolites within the linoleic acid (LNA) and alpha-linolenic acid (ALA) metabolism pathways, (3) a causal link between gene expression of WDPCP to liver fibrosis and liver cirrhosis. Our results imply that WDPCP might be involved in ALD.
Collapse
Affiliation(s)
- Felix O'Farrell
- Cardiovascular and Metabolic Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, London, UB8 3PH, UK
| | | | - Rima Mustafa
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Xiyun Jiang
- Cardiovascular and Metabolic Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, London, UB8 3PH, UK
| | - Rui Climaco Pinto
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, Du Cane Road, W12 0NN, UK
- National Institute for Health Research, Imperial Biomedical Research Centre, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Health Data Research UK at Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Centre for Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Jeff W Barclay
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Raha Pazoki
- Cardiovascular and Metabolic Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, London, UB8 3PH, UK.
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK.
- Division of Biomedical Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, London, UB8 3PH, UK.
| |
Collapse
|
4
|
Martins AC, Virgolini MB, Ávila DS, Scharf P, Li J, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Aschner M. Mitochondria in the Spotlight: C. elegans as a Model Organism to Evaluate Xenobiotic-Induced Dysfunction. Cells 2023; 12:2124. [PMID: 37681856 PMCID: PMC10486742 DOI: 10.3390/cells12172124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Miriam B. Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Jung Li
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
5
|
van Wijk MH, Davies AG, Sterken MG, Mathies LD, Quamme EC, Blackwell GG, Riksen JAG, Kammenga JE, Bettinger JC. Natural allelic variation modifies acute ethanol response phenotypes in wild strains of C. elegans. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1505-1517. [PMID: 37356915 DOI: 10.1111/acer.15139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Genetic variation contributes to the likelihood that an individual will develop an alcohol use disorder (AUD). Traditional laboratory studies in animal models have elucidated the molecular pharmacology of ethanol, but laboratory-derived genetic manipulations rarely model the naturally occurring genetic variation observed in wild populations. Rather, these manipulations are biased toward identifying genes of central importance in the phenotypes. Because changes in such genes can confer selective disadvantages, they are not ideal candidates for carrying AUD risk alleles in humans. We sought to exploit Caenorhabditis elegans to identify allelic variation existing in the wild that modulates ethanol response behaviors. METHODS We tested the acute ethanol responses of four strains recently isolated from the wild (JU1511, JU1926, JU1931, and JU1941) and 41 multiparental recombinant inbred lines (mpRILs) derived from them. We assessed locomotion at 10, 30, and 50 min on low and high ethanol concentrations. We performed principal component analyses (PCA) on the different phenotypes, tested for transgressive behavior, calculated heritability, and determined the correlations between behavioral responses. RESULTS We observed a range of responses to ethanol across the strains. We detected a low-concentration locomotor activation effect in some of the mpRILs not seen in the laboratory wild-type strain. PCA showed different ethanol response behaviors to be independent. We observed transgressive behavior for many of the measured phenotypes and found that multiple behaviors were uncorrelated. The average broad-sense heritability for all phenotypes was 23.2%. CONCLUSIONS Genetic variation significantly affects multiple acute ethanol response behaviors, many of which are independent of one another. This suggests that the genetic variation captured by these strains likely affects multiple biological mechanisms through which ethanol acts. Further study of these strains may allow these distinct mechanisms to be identified.
Collapse
Affiliation(s)
- Marijke H van Wijk
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Laura D Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Elizabeth C Quamme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - GinaMari G Blackwell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
6
|
Serrano M, Rico-Barrio I, Grandes P. The effect of omega-3 fatty acids on alcohol-induced damage. Front Nutr 2023; 10:1068343. [PMID: 37090780 PMCID: PMC10113533 DOI: 10.3389/fnut.2023.1068343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Alcohol is the most widely consumed psychoactive substance in the world that has a severe impact on many organs and bodily systems, particularly the liver and nervous system. Alcohol use during pregnancy roots long-lasting changes in the newborns and during adolescence has long-term detrimental effects especially on the brain. The brain contains docosahexaenoic acid (DHA), a major omega-3 (n-3) fatty acid (FA) that makes up cell membranes and influences membrane-associated protein function, cell signaling, gene expression and lipid production. N-3 is beneficial in several brain conditions like neurodegenerative diseases, ameliorating cognitive impairment, oxidative stress, neuronal death and inflammation. Because alcohol decreases the levels of n-3, it is timely to know whether n-3 supplementation positively modifies alcohol-induced injuries. The aim of this review is to summarize the state-of-the-art of the n-3 effects on certain conditions caused by alcohol intake, focusing primarily on brain damage and alcoholic liver disease.
Collapse
Affiliation(s)
- Maitane Serrano
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Irantzu Rico-Barrio
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
- *Correspondence: Pedro Grandes,
| |
Collapse
|
7
|
Chen TC, Hsu WL, Wu CY, Lai YR, Chao HR, Chen CH, Tsai MH. Effect of omega-6 linoleic acid on neurobehavioral development in Caenorhabditis elegans. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102557. [PMID: 36889241 DOI: 10.1016/j.plefa.2023.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/30/2022] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Linoleic acid (LA, omega-6), an essential polyunsaturated fatty acid, is supplied by vegetable oils such as corn, sunflower and soybean. Supplementary LA in infants and children is required for normal growth and brain development, but has also been reported to induce brain inflammation and neurodegenerative diseases. This controversial role of LA development requires further investigation. Our study utilized Caenorhabditis elegans (C. elegans) as a model to clarify the role of LA in regulating neurobehavioral development. A mere supplementary quantity of LA in C. elegans larval stage affected the worm's locomotive ability, intracellular ROS accumulation and lifespan. We found that more serotonergic neurons were activated by supplementing LA above 10 μM thereby promoting locomotive ability with upregulation of serotonin-related genes. Supplementation with LA above 10 μM also inhibited the expression of mtl-1, mtl-2 and ctl-3 to accelerate oxidative stress and attenuate lifespan in nematodes; however, enhancement of stress-related genes such as sod-1, sod-3, mtl-1, mtl-2 and cyp-35A2 by supplementary LA under 1 μM decreased oxidative stress and increased the worm's lifespan. In conclusion, our study reveals that supplementary LA possesses both pros and cons in worm physiology and provides new suggestions for LA intake administration in childhood.
Collapse
Affiliation(s)
- Tun-Chieh Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wen-Li Hsu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Ying Wu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan; Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan
| | - Yun-Ru Lai
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, Texas, 77030, United States of America; New York Heart Research Foundation, Mineola, New York, 11501, United States of America; Institute for Biomedical Sciences, Shinshu University, Nagano, 390-8621, Japan
| | - Ming-Hsien Tsai
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
8
|
Scholz H. From Natural Behavior to Drug Screening: Invertebrates as Models to Study Mechanisms Associated with Alcohol Use Disorders. Curr Top Behav Neurosci 2023. [PMID: 36598738 DOI: 10.1007/7854_2022_413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Humans consume ethanol-containing beverages, which may cause an uncontrollable or difficult-to-control intake of ethanol-containing liquids and may result in alcohol use disorders. How the transition at the molecular level from "normal" ethanol-associated behaviors to addictive behaviors occurs is still unknown. One problem is that the components contributing to normal ethanol intake and their underlying molecular adaptations, especially in neurons that regulate behavior, are not clear. The fruit fly Drosophila melanogaster and the earthworm Caenorhabditis elegans show behavioral similarities to humans such as signs of intoxication, tolerance, and withdrawal. Underlying the phenotypic similarities, invertebrates and vertebrates share mechanistic similarities. For example in Drosophila melanogaster, the dopaminergic neurotransmitter system regulates the positive reinforcing properties of ethanol and in Caenorhabditis elegans, serotonergic neurons regulate feeding behavior. Since these mechanisms are fundamental molecular mechanisms and are highly conserved, invertebrates are good models for uncovering the basic principles of neuronal adaptation underlying the behavioral response to ethanol. This review will focus on the following aspects that might shed light on the mechanisms underlying normal ethanol-associated behaviors. First, the current status of what is required at the behavioral and cellular level to respond to naturally occurring levels of ethanol is summarized. Low levels of ethanol delay the development and activate compensatory mechanisms that in turn might be beneficial for some aspects of the animal's physiology. Repeated exposure to ethanol however might change brain structures involved in mediating learning and memory processes. The smell of ethanol is already a key component in the environment that is able to elicit behavioral changes and molecular programs. Minimal networks have been identified that regulate normal ethanol consumption. Other environmental factors that influence ethanol-induced behaviors include the diet, dietary supplements, and the microbiome. Second, the molecular mechanisms underlying neuronal adaptation to the cellular stressor ethanol are discussed. Components of the heat shock and oxidative stress pathways regulate adaptive responses to low levels of ethanol and in turn change behavior. The adaptive potential of the brain cells is challenged when the organism encounters additional cellular stressors caused by aging, endosymbionts or environmental toxins or excessive ethanol intake. Finally, to underline the conserved nature of these mechanisms between invertebrates and higher organisms, recent approaches to identify drug targets for ethanol-induced behaviors are provided. Already approved drugs regulate ethanol-induced behaviors and they do so in part by interfering with cellular stress pathways. In addition, invertebrates have been used to identify new compounds targeting molecules involved in the regulation in ethanol withdrawal-like symptoms. This review primarily highlights the advances of the last 5 years concerning Drosophila melanogaster, but also provides intriguing examples of Caenorhabditis elegans and Apis mellifera in support.
Collapse
Affiliation(s)
- Henrike Scholz
- Department of Biology, Institute for Zoology, University of Köln, Köln, Germany.
| |
Collapse
|
9
|
Albrecht PA, Fernandez-Hubeid LE, Deza-Ponzio R, Romero VL, Gonzales-Moreno C, Carranza AD, Moran Y, Asis R, Virgolini MB. Reduced acute functional tolerance and enhanced preference for ethanol in Caenorhabditis elegans exposed to lead during development: Potential role of alcohol dehydrogenase. Neurotoxicol Teratol 2022; 94:107131. [DOI: 10.1016/j.ntt.2022.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022]
|
10
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
11
|
Albrecht PA, Fernandez-Hubeid LE, Deza-Ponzio R, Virgolini MB. The intertwining between lead and ethanol in the model organism Caenorhabditis elegans. FRONTIERS IN TOXICOLOGY 2022; 4:991787. [PMID: 36204698 PMCID: PMC9531147 DOI: 10.3389/ftox.2022.991787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Caenorhabditis elegans (C. elegans) is a model organism widely used to evaluate the mechanistic aspects of toxicants with the potential to predict responses comparable to those of mammals. We report here the consequences of developmental lead (Pb) exposure on behavioral responses to ethanol (EtOH) in C. elegans. In addition, we present data on morphological alterations in the dopamine (DA) synapse and DA-dependent behaviors aimed to dissect the neurobiological mechanisms that underlie the relationship between these neurotoxicants. Finally, the escalation to superior animals that parallels the observed effects in both experimental models with references to EtOH metabolism and oxidative stress is also discussed. Overall, the literature revised here underpins the usefulness of C. elegans to evidence behavioral responses to a combination of neurotoxicants in mechanistic-orientated studies.
Collapse
Affiliation(s)
- P A Albrecht
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L E Fernandez-Hubeid
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - R Deza-Ponzio
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M B Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
12
|
Aliev F, Barr PB, Davies AG, Dick DM, Bettinger J. Genes regulating levels of ω-3 long-chain polyunsaturated fatty acids are associated with alcohol use disorder and consumption, and broader externalizing behavior in humans. Alcohol Clin Exp Res 2022; 46:1657-1664. [PMID: 35904282 PMCID: PMC9509483 DOI: 10.1111/acer.14916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Individual variation in the physiological response to alcohol is predictive of an individual's likelihood to develop alcohol use disorder (AUD). Evidence from diverse model organisms indicates that the levels of long-chain polyunsaturated omega-3 fatty acids (ω-3 LC-PUFAs) can modulate the behavioral response to ethanol and therefore may impact the propensity to develop AUD. While most ω-3 LC-PUFAs come from diet, humans can produce these fatty acids from shorter chain precursors through a series of enzymatic steps. Natural variation in the genes encoding these enzymes has been shown to affect ω-3 LC-PUFA levels. We hypothesized that variation in these genes could contribute to the susceptibility to develop AUD. METHODS We identified nine genes (FADS1, FADS2, FADS3, ELOVL2, GCKR, ELOVL1, ACOX1, APOE, and PPARA) that are required to generate ω-3 LC-PUFAs and/or have been shown or predicted to affect ω-3 LC-PUFA levels. Using both set-based and gene-based analyses we examined their association with AUD and two AUD-related phenotypes, alcohol consumption, and an externalizing phenotype. RESULTS We found that the set of nine genes is associated with all three phenotypes. When examined individually, GCKR, FADS2, and ACOX1 showed significant association signals with alcohol consumption. GCKR was significantly associated with AUD. ELOVL1 and APOE were associated with externalizing. CONCLUSIONS Taken together with observations that dietary ω-3 LC-PUFAs can affect ethanol-related phenotypes, this work suggests that these fatty acids provide a link between the environmental and genetic influences on the risk of developing AUD.
Collapse
Affiliation(s)
- Fazil Aliev
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Peter B. Barr
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Psychiatry & Behavioral SciencesSUNY Downstate Health Sciences UniversityBrooklynNew YorkUSA
| | - Andrew G. Davies
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Virginia Commonwealth University Alcohol Research CenterRichmondVirginiaUSA
| | - Danielle M. Dick
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Virginia Commonwealth University Alcohol Research CenterRichmondVirginiaUSA
| | - Jill C. Bettinger
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Virginia Commonwealth University Alcohol Research CenterRichmondVirginiaUSA
| |
Collapse
|
13
|
Smith CC, Sheedy DL, McEwen HP, Don AS, Kril JJ, Sutherland GT. Lipidome changes in alcohol-related brain damage. J Neurochem 2021; 160:271-282. [PMID: 34699608 DOI: 10.1111/jnc.15530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
Alcohol-related brain injury is characterized by cognitive deficits and brain atrophy with the prefrontal cortex particularly susceptible. White matter in the human brain is lipid rich and a major target of damage from chronic alcohol abuse; yet, there is sparse information on how these lipids are affected. Here, we used untargeted lipidomics as a discovery tool to describe these changes in the prefrontal, middle temporal, and visual cortices of human subjects with alcohol use disorder and controls. Significant changes to the lipidome, predominantly in the prefrontal and visual cortices, and differences between the white and grey matter of each brain region were identified. These effects include broad decreases to phospholipids and ceramide, decreased polyunsaturated fatty acids, decreased sphingadiene backbones, and selective decreases in cholesteryl ester fatty acid chains. Our findings show that chronic alcohol abuse results in selective changes to the neurolipidome, which likely reflects both the directs effects on the brain and concurrent effects on the liver.
Collapse
Affiliation(s)
- Caine C Smith
- Faculty of Medicine and Health, School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Donna L Sheedy
- Faculty of Medicine and Health, School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Holly P McEwen
- Centenery Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony S Don
- Faculty of Medicine and Health, School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Centenery Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Jillian J Kril
- Faculty of Medicine and Health, School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Greg T Sutherland
- Faculty of Medicine and Health, School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Chen TC, Chao HR, Wu CY, Lai YR, Chen CH, Yoshioka T, Hsu WL, Tsai MH. Effect of 9,12-Octadecadiynoic Acid on Neurobehavioral Development in Caenorhabditis elegans. Int J Mol Sci 2021; 22:ijms22168917. [PMID: 34445623 PMCID: PMC8396327 DOI: 10.3390/ijms22168917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Human breast milk lipids have major beneficial effects: they promote infant early brain development, growth and health. To identify the relationship between human breast milk lipids and infant neurodevelopment, multivariate analyses that combined lipidomics and psychological Bayley-III scales evaluation were utilized. We identified that 9,12-octadecadiynoic acid has a significantly positive correlation with infant adaptive behavioral development, which is a crucial neurodevelopment to manage risk from environmental stress. To further clarify the biological function of 9,12-octadecadiynoic acid in regulating neurodevelopment, Caenorhabditis elegans (C. elegans) was used as a model to investigate the effect of 9,12-octadecadiynoic acid on neurobehavioral development. Supplementation with 9,12-octadecadiynoic acid from the L1 to L4 stage in larvae affected locomotive behaviors and foraging ability that were not socially interactive, implying that 9,12-octadecadiynoic acid is involved in regulating the serotonergic neuronal ability. We found that supplementary 0.1 μM 9,12-octadecadiynoic acid accelerated the locomotive ability and foraging ability via increasing the expression of serotonin transporter mod-1. Antioxidant defense genes, sod-1, sod-3 and cyp-35A2 are involved in 9,12-octadecadiynoic acid-induced motor neuronal activity. Nevertheless, supplementary 9,12-octadecadiynoic acid at concentrations above 1 μM significantly attenuated locomotive behaviors, foraging ability, serotonin synthesis, serotonin-related gene expressions and stress-related gene expression, resulting in the decreased longevity of worms in the experiment. In conclusion, our study demonstrates the biological function of 9,12-octadecadiynoic acid in governing adaptive behavioral development.
Collapse
Affiliation(s)
- Tun-Chieh Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Rd, Cianjin District, Kaohsiung 80145, Taiwan;
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
- Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan
- Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan
| | - Ching-Ying Wu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Rd, Cianjin District, Kaohsiung 80145, Taiwan;
- Department of Cosmetic Science, Chang Gung University of Science and Technology, No 261, Wenhua 1st Rd, Taoyuan 33303, Taiwan
| | - Yun-Ru Lai
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (Y.-R.L.); (T.Y.)
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA;
- New York Heart Research Foundation, 200 Old Country Road, Mineola, NY 11501, USA
- Institute for Biomedical Sciences, Shinshu University, 3-1-1 Asahi Matsumoto, Nagano 390-8621, Japan
| | - Tohru Yoshioka
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (Y.-R.L.); (T.Y.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Wen-Li Hsu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Rd, Cianjin District, Kaohsiung 80145, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (Y.-R.L.); (T.Y.)
- Correspondence: (W.-L.H.); (M.-H.T.)
| | - Ming-Hsien Tsai
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (Y.-R.L.); (T.Y.)
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan
- Correspondence: (W.-L.H.); (M.-H.T.)
| |
Collapse
|
15
|
Sterken MG, van Wijk MH, Quamme EC, Riksen JAG, Carnell L, Mathies LD, Davies AG, Kammenga JE, Bettinger JC. Transcriptional analysis of the response of C. elegans to ethanol exposure. Sci Rep 2021; 11:10993. [PMID: 34040055 PMCID: PMC8155136 DOI: 10.1038/s41598-021-90282-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/07/2021] [Indexed: 11/30/2022] Open
Abstract
Ethanol-induced transcriptional changes underlie important physiological responses to ethanol that are likely to contribute to the addictive properties of the drug. We examined the transcriptional responses of Caenorhabditis elegans across a timecourse of ethanol exposure, between 30 min and 8 h, to determine what genes and genetic pathways are regulated in response to ethanol in this model. We found that short exposures to ethanol (up to 2 h) induced expression of metabolic enzymes involved in metabolizing ethanol and retinol, while longer exposure (8 h) had much more profound effects on the transcriptome. Several genes that are known to be involved in the physiological response to ethanol, including direct ethanol targets, were regulated at 8 h of exposure. This longer exposure to ethanol also resulted in the regulation of genes involved in cilia function, which is consistent with an important role for the effects of ethanol on cilia in the deleterious effects of chronic ethanol consumption in humans. Finally, we found that food deprivation for an 8-h period induced gene expression changes that were somewhat ameliorated by the presence of ethanol, supporting previous observations that worms can use ethanol as a calorie source.
Collapse
Affiliation(s)
- Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Marijke H van Wijk
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Elizabeth C Quamme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Lucinda Carnell
- Department of Biological Sciences, Central Washington University, Ellensburg, WA, 98926, USA
| | - Laura D Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA
- Virginia Commonwealth University Alcohol Research Center, Richmond, VA, USA
| | - Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA
- Virginia Commonwealth University Alcohol Research Center, Richmond, VA, USA
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA.
- Virginia Commonwealth University Alcohol Research Center, Richmond, VA, USA.
| |
Collapse
|
16
|
Schmitt RE, Messick MR, Shell BC, Dunbar EK, Fang H, Shelton KL, Venton BJ, Pletcher SD, Grotewiel M. Dietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function. Addict Biol 2020; 25:e12779. [PMID: 31169340 DOI: 10.1111/adb.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 03/23/2019] [Accepted: 05/02/2019] [Indexed: 01/10/2023]
Abstract
Abuse of alcohol is a major clinical problem with far-reaching health consequences. Understanding the environmental and genetic factors that contribute to alcohol-related behaviors is a potential gateway for developing novel therapeutic approaches for patients that abuse the drug. To this end, we have used Drosophila melanogaster as a model to investigate the effect of diet, an environmental factor, on ethanol sedation. Providing flies with diets high in yeast, a routinely used component of fly media, increased their resistance to ethanol sedation. The yeast-induced resistance to ethanol sedation occurred in several different genetic backgrounds, was observed in males and females, was elicited by yeast from different sources, was readily reversible, and was associated with increased nutrient intake as well as decreased internal ethanol levels. Inhibition of serotonergic neuron function using multiple independent genetic manipulations blocked the effect of yeast supplementation on ethanol sedation, nutrient intake, and internal ethanol levels. Our results demonstrate that yeast is a critical dietary component that influences ethanol sedation in flies and that serotonergic signaling is required for the effect of dietary yeast on nutrient intake, ethanol uptake/elimination, and ethanol sedation. Our studies establish the fly as a model for diet-induced changes in ethanol sedation and raise the possibility that serotonin might mediate the effect of diet on alcohol-related behavior in other species.
Collapse
Affiliation(s)
- Rebecca E. Schmitt
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Monica R. Messick
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Brandon C. Shell
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Ellyn K. Dunbar
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Huai‐Fang Fang
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Keith L. Shelton
- Department of Pharmacology and Toxicology Virginia Commonwealth University Richmond VA USA
| | - B. Jill Venton
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Scott D. Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center University of Michigan Ann Arbor MI USA
| | - Mike Grotewiel
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
- Virginia Commonwealth University Alcohol Research Center Richmond VA USA
| |
Collapse
|
17
|
Mokoena NZ, Sebolai OM, Albertyn J, Pohl CH. Synthesis and function of fatty acids and oxylipins, with a focus on Caenorhabditis elegans. Prostaglandins Other Lipid Mediat 2020; 148:106426. [PMID: 32032704 DOI: 10.1016/j.prostaglandins.2020.106426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) exhibit a diverse range of important biological functions in most biological systems. These PUFAs can be oxygenated via enzymatic or free radical-mediated reactions to form bioactive oxygenated lipid mediators termed oxylipins. Eicosanoids are broad class of oxylipins that are transient and locally synthesized signalling molecules, including prostaglandins, leukotrienes, lipoxins and thromboxanes, which mediate various physiological responses, such as inflammation. In addition to arachidonic acid-derived eicosanoids, current developments in lipidomic methodologies have brought attention to vast number of oxylipins produced from other PUFAs, including omega-3. Although, the molecular mechanisms of how PUFAs and oxylipins contribute to majority of the fundamental biological processes are largely unclear, a model organism Caenorhabditis elegans remains a powerful model for exploring lipid metabolism and functions of PUFAs and oxylipins. For instance, the ability of C. elegans to modify fatty acid composition with dietary supplementation and genetic manipulation enables the dissection of the roles of omega-3 and omega-6 PUFAs in many biological processes that include aging, reproduction, and neurobiology. However, much remains to be elucidated concerning the roles of oxylipins, but thus far, C. elegans is well-known for the synthesis of vast set of cytochrome (CYP) eicosanoids. These CYP eicosanoids are extremely susceptible to changes in the relative bioavailability of the different PUFAs, thus providing a better insight into complex mechanisms connecting essential dietary fatty acids to various biological processes. Therefore, this review provides an overview of the synthesis and function of PUFAs and oxylipins in mammals. It also focusses on what is known regarding the production of PUFAs and oxylipins in C. elegans and their functions.
Collapse
Affiliation(s)
- N Z Mokoena
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - O M Sebolai
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - J Albertyn
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - C H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
18
|
Edwards AC, Heron J, Hibbeln J, Schuckit MA, Webb BT, Hickman M, Davies AG, Bettinger JC. Long-Chain ω-3 Levels Are Associated With Increased Alcohol Sensitivity in a Population-Based Sample of Adolescents. Alcohol Clin Exp Res 2019; 43:2620-2626. [PMID: 31589770 PMCID: PMC6904498 DOI: 10.1111/acer.14212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/01/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND The levels of the ω-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been associated with alcohol sensitivity in vertebrate and invertebrate model systems, but prior studies have not examined this association in human samples despite evidence of associations between ω-3 LC-PUFA levels and alcohol-related phenotypes. Both alcohol sensitivity and ω-3 LC-PUFA levels are impacted by genetic factors, and these influences may contribute to observed associations between phenotypes. Given the potential for using EPA and DHA supplementation in adjuvant care for alcohol misuse and other outcomes, it is important to clarify how ω-3 LC-PUFA levels relate to alcohol sensitivity. METHODS Analyses were conducted using data from the Avon Longitudinal Study of Parents and Children. Plasma ω-3 LC-PUFA levels were measured at ages 15.5 and 17.5. Participants reported on their initial alcohol sensitivity using the early drinking Self-Rating of the Effects of Alcohol (SRE-5) scale, for which more drinks needed for effects indicates lower levels of response per drink, at ages 15.5, 16.5, and 17.5. Polygenic liability for alcohol consumption, alcohol problems, EPA levels, and DHA levels was derived using summary statistics from large, publicly available datasets. Linear regressions were used to examine the cross-sectional and longitudinal associations between ω-3 LC-PUFA levels and SRE scores. RESULTS Age 15.5 ω-3 LC-PUFA levels were negatively associated with contemporaneous SRE scores and with age 17.5 SRE scores. One modest association (p = 0.02) between polygenic liability and SRE scores was observed, between alcohol problems-based polygenic risk scores (PRS) and age 16.5 SRE scores. Tests of moderation by genetic liability were not warranted. CONCLUSIONS Plasma ω-3 LC-PUFA levels may be related to initial sensitivity to alcohol during adolescence. These data indicate that diet-related factors have the potential to impact humans' earliest responses to alcohol exposure.
Collapse
Affiliation(s)
- Alexis C. Edwards
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, US
| | - Jon Heron
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Joseph Hibbeln
- Section on Nutritional Neurosciences, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, US
| | - Marc A. Schuckit
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, US
| | - Bradley T. Webb
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, US
| | - Matthew Hickman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew G. Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, US
| | - Jill C. Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, US
| |
Collapse
|
19
|
Bouyanfif A, Jayarathne S, Koboziev I, Moustaid-Moussa N. The Nematode Caenorhabditis elegans as a Model Organism to Study Metabolic Effects of ω-3 Polyunsaturated Fatty Acids in Obesity. Adv Nutr 2019; 10:165-178. [PMID: 30689684 PMCID: PMC6370270 DOI: 10.1093/advances/nmy059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/06/2018] [Accepted: 07/21/2018] [Indexed: 12/21/2022] Open
Abstract
Obesity is a complex disease that is influenced by several factors, such as diet, physical activity, developmental stage, age, genes, and their interactions with the environment. Obesity develops as a result of expansion of fat mass when the intake of energy, stored as triglycerides, exceeds its expenditure. Approximately 40% of the US population suffers from obesity, which represents a worldwide public health problem associated with chronic low-grade adipose tissue and systemic inflammation (sterile inflammation), in part due to adipose tissue expansion. In patients with obesity, energy homeostasis is further impaired by inflammation, oxidative stress, dyslipidemia, and metabolic syndrome. These pathologic conditions increase the risk of developing other chronic diseases including diabetes, hypertension, coronary artery disease, and certain forms of cancer. It is well documented that several bioactive compounds such as omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are able to reduce adipose and systemic inflammation and blood triglycerides and, in some cases, improve glucose intolerance and insulin resistance in vertebrate animal models of obesity. A promising model organism that is gaining tremendous interest for studies of lipid and energy metabolism is the nematode Caenorhabditis elegans. This roundworm stores fats as droplets within its hypodermal and intestinal cells. The nematode's transparent skin enables fat droplet visualization and quantification with the use of dyes that have affinity to lipids. This article provides a review of major research over the past several years on the use of C. elegans to study the effects of ω-3 PUFAs on lipid metabolism and energy homeostasis relative to metabolic diseases.
Collapse
Affiliation(s)
- Amal Bouyanfif
- Departments of Plant and Soil Science, Texas Tech University, Lubbock, TX
- Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Shasika Jayarathne
- Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Cluster, Texas Tech University, Lubbock, TX
| | - Iurii Koboziev
- Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Cluster, Texas Tech University, Lubbock, TX
| | - Naima Moustaid-Moussa
- Departments of Plant and Soil Science, Texas Tech University, Lubbock, TX
- Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Cluster, Texas Tech University, Lubbock, TX
| |
Collapse
|
20
|
Kraus K, Kleene R, Henis M, Braren I, Kataria H, Sharaf A, Loers G, Schachner M, Lutz D. A Fragment of Adhesion Molecule L1 Binds to Nuclear Receptors to Regulate Synaptic Plasticity and Motor Coordination. Mol Neurobiol 2018; 55:7164-7178. [PMID: 29383692 DOI: 10.1007/s12035-018-0901-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
Proteolytic cleavage of the neuronal isoform of the murine cell adhesion molecule L1, triggered by stimulation of the cognate L1-dependent signaling pathways, results in the generation and nuclear import of an L1 fragment that contains the intracellular domain, the transmembrane domain, and part of the extracellular domain. Here, we show that the LXXLL and FXXLF motifs in the extracellular and transmembrane domain of this L1 fragment mediate the interaction with the nuclear estrogen receptors α (ERα) and β (ERβ), peroxisome proliferator-activated receptor γ (PPARγ), and retinoid X receptor β (RXRβ). Mutations of the LXXLL motif in the transmembrane domain and of the FXXLF motif in the extracellular domain disturb the interaction of the L1 fragment with these nuclear receptors and, when introduced by viral transduction into mouse embryos in utero, result in impaired motor coordination, learning and memory, as well as synaptic connectivity in the cerebellum, in adulthood. These impairments are similar to those observed in the L1-deficient mouse. Our findings suggest that the interplay of nuclear L1 and distinct nuclear receptors is associated with synaptic contact formation and plasticity.
Collapse
Affiliation(s)
- Kristina Kraus
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ralf Kleene
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Melad Henis
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ingke Braren
- Vector Core Unit, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hardeep Kataria
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ahmed Sharaf
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Gabriele Loers
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
| | - David Lutz
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
21
|
Wolstenholme JT, Bowers MS, Pais AB, Pais AC, Poland RS, Poklis JL, Davies AG, Bettinger JC. Dietary Omega-3 Fatty Acids Differentially Impact Acute Ethanol-Responsive Behaviors and Ethanol Consumption in DBA/2J Versus C57BL/6J Mice. Alcohol Clin Exp Res 2018; 42:1476-1485. [PMID: 29786878 DOI: 10.1111/acer.13780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/15/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Complex interactions between environmental and genetic factors influence the risk of developing alcohol use disorder (AUD) in humans. To date, studies of the impact of environment on AUD risk have primarily focused on psychological characteristics or on the effects of developmental exposure to ethanol (EtOH). We recently observed that modifying levels of the long-chain ω-3 (LC ω-3) fatty acid, eicosapentaenoic acid (EPA), alters acute physiological responses to EtOH in Caenorhabditis elegans. Because mammals derive ω-3 fatty acids from their diet, here we asked if manipulating dietary levels of LC ω-3 fatty acids can affect EtOH-responsive behaviors in mice. METHODS We used 2 well-characterized inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2), which differ in their responses to EtOH. Age-matched young adult male mice were maintained on isocaloric diets that differed only by being enriched or depleted in LC ω-3 fatty acids. Animals were subsequently tested for acute EtOH sensitivity (locomotor activation and sedation), voluntary consumption, and metabolism. Fat deposition was also determined. RESULTS We found that dietary levels of LC ω-3s altered EtOH sensitivity and consumption in a genotype-specific manner. Both B6 and D2 animals fed high LC ω-3 diets demonstrated lower EtOH-induced locomotor stimulation than those fed low LC ω-3 diets. EtOH sedation and EtOH metabolism were greater in D2, but not B6 mice on the high LC ω-3 diet. Conversely, LC ω-3 dietary manipulation altered EtOH consumption in B6, but not in D2 mice. B6 mice on a high LC ω-3 diet consumed more EtOH in a 2-bottle choice intermittent access model than B6 mice on a low LC ω-3 diet. CONCLUSIONS Because EtOH sensitivity is predictive of risk of developing AUD in humans, our data indicate that dietary LC ω-3 levels should be evaluated for their impact on AUD risk in humans. Further, these studies indicate that genetic background can interact with fatty acids in the diet to significantly alter EtOH-responsive behaviors.
Collapse
Affiliation(s)
- Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia.,VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia
| | - M Scott Bowers
- Department of Biomedical Engineering , Faulk Center for Molecular Therapeutics, Northwestern University, Chicago, Illinois
| | - Alexander B Pais
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia
| | - A Christian Pais
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia
| | - Ryan S Poland
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia
| | - Justin L Poklis
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
| | - Andrew G Davies
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia.,VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia.,VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
22
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
23
|
Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 2017; 76:336-362. [DOI: 10.1016/j.neubiorev.2016.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
|
24
|
Watts JL. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids. J Clin Med 2016; 5:jcm5020019. [PMID: 26848697 PMCID: PMC4773775 DOI: 10.3390/jcm5020019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/05/2016] [Accepted: 01/28/2016] [Indexed: 01/14/2023] Open
Abstract
The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
25
|
Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:229-52. [PMID: 26810004 DOI: 10.1016/bs.pmbts.2015.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission in human addiction. Overall, C. elegans can be used to model aspects of drug addiction and identify systems and molecular mechanisms that mediate drug effects. The findings are surprisingly consistent with analogous findings in higher-level organisms. Further, model refinement is warranted to improve model validity and increase utility for medications development.
Collapse
|
26
|
Zhou Y, Falck JR, Rothe M, Schunck WH, Menzel R. Role of CYP eicosanoids in the regulation of pharyngeal pumping and food uptake in Caenorhabditis elegans. J Lipid Res 2015; 56:2110-23. [PMID: 26399467 PMCID: PMC4617398 DOI: 10.1194/jlr.m061887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
Cytochrome P450 (CYP)-dependent eicosanoids comprise epoxy- and hydroxy-metabolites of long-chain PUFAs (LC-PUFAs). In mammals, CYP eicosanoids contribute to the regulation of cardiovascular and renal function. Caenorhabditis elegans produces a large set of CYP eicosanoids; however, their role in worm's physiology is widely unknown. Mutant strains deficient in LC-PUFA/eicosanoid biosynthesis displayed reduced pharyngeal pumping frequencies. This impairment was rescued by long-term eicosapentaenoic and/or arachidonic acid supplementation, but not with a nonmetabolizable LC-PUFA analog. Short-term treatment with 17,18-epoxyeicosatetraenoic acid (17,18-EEQ), the most abundant CYP eicosanoid in C. elegans, was as effective as long-term LC-PUFA supplementation in the mutant strains. In contrast, 20-HETE caused decreased pumping frequencies. The opposite effects of 17,18-EEQ and 20-HETE were mirrored by the actions of neurohormones. 17,18-EEQ mimicked the stimulating effect of serotonin when added to starved worms, whereas 20-HETE shared the inhibitory effect of octopamine in the presence of abundant food. In wild-type worms, serotonin increased free 17,18-EEQ levels, whereas octopamine selectively induced the synthesis of hydroxy-metabolites. These results suggest that CYP eicosanoids may serve as second messengers in the regulation of pharyngeal pumping and food uptake in C. elegans.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Biology, Ecology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern, Dallas, TX 75390
| | | | | | - Ralph Menzel
- Department of Biology, Ecology, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
27
|
Grotewiel M, Bettinger JC. Drosophila and Caenorhabditis elegans as Discovery Platforms for Genes Involved in Human Alcohol Use Disorder. Alcohol Clin Exp Res 2015; 39:1292-311. [PMID: 26173477 PMCID: PMC4656040 DOI: 10.1111/acer.12785] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Despite the profound clinical significance and strong heritability of alcohol use disorder (AUD), we do not yet have a comprehensive understanding of the naturally occurring genetic variance within the human genome that drives its development. This lack of understanding is likely to be due in part to the large phenotypic and genetic heterogeneities that underlie human AUD. As a complement to genetic studies in humans, many laboratories are using the invertebrate model organisms (iMOs) Drosophila melanogaster (fruit fly) and Caenorhabditis elegans (nematode worm) to identify genetic mechanisms that influence the effects of alcohol (ethanol) on behavior. While these extremely powerful models have identified many genes that influence the behavioral responses to alcohol, in most cases it has remained unclear whether results from behavioral-genetic studies in iMOs are directly applicable to understanding the genetic basis of human AUD. METHODS In this review, we critically evaluate the utility of the fly and worm models for identifying genes that influence AUD in humans. RESULTS Based on results published through early 2015, studies in flies and worms have identified 91 and 50 genes, respectively, that influence 1 or more aspects of behavioral responses to alcohol. Collectively, these fly and worm genes correspond to 293 orthologous genes in humans. Intriguingly, 51 of these 293 human genes have been implicated in AUD by at least 1 study in human populations. CONCLUSIONS Our analyses strongly suggest that the Drosophila and C. elegans models have considerable utility for identifying orthologs of genes that influence human AUD.
Collapse
Affiliation(s)
- Mike Grotewiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| |
Collapse
|
28
|
Davies AG, Blackwell GG, Raabe RC, Bettinger JC. An Assay for Measuring the Effects of Ethanol on the Locomotion Speed of Caenorhabditis elegans. J Vis Exp 2015:52681. [PMID: 25938273 PMCID: PMC4476067 DOI: 10.3791/52681] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Alcohol use disorders are a significant public health concern, for which there are few effective treatment strategies. One difficulty that has delayed the development of more effective treatments is the relative lack of understanding of the molecular underpinnings of the effects of ethanol on behavior. The nematode, Caenorhabditis elegans (C. elegans), provides a useful model in which to generate and test hypotheses about the molecular effects of ethanol. Here, we describe an assay that has been developed and used to examine the roles of particular genes and environmental factors in behavioral responses to ethanol, in which locomotion is the behavioral output. Ethanol dose-dependently causes an acute depression of crawling on an agar surface. The effects are dynamic; animals exposed to a high concentration demonstrate an initial strong depression of crawling, referred to here as initial sensitivity, and then partially recover locomotion speed despite the continued presence of the drug. This ethanol-induced behavioral plasticity is referred to here as the development of acute functional tolerance. This assay has been used to demonstrate that these two phenotypes are distinct and genetically separable. The straightforward locomotion assay described here is suitable for examining the effects of both genetic and environmental manipulations on these acute behavioral responses to ethanol in C. elegans.
Collapse
Affiliation(s)
- Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University; VCU Alcohol Research Center, Virginia Commonwealth University
| | - GinaMari G Blackwell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University; VCU Alcohol Research Center, Virginia Commonwealth University
| | - Richard C Raabe
- Department of Pharmacology and Toxicology, Virginia Commonwealth University
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University; VCU Alcohol Research Center, Virginia Commonwealth University;
| |
Collapse
|
29
|
SWI/SNF chromatin remodeling regulates alcohol response behaviors in Caenorhabditis elegans and is associated with alcohol dependence in humans. Proc Natl Acad Sci U S A 2015; 112:3032-7. [PMID: 25713357 DOI: 10.1073/pnas.1413451112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alcohol abuse is a widespread and serious problem. Understanding the factors that influence the likelihood of abuse is important for the development of effective therapies. There are both genetic and environmental influences on the development of abuse, but it has been difficult to identify specific liability factors, in part because of both the complex genetic architecture of liability and the influences of environmental stimuli on the expression of that genetic liability. Epigenetic modification of gene expression can underlie both genetic and environmentally sensitive variation in expression, and epigenetic regulation has been implicated in the progression to addiction. Here, we identify a role for the switching defective/sucrose nonfermenting (SWI/SNF) chromatin-remodeling complex in regulating the behavioral response to alcohol in the nematode Caenorhabditis elegans. We found that SWI/SNF components are required in adults for the normal behavioral response to ethanol and that different SWI/SNF complexes regulate different aspects of the acute response to ethanol. We showed that the SWI/SNF subunits SWSN-9 and SWSN-7 are required in neurons and muscle for the development of acute functional tolerance to ethanol. Examination of the members of the SWI/SNF complex for association with a diagnosis of alcohol dependence in a human population identified allelic variation in a member of the SWI/SNF complex, suggesting that variation in the regulation of SWI/SNF targets may influence the propensity to develop abuse disorders. Together, these data strongly implicate the chromatin remodeling associated with SWI/SNF complex members in the behavioral responses to alcohol across phyla.
Collapse
|
30
|
A novel cholinergic action of alcohol and the development of tolerance to that effect in Caenorhabditis elegans. Genetics 2014; 199:135-49. [PMID: 25342716 DOI: 10.1534/genetics.114.171884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the genes and mechanisms involved in acute alcohol responses has the potential to allow us to predict an individual's predisposition to developing an alcohol use disorder. To better understand the molecular pathways involved in the activating effects of alcohol and the acute functional tolerance that can develop to such effects, we characterized a novel ethanol-induced hypercontraction response displayed by Caenorhabditis elegans. We compared body size of animals prior to and during ethanol treatment and showed that acute exposure to ethanol produced a concentration-dependent decrease in size followed by recovery to their untreated size by 40 min despite continuous treatment. An increase in cholinergic signaling, leading to muscle hypercontraction, is implicated in this effect because pretreatment with mecamylamine, a nicotinic acetylcholine receptor (nAChR) antagonist, blocked ethanol-induced hypercontraction, as did mutations causing defects in cholinergic signaling (cha-1 and unc-17). Analysis of mutations affecting specific subunits of nAChRs excluded a role for the ACR-2R, the ACR-16R, and the levamisole-sensitive AChR and indicated that this excitation effect is dependent on an uncharacterized nAChR that contains the UNC-63 α-subunit. We performed a forward genetic screen and identified eg200, a mutation that affects a conserved glycine in EAT-6, the α-subunit of the Na(+)/K(+) ATPase. The eat-6(eg200) mutant fails to develop tolerance to ethanol-induced hypercontraction and remains contracted for at least 3 hr of continuous ethanol exposure. These data suggest that cholinergic signaling through a specific α-subunit-containing nAChR is involved in ethanol-induced excitation and that tolerance to this ethanol effect is modulated by Na(+)/K(+) ATPase function.
Collapse
|