1
|
He Y, Zhang X, Pan W, Zhang J, Zhu W, Zhang J, Shi J. Ciliogenesis-associated Kinase 1 Promotes Breast Cancer Cell Proliferation and Chemoresistance via Phosphorylating ERK1. Int J Biol Sci 2024; 20:2403-2421. [PMID: 38725848 PMCID: PMC11077371 DOI: 10.7150/ijbs.87442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 03/03/2024] [Indexed: 05/12/2024] Open
Abstract
Ciliogenesis-associated kinase 1 (CILK1) plays a key role in the ciliogenesis and ciliopathies. It remains totally unclear whether CILK1 is involved in tumor progression and therapy resistance. Here, we report that the aberrant high-expression of CILK1 in breast cancer is required for tumor cell proliferation and chemoresistance. Two compounds, CILK1-C30 and CILK1-C28, were identified with selective inhibitory effects towards the Tyr-159/Thr-157 dual-phosphorylation of CILK1, pharmacological inhibition of CILK1 significantly suppressed tumor cell proliferation and overcame chemoresistance in multiple experimental models. Large-scale screen of CILK1 substrates confirmed that the kinase directly phosphorylates ERK1, which is responsible for CILK1-mediated oncogenic function. CILK1 is also indicated to be responsible for the chemoresistance of small-cell lung cancer cells. Our data highlight the importance of CILK1 in cancer, implicating that targeting CILK1/ERK1 might offer therapeutic benefit to cancer patients.
Collapse
Affiliation(s)
- Yanling He
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xinyuan Zhang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Weijun Pan
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jiebiao Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Shi
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
2
|
Ribeiro SA, Braga EL, Queiroga ML, Clementino MA, Fonseca XM, Belém MO, Magalhães LM, de Sousa JK, de Freitas TM, Veras HN, de Aquino CC, Santos AD, de Moura FR, Dos Santos AA, Havt A, Maciel BL, Lima AA. A New Murine Undernutrition Model Based on Complementary Feeding of Undernourished Children Causes Damage to the Morphofunctional Intestinal Epithelium Barrier. J Nutr 2024; 154:1232-1251. [PMID: 38346539 PMCID: PMC11347815 DOI: 10.1016/j.tjnut.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Complementary feeding is critical in establishing undernutrition. However, experimental undernourished diets do not represent the amount of nutrients in the complementary diets of undernourished children. OBJECTIVES To develop, validate, and evaluate the impact of a new murine model of undernutrition on the intestinal epithelium, based on the complementary diet of undernourished children from 7 countries with low-socioeconomic power belonging to the Malnutrition-Enteric Diseases (MAL-ED) cohort study. METHODS We used the difference in the percentage of energy, macronutrients, fiber and zinc in the complementary diet of children without undernutrition compared with stunting (height-for-age Z-score < -2) for the MAL-ED diet formulation. Subsequently, C57BL/6 mice were fed a control diet (AIN-93M diet) or MAL-ED diet for 28 d. Weight was measured daily; body composition was measured every 7 d; lactulose:mannitol ratio (LM) and morphometry were evaluated on days 7 and 28; the cotransport test and analysis of intestinal transporters and tight junctions were performed on day 7. RESULTS The MAL-ED diet presented -8.03% energy, -37.46% protein, -24.20% lipid, -10.83% zinc, +5.93% carbohydrate, and +45.17% fiber compared with the control diet. This diet rapidly reduced weight gain and compromised body growth and energy reserves during the chronic period (P < 0.05). In the intestinal epithelial barrier, this diet caused an increase in the LM (P < 0.001) and reduced (P < 0.001) the villous area associated with an increase in FAT/CD36 in the acute period and increased (P < 0.001) mannitol excretion in the chronic period. CONCLUSIONS The MAL-ED diet induced undernutrition in mice, resulting in acute damage to the integrity of the intestinal epithelial barrier and a subsequent increase in the intestinal area during the chronic period. This study introduces the first murine model of undernutrition for the complementary feeding phase, based on data from undernourished children in 7 different countries.
Collapse
Affiliation(s)
- Samilly A Ribeiro
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.
| | - Enock Lr Braga
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Marcus L Queiroga
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Marco A Clementino
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Xhaulla Mqc Fonseca
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Mônica O Belém
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Lyvia Mvc Magalhães
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - José K de Sousa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Thiago M de Freitas
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Herlice N Veras
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiane C de Aquino
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Alan Dc Santos
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia (NEQUIMA), Manaus, Brazil
| | - Flávio Rm de Moura
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia (NEQUIMA), Manaus, Brazil
| | - Armênio A Dos Santos
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Alexandre Havt
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Bruna Ll Maciel
- Nutrition Postgraduation Program, Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Aldo Am Lima
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
3
|
Perlman M, Senger S, Verma S, Carey J, Faherty CS. A foundational approach to culture and analyze malnourished organoids. Gut Microbes 2023; 15:2248713. [PMID: 37724815 PMCID: PMC10512930 DOI: 10.1080/19490976.2023.2248713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
The gastrointestinal (GI) epithelium plays a major role in nutrient absorption, barrier formation, and innate immunity. The development of organoid-based methodology has significantly impacted the study of the GI epithelium, particularly in the fields of mucosal biology, immunity, and host-microbe interactions. Various effects on the GI epithelium, such as genetics and nutrition, impact patients and alter disease states. Thus, incorporating these effects into organoid-based models will facilitate a better understanding of disease progression and offer opportunities to evaluate therapeutic candidates. One condition that has a significant effect on the GI epithelium is malnutrition, and studying the mechanistic impacts of malnutrition would enhance our understanding of several pathologies. Therefore, the goal of this study was to begin to develop methodology to generate viable malnourished organoids with accessible techniques and resources that can be used for a wide array of mechanistic studies. By selectively limiting distinct macronutrient components of organoid media, we were able to successfully culture and evaluate malnourished organoids. Genetic and protein-based analyses were used to validate the approach and confirm the presence of known biomarkers of malnutrition. Additionally, as proof-of-concept, we utilized malnourished organoid-derived monolayers to evaluate the effect of malnourishment on barrier formation and the ability of the bacterial pathogen Shigella flexneri to infect the GI epithelium. This work serves as the basis for new and exciting techniques to alter the nutritional state of organoids and investigate the related impacts on the GI epithelium.
Collapse
Affiliation(s)
- Meryl Perlman
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stefania Senger
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
| | - Smriti Verma
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - James Carey
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Andres SF, Zhang Y, Kuhn M, Scottoline B. Building better barriers: how nutrition and undernutrition impact pediatric intestinal health. Front Immunol 2023; 14:1192936. [PMID: 37545496 PMCID: PMC10401430 DOI: 10.3389/fimmu.2023.1192936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Chronic undernutrition is a major cause of death for children under five, leaving survivors at risk for adverse long-term consequences. This review focuses on the role of nutrients in normal intestinal development and function, from the intestinal epithelium, to the closely-associated mucosal immune system and intestinal microbiota. We examine what is known about the impacts of undernutrition on intestinal physiology, with focus again on the same systems. We provide a discussion of existing animal models of undernutrition, and review the evidence demonstrating that correcting undernutrition alone does not fully ameliorate effects on intestinal function, the microbiome, or growth. We review efforts to treat undernutrition that incorporate data indicating that improved recovery is possible with interventions focused not only on delivery of sufficient energy, macronutrients, and micronutrients, but also on efforts to correct the abnormal intestinal microbiome that is a consequence of undernutrition. Understanding of the role of the intestinal microbiome in the undernourished state and correction of the phenotype is both complex and a subject that holds great potential to improve recovery. We conclude with critical unanswered questions in the field, including the need for greater mechanistic research, improved models for the impacts of undernourishment, and new interventions that incorporate recent research gains. This review highlights the importance of understanding the mechanistic effects of undernutrition on the intestinal ecosystem to better treat and improve long-term outcomes for survivors.
Collapse
Affiliation(s)
- Sarah F. Andres
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Yang Zhang
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Kuhn
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
5
|
de Freitas REM, Medeiros PHQS, Rodrigues FADP, Clementino MADF, Fernandes C, da Silva AVA, Prata MDMG, Cavalcante PA, Lima AÂM, Havt A. Retinoids delay cell cycle progression and promote differentiation of intestinal epithelial cells exposed to nutrient deprivation. Nutrition 2020; 85:111087. [PMID: 33545543 DOI: 10.1016/j.nut.2020.111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/10/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Vitamin A is commonly recommended as a treatment for diarrhea and undernutrition; however, little is known about the underlying cellular mechanisms. The aim of this study was to investigate the modulation of cell cycle by vitamin A derivatives (retinyl palmitate or retinol) in undernourished intestinal epithelial crypts (IEC-6). METHODS IEC-6 cells were exposed to nutrient deprivation (no serum and no glutamine) and supplemented with retinyl palmitate or retinol at a range of 2 to 20 μM. Proliferation, apoptosis/necrosis, cell cycle process, and gene transcription were assessed. RESULTS Nutrient deprivation for 6, 12, 24, or 48 h decreased cell proliferation, and retinyl palmitate further decreased it after 24 and 48 h. Apoptosis rates were reduced by undernourishment and further reduced by retinyl palmitate after 48 h; whereas necrosis rates were unaltered. Undernourishment induced overall cell quiescence, increased percentage of cells in G0/G1 phase and decreased percentage of cells in S phase after 12 h and in G2/M phases at 6, 12, and 24 h after treatment. Both retinoids also showed cell quiescence induction with less cells in G2/M phases after 48 h, whereas only retinol showed significant modulation of G0/G1 and S phases. Both retinoids also increased markers of cell differentiation Fabp and Iap gene transcriptions in about fivefold rates after 42 h. Furthermore, specific gene transcriptions related to MAP kinase signaling pathway regulation of cell differentiation and cell cycle regulation were triggered by retinoids in undernourished IEC-6, with higher levels of expression for Atf2 and C-jun genes. CONCLUSIONS These findings indicated that both vitamin A derivatives induce further survival mechanisms in undernourished intestinal epithelial crypt cells. These mechanisms include increased cell quiescence, decreased apoptosis, increased cell differentiation, and transcription of genes related to MAP kinase signaling pathway.
Collapse
Affiliation(s)
- Rosa Elayne Marques de Freitas
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | | | | | - Camila Fernandes
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Antonio Vinicios Alves da Silva
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Mara de Moura Gondim Prata
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | | | - Alexandre Havt
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
| |
Collapse
|
6
|
Fu Z, Gailey CD, Wang EJ, Brautigan DL. Ciliogenesis associated kinase 1: targets and functions in various organ systems. FEBS Lett 2019; 593:2990-3002. [PMID: 31506943 DOI: 10.1002/1873-3468.13600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
Abstract
Ciliogenesis associated kinase 1 (CILK1) was previously known as intestinal cell kinase because it was cloned from that origin. However, CILK1 is now recognized as a widely expressed and highly conserved serine/threonine protein kinase. Mutations in the human CILK1 gene have been associated with ciliopathies, a group of human genetic disorders with defects in the primary cilium. In mice, both Cilk1 knock-out and Cilk1 knock-in mutations have recapitulated human ciliopathies. Thus, CILK1 has a fundamental role in the function of the cilium. Several candidate substrates have been proposed for CILK1 and the challenge is to relate these to the mutant phenotypes. In this review, we summarize what is known about CILK1 functions and targets, and discuss gaps in current knowledge that motivate further experimentation to fully understand the role of CILK1 in organ development in humans.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Casey D Gailey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Eric J Wang
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - David L Brautigan
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Bolick DT, Guerrant RL. Understanding & ameliorating enteropathy and malnutrition in impoverished areas. EBioMedicine 2019; 45:7-8. [PMID: 31303503 PMCID: PMC6642330 DOI: 10.1016/j.ebiom.2019.06.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- David T Bolick
- University of Virginia School of Medicine, Division of Infectious Diseases and International Health, Charlottesville, VA, USA
| | - Richard L Guerrant
- University of Virginia School of Medicine, Division of Infectious Diseases and International Health, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Chama M, Amadi BC, Chandwe K, Zyambo K, Besa E, Shaikh N, Ndao IM, Tarr PI, Storer C, Head R, Kelly P. Transcriptomic analysis of enteropathy in Zambian children with severe acute malnutrition. EBioMedicine 2019; 45:456-463. [PMID: 31229436 PMCID: PMC6642221 DOI: 10.1016/j.ebiom.2019.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Children with severe acute malnutrition (SAM), with or without diarrhoea, often have enteropathy, but there are few molecular data to guide development of new therapies. We set out to determine whether SAM enteropathy is characterised by specific transcriptional changes which might improve understanding or help identify new treatments. METHODS We collected intestinal biopsies from children with SAM and persistent diarrhoea. mRNA was extracted from biopsies, sequenced, and subjected to a progressive set of complementary analytical approaches: NOIseq, Gene Set Enrichment Analysis (GSEA), and correlation analysis of phenotypic data with gene expression. FINDINGS Transcriptomic profiles were generated for biopsy sets from 27 children of both sexes, under 2 years of age, of whom one-third were HIV-infected. NOIseq analysis, constructed from phenotypic group extremes, revealed 66 differentially expressed genes (DEGs) out of 21,386 mapped to the reference genome. These DEGs include genes for mucins and mucus integrity, antimicrobial defence, nutrient absorption, C-X-C chemokines, proteases and anti-proteases. Phenotype - expression correlation analysis identified 1221 genes related to villus height, including increased cell cycling gene expression in more severe enteropathy. Amino acid transporters and ZIP zinc transporters were specifically increased in severe enteropathy, but transcripts for xenobiotic metabolising enzymes were reduced. INTERPRETATION Transcriptomic analysis of this rare collection of intestinal biopsies identified multiple novel elements of pathology, including specific alterations in nutrient transporters. Changes in xenobiotic metabolism in the gut may alter drug disposition. Both NOIseq and GSEA identified gene clusters similar to those differentially expressed in pediatric Crohn's disease but to a much lesser degree than those identified in coeliac disease. FUND: Bill & Melinda Gates Foundation OPP1066118. The funding agency had no role in study design, data collection, data analysis, interpretation, or writing of the report.
Collapse
Affiliation(s)
- Mubanga Chama
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine, Nationalist Road, Lusaka, Zambia
| | - Beatrice C Amadi
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine, Nationalist Road, Lusaka, Zambia
| | - Kanta Chandwe
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine, Nationalist Road, Lusaka, Zambia
| | - Kanekwa Zyambo
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine, Nationalist Road, Lusaka, Zambia
| | - Ellen Besa
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine, Nationalist Road, Lusaka, Zambia
| | - Nurmohammad Shaikh
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, United States
| | - I Malick Ndao
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, United States
| | - Philip I Tarr
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, United States
| | - Chad Storer
- Department of Genetics, Washington University School of Medicine, St Louis, MO, United States
| | - Richard Head
- Department of Genetics, Washington University School of Medicine, St Louis, MO, United States
| | - Paul Kelly
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine, Nationalist Road, Lusaka, Zambia; Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, 4 Newark Street, London, UK.
| |
Collapse
|
9
|
Bartelt LA, Bolick DT, Guerrant RL. Disentangling Microbial Mediators of Malnutrition: Modeling Environmental Enteric Dysfunction. Cell Mol Gastroenterol Hepatol 2019; 7:692-707. [PMID: 30630118 PMCID: PMC6477186 DOI: 10.1016/j.jcmgh.2018.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Abstract
Environmental enteric dysfunction (EED) (also referred to as environmental enteropathy) is a subclinical chronic intestinal disorder that is an emerging contributor to early childhood malnutrition. EED is common in resource-limited settings, and is postulated to consist of small intestinal injury, dysfunctional nutrient absorption, and chronic inflammation that results in impaired early child growth attainment. Although there is emerging interest in the hypothetical potential for chemical toxins in the environmental exposome to contribute to EED, the propensity of published data, and hence the focus of this review, implicates a critical role of environmental microbes. Early childhood malnutrition and EED are most prevalent in resource-limited settings where food is limited, and inadequate access to clean water and sanitation results in frequent gastrointestinal pathogen exposures. Even as overt diarrhea rates in these settings decline, silent enteric infections and faltering growth persist. Furthermore, beyond restricted physical growth, EED and/or enteric pathogens also associate with impaired oral vaccine responses, impaired cognitive development, and may even accelerate metabolic syndrome and its cardiovascular consequences. As these potentially costly long-term consequences of early childhood enteric infections increasingly are appreciated, novel therapeutic strategies that reverse damage resulting from nutritional deficiencies and microbial insults in the developing small intestine are needed. Given the inherent limitations in investigating how specific intestinal pathogens directly injure the small intestine in children, animal models provide an affordable and controlled opportunity to elucidate causal sequelae of specific enteric infections, to differentiate consequences of defined nutrient deprivation alone from co-incident enteropathogen insults, and to correlate the resulting gut pathologies with their functional impact during vulnerable early life windows.
Collapse
Affiliation(s)
- Luther A Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - David T Bolick
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
10
|
Ding M, Jin L, Xie L, Park SH, Tong Y, Wu D, Chhabra AB, Fu Z, Li X. A Murine Model for Human ECO Syndrome Reveals a Critical Role of Intestinal Cell Kinase in Skeletal Development. Calcif Tissue Int 2018; 102:348-357. [PMID: 29098359 PMCID: PMC5820141 DOI: 10.1007/s00223-017-0355-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Abstract
An autosomal-recessive inactivating mutation R272Q in the human intestinal cell kinase (ICK) gene caused profound multiplex developmental defects in human endocrine-cerebro-osteodysplasia (ECO) syndrome. ECO patients exhibited a wide variety of skeletal abnormalities, yet the underlying mechanisms by which ICK regulates skeletal development remained largely unknown. The goal of this study was to understand the structural and mechanistic basis underlying skeletal anomalies caused by ICK dysfunction. Ick R272Q knock-in transgenic mouse model not only recapitulated major ECO skeletal defects such as short limbs and polydactyly but also revealed a deformed spine with defective intervertebral disk. Loss of ICK function markedly reduced mineralization in the spinal column, ribs, and long bones. Ick mutants showed a significant decrease in the proliferation zone of long bones and the number of type X collagen-expressing hypertrophic chondrocytes in the spinal column and the growth plate of long bones. These results implicate that ICK plays an important role in bone and cartilage development by promoting chondrocyte proliferation and maturation. Our findings provided new mechanistic insights into the skeletal phenotype of human ECO and ECO-like syndromes.
Collapse
Affiliation(s)
- Mengmeng Ding
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Dr., Charlottesville, VA, 22908, USA
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Dr., Charlottesville, VA, 22908, USA
| | - Lin Xie
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Dr., Charlottesville, VA, 22908, USA
- Department of Orthopaedic Surgery, Wuhan Orthopaedic Hospital, Huazhong University of Science & Technology, Hubei, 430030, China
| | - So Hyun Park
- Department of Pharmacology, University of Virginia, PO Box 800735, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Yixin Tong
- Department of Pharmacology, University of Virginia, PO Box 800735, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
- The Gastrointestinal Surgery Center, Tongji Hospital, Huazhong University of Science & Technology, Hubei, 430030, China
| | - Di Wu
- Department of Pharmacology, University of Virginia, PO Box 800735, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - A Bobby Chhabra
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Dr., Charlottesville, VA, 22908, USA
| | - Zheng Fu
- Department of Pharmacology, University of Virginia, PO Box 800735, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA.
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Dr., Charlottesville, VA, 22908, USA.
| |
Collapse
|
11
|
Tong Y, Park S, Wu D, Harris TE, Moskaluk CA, Brautigan DL, Fu Z. Modulation of GSK3β autoinhibition by Thr-7 and Thr-8. FEBS Lett 2018; 592:537-546. [PMID: 29377106 DOI: 10.1002/1873-3468.12990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 11/08/2022]
Abstract
Glycogen synthase kinase 3β (GSK-3β) is a pivotal signaling node that regulates a myriad of cellular functions and is deregulated in many pathological conditions, making it an attractive therapeutic target. Inhibitory Ser-9 phosphorylation of GSK3β by AKT is an important mechanism for negative regulation of GSK3β activity upon insulin stimulation. Here, we report that Thr-7 and Thr-8 residues located in the AKT/PKB substrate consensus sequence on GSK3β are essential for insulin-stimulated Ser-9 phosphorylation in vivo and for GSK3β inactivation. Intestinal cell kinase (ICK) phosphorylates GSK3β Thr-7 in vitro and in vivo. Thr-8 phosphorylation partially inhibits GSK3β, but Thr-7 phosphorylation promotes GSK3β activity and blocks phospho-Ser-9-dependent GSK3β autoinhibition. Our findings uncover novel mechanistic and signaling inputs involved in the autoinhibition of GSK3β.
Collapse
Affiliation(s)
- Yixin Tong
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.,Gastrointestinal Surgery Center, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Sohyun Park
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Di Wu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - David L Brautigan
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Zheng Fu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
12
|
Abstract
Malnutrition contributes significantly to death and illness worldwide and especially to the deaths of children younger than 5 years. The relation between intestinal changes in malnutrition and morbidity and mortality has not been well characterized; however, recent research indicates that the functional and morphologic changes of the intestine secondary to malnutrition itself contribute significantly to these negative clinical outcomes and may be potent targets of intervention. The aim of this review was to summarize current knowledge of experimental and clinically observed changes in the intestine from malnutrition preclinical models and human studies. Limited clinical studies have shown villous blunting, intestinal inflammation, and changes in the intestinal microbiome of malnourished children. In addition to these findings, experimental data using various animal models of malnutrition have found evidence of increased intestinal permeability, upregulated intestinal inflammation, and loss of goblet cells. More mechanistic studies are urgently needed to improve our understanding of malnutrition-related intestinal dysfunction and to identify potential novel targets for intervention.
Collapse
|
13
|
Tong Y, Park SH, Wu D, Xu W, Guillot SJ, Jin L, Li X, Wang Y, Lin CS, Fu Z. An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome. FEBS Lett 2017; 591:1247-1257. [PMID: 28380258 DOI: 10.1002/1873-3468.12644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/25/2017] [Accepted: 03/31/2017] [Indexed: 01/03/2023]
Abstract
Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the intestinal cell kinase (ICK) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome.
Collapse
Affiliation(s)
- Yixin Tong
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.,The Gastrointestinal Surgery Center, Tongji Hospital, Huazhong University of Science & Technology, Hubei, China
| | - So Hyun Park
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Di Wu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Wenhao Xu
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Stacey J Guillot
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Yalin Wang
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Chyuan-Sheng Lin
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Zheng Fu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
14
|
Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs. mSphere 2017; 2:mSphere00046-17. [PMID: 28261667 PMCID: PMC5332602 DOI: 10.1128/msphere.00046-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing the rates of death from infectious diseases. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. We have established the first human infant microbiota-transplanted neonatal pig model of childhood malnutrition that reproduced the impaired immune, intestinal, and other physiological functions seen in malnourished children. This model can be used to evaluate relevant dietary and other health-promoting interventions. Our findings provide an explanation of why adequate nutrition alone may lack efficacy in malnourished children. Malnutrition affects millions of children in developing countries, compromising immunity and contributing to increased rates of death from infectious diseases. Rotavirus is a major etiological agent of childhood diarrhea in developing countries, where malnutrition is prevalent. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. In this study, we used neonatal gnotobiotic (Gn) pigs transplanted with the fecal microbiota of a healthy 2-month-old infant (HIFM) and fed protein-deficient or -sufficient bovine milk diets. Protein deficiency induced hypoproteinemia, hypoalbuminemia, hypoglycemia, stunting, and generalized edema in Gn pigs, as observed in protein-malnourished children. Irrespective of the diet, human rotavirus (HRV) infection early, at HIFM posttransplantation day 3 (PTD3), resulted in adverse health effects and higher mortality rates (45 to 75%) than later HRV infection (PTD10). Protein malnutrition exacerbated HRV infection and affected the morphology and function of the small intestinal epithelial barrier. In pigs infected with HRV at PTD10, there was a uniform decrease in the function and/or frequencies of natural killer cells, plasmacytoid dendritic cells, and CD103+ and apoptotic mononuclear cells and altered gene expression profiles of intestinal epithelial cells (chromogranin A, mucin 2, proliferating cell nuclear antigen, SRY-Box 9, and villin). Thus, we have established the first HIFM-transplanted neonatal pig model that recapitulates major aspects of protein malnutrition in children and can be used to evaluate physiologically relevant interventions. Our findings provide an explanation of why nutrient-rich diets alone may lack efficacy in malnourished children. IMPORTANCE Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing the rates of death from infectious diseases. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. We have established the first human infant microbiota-transplanted neonatal pig model of childhood malnutrition that reproduced the impaired immune, intestinal, and other physiological functions seen in malnourished children. This model can be used to evaluate relevant dietary and other health-promoting interventions. Our findings provide an explanation of why adequate nutrition alone may lack efficacy in malnourished children.
Collapse
|
15
|
Protein Malnutrition Impairs Intestinal Epithelial Cell Turnover, a Potential Mechanism of Increased Cryptosporidiosis in a Murine Model. Infect Immun 2016; 84:3542-3549. [PMID: 27736783 PMCID: PMC5116730 DOI: 10.1128/iai.00705-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/22/2016] [Indexed: 11/20/2022] Open
Abstract
Malnutrition and cryptosporidiosis form a vicious cycle and lead to acute and long-term growth impairment in children from developing countries. Insights into mechanisms underlying the vicious cycle will help to design rational therapies to mitigate this infection. We tested the effect of short-term protein malnutrition on Cryptosporidium parvum infection in a murine model by examining stool shedding, tissue burden, and histologic change and explored the mechanism underlying the interaction between malnutrition and cryptosporidiosis through immunostaining and immunoblotting. Protein malnutrition increased stool shedding and the number of intestine-associated C. parvum organisms, accompanied by significant suppression of C. parvum-induced caspase 3 activity and expression of PCNA and Ki67, but activation of the Akt survival pathway in intestinal epithelial cells. We find that even very brief periods of protein malnutrition may enhance (or intensify) cryptosporidiosis by suppressing C. parvum-induced cell turnover and caspase-dependent apoptosis of intestinal epithelial cells. This implicates a potential strategy to attenuate C. parvum's effects by modulating apoptosis and promoting regeneration in the intestinal epithelium.
Collapse
|
16
|
Guerrant RL, Leite AM, Pinkerton R, Medeiros PHQS, Cavalcante PA, DeBoer M, Kosek M, Duggan C, Gewirtz A, Kagan JC, Gauthier AE, Swann J, Mayneris-Perxachs J, Bolick DT, Maier EA, Guedes MM, Moore SR, Petri WA, Havt A, Lima IF, Prata MDMG, Michaleckyj JC, Scharf RJ, Sturgeon C, Fasano A, Lima AAM. Biomarkers of Environmental Enteropathy, Inflammation, Stunting, and Impaired Growth in Children in Northeast Brazil. PLoS One 2016; 11:e0158772. [PMID: 27690129 PMCID: PMC5045163 DOI: 10.1371/journal.pone.0158772] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/21/2016] [Indexed: 01/27/2023] Open
Abstract
Critical to the design and assessment of interventions for enteropathy and its developmental consequences in children living in impoverished conditions are non-invasive biomarkers that can detect intestinal damage and predict its effects on growth and development. We therefore assessed fecal, urinary and systemic biomarkers of enteropathy and growth predictors in 375 6–26 month-old children with varying degrees of malnutrition (stunting or wasting) in Northeast Brazil. 301 of these children returned for followup anthropometry after 2-6m. Biomarkers that correlated with stunting included plasma IgA anti-LPS and anti-FliC, zonulin (if >12m old), and intestinal FABP (I-FABP, suggesting prior barrier disruption); and with citrulline, tryptophan and with lower serum amyloid A (SAA) (suggesting impaired defenses). In contrast, subsequent growth was predicted in those with higher fecal MPO or A1AT and also by higher L/M, plasma LPS, I-FABP and SAA (showing intestinal barrier disruption and inflammation). Better growth was predicted in girls with higher plasma citrulline and in boys with higher plasma tryptophan. Interactions were also seen with fecal MPO and neopterin in predicting subsequent growth impairment. Biomarkers clustered into markers of 1) functional intestinal barrier disruption and translocation, 2) structural intestinal barrier disruption and inflammation and 3) systemic inflammation. Principle components pathway analyses also showed that L/M with %L, I-FABP and MPO associate with impaired growth, while also (like MPO) associating with a systemic inflammation cluster of kynurenine, LBP, sCD14, SAA and K/T. Systemic evidence of LPS translocation associated with stunting, while markers of barrier disruption or repair (A1AT and Reg1 with low zonulin) associated with fecal MPO and neopterin. We conclude that key noninvasive biomarkers of intestinal barrier disruption, LPS translocation and of intestinal and systemic inflammation can help elucidate how we recognize, understand, and assess effective interventions for enteropathy and its growth and developmental consequences in children in impoverished settings.
Collapse
Affiliation(s)
- Richard L. Guerrant
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
- * E-mail:
| | - Alvaro M. Leite
- Clinical Research Unit, Federal University of Ceara, Fortaleza, Brazil
| | - Relana Pinkerton
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
| | | | | | - Mark DeBoer
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
| | - Margaret Kosek
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Christopher Duggan
- Division of Gastroenterology at Boston Children’s Hospital, Harvard University, Boston, MA, United States of America
| | - Andrew Gewirtz
- Institute for Biomedical Sciences in the Center for Inflammation, Immunity and Infection at Georgia State University, Atlanta, GA, United States of America
| | - Jonathan C. Kagan
- Division of Gastroenterology at Boston Children’s Hospital, Harvard University, Boston, MA, United States of America
| | - Anna E. Gauthier
- Division of Gastroenterology at Boston Children’s Hospital, Harvard University, Boston, MA, United States of America
| | | | | | - David T. Bolick
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
| | - Elizabeth A. Maier
- Cincinnati Children’s Hospital, Cincinnati, OH, United States of America
| | - Marjorie M. Guedes
- Cincinnati Children’s Hospital, Cincinnati, OH, United States of America
| | - Sean R. Moore
- Cincinnati Children’s Hospital, Cincinnati, OH, United States of America
| | - William A. Petri
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
| | - Alexandre Havt
- Clinical Research Unit, Federal University of Ceara, Fortaleza, Brazil
| | - Ila F. Lima
- Clinical Research Unit, Federal University of Ceara, Fortaleza, Brazil
| | | | - Josyf C. Michaleckyj
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
| | - Rebecca J. Scharf
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
| | - Craig Sturgeon
- Mucosal Immunology and Biology Research Center and Division of Pediatric Gastroenterology and Nutrition at Massachusetts General Hospital for Children, Harvard University, Boston, MA, United States of America
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center and Division of Pediatric Gastroenterology and Nutrition at Massachusetts General Hospital for Children, Harvard University, Boston, MA, United States of America
| | - Aldo A. M. Lima
- Clinical Research Unit, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To discuss the recent landmark findings that have increased our understanding not only of the role of the epithelial cell cycle in the homeostasis of the small intestine, but also its relevance to inflammation and cancer. RECENT FINDINGS Recent data have unveiled novel information on protein interactions directly involved in the cell cycle as well as in the pathways that transduce external environmental signals to the cell cycle. A growing body of the recent evidence confirms the importance of food as well as hormonal regulation in the gut on cell cycle. Information on the contribution of the epithelial microenvironment, including the microbiota, has grown substantially in the recent years as well as on the gene-environment interactions and the multiple epigenetic mechanisms involved in regulating cell-cycle proteins and signalling. Finally, further studies investigating the dysregulation of the cell cycle during inflammation and proliferation have increased our understanding of the pathophysiology of chronic inflammatory diseases and cancer. SUMMARY This review highlights some of the most recent advances that further emphasize the importance of the cell cycle in the small intestine during homeostasis as well as in inflammation and cancer.
Collapse
|