1
|
Macone A, Cappelletti C, Incocciati A, Piacentini R, Botta S, Boffi A, Bonamore A. Challenges in Exploiting Human H Ferritin Nanoparticles for Drug Delivery: Navigating Physiological Constraints. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2016. [PMID: 39541599 DOI: 10.1002/wnan.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Over the past two decades, ferritin has emerged as a promising nanoparticle for drug delivery, catalyzing the development of numerous prototypes capable of encapsulating a wide array of therapeutic agents. These ferritin-based nanoparticles exhibit selectivity for various molecular targets and are distinguished by their potential biocompatibility, unique symmetrical structure, and highly controlled size. The hollow interior of ferritin nanoparticles allows for efficient encapsulation of diverse therapeutic agents, enhancing their delivery and effectiveness. Despite these promising features, the anticipated clinical advancements have yet to be fully realized. As a physiological protein with a central role in both health and disease, ferritin can exert unexpected effects on physiology when employed as a drug delivery system. Many studies have not thoroughly evaluated the pharmacokinetic properties of the ferritin protein shell when administered in vivo, overlooking crucial aspects such as biodistribution, clearance, cellular trafficking, and immune response. Addressing these challenges is crucial for achieving the desired transition from bench to bedside. Biodistribution studies need to account for ferritin's natural accumulation in specific organs (liver, spleen, and kidneys), which may lead to off-target effects. Moreover, the mechanisms of clearance and cellular trafficking must be elucidated to optimize the delivery and reduce potential toxicity of ferritin nanoparticles. Additionally, understanding the immune response elicited by exogenous ferritin is essential to mitigate adverse reactions and enhance therapeutic efficacy. A comprehensive understanding of these physiological constraints, along with innovative solutions, is essential to fully realize the therapeutic potential of ferritin nanoparticles paving the way for their successful clinical translation.
Collapse
Affiliation(s)
- Alberto Macone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Chiara Cappelletti
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessio Incocciati
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Roberta Piacentini
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Sofia Botta
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Fernandez-Rojo MA, Pearen MA, Burgess AG, Ikonomopoulou MP, Hoang-Le D, Genz B, Saggiomo SL, Nawaratna SSK, Poli M, Reissmann R, Gobert GN, Deutsch U, Engelhardt B, Brooks AJ, Jones A, Arosio P, Ramm GA. The heavy subunit of ferritin stimulates NLRP3 inflammasomes in hepatic stellate cells through ICAM-1 to drive hepatic inflammation. Sci Signal 2024; 17:eade4335. [PMID: 38564492 DOI: 10.1126/scisignal.ade4335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Serum ferritin concentrations increase during hepatic inflammation and correlate with the severity of chronic liver disease. Here, we report a molecular mechanism whereby the heavy subunit of ferritin (FTH) contributes to hepatic inflammation. We found that FTH induced activation of the NLRP3 inflammasome and secretion of the proinflammatory cytokine interleukin-1β (IL-1β) in primary rat hepatic stellate cells (HSCs) through intercellular adhesion molecule-1 (ICAM-1). FTH-ICAM-1 stimulated the expression of Il1b, NLRP3 inflammasome activation, and the processing and secretion of IL-1β in a manner that depended on plasma membrane remodeling, clathrin-mediated endocytosis, and lysosomal destabilization. FTH-ICAM-1 signaling at early endosomes stimulated Il1b expression, implying that this endosomal signaling primed inflammasome activation in HSCs. In contrast, lysosomal destabilization was required for FTH-induced IL-1β secretion, suggesting that lysosomal damage activated inflammasomes. FTH induced IL-1β production in liver slices from wild-type mice but not in those from Icam1-/- or Nlrp3-/- mice. Thus, FTH signals through its receptor ICAM-1 on HSCs to activate the NLRP3 inflammasome. We speculate that this pathway contributes to hepatic inflammation, a key process that stimulates hepatic fibrogenesis associated with chronic liver disease.
Collapse
Affiliation(s)
- Manuel A Fernandez-Rojo
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
- School of Medicine, University of Queensland, Brisbane, Herston, QLD 4006, Australia
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies in Food, Madrid 28049, Spain
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Michael A Pearen
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | - Anita G Burgess
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | - Maria P Ikonomopoulou
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
- School of Medicine, University of Queensland, Brisbane, Herston, QLD 4006, Australia
- Translational Venomics Laboratory, Madrid Institute for Advanced Studies in Food, Madrid 28049, Spain
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Diem Hoang-Le
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | - Berit Genz
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | - Silvia L Saggiomo
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | | | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Regina Reissmann
- Department for BioMedical Research (DBMR), University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Geoffrey N Gobert
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Andrew J Brooks
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
- School of Medicine, University of Queensland, Brisbane, Herston, QLD 4006, Australia
| |
Collapse
|
3
|
Matsuoka T, Abe M, Kobayashi H. Iron Metabolism and Inflammatory Mediators in Patients with Renal Dysfunction. Int J Mol Sci 2024; 25:3745. [PMID: 38612557 PMCID: PMC11012052 DOI: 10.3390/ijms25073745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects around 850 million people worldwide, posing significant challenges in healthcare due to complications like renal anemia, end-stage kidney disease, and cardiovascular diseases. This review focuses on the intricate interplay between iron metabolism, inflammation, and renal dysfunction in CKD. Renal anemia, prevalent in CKD, arises primarily from diminished erythropoietin (EPO) production and iron dysregulation, which worsens with disease progression. Functional and absolute iron deficiencies due to impaired absorption and chronic inflammation are key factors exacerbating erythropoiesis. A notable aspect of CKD is the accumulation of uremic toxins, such as indoxyl sulfate (IS), which hinder iron metabolism and worsen anemia. These toxins directly affect renal EPO synthesis and contribute to renal hypoxia, thus playing a critical role in the pathophysiology of renal anemia. Inflammatory cytokines, especially TNF-α and IL-6, further exacerbate CKD progression and disrupt iron homeostasis, thereby influencing anemia severity. Treatment approaches have evolved to address both iron and EPO deficiencies, with emerging therapies targeting hepcidin and employing hypoxia-inducible factor (HIF) stabilizers showing potential. This review underscores the importance of integrated treatment strategies in CKD, focusing on the complex relationship between iron metabolism, inflammation, and renal dysfunction to improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Hiroki Kobayashi
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
4
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
5
|
Shesh BP, Connor JR. A novel view of ferritin in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188917. [PMID: 37209958 PMCID: PMC10330744 DOI: 10.1016/j.bbcan.2023.188917] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Since its discovery more than 85 years ago, ferritin has principally been known as an iron storage protein. However, new roles, beyond iron storage, are being uncovered. Novel processes involving ferritin such as ferritinophagy and ferroptosis and as a cellular iron delivery protein not only expand our thinking on the range of contributions of this protein but present an opportunity to target these pathways in cancers. The key question we focus on within this review is whether ferritin modulation represents a useful approach for treating cancers. We discussed novel functions and processes of this protein in cancers. We are not limiting this review to cell intrinsic modulation of ferritin in cancers, but also focus on its utility in the trojan horse approach in cancer therapeutics. The novel functions of ferritin as discussed herein realize the multiple roles of ferritin in cell biology that can be probed for therapeutic opportunities and further research.
Collapse
Affiliation(s)
| | - James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
6
|
Bonet A, Pampalona J, Jose-Cunilleras E, Nacher V, Ruberte J. Ferritin But Not Iron Increases in Retina Upon Systemic Iron Overload in Diabetic and Iron-Dextran Injected Mice. Invest Ophthalmol Vis Sci 2023; 64:22. [PMID: 36912597 PMCID: PMC10019492 DOI: 10.1167/iovs.64.3.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Purpose Iron overload causes oxidative damage in the retina, and it has been involved in the pathogeny of diabetic retinopathy, which is one of the leading causes of blindness in the adult population worldwide. However, how systemic iron enters the retina during diabetes and the role of blood retinal barrier (BRB) in this process remains unclear. Methods The db/db mouse, a well-known model of type 2 diabetes, and a model of systemic iron overload induced by iron dextran intraperitoneal injection, were used. Perls staining and mass spectrophotometry were used to study iron content. Western blot and immunohistochemistry of iron handling proteins were performed to study systemic and retinal iron metabolism. BRB function was assessed by analyzing vascular leakage in fundus angiographies, whole retinas, and retinal sections and by studying the status of tight junctions using transmission electron microscopy and Western blot analysis. Results Twenty-week-old db/db mice with systemic iron overload presented ferritin overexpression without iron increase in the retina and did not show any sign of BRB breakdown. These findings were also observed in iron dextran-injected mice. In those animals, after BRB breakdown induced by cryopexy, iron entered massively in the retina. Conclusions Our results suggested that BRB protects the retina from excessive iron entry in early stages of diabetic retinopathy. Furthermore, ferritin overexpression before iron increase may prepare the retina for a potential BRB breakdown and iron entry from the systemic circulation.
Collapse
Affiliation(s)
- Aina Bonet
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Judit Pampalona
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eduard Jose-Cunilleras
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Víctor Nacher
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Ruberte
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
7
|
Gehrer CM, Mitterstiller AM, Grubwieser P, Meyron-Holtz EG, Weiss G, Nairz M. Advances in Ferritin Physiology and Possible Implications in Bacterial Infection. Int J Mol Sci 2023; 24:4659. [PMID: 36902088 PMCID: PMC10003477 DOI: 10.3390/ijms24054659] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Due to its advantageous redox properties, iron plays an important role in the metabolism of nearly all life. However, these properties are not only a boon but also the bane of such life forms. Since labile iron results in the generation of reactive oxygen species by Fenton chemistry, iron is stored in a relatively safe form inside of ferritin. Despite the fact that the iron storage protein ferritin has been extensively researched, many of its physiological functions are hitherto unresolved. However, research regarding ferritin's functions is gaining momentum. For example, recent major discoveries on its secretion and distribution mechanisms have been made as well as the paradigm-changing finding of intracellular compartmentalization of ferritin via interaction with nuclear receptor coactivator 4 (NCOA4). In this review, we discuss established knowledge as well as these new findings and the implications they may have for host-pathogen interaction during bacterial infection.
Collapse
Affiliation(s)
- Clemens M. Gehrer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Maria Mitterstiller
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Esther G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Padhy B, Kapuganti RS, Hayat B, Mohanty PP, Alone DP. Wide-spread enhancer effect of SNP rs2279590 on regulating epoxide hydrolase-2 and protein tyrosine kinase 2-beta gene expression. Gene 2023; 854:147096. [PMID: 36470481 DOI: 10.1016/j.gene.2022.147096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Polymorphisms in the PTK2B-CLU locus have been associated with various neurodegenerative disorders including pseudoexfoliation glaucoma, Alzheimer's and Parkinson's. Many of these genomic variants are within enhancer elements and modulate genes associated with the disease pathogenesis. However, mechanisms by which they control the gene expression is unknown. Previously, we have shown that clusterin enhancer element surrounding rs2279590 intronic variant, a risk factor in the pathogenesis of pseudoexfoliation glaucoma modulates gene expression of clusterin (CLU), protein tyrosine kinase 2 beta (PTK2B) and epoxide hydrolase 2 (EPHX2). Here, we explored the mechanism by which rs2279590 enhancer regulates their gene expression through chromosome conformation capture assays. 3C assays revealed a strong enhancer-promoter chromatin interaction between rs2279590 enhancer and promoters of genes CLU, PTK2B and EPHX2 in the HEK293 wild type cells. Moreover, genomic knockout of rs2279590 element significantly decreases the chromatin-chromatin cross-linking frequency suggesting gene regulation at transcriptional level through formation of chromatin loop. In addition, molecular assays showed a significantly decreased expression of EPHX2 but not PTK2B at both mRNA and protein level in the lens capsule of pseudoexfoliation affected patients in comparison to control subjects implying a role of EPHX2 in the pathogenesis of pseudoexfoliation.
Collapse
Affiliation(s)
- Biswajit Padhy
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ramani Shyam Kapuganti
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bushra Hayat
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | | | - Debasmita Pankaj Alone
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
9
|
Liu Y, Xiong R, Xiao T, Xiong L, Wu J, Li J, Feng G, Song G, Liu K. SCARA5 induced ferroptosis to effect ESCC proliferation and metastasis by combining with Ferritin light chain. BMC Cancer 2022; 22:1304. [PMID: 36513999 PMCID: PMC9746006 DOI: 10.1186/s12885-022-10414-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) remains one of the most lethal cancers worldwide accompany with an extremely poor prognosis. Therefore, this study aims to screen for new molecules affecting ESCC and explore their mechanisms of action to provide ideas for targeted therapies for ESCC. METHODS Firstly, we screened out the membrane protein SCARA5 by high-throughput sequencing of the ESCC patient tissues, and RT-qPCR and WB were used to verify the differential expression of SCARA5 in esophageal cell lines, and IHC analyzed the expression localization of SCARA5 in ESCC tissue. Then, flow cytometry, wound healing assay, Transwell assay and CCK-8 assay were used to explore the effects of SCARA5 on cell cycle, migration and invasion as well as cell proliferation activity of esophageal squamous carcinoma cells. Meanwhile, transmission electron microscopy was used to detect changes in cellular mitochondrial morphology, and flow cytometry were used to detect changes in intracellular reactive oxygen metabolism, and immunofluorescence and flow cytometry were used to detect changes in intracellular Fe2+. Mechanistically, co-immunoprecipitation was used to detect whether SCARA5 binds to ferritin light chain, and ferroptosis-related protein expression was detected by WB. Finally, the tumor xenograft model was applied to validation the role of SCARA5 tumor growth inhibition in vivo. RESULTS We found that SCARA5 was aberrantly decreased in ESCC tissues and cell lines. Furthermore, we confirmed that SCARA5 suppressed the cell cycle, metastasis and invasion of ESCC cells. Meanwhile, we also found that overexpression of SCARA5 caused changes in mitochondrial morphology, accumulation of intracellular reactive oxygen species and increased intracellular Fe2+ in ESCC cells, which induced ferroptosis in ESCC cells. Mechanically, we validated that SCARA5 combined with ferritin light chain and increased intracellular Fe2+. As well as, overexpression SCARA5 induced ferroptosis by increasing ferritin light chain in nude mice subcutaneous tumors and inhibited the growth of nude mice subcutaneous tumors. CONCLUSION Collectively, our findings demonstrated that SCARA5 suppressed the proliferation and metastasis of ESCC by triggering ferroptosis through combining with ferritin light chain.
Collapse
Affiliation(s)
- Yanqun Liu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
- Department of Cell Biology and Genetics, North Sichuan Medical College, Nanchong, 637100, China
- Department of Laboratory Medicine, Sichuan Chengdu Chengfei Hospital, Chengdu, 610092, China
| | - Rong Xiong
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
| | - Ting Xiao
- Department of Cell Biology and Genetics, North Sichuan Medical College, Nanchong, 637100, China
| | - Li Xiong
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
| | - Jialin Wu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
- Department of Cell Biology and Genetics, North Sichuan Medical College, Nanchong, 637100, China
| | - Junfeng Li
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
| | - Guiqin Song
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China.
- Department of Cell Biology and Genetics, North Sichuan Medical College, Nanchong, 637100, China.
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China.
| |
Collapse
|
10
|
Highly Expressing SCARA5 Promotes Proliferation and Migration of Esophageal Squamous Cell Carcinoma. J Immunol Res 2022; 2022:2555647. [PMID: 35755171 PMCID: PMC9232322 DOI: 10.1155/2022/2555647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background Thrombospondin type 1 domain-containing 7A (THSD7A) was reported to play a procancer role in esophageal squamous cell carcinoma (ESCC). The aim of the study was to screen the downstream functional genes of THSD7A and explore their functions in ESCC, based on the reported research into THSD7A function and on gene microarrays. Methods We adopted quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Celigo high-content screening (HCS) technology to screen the downstream genes of THSD7A. The expression level of target genes was examined by PCR, western blot, and immunohistochemistry (IHC). The effects of these target genes on ESCC malignant biological behavior were performed in vivo and in vitro. The Kaplan-Meier (K-M) survival analysis and Cox regression were used to analyze the prognostic significance of target genes in ESCC patients. Experiments in the literature on liver cancer (LC) were repeated to verify the functions of these genes in different tumors. We further explored the cancer-promoting mechanism of target genes in ESCC by sequencing of the genes' exons. Results Scavenger receptor class A member 5 (SCARA5) was proved to be the downstream driving gene of THSD7A. SCARA5 promoted cell proliferation and migration but inhibited apoptosis in ESCC. IHC results confirmed that SCARA5 expression in ESCC exceeded that in normal tissues. The K-M survival analysis indicated that SCARA5 expression quantity was not related to prognosis, but tumor volume and T classification were both the independent prognostic factors. Repetition of experiments in LC in the literature confirmed that SCARA5 had exactly opposite functions in EC and LC. Conclusion SCARA5 was related to the development and occurrence of ESCC. Our findings suggested that it was a potentially diagnostic individualized therapeutic target for ESCC in the future and that its application could possibly be combined with that of upstream THSD7A gene.
Collapse
|
11
|
Liu T, Li L, Cheng C, He B, Jiang T. Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development. NANO RESEARCH 2022; 15:7267-7285. [PMID: 35692441 PMCID: PMC9166156 DOI: 10.1007/s12274-022-4385-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/09/2023]
Abstract
Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.
Collapse
Affiliation(s)
- Taiyu Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Lu Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
12
|
Yazdian-Robati R, Bayat P, Dehestani S, Hashemi M, Taghdisi SM, Abnous K. Smart delivery of epirubicin to cancer cells using aptamer-modified ferritin nanoparticles. J Drug Target 2022; 30:567-576. [PMID: 34991424 DOI: 10.1080/1061186x.2022.2025600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Epirubicin is a chemotherapy agent which is commonly used in treatment of cancers. However, despite being efficient, the tendency to use this drug is declining mostly due to its myocardiopathy and drug-resistance of tumor cells. Such side effects could be prevented using targeted nanocarriers. This study aims to evaluate targeted delivery of epirubicin (Epi) to colon cancer cells using ferritin nanoparticles (Ft NPs) and MUC1 aptamer (Apt) and formation of Apt-Epi Ft NPs. In the current study, Apt-Epi Ft NPs were prepared. Then, physicochemical properties of nanoparticles, including size and zeta potential, morphology, drug loading, drug release from nanoparticles, drug uptake of cancer cells, cytotoxicity and in vivo results were collected. The results showed that the nanoparticles were synthesized with a mean size of 37.9 nm and encapsulation efficiency of 67%. The drug release from these nanoparticles was about 90% within 4 h in acidic medium. Also, targeted delivery of Epi enhanced its anticancer effects in both in vitro and in vivo. In this study, targeted delivery of Epi using aptamer-modified ferritin nanoparticles improved in vitro and in vivo results which indicates that it could be useful as a successful drug delivery system against cancer cells.
Collapse
Affiliation(s)
- Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Payam Bayat
- Immunology Research Center, BuAli Research Institute, Department of Immunology and Allergy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Dehestani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Enhanced Cellular Uptake of H-Chain Human Ferritin Containing Gold Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13111966. [PMID: 34834381 PMCID: PMC8623468 DOI: 10.3390/pharmaceutics13111966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Gold nanoparticles (AuNP) capped with biocompatible layers have functional optical, chemical, and biological properties as theranostic agents in biomedicine. The ferritin protein containing in situ synthesized AuNPs has been successfully used as an effective and completely biocompatible nanocarrier for AuNPs in human cell lines and animal experiments in vivo. Ferritin can be uptaken by different cell types through receptor-mediated endocytosis. Despite these advantages, few efforts have been made to evaluate the toxicity and cellular internalization of AuNP-containing ferritin nanocages. In this work, we study the potential of human heavy-chain (H) and light-chain (L) ferritin homopolymers as nanoreactors to synthesize AuNPs and their cytotoxicity and cellular uptake in different cell lines. The results show very low toxicity of ferritin-encapsulated AuNPs on different human cell lines and demonstrate that efficient cellular ferritin uptake depends on the specific H or L protein chains forming the ferritin protein cage and the presence or absence of metallic cargo. Cargo-devoid apoferritin is poorly internalized in all cell lines, and the highest ferritin uptake was achieved with AuNP-loaded H-ferritin homopolymers in transferrin-receptor-rich cell lines, showing more than seven times more uptake than apoferritin.
Collapse
|
14
|
Ashok A, Chaudhary S, Wise AS, Rana NA, McDonald D, Kritikos AE, Lindner E, Singh N. Release of Iron-Loaded Ferritin in Sodium Iodate-Induced Model of Age Related Macular Degeneration: An In-Vitro and In-Vivo Study. Antioxidants (Basel) 2021; 10:1253. [PMID: 34439501 PMCID: PMC8389213 DOI: 10.3390/antiox10081253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
To evaluate the role of iron in sodium iodate (NaIO3)-induced model of age-related macular degeneration (AMD) in ARPE-19 cells in-vitro and in mouse models in-vivo. ARPE-19 cells, a human retinal pigment epithelial cell line, was exposed to 10 mM NaIO3 for 24 h, and the expression and localization of major iron modulating proteins was evaluated by Western blotting (WB) and immunostaining. Synthesis and maturation of cathepsin-D (cat-D), a lysosomal enzyme, was evaluated by quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) and WB, respectively. For in-vivo studies, C57BL/6 mice were injected with 40 mg/kg mouse body weight of NaIO3 intraperitoneally, and their retina was evaluated after 3 weeks as above. NaIO3 induced a 10-fold increase in ferritin in ARPE-19 cells, which co-localized with LC3II, an autophagosomal marker, and LAMP-1, a lysosomal marker. A similar increase in ferritin was noted in retinal lysates and retinal sections of NaIO3-injected mice by WB and immunostaining. Impaired synthesis and maturation of cat-D was also noted. Accumulated ferritin was loaded with iron, and released from retinal pigmented epithelial (RPE) cells in Perls' and LAMP-1 positive vesicles. NaIO3 impairs lysosomal degradation of ferritin by decreasing the transcription and maturation of cat-D in RPE cells. Iron-loaded ferritin accumulates in lysosomes and is released in lysosomal membrane-enclosed vesicles to the extracellular milieu. Accumulation of ferritin in RPE cells and fusion of ferritin-containing vesicles with adjacent photoreceptor cells is likely to create an iron overload, compromising their viability. Moreover, reduced activity of cat-D is likely to promote accumulation of other cellular debris in lysosomal vesicles, contributing to AMD-like pathology.
Collapse
Affiliation(s)
- Ajay Ashok
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| | - Suman Chaudhary
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| | - Aaron S. Wise
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| | - Neil A. Rana
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| | - Dallas McDonald
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| | - Alexander E. Kritikos
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| | - Ewald Lindner
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036 Graz, Austria;
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| |
Collapse
|
15
|
Zhao T, Guo X, Sun Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis 2021; 12:529-551. [PMID: 33815881 PMCID: PMC7990372 DOI: 10.14336/ad.2020.0912] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential component in many biological processes in the human body. It is critical for the visual phototransduction cascade in the retina. However, excess iron can be toxic. Iron accumulation and reduced efficiency of intracellular antioxidative defense systems predispose the aging retina to oxidative stress-induced cell death. Age-related macular degeneration (AMD) is characterized by retinal iron accumulation and lipid peroxidation. The mechanisms underlying AMD include oxidative stress-mediated death of retinal pigment epithelium (RPE) cells and subsequent death of retinal photoreceptors. Understanding the mechanism of the disruption of iron and redox homeostasis in the aging retina and AMD is crucial to decipher these mechanisms of cell death and AMD pathogenesis. The mechanisms of retinal cell death in AMD are an area of active investigation; previous studies have proposed several types of cell death as major mechanisms. Ferroptosis, a newly discovered programmed cell death pathway, has been associated with the pathogenesis of several neurodegenerative diseases. Ferroptosis is initiated by lipid peroxidation and is characterized by iron-dependent accumulation. In this review, we provide an overview of the mechanisms of iron accumulation and lipid peroxidation in the aging retina and AMD, with an emphasis on ferroptosis.
Collapse
Affiliation(s)
- Tantai Zhao
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
16
|
Arsenoplatin-Ferritin Nanocage: Structure and Cytotoxicity. Int J Mol Sci 2021; 22:ijms22041874. [PMID: 33668605 PMCID: PMC7918638 DOI: 10.3390/ijms22041874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 01/07/2023] Open
Abstract
Arsenoplatin-1 (AP-1), the prototype of a novel class of metallodrugs containing a PtAs(OH)2 core, was encapsulated within the apoferritin (AFt) nanocage. UV-Vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy measurements confirmed metallodrug encapsulation and allowed us to determine the average amount of AP-1 trapped inside the cage. The X-ray structure of AP-1-encapsulated AFt was solved at 1.50 Å. Diffraction data revealed that an AP-1 fragment coordinates the side chain of a His residue. The biological activity of AP-1-loaded AFt was comparatively tested on a few representative cancer and non-cancer cell lines. Even though the presence of the cage reduces the overall cytotoxicity of AP-1, it improves its selectivity towards cancer cells.
Collapse
|
17
|
Valença A, Mendes-Jorge L, Bonet A, Catita J, Ramos D, Jose-Cunilleras E, Garcia M, Carretero A, Nacher V, Navarro M, Ruberte J. TIM2 modulates retinal iron levels and is involved in blood-retinal barrier breakdown. Exp Eye Res 2020; 202:108292. [PMID: 33065090 DOI: 10.1016/j.exer.2020.108292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/30/2022]
Abstract
Careful control of iron availability in the retina is central to maintenance of iron homeostasis, as its imbalance is associated with oxidative stress and the progression of several retinopathies. Ferritin, known for its role in iron storage and detoxification, has also been proposed as an iron-transporter protein, through its binding to Scara5 and TIM2 membrane receptors. In this study, the presence and iron-related functions of TIM2 in the mouse retina were investigated. Our results revealed for the first time the presence of TIM2 receptors in the mouse retina, mainly in Müller cells. Experimental TIM2 downregulation in the mouse retina promoted, probably due to a compensatory mechanism, Scara5 overexpression that increased retinal ferritin uptake and induced iron overload. Consecutive reactive oxygen species (ROS) overproduction and vascular endothelial growth factor (VEGF) overexpression led to impaired paracellular and transcellular endothelial transport characterized by tight junction degradation and increased caveolae number. In consequence, blood-retinal barrier (BRB) breakdown and retinal edema were observed. Altogether, these results point to TIM2 as a new modulator of retinal iron homeostasis and as a potential target to counteract retinopathy.
Collapse
Affiliation(s)
- Andreia Valença
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477, Lisbon, Portugal; CBATEG - Center for Animal Biotechnology and Gene Therapy, Autonomous University of Barcelona, C/ de La Vall Morona, 08193, Bellaterra (Cerdanyola Del Vallès), Spain
| | - Luísa Mendes-Jorge
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477, Lisbon, Portugal; CBATEG - Center for Animal Biotechnology and Gene Therapy, Autonomous University of Barcelona, C/ de La Vall Morona, 08193, Bellaterra (Cerdanyola Del Vallès), Spain
| | - Aina Bonet
- CBATEG - Center for Animal Biotechnology and Gene Therapy, Autonomous University of Barcelona, C/ de La Vall Morona, 08193, Bellaterra (Cerdanyola Del Vallès), Spain; Department of Animal Health and Anatomy, Faculty of Veterinary, Autonomous University of Barcelona, Travessera Del Turons, 08193, Bellaterra (Cerdanyola Del Vallès), Spain
| | - Joana Catita
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477, Lisbon, Portugal; CBATEG - Center for Animal Biotechnology and Gene Therapy, Autonomous University of Barcelona, C/ de La Vall Morona, 08193, Bellaterra (Cerdanyola Del Vallès), Spain; Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024, Lisbon, Portugal
| | - David Ramos
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477, Lisbon, Portugal; CBATEG - Center for Animal Biotechnology and Gene Therapy, Autonomous University of Barcelona, C/ de La Vall Morona, 08193, Bellaterra (Cerdanyola Del Vallès), Spain
| | - Eduard Jose-Cunilleras
- Department of Animal Medicine and Surgery, Faculty of Veterinary, Autonomous University of Barcelona, Travessera Del Turons, 08193, Bellaterra (Cerdanyola Del Vallès), Spain
| | - Miguel Garcia
- CBATEG - Center for Animal Biotechnology and Gene Therapy, Autonomous University of Barcelona, C/ de La Vall Morona, 08193, Bellaterra (Cerdanyola Del Vallès), Spain
| | - Ana Carretero
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477, Lisbon, Portugal; CBATEG - Center for Animal Biotechnology and Gene Therapy, Autonomous University of Barcelona, C/ de La Vall Morona, 08193, Bellaterra (Cerdanyola Del Vallès), Spain; Department of Animal Health and Anatomy, Faculty of Veterinary, Autonomous University of Barcelona, Travessera Del Turons, 08193, Bellaterra (Cerdanyola Del Vallès), Spain
| | - Victor Nacher
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477, Lisbon, Portugal; CBATEG - Center for Animal Biotechnology and Gene Therapy, Autonomous University of Barcelona, C/ de La Vall Morona, 08193, Bellaterra (Cerdanyola Del Vallès), Spain; Department of Animal Health and Anatomy, Faculty of Veterinary, Autonomous University of Barcelona, Travessera Del Turons, 08193, Bellaterra (Cerdanyola Del Vallès), Spain
| | - Marc Navarro
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477, Lisbon, Portugal; CBATEG - Center for Animal Biotechnology and Gene Therapy, Autonomous University of Barcelona, C/ de La Vall Morona, 08193, Bellaterra (Cerdanyola Del Vallès), Spain; Department of Animal Health and Anatomy, Faculty of Veterinary, Autonomous University of Barcelona, Travessera Del Turons, 08193, Bellaterra (Cerdanyola Del Vallès), Spain
| | - Jesús Ruberte
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477, Lisbon, Portugal; CBATEG - Center for Animal Biotechnology and Gene Therapy, Autonomous University of Barcelona, C/ de La Vall Morona, 08193, Bellaterra (Cerdanyola Del Vallès), Spain; Department of Animal Health and Anatomy, Faculty of Veterinary, Autonomous University of Barcelona, Travessera Del Turons, 08193, Bellaterra (Cerdanyola Del Vallès), Spain.
| |
Collapse
|
18
|
Yu B, Cheng C, Wu Y, Guo L, Kong D, Zhang Z, Wang Y, Zheng E, Liu Y, He Y. Interactions of ferritin with scavenger receptor class A members. J Biol Chem 2020; 295:15727-15741. [PMID: 32907880 DOI: 10.1074/jbc.ra120.014690] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Scavenger receptors are a superfamily of membrane-bound receptors that recognize both self and nonself targets. Scavenger receptor class A (SR-A) has five known members (SCARA1 to -5 or SR-A1 to -A5), which are type II transmembrane proteins that form homotrimers on the cell surface. SR-A members recognize various ligands and are involved in multiple biological pathways. Among them, SCARA5 can function as a ferritin receptor; however, the interaction between SCARA5 and ferritin has not been fully characterized. Here, we determine the crystal structures of the C-terminal scavenger receptor cysteine-rich (SRCR) domain of both human and mouse SCARA5 at 1.7 and 2.5 Å resolution, respectively, revealing three Ca2+-binding sites on the surface. Using biochemical assays, we show that the SRCR domain of SCARA5 recognizes ferritin in a Ca2+-dependent manner, and both L- and H-ferritin can be recognized by SCARA5 through the SRCR domain. Furthermore, the potential binding region of SCARA5 on the surface of ferritin is explored by mutagenesis studies. We also examine the interactions of ferritin with other SR-A members and find that SCARA1 (SR-A1, CD204) and MARCO (SR-A2, SCARA2), which are highly expressed on macrophages, also interact with ferritin. By contrast, SCARA3 and SCARA4, the two SR-A members without the SRCR domain, have no detectable binding with ferritin. Overall, these results provide a mechanistic view regarding the interactions between the SR-A members and ferritin that may help to understand the regulation of ferritin homeostasis by scavenger receptors.
Collapse
Affiliation(s)
- Bowen Yu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chen Cheng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yichun Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Luqiang Guo
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Kong
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ze Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Enlin Zheng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingbin Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongning He
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Abstract
Ferritins are evolutionarily conserved proteins that regulate cellular iron metabolism. It is the only intracellular protein that is capable of storing large quantities of iron. Although the ratio of different subunits determines the iron content of each ferritin molecule, the exact mechanism that dictates organization of these subunits still is unclear. In this review, we address renal ferritin expression and its implication in kidney disease. Specifically, we address the role of ferritin subunits in preventing kidney injury and also promoting tolerance against infection-associated kidney injury. We describe functions for ferritin that are independent of its ability to ferroxidize and store iron. We further discuss the implications of ferritin in body fluids, including blood and urine, during inflammation and kidney disease. Although there are several in-depth review articles on ferritin in the context of iron metabolism, we chose to focus on the role of ferritin particularly in kidney health and disease and highlight unanswered questions in the field.
Collapse
Affiliation(s)
- Kayla McCullough
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Subhashini Bolisetty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
20
|
Jiang B, Fang L, Wu K, Yan X, Fan K. Ferritins as natural and artificial nanozymes for theranostics. Am J Cancer Res 2020; 10:687-706. [PMID: 31903145 PMCID: PMC6929972 DOI: 10.7150/thno.39827] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/23/2019] [Indexed: 01/05/2023] Open
Abstract
Nanozymes are a class of nanomaterials with intrinsic enzyme-like characteristics which overcome the limitations of natural enzymes such as high cost, low stability and difficulty to large scale preparation. Nanozymes combine the advantages of chemical catalysts and natural enzymes together, and have exhibited great potential in biomedical applications. However, the size controllable synthesis and targeting modifications of nanozymes are still challenging. Here, we introduce ferritin nanozymes to solve these problems. Ferritins are natural nanozymes which exhibit intrinsic enzyme-like activities (e.g. ferroxidase, peroxidase). In addition, by biomimetically synthesizing nanozymes inside the ferritin protein shells, artificial ferritin nanozymes are introduced, which possess the advantages of versatile self-assembly ferritin nanocage and enzymatic activity of nanozymes. Ferritin nanozymes provide a new horizon for the development of nanozyme in disease targeted theranostics research. The emergence of ferritin nanozyme also inspires us to learn from the natural nanostructures to optimize or rationally design nanozymes. In this review, the intrinsic enzyme-like activities of ferritin and bioengineered synthesis of ferritin nanozyme were summarized. After that, the applications of ferritin nanozymes were covered. Finally, the advantages, challenges and future research directions of advanced ferritin nanozymes for biomedical research were discussed.
Collapse
|
21
|
Baumann BH, Shu W, Song Y, Simpson EM, Lakhal-Littleton S, Dunaief JL. Ferroportin-mediated iron export from vascular endothelial cells in retina and brain. Exp Eye Res 2019; 187:107728. [PMID: 31323276 PMCID: PMC6759385 DOI: 10.1016/j.exer.2019.107728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
Retinal iron accumulation has been implicated in the pathogenesis of age-related macular degeneration (AMD) and other neurodegenerative diseases. The retina and the brain are protected from the systemic circulation by the blood retinal barrier (BRB) and blood brain barrier (BBB), respectively. Iron levels within the retina and brain need to be tightly regulated to prevent oxidative injury. The method of iron entry through the retina and brain vascular endothelial cells (r&bVECs), an essential component of the BRB and BBB, is not fully understood. However, localization of the cellular iron exporter, ferroportin (Fpn), to the abluminal membrane of these cells, leads to the hypothesis that Fpn may play an important role in the import of iron across the BRB and BBB. To test this hypothesis, a mouse model with deletion of Fpn within the VECs in both the retina and the brain was developed through tail vein injection of AAV9-Ple261(CLDN5)-icre to both experimental Fpnf/f, and control Fpn+/+ mice at P21. Mice were aged to 9 mo and changes in retinal and brain iron distribution were observed. In vivo fundus imaging and quantitative serum iron detection were used for model validation. Eyes and brains were collected for immunofluorescence. Deletion of Fpn from the retinal and brain VECs leads to ferritin-L accumulation, an indicator of elevated iron levels, in the retinal and brain VECs. This occurred despite lower serum iron levels in the experimental mice. This result suggests that Fpn normally transfers iron from retinal and brain VECs into the retina and brain. These results help to better define the method of retina and brain iron import and will increase understanding of neurodegenerative diseases involving iron accumulation.
Collapse
Affiliation(s)
- Bailey H Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Wanting Shu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080, China.
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada.
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Abstract
Iron is required for key aspects of cellular physiology including mitochondrial function and DNA synthesis and repair. However, free iron is an aberration because of its ability to donate electrons, reduce oxygen, and generate reactive oxygen species. Iron-mediated cell injury or ferroptosis is a central player in the pathogenesis of acute kidney injury. There are several homeostatic proteins and pathways that maintain critical balance in iron homeostasis to allow iron's biologic functions yet avoid ferroptosis. Hepcidin serves as the master regulator of iron homeostasis through its ability to regulate ferroportin-mediated iron export and intracellular H-ferritin levels. Hepcidin is a protective molecule in acute kidney injury. Drugs targeting hepcidin, H-ferritin, and ferroptosis pathways hold great promise to prevent or treat kidney injury. In this review we discuss iron homeostasis under physiological and pathologic conditions and highlight its importance in acute kidney injury.
Collapse
|
23
|
Chong M, Sjaarda J, Pigeyre M, Mohammadi-Shemirani P, Lali R, Shoamanesh A, Gerstein HC, Paré G. Novel Drug Targets for Ischemic Stroke Identified Through Mendelian Randomization Analysis of the Blood Proteome. Circulation 2019; 140:819-830. [PMID: 31208196 DOI: 10.1161/circulationaha.119.040180] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Novel, effective, and safe drugs are warranted for treatment of ischemic stroke. Circulating protein biomarkers with causal genetic evidence represent promising drug targets, but no systematic screen of the proteome has been performed. METHODS First, using Mendelian randomization (MR) analyses, we assessed 653 circulating proteins as possible causal mediators for 3 different subtypes of ischemic stroke: large artery atherosclerosis, cardioembolic stroke, and small artery occlusion. Second, we used MR to assess whether identified biomarkers also affect risk for intracranial bleeding, specifically intracerebral and subarachnoid hemorrhages. Third, we expanded this analysis to 679 diseases to test a broad spectrum of side effects associated with hypothetical therapeutic agents for ischemic stroke that target the identified biomarkers. For all MR analyses, summary-level data from genome-wide association studies (GWAS) were used to ascertain genetic effects on circulating biomarker levels versus disease risk. Biomarker effects were derived by meta-analysis of 5 GWAS (N≤20 509). Disease effects were derived from large GWAS analyses, including MEGASTROKE (N≤322 150) and UK Biobank (N≤408 961) studies. RESULTS Several biomarkers emerged as causal mediators for ischemic stroke. Causal mediators for cardioembolic stroke included histo-blood group ABO system transferase, coagulation factor XI, scavenger receptor class A5 (SCARA5), and tumor necrosis factor-like weak inducer of apoptosis (TNFSF12). Causal mediators for large artery atherosclerosis included ABO, cluster of differentiation 40, apolipoprotein(a), and matrix metalloproteinase-12. SCARA5 (odds ratio [OR]=0.78; 95% CI, 0.70-0.88; P=1.46×10-5) and TNFSF12 (OR=0.86; 95% CI, 0.81-0.91; P=7.69×10-7) represent novel protective mediators of cardioembolic stroke. TNFSF12 also increased the risk of subarachnoid (OR=1.53; 95% CI, 1.31-1.78; P=3.32×10-8) and intracerebral (OR=1.34; 95% CI, 1.14-1.58; P=4.05×10-4) hemorrhages, whereas SCARA5 decreased the risk of subarachnoid hemorrhage (OR=0.61; 95% CI, 0.47-0.81; P=5.20×10-4). Multiple side effects beyond stroke were identified for 6 of 7 biomarkers, most (75%) of which were beneficial. No adverse side effects were found for coagulation factor XI, apolipoprotein(a), and SCARA5. CONCLUSIONS Through a systematic MR screen of the circulating proteome, causal roles for 5 established and 2 novel biomarkers for ischemic stroke were identified. Side-effect profiles were characterized to help inform drug target prioritization. In particular, SCARA5 represents a promising target for treatment of cardioembolic stroke, with no predicted adverse side effects.
Collapse
Affiliation(s)
- Michael Chong
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, Ontario, Canada (M.C., J.S., M.P., P.M.-S., R.L., A.S., H.C.G., G.P.).,Departments of Biochemistry (M.C., G.P.)
| | - Jennifer Sjaarda
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, Ontario, Canada (M.C., J.S., M.P., P.M.-S., R.L., A.S., H.C.G., G.P.)
| | - Marie Pigeyre
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, Ontario, Canada (M.C., J.S., M.P., P.M.-S., R.L., A.S., H.C.G., G.P.)
| | - Pedrum Mohammadi-Shemirani
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, Ontario, Canada (M.C., J.S., M.P., P.M.-S., R.L., A.S., H.C.G., G.P.).,Medical Sciences (P.M.-S.)
| | - Ricky Lali
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, Ontario, Canada (M.C., J.S., M.P., P.M.-S., R.L., A.S., H.C.G., G.P.)
| | - Ashkan Shoamanesh
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, Ontario, Canada (M.C., J.S., M.P., P.M.-S., R.L., A.S., H.C.G., G.P.).,Medicine, Division of Neurology, McMaster University, Hamilton, Ontario, Canada (A.S.)
| | - Hertzel Chaim Gerstein
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, Ontario, Canada (M.C., J.S., M.P., P.M.-S., R.L., A.S., H.C.G., G.P.).,Clinical Epidemiology and Biostatistics (H.C.G., G.P.)
| | - Guillaume Paré
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, Ontario, Canada (M.C., J.S., M.P., P.M.-S., R.L., A.S., H.C.G., G.P.).,Departments of Biochemistry (M.C., G.P.).,Clinical Epidemiology and Biostatistics (H.C.G., G.P.).,Pathology and Molecular Medicine (G.P.)
| |
Collapse
|
24
|
Ellipticine-loaded apoferritin nanocarrier retains DNA adduct-based cytochrome P450-facilitated toxicity in neuroblastoma cells. Toxicology 2019; 419:40-54. [DOI: 10.1016/j.tox.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
|
25
|
Chakraborti S, Chakrabarti P. Self-Assembly of Ferritin: Structure, Biological Function and Potential Applications in Nanotechnology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:313-329. [PMID: 31713204 DOI: 10.1007/978-981-13-9791-2_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein cages are normally formed by the self-assembly of multiple protein subunits and ferritin is a typical example of a protein cage structure. Ferritin is a ubiquitous multi-subunit iron storage protein formed by 24 polypeptide chains that self-assemble into a hollow, roughly spherical protein cage. Ferritin has external and internal diameters of approximately 12 nm and 8 nm, respectively. Functionally, ferritin performs iron sequestration and is highly conserved in evolution. The interior cavity of ferritin provides a unique reaction vessel to carry out reactions separated from the exterior environment. In nature, the cavity is utilized for sequestration of iron and bio-mineralization as a mechanism to render iron inert and safe from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate different carrier molecules ranging from cancer drugs to therapeutic proteins, in addition to using ferritin proteins as well-defined building blocks for fabrication. Besides the interior cavity, the exterior surface and sub-unit interface of ferritin can be modified without affecting ferritin assembly.
Collapse
Affiliation(s)
- Soumyananda Chakraborti
- Department of Biochemistry, Bose Institute, Kolkata, India. .,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | | |
Collapse
|
26
|
Ferraro G, Pica A, Petruk G, Pane F, Amoresano A, Cilibrizzi A, Vilar R, Monti DM, Merlino A. Preparation, structure, cytotoxicity and mechanism of action of ferritin-Pt(II) terpyridine compound nanocomposites. Nanomedicine (Lond) 2018; 13:2995-3007. [PMID: 30501559 DOI: 10.2217/nnm-2018-0259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM A Pt(II)-terpyridine compound, bearing two piperidine substituents at positions 2 and 2' of the terpyridine ligand (1), is highly cytotoxic and shows a mechanism of action distinct from cisplatin. 1 has been incorporated within the ferritin nanocage (AFt). MATERIALS & METHODS Spectroscopic and crystallographic data of the Pt(II)-AFt nanocomposite have been collected and in vitro anticancer activity has been explored using cancer cells. RESULTS Pt(II)-containing fragments bind His49, His114 and His132. Pt(II)-AFt nanocomposite is less cytotoxic than 1, but it is more toxic than cisplatin at high concentrations. The Pt(II)-AFt nanocomposite triggers necrosis in cancer cells, as free 1 does. CONCLUSION Pt(II)-AFt nanocomposites are promising vehicles to deliver Pt-based drugs to cancer cells.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Andrea Pica
- EMBL Grenoble, 71 avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Agostino Cilibrizzi
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom.,Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, United Kingdom
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
27
|
Tan T, Wang H, Cao H, Zeng L, Wang Y, Wang Z, Wang J, Li J, Wang S, Zhang Z, Li Y. Deep Tumor-Penetrated Nanocages Improve Accessibility to Cancer Stem Cells for Photothermal-Chemotherapy of Breast Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1801012. [PMID: 30581704 PMCID: PMC6299727 DOI: 10.1002/advs.201801012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/29/2018] [Indexed: 05/26/2023]
Abstract
Cancer stem cells (CSCs) are proposed to account for the initiation of cancer metastasis, but their accessibility remains a great challenge. This study reports deep tumor-penetrated biomimetic nanocages to augment the accessibility to CSCs fractions in tumor for anti-metastasis therapy. The nanocages can load photothermal agent of 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DBN) and chemotherapeutic epirubicin (EBN) to eradicate CSCs for photothermal-chemotherapy of breast cancer metastasis. In metastatic 4T1-indcued tumor model, both DBN and EBN can efficiently accumulate in tumor sites and feasibly permeate throughout the tumor mass. These biomimetic nanosystems can be preferentially internalized by cancer cells and effectively accessed to CSCs fractions in tumor. The DBN+laser/EBN treatment produces considerable depression of primary tumor growth, drastically eradicates around 80% of CSCs fractions in primary tumor, and results in 95.2% inhibition of lung metastasis. Thus, the biomimetic nanocages can be a promising delivery nanovehicle with preferential CSCs-accessibility for effective anti-metastasis therapy.
Collapse
Affiliation(s)
- Tao Tan
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016LiaoningChina
| | - Hong Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Haiqiang Cao
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Lijuan Zeng
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016LiaoningChina
| | - Yuqi Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016LiaoningChina
| | - Zhiwan Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jing Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Siling Wang
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016LiaoningChina
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| |
Collapse
|
28
|
Ciambellotti S, Pratesi A, Severi M, Ferraro G, Alessio E, Merlino A, Messori L. The NAMI A - human ferritin system: a biophysical characterization. Dalton Trans 2018; 47:11429-11437. [PMID: 30063237 DOI: 10.1039/c8dt00860d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The reaction of the antimetastatic ruthenium(iii) drug NAMI A with human H-chain ferritin (HuHf) was investigated through a variety of biophysical methods. We observed that the addition of HuHf to NAMI A solutions significantly increases the rate of spontaneous NAMI A hydrolysis suggesting the occurrence of a direct metallodrug-protein interaction. The resulting hydrolyzed Ru species binds the protein mostly forming a relatively tight 1 : 1 ruthenium/ferritin (subunit) adduct that was then separated and characterized. Notably, this adduct shows a characteristic CD spectrum in the visible region, which is diagnostic of the existence of at least one protein bound ruthenium center. The crystal structure of this NAMI A/HuHf adduct was subsequently solved at 1.58 Å resolution; clear evidence is given for the selective binding of a single Ru ion to His105 of each subunit with concomitant release of all other original Ru ligands in agreement with previous observations. We also noted that NAMI A produces a partial inhibition of HuHf ferroxidase activity. The implications of the above results are discussed.
Collapse
Affiliation(s)
- Silvia Ciambellotti
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Monti DM, Ferraro G, Petruk G, Maiore L, Pane F, Amoresano A, Cinellu MA, Merlino A. Ferritin nanocages loaded with gold ions induce oxidative stress and apoptosis in MCF-7 human breast cancer cells. Dalton Trans 2018; 46:15354-15362. [PMID: 29072740 DOI: 10.1039/c7dt02370g] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two anticancer gold(iii) compounds, Au2phen and Auoxo4, were encapsulated within a ferritin nanocage. The gold-compound loaded proteins were characterized by UV-Vis spectroscopy, inductively coupled plasma mass spectrometry and circular dichroism. X-ray crystallography shows that the compounds degrade upon encapsulation and gold(i) ions bind Ft within the cage, close to the side chains of Cys126. The gold-encapsulated nanocarriers are cytotoxic to human cancer cells. Au(i)-loaded Ft, obtained upon the encapsulation of Au2phen within the cage, induces oxidative stress activation, which finally leads to apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fan K, Zhou M, Yan X. Questions about horse spleen ferritin crossing the blood brain barrier via mouse transferrin receptor 1. Protein Cell 2018; 8:788-790. [PMID: 28993977 PMCID: PMC5676598 DOI: 10.1007/s13238-017-0481-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Kelong Fan
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Zhou
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Nairz M, Dichtl S, Schroll A, Haschka D, Tymoszuk P, Theurl I, Weiss G. Iron and innate antimicrobial immunity-Depriving the pathogen, defending the host. J Trace Elem Med Biol 2018; 48:118-133. [PMID: 29773170 DOI: 10.1016/j.jtemb.2018.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 02/08/2023]
Abstract
The acute-phase response is triggered by the presence of infectious agents and danger signals which indicate hazards for the integrity of the mammalian body. One central feature of this response is the sequestration of iron into storage compartments including macrophages. This limits the availability of this essential nutrient for circulating pathogens, a host defence strategy known as 'nutritional immunity'. Iron metabolism and the immune response are intimately linked. In infections, the availability of iron affects both the efficacy of antimicrobial immune pathways and pathogen proliferation. However, host strategies to withhold iron from microbes vary according to the localization of pathogens: Infections with extracellular bacteria such as Staphylococcus aureus, Streptococcus, Klebsiella or Yersinia stimulate the expression of the iron-regulatory hormone hepcidin which targets the cellular iron-exporter ferroportin-1 causing its internalization and blockade of iron egress from absorptive enterocytes in the duodenum and iron-recycling macrophages. This mechanism disrupts both routes of iron delivery to the circulation, contributes to iron sequestration in the mononuclear phagocyte system and mediates the hypoferraemia of the acute phase response subsequently resulting in the development of anaemia of inflammation. When intracellular microbes are present, other strategies of microbial iron withdrawal are needed. For instance, in macrophages harbouring intracellular pathogens such as Chlamydia, Mycobacterium tuberculosis, Listeria monocytogenes or Salmonella Typhimurium, ferroportin-1-mediated iron export is turned on for the removal of iron from infected cells. This also leads to reduced iron availability for intra-macrophage pathogens which inhibits their growth and in parallel strengthens anti-microbial effector pathways of macrophages including the formation of inducible nitric oxide synthase and tumour necrosis factor. Iron plays a key role in infectious diseases both as modulator of the innate immune response and as nutrient for microbes. We need to gain a more comprehensive understanding of how the body can differentially respond to infection by extra- or intracellular pathogens. This knowledge may allow us to modulate mammalian iron homeostasis pharmaceutically and to target iron-acquisition systems of pathogens, thus enabling us to treat infections with novel strategies that act independent of established antimicrobials.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria.
| | - Stefanie Dichtl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| |
Collapse
|
32
|
Dostalova S, Polanska H, Svobodova M, Balvan J, Krystofova O, Haddad Y, Krizkova S, Masarik M, Eckschlager T, Stiborova M, Heger Z, Adam V. Prostate-Specific Membrane Antigen-Targeted Site-Directed Antibody-Conjugated Apoferritin Nanovehicle Favorably Influences In Vivo Side Effects of Doxorubicin. Sci Rep 2018; 8:8867. [PMID: 29891921 PMCID: PMC5995913 DOI: 10.1038/s41598-018-26772-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/11/2018] [Indexed: 01/02/2023] Open
Abstract
Herein, we describe the in vivo effects of doxorubicin (DOX) encapsulated in ubiquitous protein apoferritin (APO) and its efficiency and safety in anti-tumor treatment. APODOX is both passively (through Enhanced Permeability and Retention effect) and actively targeted to tumors through prostate-specific membrane antigen (PSMA) via mouse antibodies conjugated to the surface of horse spleen APO. To achieve site-directed conjugation of the antibodies, a HWRGWVC heptapeptide linker was used. The prostate cancer-targeted and non-targeted nanocarriers were tested using subcutaneously implanted LNCaP cells in athymic mice models, and compared to free DOX. Prostate cancer-targeted APODOX retained the high potency of DOX in attenuation of tumors (with 55% decrease in tumor volume after 3 weeks of treatment). DOX and non-targeted APODOX treatment caused damage to liver, kidney and heart tissues. In contrast, no elevation in liver or kidney enzymes and negligible changes were revealed by histological assessment in prostate cancer-targeted APODOX-treated mice. Overall, we show that the APO nanocarrier provides an easy encapsulation protocol, reliable targeting, high therapeutic efficiency and very low off-target toxicity, and is thus a promising delivery system for translation into clinical use.
Collapse
Affiliation(s)
- Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Hana Polanska
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, CZ-625 00, Czech Republic
| | - Marketa Svobodova
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, CZ-625 00, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, CZ-625 00, Czech Republic
- TESCAN ORSAY HOLDING a.s., Libusina trida 863/21, Brno, CZ-623 00, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, CZ-625 00, Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84/1, Prague 5, CZ-150 06, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 2, CZ-128 43, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic.
| |
Collapse
|
33
|
Ferraro G, Petruk G, Maiore L, Pane F, Amoresano A, Cinellu MA, Monti DM, Merlino A. Caged noble metals: Encapsulation of a cytotoxic platinum(II)-gold(I) compound within the ferritin nanocage. Int J Biol Macromol 2018; 115:1116-1121. [PMID: 29709536 DOI: 10.1016/j.ijbiomac.2018.04.142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/13/2022]
Abstract
The encapsulation of Pt and Au-based anticancer agents within a protein cage is a promising way to enhance the selectivity of these potential drugs. Here a cytotoxic organometallic compound containing platinum(II) and gold(I) has been encapsulated within a ferritin nanocage (AFt). Inductively plasma coupled mass spectrometry data, collected to evaluate the amount of Pt and Au within the cage, indicate disruption of the starting heterobimetallic complex upon encapsulation within the nanocage. The drug-loaded protein (Pt(II)/Au(I)-AFt) has been characterized by UV-Vis spectroscopy, circular dichroism and X-ray diffraction analysis. Data indicate that the protein maintains its fold upon encapsulation of the metallodrug and that Au(I) and Pt(II)-containing fragments are encapsulated within the AFt cage, with Au(I) ion that binds the side chain of Cys126 and Pt(II) in the bulk, respectively. The in vitro cytotoxicity of Pt(II)Au(I)-AFt, as well as that of the free heterobimetallic complex, has been comparatively evaluated on human cervix and breast cancer cells and against cardiomyoblasts and keratinocytes non-tumorigenic cells. Our data demonstrate that it is possible to obtain a protein nanocarrier containing both Pt and Au atoms starting from a bimetallic compound, opening the way for the design and development of new potential drugs based on protein nanocarriers.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Laura Maiore
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | | | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
34
|
Du B, Jia S, Wang Q, Ding X, Liu Y, Yao H, Zhou J. A Self-Targeting, Dual ROS/pH-Responsive Apoferritin Nanocage for Spatiotemporally Controlled Drug Delivery to Breast Cancer. Biomacromolecules 2018; 19:1026-1036. [PMID: 29455519 DOI: 10.1021/acs.biomac.8b00012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, an intelligent pH and ROS dual-responsive drug delivery system based on an apoferritin (AFt) nanocage was prepared. This therapeutic system can specifically self-target 4T1 breast cancer cells by exploiting L-apoferritin receptor SCARA 5, avoiding the nonspecific binding or aggregation of nanoparticles due to the chemical functionalization for targeting. The characteristics of AFt were utilized for the simultaneous delivery of anticancer drug doxorubicin (DOX) and photosensitizer rose bengal (RB). RB exhibited efficient reactive oxygen species (ROS) generation, which can be applied to photodynamic therapy. Meanwhile, the AFt nanocage was prone to undergoing peptide backbone cleavage when oxidized by ROS. Therefore, by combining the intrinsic pH-responsive property of AFt, the dual ROS/pH-responsive system was developed. The time and location of drug release can be controlled by the combination of internal and external stimulus, which avoids the incomplete drug release under single stimulus response. The drug release rate increased significantly (from 26.1% to 92.0%) under low-pH condition (pH 5.0) and laser irradiation. More DOX from AFt entered the nucleus and killed the tumor cells, and the cell inhibition rate was up to ∼83% (DOX concentration: 5 μg/mL) after 48 h incubation. In addition, the biodistribution and the in vivo antitumor efficacy (within 14 d treatment) of the nanosystem were investigated in 4T1 breast cancer BALB/c mice. The results indicated that the system is a promising therapeutic agent involving ROS/pH dual response, self-targeting, and chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Bin Du
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation , Henan Province 100 Science Road , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province 100 Science Road , Zhengzhou 450001 , China
| | - Shaona Jia
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China
| | - Qinghui Wang
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China
| | - Xiaoyu Ding
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China
| | - Ying Liu
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China
| | - Hanchun Yao
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation , Henan Province 100 Science Road , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province 100 Science Road , Zhengzhou 450001 , China
| | - Jie Zhou
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Science Road , Zhengzhou 450001 , China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation , Henan Province 100 Science Road , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province 100 Science Road , Zhengzhou 450001 , China
| |
Collapse
|
35
|
Mendes-Jorge L, Ramos D, Valença A, López-Luppo M, Pires VMR, Catita J, Nacher V, Navarro M, Carretero A, Rodriguez-Baeza A, Ruberte J. Correction: L-Ferritin Binding to Scara5: A New Iron Traffic Pathway Potentially Implicated in Retinopathy. PLoS One 2017. [PMID: 28640867 PMCID: PMC5481013 DOI: 10.1371/journal.pone.0180288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Pontillo N, Ferraro G, Helliwell JR, Amoresano A, Merlino A. X-ray Structure of the Carboplatin-Loaded Apo-Ferritin Nanocage. ACS Med Chem Lett 2017; 8:433-437. [PMID: 28435532 DOI: 10.1021/acsmedchemlett.7b00025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
The second-generation Pt anticancer agent carboplatin (CBDCA) was encapsulated within the apo horse spleen ferritin (AFt) nanocage, and the X-ray structure of the drug-loaded protein was refined at 1.49 Å resolution. Two Pt binding sites, different from the one observed in the cisplatin-encapsulated AFt, were identified in Ft subunits by inspection of anomalous electron density maps at two wavelengths and difference Fourier electron density maps, which provide the necessary sensitivity to discriminate between Pt from CBDCA and Cd ions that are present in the crystallization conditions. Pt centers coordinate to the NE2 atom of His49 and to the NE2 atom of His132, both on the inner surface of the Ft nanocage.
Collapse
Affiliation(s)
- Nicola Pontillo
- Department
of Chemical Sciences, University of Naples Federico II, Complesso
Universitario di Monte Sant’Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Giarita Ferraro
- Department
of Chemical Sciences, University of Naples Federico II, Complesso
Universitario di Monte Sant’Angelo, Via Cintia, I-80126 Napoli, Italy
| | - John R. Helliwell
- School
of Chemistry, Faculty of Engineering and Physical Sciences, University of Manchester, Brunswick Street, Manchester M13 9PL, England
| | - Angela Amoresano
- Department
of Chemical Sciences, University of Naples Federico II, Complesso
Universitario di Monte Sant’Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples Federico II, Complesso
Universitario di Monte Sant’Angelo, Via Cintia, I-80126 Napoli, Italy
- CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16, I-80126 Napoli, Italy
| |
Collapse
|
37
|
Turino LN, Ruggiero MR, Stefanìa R, Cutrin JC, Aime S, Geninatti Crich S. Ferritin Decorated PLGA/Paclitaxel Loaded Nanoparticles Endowed with an Enhanced Toxicity Toward MCF-7 Breast Tumor Cells. Bioconjug Chem 2017; 28:1283-1290. [DOI: 10.1021/acs.bioconjchem.7b00096] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ludmila N. Turino
- Laboratorio de Química
Fina, Instituto de Desarrollo Tecnológico para la Industria
Química (INTEC), Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Predio CCT-CONICET, Ruta Nacional 168 Km. 0, 3000 Santa Fe, Argentina
| | - Maria R. Ruggiero
- University of Turin, Department of Molecular
Biotechnology and Health Sciences, via Nizza 52, 10126, Turin, Italy
- SAET S.p.A, via Torino 213, 10040 Leinì, Turin, Italy
| | - Rachele Stefanìa
- University of Turin, Department of Molecular
Biotechnology and Health Sciences, via Nizza 52, 10126, Turin, Italy
| | - Juan C. Cutrin
- University of Turin, Department of Molecular
Biotechnology and Health Sciences, via Nizza 52, 10126, Turin, Italy
| | - Silvio Aime
- University of Turin, Department of Molecular
Biotechnology and Health Sciences, via Nizza 52, 10126, Turin, Italy
| | - Simonetta Geninatti Crich
- University of Turin, Department of Molecular
Biotechnology and Health Sciences, via Nizza 52, 10126, Turin, Italy
| |
Collapse
|
38
|
Satriano C, Lupo G, Motta C, Anfuso CD, Di Pietro P, Kasemo B. Ferritin-supported lipid bilayers for triggering the endothelial cell response. Colloids Surf B Biointerfaces 2016; 149:48-55. [PMID: 27718396 DOI: 10.1016/j.colsurfb.2016.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/30/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022]
Abstract
Hybrid nanoassemblies of ferritin and silica-supported lipid bilayers (ferritin-SLBs) have been prepared and tested for the adhesion, spreading and proliferation of retinal microvascular endothelial cells (ECs). Lipid membranes with varying surface charge were obtained by mixing cationic 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (POEPC) with zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at increasing POPC/POEPC ratios. The supported bilayer formation and their subsequent interaction processes with ferritin were studied at the pH of 7.4 at different protein concentrations, by using the quartz crystal microbalance with dissipation monitoring and by atomic force microscopy. Both kinetics and viscoelastic parameters of the protein-lipid membrane interface were scrutinized, as well as surface coverage. Phase-contrast optical microscopy analyses of the ferritin-SLBs substrates after their interaction with endothelial cells evidenced the highest cell adhesion (2-4h of incubation time) and proliferation (from 24h to 5 days) for the membranes of POPC/POEPC (75:25 ratio). Moreover, ferritin increased both cell adhesion and proliferation in comparison to control glass (respectively 1.5- and 1.75-fold) as well as proliferation in comparison to bare POPC/POEPC (95:5 ratio) (2 fold). Results are very promising in the goal of modulating the endothelial cell response through the interplay of viscoelastic/charge properties of the solid-supported membranes and the SLB-conditioned ferritin activity.
Collapse
Affiliation(s)
- C Satriano
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy.
| | - G Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy.
| | - C Motta
- Department of Biomedical and Biotechnological Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| | - C D Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| | - P Di Pietro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| | - B Kasemo
- Department of Applied Physics, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
39
|
Abstract
Ferritins, the main intracellular iron storage proteins, have been studied for over 60 years, mainly focusing on the mammalian ones. This allowed the elucidation of the structure of these proteins and the mechanisms regulating their iron incorporation and mineralization. However, ferritin is present in most, although not all, eukaryotic cells, comprising monocellular and multicellular invertebrates and vertebrates. The aim of this review is to provide an update on the general properties of ferritins that are common to various eukaryotic phyla (except plants), and to give an overview on the structure, function and regulation of ferritins. An update on the animal models that were used to characterize H, L and mitochondrial ferritins is also provided. The data show that ferritin structure is highly conserved among different phyla. It exerts an important cytoprotective function against oxidative damage and plays a role in innate immunity, where it also contributes to prevent parenchymal tissue from the cytotoxicity of pro-inflammatory agonists released by the activation of the immune response activation. Less clear are the properties of the secretory ferritins expressed by insects and molluscs, which may be important for understanding the role played by serum ferritin in mammals.
Collapse
|
40
|
Zou W, Liu X, Zhao X, Wang J, Chen D, Li J, Ji L, Hua Z. Expression, purification, and characterization of recombinant human L-chain ferritin. Protein Expr Purif 2016; 119:63-8. [DOI: 10.1016/j.pep.2015.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/21/2022]
|