1
|
Bae K, Alcantara CA, Kim J, Tsui C, Venketaraman V. A Review of Eales' Disease and Mycobacterium tuberculosis. BIOLOGY 2024; 13:460. [PMID: 38927340 PMCID: PMC11200918 DOI: 10.3390/biology13060460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Eales' Disease is an idiopathic peripheral retinal vasculopathy first described by British ophthalmologist Henry Eales in 1880. Most prevalent in healthy young males, Eales' Disease often presents with symptoms of sudden blurry or decreased vision and floaters. Although no clear, standardized stage of the disease exists, it progresses through three overlapping phases-peripheral periphlebitis, ischemic capillary ischemia, and retinal neovascularization. The etiology of Eales' Disease is unknown and appears to be multifactorial, but post-TB hypersensitivity to tuberculoprotein and M. tuberculosis DNA is the most potential cause in the etiology of Eales' Disease. With a thorough examination of the clinical presentation and diagnosis of Eales' Disease-incorporating the latest clinical findings related to the condition-the investigation for Eales' Disease extends to explore recent potential connections with other ocular conditions or possible cofactors, such as glaucoma, uncontrolled diabetes, drug abuse, or inherited medical conditions. Moreover, focusing on critical insights into the treatment of Eales' Disease across its various stages of progression, the overarching goal of the paper is to refine and suggest possible future diagnostic and therapeutic strategies. Widening our understanding of pathophysiology and utilizing various treatment options for individual patients holds immense potential for advancing ocular medicine and optimizing patient care for people with this disease with unknown pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | - Vishwanath Venketaraman
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
2
|
Vinekar A, Nair AP, Sinha S, Vaidya T, Shetty R, Ghosh A, Sethu S. Early detection and correlation of tear fluid inflammatory factors that influence angiogenesis in premature infants with and without retinopathy of prematurity. Indian J Ophthalmol 2023; 71:3465-3472. [PMID: 37870008 PMCID: PMC10752326 DOI: 10.4103/ijo.ijo_3407_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose To measure the levels of inflammatory factors in tear fluid of pre-term infants with and without retinopathy of prematurity (ROP). Methods The cross-sectional pilot study included 29 pre-term infants undergoing routine ROP screening. Pre-term infants were grouped as those without ROP (no ROP; n = 14) and with ROP (ROP; n = 15). Sterile Schirmer's strips were used to collect the tear fluid from pre-term infants. Inflammatory factors such as interleukin (IL)-6, IL-8, MCP1 (Monocyte Chemoattractant Protein 1; CCL2), RANTES (Regulated on Activation, Normal T Cell Expressed and Secreted; CCL5), and soluble L-selectin (sL-selectin) were measured by cytometric bead array using a flow cytometer. Results Birth weight (BW) and gestation age (GA) were significantly (P < 0.05) lower in pre-term infants with ROP compared with those without ROP. Higher levels of RANTES (P < 0.05) and IL-8 (P = 0.09) were observed in the tear fluid of pre-term infants with ROP compared with those without ROP. Lower levels of tear fluid IL-6 (P = 0.14) and sL-selectin (P = 0.18) were measured in pre-term infants with ROP compared with those without ROP. IL-8 and RANTES were significantly (P < 0.05) higher in the tear fluid of pre-term infants with stage 3 ROP compared with those without ROP. Tear fluid RANTES level was observed to be inversely associated with GA and BW of pre-term infants with ROP and not in those without ROP. Furthermore, the area under the curve and odds ratio analysis demonstrated the relevance of RANTES/BW (AUC = 0.798; OR-7.2) and RANTES/MCP1 (AUC = 0.824; OR-6.8) ratios in ROP. Conclusions Distinct changes were observed in the levels of tear inflammatory factors in ROP infants. The status of RANTES in ROP suggests its possible role in pathobiology and warrants further mechanistic studies to harness it in ROP screening and management.
Collapse
Affiliation(s)
- Anand Vinekar
- Department of Pediatric Retina, Narayana Nethralaya Eye Institute, Bangaluru, Karnataka, India
| | | | - Shivani Sinha
- Department of Pediatric Retina, Narayana Nethralaya Eye Institute, Bangaluru, Karnataka, India
| | - Tanuja Vaidya
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, India
| | - Rohit Shetty
- Division of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, Bengaluru, Karnataka, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, India
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Shah S, Patel V. Targeting posterior eye infections with colloidal carriers: The case of Ganciclovir. Int J Pharm 2023; 645:123427. [PMID: 37729977 DOI: 10.1016/j.ijpharm.2023.123427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
The ocular system, unlike any other human body organ, is a system in which foreign bodies appear quite defenceless in front of the eye. Several infections of the ocular system occur due to various opportunistic conditions. Cytomegalovirus (CMV) is one of the opportunivores that causes several posterior eye infections. Ganciclovir (GCV),9-(2-hydroxy-1-(hydroxymethyl) ethoxymethyl), is aguanine-antiviral agent primarily used to treat CMV diseases. However, the major challenge is of lower bioavailability. Hence, GCV must be dosed repeatedly to enhance drug absorption. but this causes side effects like neutropenia and bone marrow suppression. So, formulators have used alternative formulation strategies such as prodrug formulation and colloidal drug delivery systems. In the prodrug strategy, they attempted to bind various compounds into the parent drug to increase the permeability and bioavailability of GCV. In colloidal drug delivery systems, mucoadhesive microspheres, nanoparticles, Niosome and liposome were employed to extend the drug residence time at the application site. This paper discusses several colloidal carriers combined with GCV to treat opportunistic CMV infection in the posterior ocular system. It reviews the limitations of conventional ocular therapy and explores various novel formulation approaches to improve the ocular bioavailability of GCV in the posterior chamber of the eye.
Collapse
Affiliation(s)
- Srushti Shah
- Parul Institute of Pharmacy, ParulUniversity, Gujarat 391760, India.
| | - Vandana Patel
- Krishna School of Pharmacy and Research, KPGU, Gujarat 391240, India
| |
Collapse
|
4
|
Mason RH, Minaker SA, Lahaie Luna G, Bapat P, Farahvash A, Garg A, Bhambra N, Muni RH. Changes in aqueous and vitreous inflammatory cytokine levels in proliferative diabetic retinopathy: a systematic review and meta-analysis. Eye (Lond) 2022:10.1038/s41433-022-02127-x. [PMID: 35672457 DOI: 10.1038/s41433-022-02127-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/05/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is a major complication of diabetes mellitus, where in its most advanced form ischemic changes lead to the development of retinal neovascularization, termed proliferative diabetic retinopathy (PDR). While the development of PDR is often associated with angiogenic and inflammatory cytokines, studies differ on which cytokines are implicated in disease pathogenesis and on the strength of these associations. We therefore conducted a systematic review and meta-analysis to quantitatively assess the existing body of data on intraocular cytokines as biomarkers in PDR. METHODS A comprehensive search of the literature without year limitation was conducted to January 18, 2021, which identified 341 studies assessing vitreous or aqueous cytokine levels in PDR, accounting for 10379 eyes with PDR and 6269 eyes from healthy controls. Effect sizes were calculated as standardized mean differences (SMD) of cytokine concentrations between PDR and control patients. RESULTS Concentrations (SMD, 95% confidence interval, and p-value) of aqueous IL-1β, IL-6, IL-8, MCP-1, TNF-α, and VEGF, and vitreous IL-2, IL-4, IL-6, IL-8, angiopoietin-2, eotaxin, erythropoietin, GM-CSF, GRO, HMGB-1, IFN-γ, IGF, IP-10, MCP-1, MIP-1, MMP-9, PDGF-AA, PlGF, sCD40L, SDF-1, sICAM-1, sVEGFR, TIMP, TNF-α, and VEGF were significantly higher in patients with PDR when compared to healthy nondiabetic controls. For all other cytokines no differences, failed sensitivity analyses or insufficient data were found. CONCLUSIONS This extensive list of cytokines speaks to the complexity of PDR pathogenesis, and informs future investigations into disease pathogenesis, prognosis, and management.
Collapse
Affiliation(s)
- Ryan H Mason
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Samuel A Minaker
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | | | - Priya Bapat
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Armin Farahvash
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Anubhav Garg
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Nishaant Bhambra
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Rajeev H Muni
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada.
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada.
- Kensington Vision and Research Centre, Toronto, ON, Canada.
- University of Toronto/Kensington Health Ophthalmology Biobank and Cytokine Laboratory, Toronto, ON, Canada.
| |
Collapse
|
5
|
Lee CM, Yang YS, Kornelius E, Huang CN, Hsu MY, Lee CY, Peng SY, Yang SF. Association of Long Non-Coding RNA Growth Arrest-Specific 5 Genetic Variants with Diabetic Retinopathy. Genes (Basel) 2022; 13:genes13040584. [PMID: 35456391 PMCID: PMC9029547 DOI: 10.3390/genes13040584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this work was to appraise the potential associations of single nucleotide polymorphisms (SNPs) of long non-coding RNA growth arrest-specific 5 (GAS5) with diabetic retinopathy (DR) in a diabetes mellitus (DM) population. Two loci of the GAS5 SNPs (rs55829688 and rs145204276) were genotyped via TaqMan allelic discrimination in 449 non-DR patients and 273 DR subjects. The SNP rs145204276 Del/Del showed a significantly higher distribution in the DR group compared to the non-DR group (AOR: 2.487, 95% CI: 1.424–4.344, p = 0.001). During subgroup analyses, the non-proliferative diabetic retinopathy (NPDR) subgroup demonstrated a significantly higher ratio of the SNP rs145204276 Del/Del (AOR: 2.917, 95% CI: 1.574–5.406, p = 0.001) and Ins/Del + Del/Del (AOR: 1.242, 95% CI: 1.016–1.519, p = 0.034) compared to the non-DR population, while the proliferative diabetic retinopathy (PDR) subgroup did not reveal significant differences in either SNP rs145204276 or rs55829688 distributions compared to the non-DR group. Furthermore, patients with a GAS5 SNP rs145204276 Del/Del showed a significantly shorter DM duration than the wild type (Ins/Ins) (p = 0.021). In conclusion, our findings demonstrate that the GAS5 SNP rs145204276 Del/Del variant is associated with an increased susceptibility to DR in DM patients, particularly in those patients with NPDR.
Collapse
Affiliation(s)
- Chee-Ming Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-M.L.); (C.-N.H.); (S.-Y.P.)
- Department of Ophthalmology, Jen-Ai Hospital, Taichung 412, Taiwan
| | - Yi-Sun Yang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-S.Y.); (E.K.); (M.-Y.H.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Edy Kornelius
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-S.Y.); (E.K.); (M.-Y.H.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-M.L.); (C.-N.H.); (S.-Y.P.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-S.Y.); (E.K.); (M.-Y.H.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Min-Yen Hsu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-S.Y.); (E.K.); (M.-Y.H.)
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Yi Lee
- Department of Ophthalmology, Nobel Eye Institute, Taipei 115, Taiwan;
| | - Shu-Yen Peng
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-M.L.); (C.-N.H.); (S.-Y.P.)
- Department of Ophthalmology, Jen-Ai Hospital, Taichung 412, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-M.L.); (C.-N.H.); (S.-Y.P.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Iyer SS, Lagrew MK, Tillit SM, Roohipourmoallai R, Korntner S. The Vitreous Ecosystem in Diabetic Retinopathy: Insight into the Patho-Mechanisms of Disease. Int J Mol Sci 2021; 22:ijms22137142. [PMID: 34281192 PMCID: PMC8269048 DOI: 10.3390/ijms22137142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetic retinopathy is one of the leading causes of blindness in the world with the incidence of disease ever-increasing worldwide. The vitreous humor represents an extensive and complex interactive arena for cytokines in the diabetic eye. In recent decades, there has been significant progress in understanding this environment and its implications in disease pathophysiology. In this review, we investigate the vitreous ecosystem in diabetic retinopathy at the molecular level. Areas of concentration include: the current level of knowledge of growth factors, cytokine and chemokine mediators, and lipid-derived metabolites in the vitreous. We discuss the molecular patho-mechanisms of diabetic retinopathy based upon current vitreous research.
Collapse
|
7
|
Intravitreal Aflibercept as a Rescue Therapy for Retinal Neovascularization and Macular Edema due to Eales Disease. Case Rep Ophthalmol Med 2021; 2021:8887362. [PMID: 33628552 PMCID: PMC7892226 DOI: 10.1155/2021/8887362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 11/27/2022] Open
Abstract
We report the rescue effect of intravitreal aflibercept injections on retinal neovascularization and macular edema due to Eales disease. Case 1 was a 36-year-old female. Intravitreal aflibercept was administered as rescue therapy after persistent retinal neovascularization following retinal photocoagulation, periocular triamcinolone, and intravitreal ranibizumab injection. Retinal neovascularization initially regressed, but recurred after 5 months along with macular edema. Two more intravitreal aflibercept injections were given, and retinal neovascularization with macular edema regressed. Her vision improved to 20/25 and remained stable after 43 months. Case 2 was a 27-year-old female. Intravitreal aflibercept was administered after persistent retinal neovascularization and macular edema following periocular triamcinolone injection. The macular edema initially subsided but recurred after 3 months. Intravitreal aflibercept injections were then administered once every three months to maintain her vision 20/20. The patient has been followed up for 28 months. Intravitreal aflibercept was effective as a rescue therapy in the treatment of Eales disease to regress retinal neovascularization, though repeated injections were necessary in cases of recurrence.
Collapse
|
8
|
Wu W, Xia X, Tang L, Yao F, Xu H, Lei H. Normal vitreous promotes angiogenesis via activation of Axl. FASEB J 2020; 35:e21152. [PMID: 33151576 DOI: 10.1096/fj.201903105r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Vitreous has been reported to prevent tumor angiogenesis, but our previous findings indicate that vitreous activate the signaling pathway of phosphoinositide 3-kinase (PI3K)/Akt, which plays a critical role in angiogenesis. The goal of this research is to determine which role of vitreous plays in angiogenesis-related cellular responses in vitro. We found that in human retinal microvascular endothelial cells (HRECs) vitreous activates a number of receptor tyrosine kinases including Anexelekto (Axl), which plays an important role in angiogenesis. Subsequently, we discovered that depletion of Axl using CRISPR/Cas9 and an Axl-specific inhibitor R428 suppress vitreous-induced Akt activation and cell proliferation, migration, and tuber formation of HRECs. Therefore, this line of research not only demonstrate that vitreous promotes angiogenesis in vitro, but also reveal that Axl is one of receptor tyrosine kinases to mediate vitreous-induced angiogenesis in vitro, thereby providing a molecular basis for removal of vitreous as cleanly as possible when vitrectomy is performed in treating patients with proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Luosheng Tang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Huizuo Xu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Hetian Lei
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| |
Collapse
|
9
|
Ulhaq ZS, Soraya GV, Budu, Wulandari LR. The role of IL-6-174 G/C polymorphism and intraocular IL-6 levels in the pathogenesis of ocular diseases: a systematic review and meta-analysis. Sci Rep 2020; 10:17453. [PMID: 33060644 PMCID: PMC7566646 DOI: 10.1038/s41598-020-74203-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023] Open
Abstract
Interleukin-6 (IL-6) is one of the key regulators behind the inflammatory and pathological process associated with ophthalmic diseases. The role of IL-6-174 G/C polymorphism as well as intraocular IL-6 levels among various eye disease patients differ across studies and has not been systematically reviewed. Thus, this study aims to provide a summary to understand the relationship between IL-6 and ophthalmic disease. In total, 8,252 and 11,014 subjects for IL-6-174 G/C and intraocular levels of IL-6, respectively, were retrieved from PubMed, Scopus and Web of Science. No association was found between IL-6-174 G/C polymorphisms with ocular diseases. Subgroup analyses revealed a suggestive association between the GC genotype of IL-6-174 G/C with proliferative diabetic retinopathy (PDR). Further, the level of intraocular IL-6 among ocular disease patients in general was found to be higher than the control group [standardized mean difference (SMD) = 1.41, 95% confidence interval (CI) 1.24-1.58, P < 0.00001]. Closer examination through subgroup analyses yielded similar results in several ocular diseases. This study thus indicates that the IL-6-174 G/C polymorphism does not predispose patients to ocular disease, although the GC genotype is likely to be a genetic biomarker for PDR. Moreover, intraocular IL-6 concentrations are related to the specific manifestations of the ophthalmic diseases. Further studies with larger sample sizes are warranted to confirm this conclusion.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim State Islamic University of Malang, Batu, East Java, 65151, Indonesia.
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Budu
- Department of Ophthalmology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Lely Retno Wulandari
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| |
Collapse
|
10
|
The cells involved in the pathological process of diabetic retinopathy. Biomed Pharmacother 2020; 132:110818. [PMID: 33053509 DOI: 10.1016/j.biopha.2020.110818] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
Diabetic retinopathy(DR) is an expanding global health problem, the exact mechanism of which has not yet been clarified clearly, new insights into retinal physiology indicate that diabetes-induced retinal dysfunction may be viewed as an impairment of the retinal neurovascular unit, including retinal ganglion cells, glial cells, endothelial cells, pericytes, and retinal pigment epithelium. Different retinal cells have unique structure and functions, while the interactions among which are less known. Cells are the basic unit of organism structure and function, their impairment could lead to abnormal physiological functions and even organ disorder. Considering the body is multi-dimension and the complexity of DR, one point or a single type of cell can't be used to illustrate the mechanism of occurrence and development of DR. In this review, we provided a systematic and comprehensive elaboration of the cells that are involved in the process of DR. We underlined the importance of considering the neurovascular unit, not just retinal vascular and neural cells, in understanding the pathophysiology of DR. Our studies provided a better understanding of the pathological process in DR and provide a theoretical basis for further research.
Collapse
|
11
|
Rezzola S, Loda A, Corsini M, Semeraro F, Annese T, Presta M, Ribatti D. Angiogenesis-Inflammation Cross Talk in Diabetic Retinopathy: Novel Insights From the Chick Embryo Chorioallantoic Membrane/Human Vitreous Platform. Front Immunol 2020; 11:581288. [PMID: 33117388 PMCID: PMC7552803 DOI: 10.3389/fimmu.2020.581288] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pathological angiogenesis of the retina is a key component of irreversible causes of blindness, as observed in proliferative diabetic retinopathy (PDR). The pathogenesis of PDR is complex and involves vascular, inflammatory, and neuronal mechanisms. Several structural and molecular alterations associated to PDR are related to the presence of inflammation that appears to play a non-redundant role in the neovascular response that characterizes the retina of PDR patients. Vascular endothelial growth factor (VEGF) blockers have evolved over time for the treatment of retinal neovascularization. However, several limitations to anti-VEGF interventions exist. Indeed, the production of other angiogenic factors and pro-inflammatory mediators may nullify and/or cause resistance to anti-VEGF therapies. Thus, appropriate experimental models are crucial for dissecting the mechanisms leading to retinal neovascularization and for the discovery of more efficacious anti-angiogenic/anti-inflammatory therapies for PDR patients. This review focuses on the tight cross talk between angiogenesis and inflammation during PDR and describe how the chick embryo chorioallantoic membrane (CAM) assay may represent a cost-effective and rapid in vivo tool for the study of the relationship between neovascular and inflammatory responses elicited by the vitreous humor of PDR patients and for the screening of novel therapeutic agents.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Loda
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Neurological and Vision Sciences, University of Brescia, Brescia, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy.,Italian Consortium for Biotechnology (CIB), Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
12
|
SOCS1-Derived Peptide Administered by Eye Drops Prevents Retinal Neuroinflammation and Vascular Leakage in Experimental Diabetes. Int J Mol Sci 2019; 20:ijms20153615. [PMID: 31344857 PMCID: PMC6695852 DOI: 10.3390/ijms20153615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023] Open
Abstract
Current treatments for diabetic retinopathy (DR) target late stages when vision has already been significantly affected. Accumulating evidence suggests that neuroinflammation plays a major role in the pathogenesis of DR, resulting in the disruption of the blood-retinal barrier. Suppressors of cytokine signaling (SOCS) are cytokine-inducible proteins that function as a negative feedback loop regulating cytokine responses. On this basis, the aim of the present study was to evaluate the effect of a SOCS1-derived peptide administered by eye drops (2 weeks) on retinal neuroinflammation and early microvascular abnormalities in a db/db mouse model. In brief, we found that SOCS1-derived peptide significantly reduced glial activation and neural apoptosis induced by diabetes, as well as retinal levels of proinflammatory cytokines. Moreover, a significant improvement of electroretinogram parameters was observed, thus revealing a clear impact of the histological findings on global retinal function. Finally, SOCS1-derived peptide prevented the disruption of the blood-retinal barrier. Overall, our results suggest that topical administration of SOCS1-derived peptide is effective in preventing retinal neuroinflammation and early microvascular impairment. These findings could open up a new strategy for the treatment of early stages of DR.
Collapse
|
13
|
Cheng SC, Huang WC, S Pang JH, Wu YH, Cheng CY. Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways. Int J Mol Sci 2019; 20:ijms20122957. [PMID: 31212975 PMCID: PMC6628093 DOI: 10.3390/ijms20122957] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Quercetin, a bioflavonoid derived from vegetables and fruits, exerts anti-inflammatory effects in various diseases. Our previous study revealed that quercetin could suppress the expression of matrix metalloprotease-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) to achieve anti-inflammatory effects in tumor necrosis factor-α (TNF-α)-stimulated human retinal pigment epithelial (ARPE-19) cells. The present study explored whether quercetin can inhibit the interleukin-1β (IL-1β)-induced production of inflammatory cytokines and chemokines in ARPE-19 cells. Prior to stimulation by IL-1β, ARPE-19 cells were pretreated with quercetin at various concentrations (2.5–20 µM). The results showed that quercetin could dose-dependently decrease the mRNA and protein levels of ICAM-1, IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1). It also attenuated the adherence of the human monocytic leukemia cell line THP-1 to IL-1β-stimulated ARPE-19 cells. We also demonstrated that quercetin inhibited signaling pathways related to the inflammatory process, including phosphorylation of mitogen-activated protein kinases (MAPKs), inhibitor of nuclear factor κ-B kinase (IKK)α/β, c-Jun, cAMP response element-binding protein (CREB), activating transcription factor 2 (ATF2) and nuclear factor (NF)-κB p65, and blocked the translocation of NF-κB p65 into the nucleus. Furthermore, MAPK inhibitors including an extracellular signal-regulated kinase (ERK) 1/2 inhibitor (U0126), a p38 inhibitor (SB202190) and a c-Jun N-terminal kinase (JNK) inhibitor (SP600125) decreased the expression of soluble ICAM-1 (sICAM-1), but not ICAM-1. U0126 and SB202190 could inhibit the expression of IL-6, IL-8 and MCP-1, but SP600125 could not. An NF-κB inhibitor (Bay 11-7082) also reduced the expression of ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1. Taken together, these results provide evidence that quercetin protects ARPE-19 cells from the IL-1β-stimulated increase in ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1 production by blocking the activation of MAPK and NF-κB signaling pathways to ameliorate the inflammatory response.
Collapse
Affiliation(s)
- Shu-Chen Cheng
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33372, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Yi-Hong Wu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33372, Taiwan.
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| |
Collapse
|
14
|
Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res 2019; 72:100756. [PMID: 30951889 DOI: 10.1016/j.preteyeres.2019.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of visual impairment in the working-age population. DR is a progressive eye disease caused by long-term accumulation of hyperglycaemia-mediated pathological alterations in the retina of diabetic patients. DR begins with asymptomatic retinal abnormalities and may progress to advanced-stage proliferative diabetic retinopathy (PDR), characterized by neovascularization or preretinal/vitreous haemorrhages. The vitreous, a transparent gel that fills the posterior cavity of the eye, plays a vital role in maintaining ocular function. Structural and molecular alterations of the vitreous, observed during DR progression, are consequences of metabolic and functional modifications of the retinal tissue. Thus, vitreal alterations reflect the pathological events occurring at the vitreoretinal interface. These events are caused by hypoxic, oxidative, inflammatory, neurodegenerative, and leukostatic conditions that occur during diabetes. Conversely, PDR vitreous can exert pathological effects on the diabetic retina, resulting in activation of a vicious cycle that contributes to disease progression. In this review, we recapitulate the major pathological features of DR/PDR, and focus on the structural and molecular changes that characterize the vitreal structure and composition during DR and progression to PDR. In PDR, vitreous represents a reservoir of pathological signalling molecules. Therefore, in this review we discuss how studying the biological activity of the vitreous in different in vitro, ex vivo, and in vivo experimental models can provide insights into the pathogenesis of PDR. In addition, the vitreous from PDR patients can represent a novel tool to obtain preclinical experimental evidences for the development and characterization of new therapeutic drug candidates for PDR therapy.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Brescia, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
15
|
Taghavi Y, Hassanshahi G, Kounis NG, Koniari I, Khorramdelazad H. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations. J Cell Commun Signal 2019; 13:451-462. [PMID: 30607767 DOI: 10.1007/s12079-018-00500-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022] Open
Abstract
Diabetic retinopathy (DR) is considered as a diabetes-related complication that can render severe visual impairments and is also a risk factor for acquired blindness in both developed as well as developing countries. Through fibrovascular epiretinal membranes (ERMs), this condition can similarly lead to tractional retinal detachment. Laboratory efforts evaluating the DR pathogenesis can be provided by ocular vitreous fluid and ERMs resulting from vitrectomy. The clinical stages of DR are significantly associated with expression levels of certain chemokines, including monocyte chemotactic protein-1 (MCP-1) in the intraocular fluid. The MCP-1 is also a known potent chemotactic factor for monocytes and macrophages that can stimulate them to produce superoxide and other mediators. Following hyperglycemia, retinal pigmented epithelial (RPE) cells, endothelial cells, and Müller's glial cells are of utmost importance for MCP-1 production, and vitreous MCP-1 levels rise in patients with DR. Increased expression of the MCP-1 in the eyes can also play a significant role in the pathogenesis of DR. In this review, current clinical and laboratory progress achieved on the MCP-1 and the DR concerning neovascularization and inflammatory responses in vitreous and/or aqueous humor of DR patients was summarized. It was suggested that further exploration of the MCP-1/CCR2 axis association between clinical stages of DR and expression levels of inflammatory and angiogenic cytokines and chemokines, principally the MCP-1 might lead to potential therapies aiming at neutralizing antibodies and viral vectors.
Collapse
Affiliation(s)
- Yousof Taghavi
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Ophthalmology and Otorhinolaryngology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nicholas G Kounis
- Department of Cardiology, University of Patras Medical School, Patras, Achaia, Greece
| | - Ioanna Koniari
- Department of Cardiology, Queen Elizabeth Hospital, Birmingham, England
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. .,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
16
|
Jo DH, Yun JH, Cho CS, Kim JH, Kim JH, Cho CH. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy. Glia 2018; 67:321-331. [PMID: 30444022 DOI: 10.1002/glia.23542] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022]
Abstract
Inner and outer blood-retinal barriers (BRBs), mainly composed of retinal endothelial cells and retinal pigment epithelial (RPE) cells, respectively, maintain the integrity of the retinal tissues. In this study, we aimed to investigate the mechanisms of the outer BRB disruption regarding the interaction between RPE and microglia. In mice with high-fat diet-induced obesity and streptozotocin-induced hyperglycemia, microglia accumulated on the RPE layer, as in those after intravitreal injection of interleukin (IL)-6, which is elevated in ocular fluids of patients with diabetic retinopathy. Although IL-6 did not directly affect the levels of zonula occludens (ZO)-1 and occludin in RPE cells, IL-6 increased VEGFA mRNA in RPE cells to recruit microglial cells. In microglial cells, IL-6 upregulated the mRNA levels of MCP1, MIP1A, and MIP1B, to amplify the recruitment of microglial cells. In this manner, IL-6 modulated RPE and microglial cells to attract microglial cells on RPE cells. Furthermore, IL-6-treated microglial cells produced and secreted tumor necrosis factor (TNF)-α, which activated NF-κB and decreased the levels of ZO-1 in RPE cells. As STAT3 inhibition reversed the effects of IL-6-treated microglial cells on the RPE monolayer in vitro, it reduced the recruitment of microglial cells and the production of TNF-α in RPE tissues in streptozotocin-treated mice. Taken together, IL-6-treated RPE and microglial cells amplified the recruitment of microglial cells and IL-6-treated microglial cells produced TNF-α to disrupt the outer BRB in diabetic retinopathy.
Collapse
Affiliation(s)
- Dong Hyun Jo
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jang-Hyuk Yun
- Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Sik Cho
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Hyoung Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chung-Hyun Cho
- Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Zou C, Han C, Zhao M, Yu J, Bai L, Yao Y, Gao S, Cao H, Zheng Z. Change of ranibizumab-induced human vitreous protein profile in patients with proliferative diabetic retinopathy based on proteomics analysis. Clin Proteomics 2018. [PMID: 29541006 PMCID: PMC5844103 DOI: 10.1186/s12014-018-9187-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Preoperative treatment of anti-vascular endothelial growth factor (VEGF) agents is extensively used in proliferative diabetic retinopathy (PDR), but the molecular mechanism is not fully understood. The objective of this research is to observe change of protein profile induced by ranibizumab (an anti-VEGF agent) in vitreous humor from PDR patients and reveal the effects of anti-VEGF treatment on PDR. Methods A proteomic method was used to identify differentially expressed proteins in vitreous humor. Untreated PDR patients were defined as PDR group, while those who treated with intravitreal injection of ranibizumab (IVR) were defined as IVR. Gene Ontology (GO) annotation and REACTOME pathways were obtained from DAVID Bioinformatics Resources. Intravitreal level of apolipoprotein C-I (APOC1), serpin peptidase inhibitor clade A member 5 (SERPINA5), tissue inhibitor of metalloproteinases (TIMP2), and keratin 1 (KRT1) were determined by enzyme-linked immuno sorbent assay (ELISA). Results 339 differentially expressed proteins were identified in response to IVR. The most notable GO annotation describes the altered proteins was “innate immune response”. The most notable REACTOME pathway was “platelet degranulation”. ELISA result showed increased level of APOC1, SERPINA5, KRT1 and a decreased level of TIMP2 in PDR group compared with IVR. Conclusions In addition to decreasing VEGF level, ranibizumab is associated with change of human vitreous protein profile in patients with PDR, in which the differential proteins are involved in immune response, platelet degranulation, complement activation etc., suggesting that the effects of VEGF are involved in these signaling pathways. Electronic supplementary material The online version of this article (10.1186/s12014-018-9187-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Zou
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Changjing Han
- 2Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004 Shaanxi Province China
| | - Minjie Zhao
- 3Department of Ophthalmology, Yixing People's Hospital, Jiangsu University, No.75 Tongzhenguan Road, Yixing, 214200 Jiangsu China
| | - Jingjing Yu
- Department of Ophthalmology, Changshu the 2nd People's Hospital, Changshu, 215500 Jiangsu China
| | - Lin Bai
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Yuan Yao
- 5Public Health, Stanford University, Stanford, CA 94305 USA
| | - Shuaixin Gao
- 6National Center for Protein Science Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210 China
| | - Hui Cao
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Zhi Zheng
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| |
Collapse
|
18
|
Zhou W, Wang H, Yu W, Xie W, Zhao M, Huang L, Li X. The expression of the Slit-Robo signal in the retina of diabetic rats and the vitreous or fibrovascular retinal membranes of patients with proliferative diabetic retinopathy. PLoS One 2017; 12:e0185795. [PMID: 28973045 PMCID: PMC5626485 DOI: 10.1371/journal.pone.0185795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/19/2017] [Indexed: 11/19/2022] Open
Abstract
PURPOSE The Slit-Robo signal has an important role in vasculogenesis and angiogenesis. Our study examined the expression of Slit2 and its receptor, Robo1, in a rat model of streptozotocin-induced diabetes and in patients with proliferative diabetic retinopathy. METHODS Diabetes was induced in male Sprague-Dawley rats via a single, intraperitoneal injection of streptozotocin. The rats were sacrificed 1, 3 or 6 months after the injection. The expression of Slit2 and Robo1 in retinal tissue was measured by real-time reverse transcription polymerase chain reaction (RT-PCR), and protein levels were measured by western blotting and immunohistochemistry. Recombinant N-Slit2 protein was used to study the effects of Slit2 on the expression of VEGF in vivo. The concentration of Slit2 protein in human eyes was measured by enzyme-linked immunosorbent assay in 27 eyes with proliferative diabetic retinopathy and 28 eyes in control group. The expression of Slit2, Robo1 and VEGF in the excised human fibrovascular membranes was examined by fluorescence immunostaining and semi-quantitative RT-PCR. RESULTS The expression of Slit2 and Robo1 in the retina was altered after STZ injection. Recombinant N-Slit2 protein did not increase the retinal VEGF expression. Vitreous concentrations of Slit2 were significantly higher in the study group than in the control group. In the human fibrovascular membranes of the study group, the co-localization of VEGF with the markers for Slit2 and Robo1was observed. The expression of Slit2 mRNA, Robo1 mRNA, and VEGF mRNA was significantly higher in human fibrovascular proliferative diabetic retinopathy membranes than in the control membranes. CONCLUSIONS The alteration of Slit2 and Robo1 expression in the retinas of diabetic rats and patients with proliferative diabetic retinopathy suggests a role for the Slit-Robo signal in the various stages diabetic retinopathy. Further studies should address the possible involvement of the Slit-Robo signal in the pathophysiological progress of diabetic retinopathy.
Collapse
Affiliation(s)
- Weiyan Zhou
- Department of Ophthalmology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Hongya Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Wenzhen Yu
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Wankun Xie
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Min Zhao
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Xiaoxin Li
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| |
Collapse
|
19
|
Resveratrol reverses the adverse effects of bevacizumab on cultured ARPE-19 cells. Sci Rep 2017; 7:12242. [PMID: 28947815 PMCID: PMC5612947 DOI: 10.1038/s41598-017-12496-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) and proliferative diabetic retinopathy (PDR) are one of the major causes of blindness caused by neo-vascular changes in the retina. Intravitreal anti-VEGF injections are widely used in the treatment of wet-AMD and PDR. A significant percentage of treated patients have complications of repeated injections. Resveratrol (RES) is a polyphenol phytoalexin with anti-oxidative, anti-inflammatory and anti-proliferative properties. Hence, we hypothesized that if RES is used in combination with bevacizumab (BEV, anti-VEGF), it could reverse the adverse effects that precipitate fibrotic changes, drusen formation, tractional retinal detachment and so on. Human retinal pigment epithelial cells were treated with various combinations of BEV and RES. There was partial reduction in secreted VEGF levels compared to untreated controls. Epithelial-mesenchymal transition was lower in BEV + RES treated cultures compared to BEV treated cultures. The proliferation status was similar in BEV + RES as well as BEV treated cultures both groups. Phagocytosis was enhanced in the presence of BEV + RES compared to BEV. Furthermore, we observed that notch signaling was involved in reversing the adverse effects of BEV. This study paves way for a combinatorial strategy to treat as well as prevent adverse effects of therapy in patients with wet AMD and PDR.
Collapse
|
20
|
Rezzola S, Nawaz IM, Cancarini A, Ravelli C, Calza S, Semeraro F, Presta M. 3D endothelial cell spheroid/human vitreous humor assay for the characterization of anti-angiogenic inhibitors for the treatment of proliferative diabetic retinopathy. Angiogenesis 2017; 20:629-640. [PMID: 28905243 DOI: 10.1007/s10456-017-9575-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022]
Abstract
Proliferative diabetic retinopathy (PDR) represents a main cause of acquired blindness. Despite the recognition of the key role exerted by vascular endothelial growth factor (VEGF) in the pathogenesis of PDR, limitations to anti-VEGF therapies do exist. Thus, rapid and cost-effective angiogenesis assays are crucial for the screening of anti-angiogenic drug candidates for PDR therapy. In this context, evaluation of the angiogenic potential of PDR vitreous fluid may represent a valuable tool for preclinical assessment of angiostatic molecules. Here, vitreous fluid obtained from PDR patients after pars plana vitrectomy was used as a pro-angiogenic stimulus in a 3D endothelial cell spheroid/human vitreous assay. The results show that PDR vitreous is able to stimulate the sprouting of fibrin-embedded HUVEC spheroids in a time- and dose-dependent manner. A remarkable variability was observed among 40 individual vitreous fluid samples in terms of sprouting-inducing activity that was related, at least in part, to defined clinical features of the PDR patient. This activity was hampered by various extracellular and intracellular signaling pathway inhibitors, including the VEGF antagonist ranibizumab. When tested on 20 individual vitreous fluid samples, the inhibitory activity of ranibizumab ranged between 0 and 100% of the activity measured in the absence of the drug, reflecting a variable contribution of angiogenic mediators distinct from VEGF. In conclusion, the 3D endothelial cell spheroid/human vitreous assay represents a rapid and cost-effective experimental procedure suitable for the evaluation of the anti-angiogenic activity of novel extracellular and intracellular drug candidates, with possible implications for the therapy of PDR.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Francesco Semeraro
- Department of Ophthalmology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
21
|
Ghodasra DH, Fante R, Gardner TW, Langue M, Niziol LM, Besirli C, Cohen SR, Dedania VS, Demirci H, Jain N, Jayasundera KT, Johnson MW, Kalyani PS, Rao RC, Zacks DN, Sundstrom JM. Safety and Feasibility of Quantitative Multiplexed Cytokine Analysis From Office-Based Vitreous Aspiration. Invest Ophthalmol Vis Sci 2017; 57:3017-23. [PMID: 27273720 PMCID: PMC4904801 DOI: 10.1167/iovs.15-18721] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The goals of this study were to evaluate the safety of office-based vitreous sampling, and determine the utility of these samples with multiplex cytokine analysis. Methods Vitreous samples were collected from office-based needle aspiration and the rate of adverse events during follow-up was reviewed. The vitreous cytokine concentrations in a subset of patients with diabetic macular edema (DME) were analyzed using a 42 plex-cytokine bead array. These results were compared with vitreous cytokine concentrations in proliferative diabetic retinopathy (PDR) and controls (macular hole, epiretinal membrane, symptomatic vitreous floaters) from pars plana vitrectomy. Results An adequate volume of vitreous fluid (100–200 μL) was obtained in 52 (88%) of 59 office-based sampling attempts. The average length of follow-up was 300 days (range, 42–926 days). There were no complications, including cataract, retinal tear or detachment, and endophthalmitis. Two patients (3%) had posterior vitreous detachments within 3 months. Vitreous cytokine concentrations were measured in 44 patients: 14 controls, 13 with DME, and 17 with PDR. The concentration of ADAM11, CXCL-10, IL-8, and PDGF-A were higher in PDR compared with controls and DME. The concentration of IL-6 was higher in PDR compared with controls, but not compared with DME. Conclusions Office-based vitreous aspiration is safe and yields high-quality samples for multiplex vitreous cytokine analysis. Significant elevations of vitreous cytokines were found in PDR compared with DME and controls, including the novel finding of elevated ADAM11. As such, office-based aspiration is a safe and effective means to identify vitreous factors associated with vitreoretinal disease.
Collapse
Affiliation(s)
- Devon H Ghodasra
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Ryan Fante
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Thomas W Gardner
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Michael Langue
- Penn State Hershey Eye Center, Hershey, Pennsylvania, United States
| | - Leslie M Niziol
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Cagri Besirli
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Steven R Cohen
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Vaidehi S Dedania
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Hakan Demirci
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Nieraj Jain
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | | | - Mark W Johnson
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Partho S Kalyani
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Rajesh C Rao
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - David N Zacks
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | | |
Collapse
|
22
|
Reddy S, Amutha A, Rajalakshmi R, Bhaskaran R, Monickaraj F, Rangasamy S, Anjana RM, Abhijit S, Gokulakrishnan K, Das A, Mohan V, Balasubramanyam M. Association of increased levels of MCP-1 and cathepsin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy. J Diabetes Complications 2017; 31:804-809. [PMID: 28336215 DOI: 10.1016/j.jdiacomp.2017.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023]
Abstract
AIM Young onset type 2 diabetes patients (T2DM-Y) have been shown to possess an increased risk of developing microvascular complications particularly diabetic retinopathy. However, the molecular mechanisms are not clearly understood. In this study, we investigated the serum levels of monocyte chemotactic protein 1 (MCP-1) and cathepsin-D in patients with T2DM-Y without and with diabetic retinopathy. METHODS In this case-control study, participants comprised individuals with normal glucose tolerance (NGT=40), patients with type 2 diabetes mellitus (T2DM=35), non-proliferative diabetic retinopathy (NPDR=35) and proliferative diabetic retinopathy (PDR=35). Clinical characterization of the study subjects was done by standard procedures and MCP-1 and cathepsin-D were measured by ELISA. RESULTS Compared to control individuals, patients with T2DM-Y, NPDR and PDR exhibited significantly (p<0.001) higher levels of MCP-1. Cathepsin-D levels were also significantly (p<0.001) higher in patients with T2DM-Y without and with diabetic retinopathy. Correlation analysis revealed a positive association (p<0.001) between MCP-1 and cathepsin-D levels. There was also a significant negative correlation of MCP1/cathepsin-D with C-peptide levels. The association of increased levels of MCP-1/cathepsin-D in patients with DR persisted even after adjusting for all the confounding factors. CONCLUSION As both MCP-1 and cathepsin-D are molecular signatures of cellular senescence, we suggest that these biomarkers might be useful to predict the development of retinopathy in T2DM-Y patients.
Collapse
Affiliation(s)
- Sruthi Reddy
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Anandakumar Amutha
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Ramachandran Rajalakshmi
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Regin Bhaskaran
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Finny Monickaraj
- Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sampathkumar Rangasamy
- Neurogenomics Division, Translational Genomics Research Institute, (TGen), Phoenix, AZ, USA
| | - Ranjit Mohan Anjana
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Shiny Abhijit
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Kuppan Gokulakrishnan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Arup Das
- Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Viswanathan Mohan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India..
| |
Collapse
|
23
|
Zhang P, Wang H, Cao H, Xu X, Sun T. Insulin-Like Growth Factor Binding Protein-Related Protein 1 Inhibit Retinal Neovascularization in the Mouse Model of Oxygen-Induced Retinopathy. J Ocul Pharmacol Ther 2017; 33:459-465. [PMID: 28402720 DOI: 10.1089/jop.2016.0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE To explore the inhibitory effect of insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) on retinal angiogenesis and its underlying molecular mechanisms in the mouse model of oxygen-induced retinopathy (OIR). METHODS C57BL/6J mice were classified into three groups as control group, OIR nonintervention group, and OIR intervention group. Postnatal day 12 (P12) mice in OIR intervention group were received recombinant mouse IGFBP-rP1 (50, 100, and 200 ng/mL) intravitreal injection. Five days later, the proliferative neovascular responses were estimated by quantifying the new vessel areas in flattening retinal tissues stained by high molecular fluorescein isothiocyanate-dextran and counting the numbers of neovascular cell nuclei breaking through the internal limiting membrane in cross sections. Expressions of phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2), ERK1/2, and vascular endothelial growth factor (VEGF) proteins in retinal tissues were assessed by western blot analysis. RESULTS Irregular neovascularization, nonperfusion region, and fluorescence leakage were observed in OIR models. The expression of retinal p-ERK1/2 and VEGF proteins were significantly upregulated in OIR nonintervention group compared with control group. The area ratio of retinal new vessels and the number of neovascular cell nuclei in OIR intervention group both decreased significantly, following the downregulation of retinal p-ERK1/2 protein expression and VEGF protein expression in a dose-dependent manner. Moreover, there was no significant difference in retinal ERK1/2 protein expression. CONCLUSIONS IGFBP-rP1 inhibits retinal angiogenesis by blocking ERK signaling pathway and downregulating VEGF expression in the mouse model of OIR. It highlights the potential importance of IGFBP-rP1 serving as a target of gene therapy for retinal neovascularization in the future.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Hong Wang
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Hui Cao
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Tao Sun
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| |
Collapse
|
24
|
Rezzola S, Corsini M, Chiodelli P, Cancarini A, Nawaz IM, Coltrini D, Mitola S, Ronca R, Belleri M, Lista L, Rusciano D, De Rosa M, Pavone V, Semeraro F, Presta M. Inflammation and N-formyl peptide receptors mediate the angiogenic activity of human vitreous humour in proliferative diabetic retinopathy. Diabetologia 2017; 60:719-728. [PMID: 28083635 DOI: 10.1007/s00125-016-4204-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Angiogenesis and inflammation characterise proliferative diabetic retinopathy (PDR), a major complication of diabetes mellitus. However, the impact of inflammation on the pathogenesis of PDR neovascularisation has not been elucidated. Here, we assessed the capacity of PDR vitreous fluid to induce pro-angiogenic/proinflammatory responses in endothelium and the contribution of the inflammation-related pattern recognition N-formyl peptide receptors (FPRs) in mediating these responses. METHODS Pooled and individual pars plana vitrectomy-derived PDR vitreous fluid ('PDR vitreous') samples were assessed in endothelial cell proliferation, motility, sprouting and morphogenesis assays, and for the capacity to induce proinflammatory transcription factor activation, reactive oxygen species production, intercellular junction disruption and leucocyte-adhesion molecule upregulation in these cells. In vivo, the pro-angiogenic/proinflammatory activity of PDR vitreous was tested in murine Matrigel plug and chick embryo chorioallantoic membrane (CAM) assays. Finally, the FPR inhibitors Boc-Phe-Leu-Phe-Leu-Phe (Boc-FLFLF) and Ac-L-Arg-Aib-L-Arg-L-Cα(Me)Phe-NH2 tetrapeptide (UPARANT) were evaluated for their capacity to affect the biological responses elicited by PDR vitreous. RESULTS PDR vitreous activates a pro-angiogenic/proinflammatory phenotype in endothelial cells. Accordingly, PDR vitreous triggers a potent angiogenic/inflammatory response in vivo. Notably, the different capacity of individual PDR vitreous samples to induce neovessel formation in the CAM correlates with their ability to recruit infiltrating CD45+ cells. Finally, the FPR inhibitor Boc-FLFLF and the novel FPR antagonist UPARANT inhibit neovessel formation and inflammatory responses triggered by PDR vitreous in the CAM assay. CONCLUSIONS/INTERPRETATION This study provides evidence that inflammation mediates the angiogenic activity of PDR vitreous and paves the way for the development of FPR-targeting anti-inflammatory/anti-angiogenic approaches for PDR therapy.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy.
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Piazzale Spedali Civili 1, Brescia, 25123, Italy
| | - Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Mirella Belleri
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Liliana Lista
- Department of Chemical Sciences, 'Federico II' University of Naples, Naples, Italy
| | | | - Mario De Rosa
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, 'Federico II' University of Naples, Naples, Italy
| | - Francesco Semeraro
- Department of Ophthalmology, University of Brescia, Piazzale Spedali Civili 1, Brescia, 25123, Italy.
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy.
| |
Collapse
|
25
|
Chu SJ, Zhang ZH, Wang M, Xu HF. Effect of bevacizumab on the expression of fibrosis-related inflammatory mediators in ARPE-19 cells. Int J Ophthalmol 2017; 10:366-371. [PMID: 28393026 DOI: 10.18240/ijo.2017.03.07] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/31/2016] [Indexed: 12/26/2022] Open
Abstract
AIM To investigate the effect of anti-vascular epithelial growth factor (VEGF) agents on the expression of fibrosis-related inflammatory mediators under normoxic and hypoxic conditions, and to further clarify the mechanism underlying fibrosis after anti-VEGF therapy. METHODS Human retinal pigment epithelial (RPE) cells were incubated under normoxic and hypoxic conditions. For hypoxia treatment, CoCl2 at 200 µmol/L was added to the media. ARPE-19 cells were treated as following: 1) control group: no treatment; 2) bevacizumab group: bevacizumab at 0.25 mg/mL was added to the media; 3) hypoxia group: CoCl2 at 200 µmol/L was added to the media; 4) hypoxia+bevacizumab group: CoCl2 at 200 µmol/L and bevacizumab at 0.25 mg/mL were added to the media. The expression of interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor (TNF)-α were evaluated using real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) at 6, 12, 24 and 48h. RESULTS Both mRNA and protein levels of IL-1β, IL-6 and IL-8 were statistically significantly higher in the bevacizumab group than in the control group at each time point, and TNF-α gene and protein expression was only significantly higher only at 24 and 48h (P<0.05). Under hypoxic conditions, bevacizumab significantly increased the expression of IL-1β, IL-6, IL-8 and TNF-α at 6, 12, 24 and 48h (P<0.05). IL-1β, IL-8 and TNF-α peaked at 24h and IL-6 peaked at 12h after the bevacizumab treatment under both normoxic and hypoxic conditions. CONCLUSION Treatment of ARPE-19 cells with bevacizumab can significantly increase the expression of fibrosis-related inflammatory mediators under both normoxic and hypoxic conditions. Inflammatory factors might be involved in the process of fibrosis after anti-VEGF therapy, and the up-regulation of inflammatory factors induced by anti-VEGF drugs might promote the fibrosis process.
Collapse
Affiliation(s)
- San-Jun Chu
- Qingdao University Medical College, Qingdao 266071, Shandong Province, China; Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Zhao-Hua Zhang
- Qingdao University Medical College, Qingdao 266071, Shandong Province, China; Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Min Wang
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Hai-Feng Xu
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| |
Collapse
|
26
|
Retinal pigment epithelium-secretome: A diabetic retinopathy perspective. Cytokine 2017; 95:126-135. [PMID: 28282610 DOI: 10.1016/j.cyto.2017.02.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/12/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
Abstract
Diabetic retinopathy is a major complication of diabetes mellitus that can lead to retinal vascular abnormalities and visual impairment. While retinal endothelial pathology is well studied, retinal pigment epithelium (RPE) layer modifications and the patho-physiological regulations are not widely understood. The RPE is a highly specialized pigmented layer regulating not only physiological functions such as transport of nutrients, ions, absorption of light, phagocytosis of photoreceptor membranes, but also secretion of a number of cytokines, chemokines, angiogenic and anti-angiogenic factors. The RPE secretome, though crucial in health and disease, remains elusive in diabetic retinopathy. A knowledge of these secreted factors would help explain and correlate the clinical phase of the disease aiding in improved disease management. A comprehensive knowledge of the secreted factors of the RPE is a potential tool for understanding the differential treatment regime of early diabetic retinopathy, diabetic proliferative retinopathy and diabetic macular edema. In this review, we have delineated the importance of factors secreted by the retinal pigment epithelium and its regulation in the pathogenesis of diabetic retinopathy.
Collapse
|
27
|
Affiliation(s)
- Hassan Ghasemi
- Department of Ophthalmology, Shahed University, Tehran, Iran
| |
Collapse
|
28
|
Abstract
The syndrome of recurrent vitreous hemorrhages in young men was described for the first time by Henry Eales in 1880. The association with a clinical manifestation of ocular inflammation was reported 5years later. Eales disease affects young adults who present with ischemic retinal vasculitis, with the peripheral retina most commonly affected. Most cases have been reported in South Asia. Although the etiology of this abnormality is unknown, it may be related to an immune sensitivity to Mycobacterium tuberculosis antigens. Its pathogenesis is related to extensive ischemia that affects the retina, secondary to an obliterative retinal vasculopathy with release of angiogenic factors of the VEGF type. Involvement of the retina is the hallmark of the disease, which manifests as follows: periphlebitis, retinal capillary ischemia most often affecting the periphery with secondary proliferative retinopathy and retinal and/or papillary neovascularization, recurrent vitreous hemorrhages and tractional retinal detachment. These complications are potentially blinding. The natural history of Eales disease varies, with temporary or permanent remission in some cases and continuous progression in others. Progression is often bilateral, which necessitates regular follow-up. The treatment of Eales disease depends on the stage of the disease and is not well defined. Observation only, pars plana vitrectomy surgery and/or intravitreal injections of anti-VEGF are recommended in cases of vitreous hemorrhage, associated with corticosteroids when retinal vasculitis is present. Laser pan-retinal photocoagulation is necessary when neovascularization is present.
Collapse
|
29
|
The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 2015; 51:156-86. [PMID: 26297071 DOI: 10.1016/j.preteyeres.2015.08.001] [Citation(s) in RCA: 633] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy is the most frequently occurring complication of diabetes mellitus and remains a leading cause of vision loss globally. Its aetiology and pathology have been extensively studied for half a century, yet there are disappointingly few therapeutic options. Although some new treatments have been introduced for diabetic macular oedema (DMO) (e.g. intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') and new steroids), up to 50% of patients fail to respond. Furthermore, for people with proliferative diabetic retinopathy (PDR), laser photocoagulation remains a mainstay therapy, even though it is an inherently destructive procedure. This review summarises the clinical features of diabetic retinopathy and its risk factors. It describes details of retinal pathology and how advances in our understanding of pathogenesis have led to identification of new therapeutic targets. We emphasise that although there have been significant advances, there is still a pressing need for a better understanding basic mechanisms enable development of reliable and robust means to identify patients at highest risk, and to intervene effectively before vision loss occurs.
Collapse
|
30
|
Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O'Neal DN, Januszewski AS. Biomarkers in Diabetic Retinopathy. Rev Diabet Stud 2015; 12:159-95. [PMID: 26676667 DOI: 10.1900/rds.2015.12.159] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat diabetic retinopathy, there is need to reliably identify and triage people with diabetes. Biomarkers may facilitate a better understanding of diabetic retinopathy, and contribute to the development of novel treatments and new clinical strategies to prevent vision loss in people with diabetes. This article reviews key aspects related to biomarker research, and focuses on some specific biomarkers relevant to diabetic retinopathy.
Collapse
Affiliation(s)
- Alicia J Jenkins
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | - Mugdha V Joglekar
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | | | - Anthony C Keech
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | - David N O'Neal
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | | |
Collapse
|
31
|
Behl T, Kaur I, Goel H, Kotwani A. Significance of the antiangiogenic mechanisms of thalidomide in the therapy of diabetic retinopathy. Vascul Pharmacol 2015. [PMID: 26196302 DOI: 10.1016/j.vph.2015.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diabetic retinopathy is an ocular complication associated with the chronic endocrine disorder of diabetes mellitus. Angiogenesis is adjudged as a prime modulatory event in this complication. The formation of new blood vessels on the pre-existing vasculature gives rise to an abundance of anatomical and physiological alterations which ultimately results in vision loss. The drastic consequences of this complication prompt the obligation of developing effective therapies for its cure. The existing therapy mainly includes destructive techniques such as laser photocoagulation. Owing to the various drawbacks associated with this technique, there is a need to develop alternative therapies which could halt the progression of diabetic retinopathy without causing considerable damage to the retinal cells. One such possible alternative treatment being researched upon is the antiangiogenic therapy. Since angiogenesis is a critical event during the progression of this disorder, targeting this event may perhaps prove effective in its treatment. Amongst several antiangiogenic agents, thalidomide holds a reputable position due to its effectiveness in terminating angiogenesis during various pathological conditions. This review focuses on the diverse molecular mechanisms proposed to explain the antiangiogenic properties of thalidomide and their applicability in diabetic retinopathy.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.
| | - Ishneet Kaur
- Department of Pharmacy, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | - Heena Goel
- Department of Animal Husbandry, Junga, Shimla, Himachal Pradesh, India
| | - Anita Kotwani
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
32
|
Interleukin-1β Level Is Increased in Vitreous of Patients with Neovascular Age-Related Macular Degeneration (nAMD) and Polypoidal Choroidal Vasculopathy (PCV). PLoS One 2015; 10:e0125150. [PMID: 25978536 PMCID: PMC4433218 DOI: 10.1371/journal.pone.0125150] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022] Open
Abstract
Purpose To examine the expression of pro-interleukin-1β (pro-IL-1β) and interleukin-1β (IL-1β) in the vitreous body of patients with neovascular age-related macular degeneration(nAMD), polypoidal choroidal vasculopathy (PCV), proliferative diabetic retinopathy (PDR), retinal vein occlusion (RVO) or Eales’ disease to further elucidate the role of IL-1β and inflammation in the pathogenesis of neovascular retinal disease. Design Prospective clinical laboratory investigation study. Methods All patients enrolled had vitreous hemorrhage due to nAMD, PCV, PDR, RVO or Eales’ disease that required vitrectomy. Patients were excluded for any history of active intraocular inflammation, or other ophthalmic surgery besides vitrectomy. Control samples were obtained from patients with idiopathic macular epiretinal membrane. A total of fifty vitreous samples were collected from patient during vitrectomy. Pro-IL-1β and IL-1β expression were measured by enzyme-linked immunosorbent assay (ELISA). Results were analyzed statistically using nonparametric tests. Results Expression of pro-IL-1β protein was increased by 2.83-fold and 9.19-fold in PCV and nAMD vitreous samples relative to control, respectively. Expression of IL-β protein was increased by 10-fold and 4.83-fold in PCV and nAMD vitreous samples relative to control, respectively. Conclusions Our results demonstrate that expression of pro-IL-1β and IL-1β proteins is higher in PCV and nAMD. The roles of pro-IL-1β and IL-1β as inflammatory mediators in the development of PCV and nAMD may be associated with photoreceptor degeneration and neovascularization which necessitates further study.
Collapse
|
33
|
Krishnamoorthy S, P A. A novel image recuperation approach for diagnosing and ranking retinopathy disease level using diabetic fundus image. PLoS One 2015; 10:e0125542. [PMID: 25974230 PMCID: PMC4431725 DOI: 10.1371/journal.pone.0125542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 03/25/2015] [Indexed: 11/17/2022] Open
Abstract
Retinal fundus images are widely used in diagnosing and providing treatment for several eye diseases. Prior works using retinal fundus images detected the presence of exudation with the aid of publicly available dataset using extensive segmentation process. Though it was proved to be computationally efficient, it failed to create a diabetic retinopathy feature selection system for transparently diagnosing the disease state. Also the diagnosis of diseases did not employ machine learning methods to categorize candidate fundus images into true positive and true negative ratio. Several candidate fundus images did not include more detailed feature selection technique for diabetic retinopathy. To apply machine learning methods and classify the candidate fundus images on the basis of sliding window a method called, Diabetic Fundus Image Recuperation (DFIR) is designed in this paper. The initial phase of DFIR method select the feature of optic cup in digital retinal fundus images based on Sliding Window Approach. With this, the disease state for diabetic retinopathy is assessed. The feature selection in DFIR method uses collection of sliding windows to obtain the features based on the histogram value. The histogram based feature selection with the aid of Group Sparsity Non-overlapping function provides more detailed information of features. Using Support Vector Model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy diseases. The ranking of disease level for each candidate set provides a much promising result for developing practically automated diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, specificity rate, ranking efficiency and feature selection time.
Collapse
Affiliation(s)
- Somasundaram Krishnamoorthy
- Department of Computer Science and Engineering, PSNA College of Engineering and Technology, Dindigul, Tamil Nadu, India
| | - Alli P
- Department of Computer Science and Engineering, Velammal College of Engineering and Technology, Madurai, Tamil Nadu, India
| |
Collapse
|