1
|
Arghavani S, Chorfi Y, Segura M, Lesaux AA, Costa MC. Impact of Saccharomyces cerevisiae on the intestinal microbiota of dogs with antibiotic-induced dysbiosis. Front Vet Sci 2025; 12:1462287. [PMID: 39981313 PMCID: PMC11841129 DOI: 10.3389/fvets.2025.1462287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction The gut microbiota plays an important role in the health of dogs, but treatment with antibiotics causes marked dysbiosis. The objectives of this study were to evaluate the impact of yeast probiotic Saccharomyces cerevisiae supplementation on the fecal microbiota of dogs and its potential to prevent dysbiosis induced by antibiotics. Methods Twenty healthy adult dogs were divided into a control and a yeast probiotic group receiving 1g/kg of S. cerevisiae (Actisaf®, Phileo by Lesaffre, Marcq-en-Barœul, France) daily from D0 to D31. Both groups were given oral metronidazole from D11 to D17. Fecal swabs were collected on D0, 3, 11, 17, 20, 24, and 31 for microbiota analysis and blood on D0 and D24 for measurements of cytokines and cortisol. Results and discussion At D0, two distinct microbiota profiles comprised of dogs from both groups, control and probiotic, were identified. One profile had higher abundances of species related to stress and inflammation, and the other comprised species associated with good intestinal health. After three days of supplementation with yeast probiotic S. cerevisiae, all five dogs from the probiotic group having a stress-related microbiota (membership) shifted to a healthy microbiota. Metronidazole markedly changed the microbiota of both groups (p <0.001). Still, treated dogs had significantly different microbiota on D17 (end of antibiotics treatment). The dysbiosis was resolved in both groups by D24. TNF-α remarkably decreased from D0 to D24 (p = 0.002) in the probiotic group, which also had lower levels than controls on D24 (p = 0.040). There were no significant differences in the other measured cytokines. It was concluded that the use of yeast probiotic S. cerevisiae positively shifted the microbiota composition of healthy adult dogs carrying an abnormal microbial profile and that it has the potential to attenuate the dysbiosis caused by oral metronidazole.
Collapse
Affiliation(s)
- Sara Arghavani
- Department of Veterinary Biomedical Sciences, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Younes Chorfi
- Department of Veterinary Biomedical Sciences, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Mariela Segura
- Department of Pathology and Microbiology, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | | | - Marcio C. Costa
- Department of Veterinary Biomedical Sciences, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
2
|
Pérez‐Accino J, Salavati M, Glendinning L, Salavati Schmitz S. Effect of a single rectal fecal microbiota transplantation on clinical severity and fecal microbial communities in dogs with chronic inflammatory enteropathy. J Vet Intern Med 2025; 39:e17264. [PMID: 39778887 PMCID: PMC11710856 DOI: 10.1111/jvim.17264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) has been advocated as a treatment for chronic enteropathy (CE) in dogs. However, so far only short-term clinical effects have been reported whereas the effect on the microbiota remains unexplored. HYPOTHESIS/OBJECTIVES Assess if a single FMT enema can lead to clinical improvement in dogs with CE when accompanied by presumed favorable microbiota changes. The effect of glycerol as a cryopreservative when storing FMT preparations also was assessed. ANIMALS Seven dogs with CE that received FMTs from 2 healthy donor dogs. MATERIALS AND METHODS Six dogs received a single FMT, 1 dog received 3 consecutive FMTs. Canine chronic enteropathy clinical activity index (CCECAI) and fecal samples were obtained before (Day 0), and 7, 30 and 90 days after FMT. Samples were stored with and without 10% glycerol. Sequencing of microbiota (16S rRNA, Illumina) was performed and compared by accepted analysis pipelines. RESULTS Median CCECAI before FMT was 8 (range, 5-14), decreased to a median of 3 (range, 1-12) within 1 week and a median of 1 (range, 0-12) by Day 30 (P < .01), with an average duration of response of approximately 10 weeks. Significant variation in the donors' microbiota composition was observed across different donations. Recipient microbiota composition or diversity did not change over time. Glycerol addition was associated with a difference in microbiota composition (P ≤ .001). CONCLUSIONS AND CLINICAL IMPORTANCE A single FMT can be considered an appropriate treatment in dogs with CE, but consistent microbiota changes were not observed.
Collapse
Affiliation(s)
- Jorge Pérez‐Accino
- College of Medicine and Veterinary Medicine, The Royal (Dick) School of Veterinary Studies, Hospital for Small Animals, Easter Bush CampusUniversity of EdinburghMidlothianUK
- Present address:
Hospital CanisGironaSpain
| | - Mazdak Salavati
- South and West Faculty, Dairy Research Innovation CentreScotland's Rural CollegeDumfriesUK
| | - Laura Glendinning
- College of Medicine and Veterinary Medicine, The Roslin Institute, Genetics and Genomics Department, Easter Bush CampusUniversity of EdinburghMidlothianUK
| | - Silke Salavati Schmitz
- College of Medicine and Veterinary Medicine, The Royal (Dick) School of Veterinary Studies, Hospital for Small Animals, Easter Bush CampusUniversity of EdinburghMidlothianUK
| |
Collapse
|
3
|
Schmid SM, Tolbert MK. Harnessing the microbiome: probiotics, antibiotics and their role in canine and feline gastrointestinal disease. Vet Rec 2024; 195:13-25. [PMID: 39545593 DOI: 10.1002/vetr.4915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Unfavourable alterations of the host microbial environment, known as dysbiosis, have been identified in many canine and feline gastrointestinal (GI) diseases. As a result, normalisation of microbial composition and function has become an important therapeutic target. Given the complex and individualistic interplay between the resident microbiota, host and environment, a multimodal approach is often necessary when addressing dysbiosis in dogs and cats with GI disease. Systemic antibiotics are often empirically used to treat acute and chronic GI diseases. However, with modern genomic techniques demonstrating the profound negative effect antibiotics can have on the GI microbiota and the rapid emergence of resistant bacteria globally, there has been an increased focus on identifying antibiotic alternatives for use in small animal practice. Biotics, such as prebiotics, probiotics and synbiotics, are of growing interest due to their potential supportive effect on the microbiota. This article reviews the evidence for the use of biotics in canine and feline GI disease, highlighting how judicious use of antibiotics and targeted probiotic supplementation can enhance patient outcomes by promoting a balanced gut microbial environment.
Collapse
Affiliation(s)
- Sarah M Schmid
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - M Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Wang N, Sieng S, Chen P, Liang T, Xu J, Han Q. Regulation Effect of Toxocara canis and Anthelmintics on Intestinal Microbiota Diversity and Composition in Dog. Microorganisms 2024; 12:2037. [PMID: 39458346 PMCID: PMC11510115 DOI: 10.3390/microorganisms12102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Toxocara canis is an intestinal roundworm that can cause serious zoonotic parasitic diseases. Drontal Plus® Tasty (Dog) is a kind of commercial drug used to treat T. canis infection. Febantel, Praziquantel, and Pyrantel pamoate (PP) are its main component. However, there are few studies investigating the impact of Drontal Plus® Tasty (Dog) and its primary ingredients on the intestinal microbiota of dogs. In this study, we first collected the intestinal content samples of the dogs which administrated with anthelmintics or saline by sterile catheters, then used 16S rRNA high-throughput sequencing technology combined with a variety of bioinformatic analysis methods to analyze the effect of anthelmintics on intestinal microbiota. First, the results of the α and β diversity analysis showed that the abundance and diversity of intestinal microbiota decreased with T. canis infection, and increased after anthelmintic treatment. Then, we found the dominant species (the value of relative abundance > 0.05) was both 28 on phylum and genus levels, besides the most dominant species was Bacillota on phylum level and Segatella and Clostridium_sensu_stricto were most dominant on genus level. Futher analyzing the differences in microbiotal composition on phylum level, we found that Drontal Plus® Tasty treatment could significantly increase the proportion of Bacillota, while Febantel, Praziquantel, or PP could induce the significantly changes of Bacillota and Bacteroidota. In addition, by analyzing the differences in microbiotal composition on genus level, we found that anthelmintic could significantly decreased the relative abundance of Clostridium_sensu_stricto and significantly increased the abundance of Segatella. However, Drontal Plus® Tasty had no regulatory effect on the abundance of Segatella. In short, these finding showed that various anthelmintics all have significant effects for changing the abundance and diversity of host intestinal microbiota.
Collapse
Affiliation(s)
- Na Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (N.W.)
| | - Soben Sieng
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (N.W.)
- Faculty of Veterinary Medicine, Royal University of Agriculture, Dongkor District, Phnom Penh 120501, Cambodia
| | - Ping Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (N.W.)
| | - Tian Liang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (N.W.)
| | - Jingyun Xu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (N.W.)
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (N.W.)
| |
Collapse
|
5
|
Shah H, Trivedi M, Gurjar T, Sahoo DK, Jergens AE, Yadav VK, Patel A, Pandya P. Decoding the Gut Microbiome in Companion Animals: Impacts and Innovations. Microorganisms 2024; 12:1831. [PMID: 39338505 PMCID: PMC11433972 DOI: 10.3390/microorganisms12091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The changing notion of "companion animals" and their increasing global status as family members underscores the dynamic interaction between gut microbiota and host health. This review provides a comprehensive understanding of the intricate microbial ecology within companion animals required to maintain overall health and prevent disease. Exploration of specific diseases and syndromes linked to gut microbiome alterations (dysbiosis), such as inflammatory bowel disease, obesity, and neurological conditions like epilepsy, are highlighted. In addition, this review provides an analysis of the various factors that impact the abundance of the gut microbiome like age, breed, habitual diet, and microbe-targeted interventions, such as probiotics. Detection methods including PCR-based algorithms, fluorescence in situ hybridisation, and 16S rRNA gene sequencing are reviewed, along with their limitations and the need for future advancements. Prospects for longitudinal investigations, functional dynamics exploration, and accurate identification of microbial signatures associated with specific health problems offer promising directions for future research. In summary, it is an attempt to provide a deeper insight into the orchestration of multiple microbial species shaping the health of companion animals and possible species-specific differences.
Collapse
Affiliation(s)
- Harsh Shah
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Mithil Trivedi
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Tejas Gurjar
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, India;
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, India;
| | - Parth Pandya
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| |
Collapse
|
6
|
Mullin C, Clifford CA, Johannes CM. New Therapies in Veterinary Oncology. Vet Clin North Am Small Anim Pract 2024; 54:469-476. [PMID: 38184436 DOI: 10.1016/j.cvsm.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
The expanding number of specialized oncology therapeutics available in veterinary oncology can make staying updated on the most recent advances challenging. This article summarizes the mechanism of action, available supporting data, and clinical use of three key veterinary cancer/supportive care therapeutics: Laverdia-CA1, Canalevia-CA1, and Stelfonta. This information will help guide clinical use within your practice and can be incorporated into discussions with clients regarding the newest available options for their dogs with cancer.
Collapse
Affiliation(s)
- Christine Mullin
- BluePearl Pet Hospital - Malvern, 40 Three Tun Road, Malvern, PA 19355, USA
| | - Craig A Clifford
- BluePearl Pet Hospital - Malvern, 40 Three Tun Road, Malvern, PA 19355, USA.
| | - Chad M Johannes
- Colorado State University, 300 West Drake Road, Fort Collins, CO 80526, USA
| |
Collapse
|
7
|
Stübing H, Suchodolski JS, Reisinger A, Werner M, Hartmann K, Unterer S, Busch K. The Effect of Metronidazole versus a Synbiotic on Clinical Course and Core Intestinal Microbiota in Dogs with Acute Diarrhea. Vet Sci 2024; 11:197. [PMID: 38787169 PMCID: PMC11125899 DOI: 10.3390/vetsci11050197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The usefulness of antibiotics in dogs with acute diarrhea (AD) is controversial. It is also unclear what effect metronidazole has on potential enteropathogens such as Clostridium perfringens and Escherichia coli. Thus, the aim of this study was to evaluate the effect of metronidazole vs. a synbiotic on the clinical course and core intestinal bacteria of dogs with AD. Twenty-seven dogs with AD were enrolled in this prospective, randomized, blinded clinical trial and treated with either metronidazole (METg) or a synbiotic (SYNg; E. faecium DSM 10663; NCIMB 10415/4b170). The Canine Acute Diarrhea Severity (CADS) index was recorded daily for eleven days. Bacteria were quantified using qPCR. Data were analyzed using mixed models with repeated measures. A higher concentration of E. coli was observed in the METg group vs. the SYNg group on Day 6 (p < 0.0001) and Day 30 (p = 0.01). Metronidazole had no effect on C. perfringens. C. hiranonis was significantly lower in the METg group than in the SYNg group on Days 6 and 30 (p < 0.0001; p = 0.0015). No significant differences were observed in CADS index, fecal consistency, or defecation frequency between treatment groups (except for the CADS index on one single day). In conclusion, metronidazole negatively impacts the microbiome without affecting clinical outcomes. Thus, synbiotics might be a preferred treatment option for dogs with AD.
Collapse
Affiliation(s)
- Helene Stübing
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, 80539 Munich, Germany (K.H.); (K.B.)
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77840, USA;
| | - Andrea Reisinger
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, 80539 Munich, Germany (K.H.); (K.B.)
| | - Melanie Werner
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland (S.U.)
| | - Katrin Hartmann
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, 80539 Munich, Germany (K.H.); (K.B.)
| | - Stefan Unterer
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland (S.U.)
| | - Kathrin Busch
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University Munich, 80539 Munich, Germany (K.H.); (K.B.)
| |
Collapse
|
8
|
Deschamps C, Apper E, Brun M, Durif C, Denis S, Humbert D, Blanquet-Diot S. Development of a new antibiotic-induced dysbiosis model of the canine colonic microbiota. Int J Antimicrob Agents 2024; 63:107102. [PMID: 38325721 DOI: 10.1016/j.ijantimicag.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
As in humans, antibiotics are widely used in dogs to treat gastrointestinal infections, contributing to the global burden of antimicrobial resistance on both human and animal health. Close contact between pets and their owners can lead to horizontal transfer of gut microbes, including transmission of antibiotic resistance. Nevertheless, until now, the impact of antibiotics on the canine gut microbiota has been poorly described. The aim of this study was to adapt the canine mucosal artificial colon (CANIM-ARCOL) model, reproducing the main nutritional, physicochemical and microbial parameters found in the large intestine of the dog to simulate an antibiotic-induced perturbation. Following initial investigation of five antibiotic cocktails at in-field doses, a 5-day regimen of metronidazole/enrofloxacin (ME) was selected for further model development. Two CANIM-ARCOL bioreactors were inoculated with a faecal sample (n=2 donors) and run in parallel for 26 days under control or antibiotic conditions. ME reduced microbial diversity and induced major shifts in bacterial populations, leading to a state of dysbiosis characterized by an increase in the relative abundance of Streptococcaceae, Lactobacillaceae and Enterobacteriaceae, and a decrease in the relative abundance of Bacteroidaceae, Fusobacteriota and Clostridiaceae. Overall, mucus-associated microbiota were less impacted by antibiotics than luminal microbes. Microbial alterations were associated with drastic decreases in gas production and short-chain fatty acid concentrations. Finally, the model was well validated through in-vitro-in-vivo comparisons in a study in dogs. The CANIM-ARCOL model provides a relevant platform as an alternative to in-vivo assays for an in-depth understanding of antibiotic-microbiota interactions and further testing of restoration strategies at individual level.
Collapse
Affiliation(s)
- Charlotte Deschamps
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, France; Lallemand Animal Nutrition, Blagnac Cedex, France
| | | | - Morgane Brun
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, France
| | - Claude Durif
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, France
| | - Sylvain Denis
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, France
| | | | | |
Collapse
|
9
|
Doolin ML, Dearing MD. Differential Effects of Two Common Antiparasitics on Microbiota Resilience. J Infect Dis 2024; 229:908-917. [PMID: 38036425 DOI: 10.1093/infdis/jiad547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Parasitic infections challenge vertebrate health worldwide, and off-target effects of antiparasitic treatments may be an additional obstacle to recovery. However, there have been few investigations of the effects of antiparasitics on the gut microbiome in the absence of parasites. METHODS We investigated whether two common antiparasitics-albendazole (ALB) and metronidazole (MTZ)-significantly alter the gut microbiome of parasite-free mice. We treated mice with ALB or MTZ daily for 7 days and sampled the fecal microbiota immediately before and after treatment and again after a two-week recovery period. RESULTS ALB did not immediately change the gut microbiota, while MTZ decreased microbial richness by 8.5% and significantly changed community structure during treatment. The structural changes caused by MTZ included depletion of the beneficial family Lachnospiraceae, and predictive metagenomic analysis revealed that these losses likely depressed microbiome metabolic function. Separately, we compared the fecal microbiotas of treatment groups after recovery, and there were minor differences in community structure between the ALB, MTZ, and sham-treated control groups. CONCLUSIONS These results suggest that a healthy microbiome is resilient after MTZ-induced depletions of beneficial gut microbes, and ALB may cause slight, latent shifts in the microbiota but does not deplete healthy gut microbiota diversity.
Collapse
Affiliation(s)
- Margaret L Doolin
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Marshall-Jones ZV, Patel KV, Castillo-Fernandez J, Lonsdale ZN, Haydock R, Staunton R, Amos GCA, Watson P. Conserved signatures of the canine faecal microbiome are associated with metronidazole treatment and recovery. Sci Rep 2024; 14:5277. [PMID: 38438389 PMCID: PMC10912219 DOI: 10.1038/s41598-024-51338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024] Open
Abstract
Antibiotic resistance is recognised as one of the biggest global threats to human and animal health. Understanding the influence of antibiotics on the canine microbiome is important to know the potential mid-to-long term effects on dysbiosis and mitigate side-effects such as antibiotic-associated diarrhoea. In this study, metronidazole was prescribed to 22 dogs for suspected giardiasis after exhibiting gastrointestinal symptoms such as diarrhoea and/or vomiting. Faecal samples were collected before, during seven days of treatment, and six months post-cessation. Faecal microbiota was assessed with 16S rRNA sequencing. Shannon diversity was reduced for up to three days after the treatment ended, and an altered community persisted for four to six weeks. All dogs recovered to a similar microbiome composition as pre-treatment. Immediately after receiving metronidazole, an increase in the relative abundance of the genera Lactobacillus, Bifidobacterium, and Enterococcus was observed. This may be due to antibiotic resistance commonly exhibited by these organisms. One-to-two weeks post-cessation, several other genera that were sensitive to the antibiotic recovered in abundances, with taxa belonging to the Erysipelotrichaceae family particularly driving composition change. Many of the bacteria initially reduced were associated with carbohydrate fermentation. This suggests scope exists to explore interventions to augment gastrointestinal health and support the re-establishment of the microbiome.
Collapse
Affiliation(s)
- Zoe V Marshall-Jones
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Krusha V Patel
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK.
| | | | - Zoe N Lonsdale
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Richard Haydock
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Ruth Staunton
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Gregory C A Amos
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Phillip Watson
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| |
Collapse
|
11
|
Dupouy-Manescau N, Méric T, Sénécat O, Drut A, Valentin S, Leal RO, Hernandez J. Updating the Classification of Chronic Inflammatory Enteropathies in Dogs. Animals (Basel) 2024; 14:681. [PMID: 38473066 DOI: 10.3390/ani14050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic inflammatory enteropathies (CIEs) in dogs are currently classified based on response to sequential treatment trials into food-responsive (FREs); antibiotic-responsive (AREs); immunosuppressant-responsive (IREs); and non-responsive enteropathies (NREs). Recent studies have reported that a proportion of NRE dogs ultimately respond to further dietary trials and are subsequently misclassified. The FRE subset among CIEs is therefore probably underestimated. Moreover, alterations in the gut microbiota composition and function (dysbiosis) have been shown to be involved in CIE pathogenesis in recent research on dogs. Metronidazole and other antibiotics that have been used for decades for dogs with AREs have been demonstrated to result in increased antimicrobial resistance and deleterious effects on the gut microbiota. As a consequence, the clinical approach to CIEs has evolved in recent years toward the gradual abandonment of the use of antibiotics and their replacement by other treatments with the aim of restoring a diverse and functional gut microbiota. We propose here to refine the classification of canine CIEs by replacing the AREs category with a microbiota-related modulation-responsive enteropathies (MrMREs) category.
Collapse
Affiliation(s)
- Noémie Dupouy-Manescau
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
| | - Tristan Méric
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
| | - Odile Sénécat
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
| | - Amandine Drut
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgrosParisTech, Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, 78350 Jouy-en-Josas, France
| | - Suzy Valentin
- Hopia, Bozon Veterinary Clinic, 78280 Guyancourt, France
| | - Rodolfo Oliveira Leal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Juan Hernandez
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgrosParisTech, Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, 78350 Jouy-en-Josas, France
| |
Collapse
|
12
|
Deschamps C, Denis S, Humbert D, Priymenko N, Chalancon S, De Bodt J, Van de Wiele T, Ipharraguerre I, Alvarez-Acero I, Achard C, Apper E, Blanquet-Diot S. Canine Mucosal Artificial Colon: development of a new colonic in vitro model adapted to dog sizes. Appl Microbiol Biotechnol 2024; 108:166. [PMID: 38261090 PMCID: PMC10806056 DOI: 10.1007/s00253-023-12987-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024]
Abstract
Differences in dog breed sizes are an important determinant of variations in digestive physiology, mainly related to the large intestine. In vitro gut models are increasingly used as alternatives to animal experiments for technical, cost, societal, and regulatory reasons. Up to now, only one in vitro model of the canine colon incorporates the dynamics of different canine gut regions, yet no adaptations exist to reproduce size-related digestive parameters. To address this limitation, we developed a new model of the canine colon, the CANIne Mucosal ARtificial COLon (CANIM-ARCOL), simulating main physiochemical (pH, transit time, anaerobiosis), nutritional (ileal effluent composition), and microbial (lumen and mucus-associated microbiota) parameters of this ecosystem and adapted to three dog sizes (i.e., small under 10 kg, medium 10-30 kg, and large over 30 kg). To validate the new model regarding microbiota composition and activities, in vitro fermentations were performed in bioreactors inoculated with stools from 13 dogs (4 small, 5 medium, and 4 large). After a stabilization period, microbiota profiles clearly clustered depending on dog size. Bacteroidota and Firmicutes abundances were positively correlated with dog size both in vitro and in vivo, while opposite trends were observed for Actinobacteria and Proteobacteria. As observed in vivo, microbial activity also increased with dog size in vitro, as evidenced from gas production, short-chain fatty acids, ammonia, and bile acid dehydroxylation. In line with the 3R regulation, CANIM-ARCOL could be a relevant platform to assess bilateral interactions between food and pharma compounds and gut microbiota, capturing inter-individual or breed variabilities. KEY POINTS: • CANIM-ARCOL integrates main canine physicochemical and microbial colonic parameters • Gut microbiota associated to different dog sizes is accurately maintained in vitro • The model can help to move toward personalized approach considering dog body weight.
Collapse
Affiliation(s)
- Charlotte Deschamps
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
- Lallemand Animal Nutrition, Blagnac, France
| | - Sylvain Denis
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | | - Nathalie Priymenko
- Toxalim (Research Center in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31000, Toulouse, France
| | - Sandrine Chalancon
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Jana De Bodt
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Inma Alvarez-Acero
- Institute of Food Science, Technology and Nutrition, Spanish National Research Council, ICTAN-CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
13
|
Belchik SE, Oba PM, Lin CY, Swanson KS. Effects of a veterinary gastrointestinal low-fat diet on fecal characteristics, metabolites, and microbiota concentrations of adult dogs treated with metronidazole. J Anim Sci 2024; 102:skae297. [PMID: 39344678 PMCID: PMC11568346 DOI: 10.1093/jas/skae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Antibiotics are known to cause loose stools, disrupt the fecal microbiota, and alter fecal bile acid (BA) profiles of dogs. Recovery may be aided by diet, but little research has been conducted. The objective of this study was to determine how a veterinary low-fat diet affected the fecal characteristics, metabolites, BA, and microbiota of dogs receiving antibiotics. Twenty-four healthy adult dogs [7.38 ± 1.95 yr; 7.67 ± 0.76 kg body weight (BW)] were used in an 8-wk completely randomized design study. During a 2-wk baseline, all dogs were fed a leading grocery brand diet (GBD). Over the next 2 wk, dogs were fed GBD and received metronidazole orally (20 mg/kg BW twice daily). At week 4, dogs were randomly allotted to one of two treatments [GBD or Blue Buffalo Natural Veterinary Diet GI Gastrointestinal Support Low-Fat (BB)] and fed for 4 wk. Fecal scores were recorded daily and fresh fecal samples were collected at weeks 2, 4, 5, 6, 7, and 8 for measurement of pH, dry matter content, and metabolite and BA concentrations. Fecal microbiota populations were analyzed using 16S rRNA gene amplicon sequencing and qPCR-based dysbiosis index (DI). All data were analyzed as repeated measures using the Mixed Models procedure of SAS 9.4, testing for effects of treatment, time, and treatment*time and significance set at P < 0.05. Metronidazole increased (P < 0.0001) fecal scores (looser stools), reduced fecal short-chain fatty acid, branched-chain fatty acid, phenol, and indole concentrations, increased primary BA concentrations, and decreased secondary BA concentrations. Metronidazole also reduced fecal bacterial alpha diversity, altered the abundance of 58 bacterial genera, and increased DI. During antibiotic recovery, changes in fecal pH, dry matter percentage, and metabolite and immunoglobulin A concentrations were altered (P < 0.05) by diet. Fecal BA concentrations recovered quickly for all dogs. Change in lithocholic acid was affected (P < 0.0001) by diet, but other BA were not. Recovery of over 25 bacterial genera was impacted by diet (P < 0.05). While many bacterial taxa returned to baseline levels after 4 wk, others did not fully recover. DI and bacterial alpha diversity measures recovered quickly for all dogs but were not impacted by diet. In conclusion, metronidazole drastically altered the fecal microbiota and metabolites of dogs. While most variables returned to baseline by week 8, diet may be used to aid in recovery.
Collapse
Affiliation(s)
- Sara E Belchik
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Miller J, Żebrowska-Różańska P, Czajkowska A, Szponar B, Kumala-Ćwikła A, Chmielarz M, Łaczmański Ł. Faecal microbiota and fatty acids in feline chronic enteropathy. BMC Vet Res 2023; 19:281. [PMID: 38124157 PMCID: PMC10731866 DOI: 10.1186/s12917-023-03824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Feline chronic enteropathy is a set of disorders defined as the presence of clinical signs of gastrointestinal disease for at least three weeks. The most common final diagnoses are inflammatory bowel disease and alimentary small cell lymphoma. The etiopathogenesis of these diseases is incompletely understood; however, it is hypothesised that they involve a combination of factors, including altered composition and/or functionality of the intestinal microbiome. An important factor in the interplay of the microbiome and host is the production of short- and branched-chain fatty acids. The aim of this study was to evaluate the possible differences in faecal microbiota diversity, composition and fatty acid production between cats suffering from chronic enteropathy and healthy cats. Sixteen cats suffering from chronic enteropathy and fourteen healthy control cats were enrolled in the study. The microbiota compositions of faecal samples were analysed by using next-generation amplicon sequencing of the V3V4 fragment of the 16S rRNA gene. Fatty acids were evaluated by high-performance liquid chromatography. RESULTS Both the alpha and beta diversities were significantly lower in samples obtained from cats with chronic enteropathy. The relative abundance of the phylum Proteobacteria, orders Lactobacillales and Enterobacterales, family Enteriobacteriaceae and genus Escherichia Shigella were higher in diseased cats, whereas the abundance of the phylum Bacteroidota and order Peptococcales were higher in control cats. The faecal concentrations of short-chain fatty acids were higher in cats with chronic enteropathy, with lower propionate proportions and higher butyrate proportions. CONCLUSION The study revealed alterations in microbiota compositions and short-chain fatty acid concentration in cats suffering from chronic enteropathy, which is an important finding both for research on the pathogenesis of the disease and for potential therapeutic interventions in the form of faecal microbiota transplantation and/or probiotic supplementation.
Collapse
Affiliation(s)
- Julia Miller
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, Wroclaw, 50-375, Poland.
| | - Paulina Żebrowska-Różańska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Aleksandra Czajkowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Bogumiła Szponar
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Aleksandra Kumala-Ćwikła
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | | | - Łukasz Łaczmański
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
15
|
Hart CJ, Riches AG, Tiash S, Abraham R, Fayd'Herbe K, Joch E, Zulfiqar B, Sykes ML, Avery VM, Šlapeta J, Abraham S, Ryan JH, Skinner-Adams TS. Thieno[3,2-b]pyrrole 5-carboxamides as potent and selective inhibitors of Giardia duodenalis. Int J Parasitol Drugs Drug Resist 2023; 23:54-62. [PMID: 37776606 PMCID: PMC10560980 DOI: 10.1016/j.ijpddr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
Giardia duodenalis is the causative agent of the neglected diarrhoeal disease giardiasis. While often self-limiting, giardiasis is ubiquitous and impacts hundreds of millions of people annually. It is also a common gastro-intestinal disease of domestic pets, wildlife, and livestock animals. However, despite this impact, there is no vaccine for Giardia currently available. In addition, treatment relies on chemotherapies that are associated with increasing failure rates. To identify new treatment options for giardiasis we recently screened the Compounds Australia Scaffold Library for new chemotypes with selective anti-Giardia activity, identifying three compounds with sub-μM activity and promising selectivity. Here we extended these studies by examining the anti-Giardia activity of series CL9569 compounds. This compound series was of interest given the promising activity (IC50 1.2 μM) and selectivity demonstrated by representative compound, SN00798525 (1). Data from this work has identified an additional three thieno [3,2-b]pyrrole 5-carboxamides with anti-Giardia activity, including 2 which displayed potent cytocidal (IC50 ≤ 10 nM) and selective activity against multiple Giardia strains, including representatives from both human-infecting assemblages and metronidazole resistant parasites. Preclinical studies in mice also demonstrated that 2 is well-tolerated, does not impact the normal gut microbiota and can reduce Giardia parasite burden in these animals.
Collapse
Affiliation(s)
- Christopher Js Hart
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; School of Environment and Sciences, Griffith University, Nathan, Queensland, Australia
| | - Andrew G Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria, Australia
| | - Snigdha Tiash
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Rebecca Abraham
- Harry Butler Institute, Murdoch University, Western Australia, Australia
| | - Keely Fayd'Herbe
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; School of Environment and Sciences, Griffith University, Nathan, Queensland, Australia
| | - Ellis Joch
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; School of Environment and Sciences, Griffith University, Nathan, Queensland, Australia
| | - Bilal Zulfiqar
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, Queensland, Australia
| | - Melissa L Sykes
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, Queensland, Australia
| | - Vicky M Avery
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; School of Environment and Sciences, Griffith University, Nathan, Queensland, Australia; Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, Queensland, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, New South Wales, Australia
| | - Sam Abraham
- Harry Butler Institute, Murdoch University, Western Australia, Australia
| | - John H Ryan
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; School of Environment and Sciences, Griffith University, Nathan, Queensland, Australia.
| |
Collapse
|
16
|
Adebowale OO, Jimoh AB, Adebayo OO, Alamu AA, Adeleye AI, Fasanmi OG, Olasoju M, Olagunju PO, Fasina FO. Evaluation of antimicrobial usage in companion animals at a Veterinary Teaching Hospital in Nigeria. Sci Rep 2023; 13:18195. [PMID: 37875528 PMCID: PMC10598005 DOI: 10.1038/s41598-023-44485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
This study investigated various qualitative and quantitative indices of antimicrobial use (AMU) in companion animals (CAs) at a Veterinary Teaching Hospital (VTH-A) and its annex (VTH- B) from 2019 to 2021. For 694 documented animals, antimicrobial administrations (AADs) were 5, 278 times, of which 98.8% (5217) and 1.2% (61) were in dogs and cats respectively. At the VTH- A, oxytetracycline (1185 times, 22.5%) was mostly administered in dogs and metronidazole (26 times, 0.5%) in cats. Similarly, at VTH- B, oxytetracycline was administered 895 times (17.0%) in dogs while amoxicillin was given 7 times (0.1%) in cats. The prescription diversity (PD) was estimated at 0.73 and 0.82 in VTH-A and VTH-B respectively. The quantity of antimicrobials (AMs) used was 10.1 kg (A, 6.2 kg and B, 3.9 kg). Oxytetracycline administrations and quantity of metronidazole (P < 0.0001) were higher than other Active Ingredients (AIs). Furthermore, 16.5% of AIs were classified as Critically Important Antibiotics (CIA) with the highest priority, while enrofloxacin, ciprofloxacin, and azithromycin fell under the World Health Organisation (WHO) Watch group. The In-Depth Interview (IDI) indicated that the high frequency of oxytetracycline administrations was linked with being the first choice for blood parasite treatment by the clinicians at the hospital. The quantity of metronidazole used was perceived to be higher due to the clinicians' preference for the treatment of acute gastroenteritis, its wider dose range, and the frequency of administration (bi-daily). The study provides baseline data on AMU indices in CAs, for the development of antimicrobial stewardship (AMS) and communication training, and policy modifications to enhance antimicrobial therapy optimization in tertiary veterinary hospital care in Nigeria.
Collapse
Affiliation(s)
- O O Adebowale
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria.
| | - A B Jimoh
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - O O Adebayo
- Veterinary Teaching Hospital, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - A A Alamu
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - A I Adeleye
- Veterinary Teaching Hospital, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - O G Fasanmi
- Department of Veterinary Laboratory Technology, Federal College of Animal Health and Production Technology, Ibadan, Oyo State, Nigeria
| | - M Olasoju
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - P O Olagunju
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - F O Fasina
- ECTAD, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Pegram C, Diaz-Ordaz K, Brodbelt DC, Chang YM, Tayler S, Allerton F, Prisk L, Church DB, O’Neill DG. Target trial emulation: Do antimicrobials or gastrointestinal nutraceuticals prescribed at first presentation for acute diarrhoea cause a better clinical outcome in dogs under primary veterinary care in the UK? PLoS One 2023; 18:e0291057. [PMID: 37792702 PMCID: PMC10550114 DOI: 10.1371/journal.pone.0291057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Target trial emulation applies design principles from randomised controlled trials to the analysis of observational data for causal inference and is increasingly used within human epidemiology. Veterinary electronic clinical records represent a potentially valuable source of information to estimate real-world causal effects for companion animal species. This study employed the target trial framework to evaluate the usefulness on veterinary observational data. Acute diarrhoea in dogs was used as a clinical exemplar. Inclusion required dogs aged ≥ 3 months and < 10 years, presenting for veterinary primary care with acute diarrhoea during 2019. Treatment strategies were: 1. antimicrobial prescription compared to no antimicrobial prescription and 2. gastrointestinal nutraceutical prescription compared to no gastrointestinal nutraceutical prescription. The primary outcome was clinical resolution (defined as no revisit with ongoing diarrhoea within 30 days from the date of first presentation). Informed from a directed acyclic graph, data on the following covariates were collected: age, breed, bodyweight, insurance status, comorbidities, vomiting, reduced appetite, haematochezia, pyrexia, duration, additional treatment prescription and veterinary group. Inverse probability of treatment weighting was used to balance covariates between the treatment groups for each of the two target trials. The risk difference (RD) of 0.4% (95% CI -4.5% to 5.3%) was non-significant for clinical resolution in dogs treated with antimicrobials compared with dogs not treated with antimicrobials. The risk difference (RD) of 0.3% (95% CI -4.5% to 5.0%) was non-significant for clinical resolution in dogs treated with gastrointestinal nutraceuticals compared with dogs not treated with gastrointestinal nutraceuticals. This study successfully applied the target trial framework to veterinary observational data. The findings show that antimicrobial or gastrointestinal prescription at first presentation of acute diarrhoea in dogs causes no difference in clinical resolution. The findings support the recommendation for veterinary professionals to limit antimicrobial use for acute diarrhoea in dogs.
Collapse
Affiliation(s)
- Camilla Pegram
- Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, Herts, United Kingdom
| | - Karla Diaz-Ordaz
- Department of Statistical Science, University College London, London, United Kingdom
| | - Dave C. Brodbelt
- Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, Herts, United Kingdom
| | - Yu-Mei Chang
- Research Support Office, The Royal Veterinary College, Hatfield, Herts, United Kingdom
| | - Sarah Tayler
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield, Herts, United Kingdom
| | - Fergus Allerton
- Willows Veterinary Centre & Referral Centre, Solihull, United Kingdom
| | - Lauren Prisk
- Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, Herts, United Kingdom
| | - David B. Church
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield, Herts, United Kingdom
| | - Dan G. O’Neill
- Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, Herts, United Kingdom
| |
Collapse
|
18
|
O’Reilly C, Mills S, Rea MC, Lavelle A, Ghosh S, Hill C, Ross RP. Interplay between inflammatory bowel disease therapeutics and the gut microbiome reveals opportunities for novel treatment approaches. MICROBIOME RESEARCH REPORTS 2023; 2:35. [PMID: 37849974 PMCID: PMC7615213 DOI: 10.20517/mrr.2023.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Inflammatory bowel disease (IBD) is a complex heterogeneous disorder defined by recurring chronic inflammation of the gastrointestinal tract, attributed to a combination of factors including genetic susceptibility, altered immune response, a shift in microbial composition/microbial insults (infection/exposure), and environmental influences. Therapeutics generally used to treat IBD mainly focus on the immune response and include non-specific anti-inflammatory and immunosuppressive therapeutics and targeted therapeutics aimed at specific components of the immune system. Other therapies include exclusive enteral nutrition and emerging stem cell therapies. However, in recent years, scientists have begun to examine the interplay between these therapeutics and the gut microbiome, and we present this information here. Many of these therapeutics are associated with alterations to gut microbiome composition and functionality, often driving it toward a "healthier profile" and preclinical studies have revealed that such alterations can play an important role in therapeutic efficacy. The gut microbiome can also improve or hinder IBD therapeutic efficacy or generate undesirable metabolites. For certain IBD therapeutics, the microbiome composition, particularly before treatment, may serve as a biomarker of therapeutic efficacy. Utilising this information and manipulating the interactions between the gut microbiome and IBD therapeutics may enhance treatment outcomes in the future and bring about new opportunities for personalised, precision medicine.
Collapse
Affiliation(s)
- Catherine O’Reilly
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
- Authors contributed equally
| | - Susan Mills
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
- Authors contributed equally
| | - Mary C. Rea
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Subrata Ghosh
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Colin Hill
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - R. Paul Ross
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| |
Collapse
|
19
|
Ellis C, Odunayo A, Tolbert MK. The use of metronidazole in acute diarrhea in dogs: a narrative review. Top Companion Anim Med 2023; 56-57:100824. [PMID: 37884173 DOI: 10.1016/j.tcam.2023.100824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Acute diarrhea is a common reason for non-wellness veterinary visits in dogs. Treatment for acute diarrhea usually consists of supportive care with nutritional intervention, fluid therapy, anthelmintics, and often an antibiotic - commonly metronidazole in North America. The empirical use of metronidazole for acute diarrhea in dogs has been a common practice in veterinary medicine for many decades; however, recent studies evaluating its use suggest it may be inappropriately utilized in many cases. Herein, we review the evidence evaluating the use of metronidazole and other antibiotics in acute diarrhea in the human and veterinary literature. Recommendations on the use of metronidazole and other antibiotics as well as other therapeutic considerations in the treatment of acute diarrhea are also provided.
Collapse
Affiliation(s)
- Connor Ellis
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - Adesola Odunayo
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA.
| | - M Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
20
|
Doulidis PG, Galler AI, Hausmann B, Berry D, Rodríguez-Rojas A, Burgener IA. Gut microbiome signatures of Yorkshire Terrier enteropathy during disease and remission. Sci Rep 2023; 13:4337. [PMID: 36927871 PMCID: PMC10018597 DOI: 10.1038/s41598-023-31024-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
The role of the gut microbiome in developing Inflammatory Bowel Disease (IBD) in humans and dogs has received attention in recent years. Evidence suggests that IBD is associated with alterations in gut microbial composition, but further research is needed in veterinary medicine. The impact of IBD treatment on the gut microbiome needs to be better understood, especially in a breed-specific form of IBD in Yorkshire Terriers known as Yorkshire Terrier Enteropathy (YTE). This study aimed to investigate the difference in gut microbiome composition between YTE dogs during disease and remission and healthy Yorkshire Terriers. Our results showed a significant increase in specific taxa such as Clostridium sensu stricto 1, Escherichia-Shigella, and Streptococcus, and a decrease in Bacteroides, Prevotella, Alloprevotella, and Phascolarctobacterium in YTE dogs compared to healthy controls. No significant difference was found between the microbiome of dogs in remission and those with active disease, suggesting that the gut microbiome is affected beyond clinical recovery.
Collapse
Affiliation(s)
- Pavlos G Doulidis
- Department for Small Animal Internal Medicine, Clinic for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Alexandra I Galler
- Department for Small Animal Internal Medicine, Clinic for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna, University of Vienna, Vienna, Austria.,Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Joint Microbiome Facility of the Medical University of Vienna, University of Vienna, Vienna, Austria.,Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Alexandro Rodríguez-Rojas
- Department for Small Animal Internal Medicine, Clinic for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Iwan A Burgener
- Department for Small Animal Internal Medicine, Clinic for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
21
|
Becker HEF, Demers K, Derijks LJJ, Jonkers DMAE, Penders J. Current evidence and clinical relevance of drug-microbiota interactions in inflammatory bowel disease. Front Microbiol 2023; 14:1107976. [PMID: 36910207 PMCID: PMC9996055 DOI: 10.3389/fmicb.2023.1107976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic relapsing-remitting disease. An adverse immune reaction toward the intestinal microbiota is involved in the pathophysiology and microbial perturbations are associated with IBD in general and with flares specifically. Although medical drugs are the cornerstone of current treatment, responses vary widely between patients and drugs. The intestinal microbiota can metabolize medical drugs, which may influence IBD drug (non-)response and side effects. Conversely, several drugs can impact the intestinal microbiota and thereby host effects. This review provides a comprehensive overview of current evidence on bidirectional interactions between the microbiota and relevant IBD drugs (pharmacomicrobiomics). Methods Electronic literature searches were conducted in PubMed, Web of Science and Cochrane databases to identify relevant publications. Studies reporting on microbiota composition and/or drug metabolism were included. Results The intestinal microbiota can both enzymatically activate IBD pro-drugs (e.g., in case of thiopurines), but also inactivate certain drugs (e.g., mesalazine by acetylation via N-acetyltransferase 1 and infliximab via IgG-degrading enzymes). Aminosalicylates, corticosteroids, thiopurines, calcineurin inhibitors, anti-tumor necrosis factor biologicals and tofacitinib were all reported to alter the intestinal microbiota composition, including changes in microbial diversity and/or relative abundances of various microbial taxa. Conclusion Various lines of evidence have shown the ability of the intestinal microbiota to interfere with IBD drugs and vice versa. These interactions can influence treatment response, but well-designed clinical studies and combined in vivo and ex vivo models are needed to achieve consistent findings and evaluate clinical relevance.
Collapse
Affiliation(s)
- Heike E. F. Becker
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Karlijn Demers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Luc J. J. Derijks
- Department of Clinical Pharmacy and Pharmacology, Máxima Medical Center, Veldhoven, Netherlands
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, CAPHRI School of Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
22
|
Stavroulaki EM, Suchodolski JS, Xenoulis PG. Effects of antimicrobials on the gastrointestinal microbiota of dogs and cats. Vet J 2023; 291:105929. [PMID: 36427604 DOI: 10.1016/j.tvjl.2022.105929] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Among several environmental factors, exposure to antimicrobials has been in the spotlight as a cause of profound and long-term disturbance of the intestinal microbiota. Antimicrobial-induced dysbiosis is a general term and includes decreases in microbial richness and diversity, loss of beneficial bacterial groups, blooms of intestinal pathogens and alterations in the metabolic functions and end-products of the microbiota. Mounting evidence from human and experimental animal studies suggest an association between antimicrobial-induced dysbiosis and susceptibility to gastrointestinal, metabolic, endocrine, immune and neuropsychiatric diseases. These associations are commonly stronger after early life exposure to antimicrobials, a period during which maturation of the microbiota and immune system take place in parallel. In addition, these associations commonly become stronger as the number of antimicrobial courses increases. The repeatability of these findings among different studies as well as the presence of a dose-dependent relationship between antimicrobial exposure and disease development collectively require careful consideration of the need for antimicrobial use. There are limited studies are available in dogs and cats regarding the long-term effects of antimicrobials on the microbiota and subsequent susceptibility to diseases. This review discusses the effects of antimicrobials on the gastrointestinal microbiota and the most important associations between antimicrobial-induced dysbiosis and diseases in humans, dogs, and cats.
Collapse
Affiliation(s)
- Evangelia M Stavroulaki
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, Karditsa 43131, Greece.
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station 77845, TX, USA
| | - Panagiotis G Xenoulis
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, Karditsa 43131, Greece; Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station 77845, TX, USA
| |
Collapse
|
23
|
Li K, Yang J, Zhou X, Wang H, Ren Y, Huang Y, Liu H, Zhong Z, Peng G, Zheng C, Zhou Z. The Mechanism of Important Components in Canine Fecal Microbiota Transplantation. Vet Sci 2022; 9:vetsci9120695. [PMID: 36548856 PMCID: PMC9786814 DOI: 10.3390/vetsci9120695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is a potential treatment for many intestinal diseases. In dogs, FMT has been shown to have positive regulation effects in treating Clostridioides difficile infection (CDI), inflammatory bowel disease (IBD), canine parvovirus (CPV) enteritis, acute diarrhea (AD), and acute hemorrhagic diarrhea syndrome (AHDS). FMT involves transplanting the functional components of a donor's feces into the gastrointestinal tract of the recipient. The effective components of FMT not only include commensal bacteria, but also include viruses, fungi, bacterial metabolites, and immunoglobulin A (IgA) from the donor feces. By affecting microbiota and regulating host immunity, these components can help the recipient to restore their microbial community, improve their intestinal barrier, and induce anti-inflammation in their intestines, thereby affecting the development of diseases. In addition to the above components, mucin proteins and intestinal epithelial cells (IECs) may be functional ingredients in FMT as well. In addition to the abovementioned indications, FMT is also thought to be useful in treating some other diseases in dogs. Consequently, when preparing FMT fecal material, it is important to preserve the functional components involved. Meanwhile, appropriate fecal material delivery methods should be chosen according to the mechanisms these components act by in FMT.
Collapse
Affiliation(s)
- Kerong Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Jie Yang
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
| | - Xiaoxiao Zhou
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Huan Wang
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
| | - Yuxin Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Yunchuan Huang
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengli Zheng
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
- Correspondence: (C.Z.); (Z.Z.)
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (C.Z.); (Z.Z.)
| |
Collapse
|
24
|
Rudinsky AJ, Parker VJ, Winston J, Cooper E, Mathie T, Howard JP, Bremer CA, Yaxley P, Marsh A, Laxalde J, Suchodolski J, Perea S. Randomized controlled trial demonstrates nutritional management is superior to metronidazole for treatment of acute colitis in dogs. J Am Vet Med Assoc 2022; 260:S23-S32. [PMID: 36191142 DOI: 10.2460/javma.22.08.0349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To describe the outcome of dietary management of canine noninfectious acute colitis with or without concurrent oral administration of metronidazole using a randomized controlled clinical trial. ANIMALS 59 client-owned dogs with noninfectious acute colitis. PROCEDURES Dogs with acute noninfectious colitis were enrolled in a 30-day diet trial after exclusion of parasitic infectious etiologies (fecal centrifugation floatation, Giardia/Cryptosporidium antigen testing) and systemic disease (CBC, biochemistry, urinalysis). Dogs were randomized into 3 placebo-controlled groups: group 1, easily digestible diet + placebo tablet; group 2, easily digestible diet + metronidazole tablet; and group 3, psyllium-enhanced easily digestible diet + placebo tablet. Dogs were evaluated serially using fecal scoring for time to remission, average fecal score, relapse after remission, and dysbiosis index. RESULTS Median remission time was significantly different among the 3 groups (P < .01) with median times of 5 days (range, 4 to 10) for group 1, 8.5 days (range, 7 to 12) for group 2, and 5 days (range, 3 to 6) for group 3. Metronidazole addition affected the fecal dysbiosis index negatively at days 7 to 10. No adverse effects or complications were noted throughout the study. CLINICAL RELEVANCE For canine noninfectious acute colitis, dietary management with an easily digestible diet with or without psyllium enhancement proved a superior management strategy compared to metronidazole. The omission of metronidazole reduced the adverse impact significantly on intestinal microbiota. Longitudinal clinical trials are necessary to compare the long-term response, stability, and complications associated with dietary management alone versus combined dietary and antimicrobial therapy for canine acute colitis.
Collapse
Affiliation(s)
- Adam J Rudinsky
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH.,The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Valerie J Parker
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH.,The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Jenessa Winston
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH.,The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Edward Cooper
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Tamra Mathie
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - James P Howard
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH.,The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - C A Bremer
- Department of Veterinary Preventative Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Page Yaxley
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Antionette Marsh
- Department of Veterinary Preventative Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Jeremy Laxalde
- Royal Canin Research & Development Center, Aimargues, France
| | - Jan Suchodolski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Sally Perea
- Royal Canin Research & Development Center, Aimargues, France
| |
Collapse
|
25
|
Comparison of the Gut Microbiome between Atopic and Healthy Dogs—Preliminary Data. Animals (Basel) 2022; 12:ani12182377. [PMID: 36139237 PMCID: PMC9495170 DOI: 10.3390/ani12182377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Atopic dermatitis is a common inflammatory and itchy skin disease, constituting a global issue that affects up to 15% of the general human and dog population. The pathogenesis of this disease is known to be multifactorial and not only consisting of skin barrier dysfunction, but also with immunological dysregulation and skin microbiota changes having a central role. In humans, establishment of the gut microbiota in early life influences the development of allergies, among others also atopic dermatitis in children. To the author’s knowledge, there is currently no study comparing the gut microbiome between allergic and healthy dogs. We now present results demonstrating that allergic dogs have a significantly different gut microbiota when compared to healthy control dogs. Further investigations including a larger number of dogs are now required to confirm these results, in addition to studies utilizing novel interventions targeting the gut microbiota. Abstract Human studies show that in addition to skin barrier and immune cell dysfunction, both the cutaneous and the gut microbiota can influence the pathogenesis of atopic diseases. There is currently no data on the gut-skin axis in allergic canines. Therefore, the aim of this study was to assess the bacterial diversity and composition of the gut microbiome in dogs with atopic dermatitis (AD). Stool samples from adult beagle dogs (n = 3) with spontaneous AD and a healthy control group (n = 4) were collected at Days 0 and 30. After the first sampling, allergic dogs were orally dosed on a daily basis with oclacitinib for 30 days, and then re-sampled. Sequencing of the V3–V4 region of the 16S rRNA gene was performed on the Illumina MiSeq platform and the data were analyzed using QIIME2. The atopic dogs had a significantly lower gut microbiota alpha-diversity than healthy dogs (p = 0.033). In healthy dogs, a higher abundance of the families Lachnospiraceae (p = 0.0006), Anaerovoracaceae (p = 0.006) and Oscillospiraceae (p = 0.021) and genera Lachnospira (p = 0.022), Ruminococcustorques group (p = 0.0001), Fusobacterium (p = 0.022) and Fecalibacterium (p = 0.045) was seen, when compared to allergic dogs. The abundance of Conchiformibius (p = 0.01), Catenibacterium spp. (p = 0.007), Ruminococcus gnavus group (p = 0.0574) and Megamonas (p = 0.0102) were higher in allergic dogs. The differences in alpha-diversity and on the compositional level remained the same after 1 month, adding to the robustness of the data. Additionally, we could also show that a 4-week treatment course with oclacitinib was not associated with changes in the gut microbiota diversity and composition in atopic dogs. This study suggests that alterations in the gut microbiota diversity and composition may be associated with canine AD. Large-scale studies preferably associated to a multi-omics approach and interventions targeting the gut microbiota are needed to confirm these results.
Collapse
|
26
|
Canine Fecal Microbiota Transplantation: Current Application and Possible Mechanisms. Vet Sci 2022; 9:vetsci9080396. [PMID: 36006314 PMCID: PMC9413255 DOI: 10.3390/vetsci9080396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is an emerging therapeutic option for a variety of diseases, and is characterized as the transfer of fecal microorganisms from a healthy donor into the intestinal tract of a diseased recipient. In human clinics, FMT has been used for treating diseases for decades, with promising results. In recent years, veterinary specialists adapted FMT in canine patients; however, compared to humans, canine FMT is more inclined towards research purposes than practical applications in most cases, due to safety concerns. Therefore, in order to facilitate the application of fecal transplant therapy in dogs, in this paper, we review recent applications of FMT in canine clinical treatments, as well as possible mechanisms that are involved in the process of the therapeutic effect of FMT. More research is needed to explore more effective and safer approaches for conducting FMT in dogs.
Collapse
|
27
|
Marclay M, Dwyer E, Suchodolski JS, Lidbury JA, Steiner JM, Gaschen FP. Recovery of Fecal Microbiome and Bile Acids in Healthy Dogs after Tylosin Administration with and without Fecal Microbiota Transplantation. Vet Sci 2022; 9:vetsci9070324. [PMID: 35878341 PMCID: PMC9318503 DOI: 10.3390/vetsci9070324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Antibiotics cause gut dysbiosis and bile acid dysmetabolism in dogs. The effect of fecal microbiota transplantation (FMT) on microbiome and metabolome recovery is unknown. This prospective, randomized, placebo-controlled study included sixteen healthy purpose-bred dogs. All dogs received tylosin 20 mg/kg PO once daily (days 1–7) and were randomly assigned to either receive one FMT via enema (day 8), daily oral FMT capsules (days 8–21), or daily placebo capsules (days 8–21). Fecal samples were frozen at regular intervals until day 42. Quantitative PCR for 8 bacterial taxa was performed to calculate the fecal dysbiosis index (FDI) and fecal concentrations of unconjugated bile acids (UBA) were measured using gas chromatography-mass spectrometry. Tylosin altered the abundance of most evaluated bacteria and induced a significant decrease in secondary bile acid concentrations at day 7 in all dogs. However, most parameters returned to their baseline by day 14 in all dogs. In conclusion, tylosin markedly impacted fecal microbiota and bile acid concentrations, although return to baseline values was quick after the antibiotic was discontinued. Overall, FMT did not accelerate recovery of measured parameters. Further studies are warranted to confirm the value of FMT in accelerating microbiota recovery in antibiotic-associated dysbiosis in dogs.
Collapse
Affiliation(s)
- Margaux Marclay
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (M.M.); (E.D.)
- Medi-Vet SA Vétérinaire, 1007 Lausanne, Switzerland
| | - Elizabeth Dwyer
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (M.M.); (E.D.)
- Austin Veterinary Emergency and Specialty, Austin, TX 78730, USA
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77840, USA; (J.S.S.); (J.A.L.); (J.M.S.)
| | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77840, USA; (J.S.S.); (J.A.L.); (J.M.S.)
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77840, USA; (J.S.S.); (J.A.L.); (J.M.S.)
| | - Frederic P. Gaschen
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (M.M.); (E.D.)
- Correspondence:
| |
Collapse
|
28
|
Fritsch DA, Wernimont SM, Jackson MI, MacLeay JM, Gross KL. A prospective multicenter study of the efficacy of a fiber-supplemented dietary intervention in dogs with chronic large bowel diarrhea. BMC Vet Res 2022; 18:244. [PMID: 35751062 PMCID: PMC9229818 DOI: 10.1186/s12917-022-03302-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Chronic large bowel diarrhea is common in dogs and can have a significant impact on their overall health and well being. We evaluated the safety and efficacy of a therapeutic food with select dietary plant fibers known to contain antioxidant and polyphenol compounds on clinical signs in dogs with chronic diarrhea. Methods A prospective clinical study was conducted in 31 adult dogs currently experiencing chronic diarrhea from private veterinary practices in the United States. Enrolled dogs were switched to a complete and balanced dry therapeutic food containing whole grains and polyphenol-containing fiber sources for 56 days. Veterinarians evaluated changes from baseline in overall clinical signs, recurrence of clinical signs, and stool parameters at Days 2, 3, 4, 28, and 56. Dog owners evaluated stool consistency daily and nausea/vomiting, quality of life (QoL), and stooling behaviors at Days 1, 14, 28, and 56. Statistical analysis was performed using a mixed-effects model with Day as a fixed-effect. Results Assessments of overall clinical response and stool parameters indicated that diarrhea improved significantly within 1 day of initiating the therapeutic food. Veterinarians reported that 68% of dogs had complete resolution of their clinical signs by Day 56 and the remaining 32% experienced improvement (P < 0.05), with no cases of recurrence. Veterinarians also reported improvement in stool consistency (P < 0.001) and reductions of blood and mucus in stool (P < 0.001). Significant improvements in nausea/vomiting, stooling behaviors, and quality of life (QoL) were reported by dog owners after 28 days and were sustained through day 56 (P < 0.05). The therapeutic food was safe and well tolerated. Conclusions In dogs with chronic large bowel diarrhea, the therapeutic food rapidly improved stool consistency, resolved clinical signs, and improved stooling behaviors and QoL. Therapeutic foods supplemented with fiber sources rich in antioxidant and anti-inflammatory compounds contribute to rapid resolution of chronic diarrhea without recurrence and may contribute to long term health. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03302-8.
Collapse
Affiliation(s)
- Dale A Fritsch
- Hill's Pet Nutrition, Inc., Topeka, KS, USA. .,Global Clinical Nutrition and Claims, Hill's Pet Nutrition, Inc., P.O. Box 1658, Topeka, KS, 66601-1658, USA.
| | | | | | - Jennifer M MacLeay
- Hill's Pet Nutrition, Inc., Topeka, KS, USA.,AKC Canine Health Foundation, Inc., Raleigh, NC, USA
| | | |
Collapse
|
29
|
Menard J, Goggs R, Mitchell P, Yang Y, Robbins S, Franklin-Guild RJ, Thachil AJ, Altier C, Anderson R, Putzel GG, McQueary H, Goodman LB. Effect of antimicrobial administration on fecal microbiota of critically ill dogs: dynamics of antimicrobial resistance over time. Anim Microbiome 2022; 4:36. [PMID: 35659110 PMCID: PMC9167539 DOI: 10.1186/s42523-022-00178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Multidrug resistance in companion animals poses significant risks to animal and human health. Prolonged antimicrobial drug (AMD) treatment in animals is a potential source of selection pressure for antimicrobial resistance (AMR) including in the gastrointestinal microbiota. We performed a prospective study of dogs treated for septic peritonitis, pyometra, or bacterial pneumonia and collected repeated fecal samples over 60 days. Bacterial cultures and direct molecular analyses of fecal samples were performed including targeted resistance gene profiling. Results Resistant Escherichia coli increased after 1 week of treatment (D1:21.4% vs. D7:67.9% P < 0.001) and returned to baseline proportions by D60 (D7:67.9% vs D60:42.9%, P = 0.04). Dogs with septic peritonitis were hospitalized significantly longer than those with pneumonia or pyometra. Based on genetic analysis, Simpson’s diversity index significantly decreased after 1 week of treatment (D1 to D7, P = 0.008), followed by a gradual increase to day 60 (D1 and D60, P = 0.4). Detection of CTX-M was associated with phenotypic resistance to third-generation cephalosporins in E. coli (OR 12.1, 3.3–68.0, P < 0.001). Lincosamide and macrolide-resistance genes were more frequently recovered on days 14 and 28 compared to day 1 (P = 0.002 and P = 0.004 respectively). Conclusion AMR was associated with prescribed drugs but also developed against AMDs not administered during the study. Companion animals may be reservoirs of zoonotic multidrug resistant pathogens, suggesting that veterinary AMD stewardship and surveillance efforts should be prioritized. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00178-9.
Collapse
Affiliation(s)
- Julie Menard
- Department of Veterinary Diagnostic and Clinical Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Patrick Mitchell
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yufan Yang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sarah Robbins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rebecca J Franklin-Guild
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Anil J Thachil
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Renee Anderson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gregory G Putzel
- Microbiome Core Lab and Jill Roberts IBD Institute, Weill Cornell Medicine, Cornell University, New York City, NY, USA
| | - Holly McQueary
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Laura B Goodman
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
30
|
Sung CH, Marsilio S, Chow B, Zornow KA, Slovak JE, Pilla R, Lidbury JA, Steiner JM, Park SY, Hong MP, Hill SL, Suchodolski JS. Dysbiosis index to evaluate the fecal microbiota in healthy cats and cats with chronic enteropathies. J Feline Med Surg 2022; 24:e1-e12. [PMID: 35266809 PMCID: PMC9160961 DOI: 10.1177/1098612x221077876] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Previous studies have identified various bacterial taxa that are altered in cats with chronic enteropathies (CE) vs healthy cats. Therefore, the aim of this study was to develop a targeted quantitative molecular method to evaluate the fecal microbiota of cats. METHODS Fecal samples from 80 client-owned healthy cats and 68 cats with CE were retrospectively evaluated. A panel of quantitative PCR (qPCR) assays was used to measure the fecal abundance of total bacteria and seven bacterial taxa: Bacteroides, Bifidobacterium, Clostridium hiranonis, Escherichia coli, Faecalibacterium, Streptococcus and Turicibacter. The nearest centroid classifier algorithm was used to calculate a dysbiosis index (DI) based on these qPCR abundances. RESULTS The abundances of total bacteria, Bacteroides, Bifidobacterium, C hiranonis, Faecalibacterium and Turicibacter were significantly decreased, while those of E coli and Streptococcus were significantly increased in cats with CE (P <0.027 for all). The DI in cats with CE was significantly higher compared with healthy cats (P <0.001). When the cut-off value of the DI was set at 0, it provided 77% (95% confidence interval [CI] 66-85) sensitivity and 96% (95% CI 89-99) specificity to differentiate the microbiota of cats with CE from those of healthy cats. Fifty-two of 68 cats with CE had a DI >0. CONCLUSIONS AND RELEVANCE A qPCR-based DI for assessing the fecal microbiota of cats was established. The results showed that a large proportion of cats with CE had an altered fecal microbiota as evidenced by an increased DI. Prospective studies are warranted to evaluate the utility of this assay for clinical assessment of feline CE.
Collapse
Affiliation(s)
- Chi-Hsuan Sung
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Sina Marsilio
- UC Davis School of Veterinary Medicine, Department of Veterinary Medicine and Epidemiology, University of California-Davis, Davis, CA, USA
| | - Betty Chow
- Veterinary Specialty Hospital, San Diego, CA, USA
- VCA Animal Specialty and Emergency Center, Los Angeles, CA, USA
| | | | | | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - So Young Park
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Min-Pyo Hong
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Steve L Hill
- Veterinary Specialty Hospital, San Diego, CA, USA
- Flagstaff Veterinary Internal Medicine Consulting, Flagstaff, AZ, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
31
|
Bottero E, Ferriani R, Benvenuti E, Ruggiero P, Astorina S, Giraldi M, Bertoldi L, Benvenuto G, Sattin E, Gianella P, Suchodolski JS. Clinical evaluation and microbiota analysis in 9 dogs with antibiotic-responsive enteropathy: A prospective comparison study. J Vet Intern Med 2022; 36:1220-1228. [PMID: 35621056 PMCID: PMC9308422 DOI: 10.1111/jvim.16443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/27/2022] [Indexed: 12/28/2022] Open
Abstract
Background Antibiotic‐responsive enteropathy (ARE) is diagnosed by excluding other causes of diarrhea and when there is a short‐term response to administration of antibiotics. Objectives To characterize the gut microbiota and clinical trend of dogs with suspected ARE and to evaluate the variation in microbiota before (T0), after 30 days (T30) of tylosin treatment, and 30 days after discontinuation of treatment (T60). A further objective was to evaluate whether changes in gut microbiota are related to relapses of diarrhea when the therapy is tapered. Animals Study sample (group A) was composed of 15 dogs with chronic diarrhea, group B was composed of 15 healthy dogs. Group A was given tylosin for 30 days. Methods A multicentric prospective study. Clinical Indexes, fecal score, and samples for microbiota analysis were collected at T0, T30, and T60 in group A and T0 and T30 in group B. The gut microbiota was analyzed via 16S ribosomal RNA gene. Qiime2 version 2020.2 was used to perform bioinformatic analyses, and Alpha‐ and Beta‐diversity were computed. Results Diarrhea recurred after T30 in 9 of 14 dogs, which were classified as affected by ARE. At T0, a difference was noted in the beta‐diversity between groups (Bray Curtis metric P = .006). A T0‐T30 difference in alpha‐diversity was noted in group A (Shannon index P = .001, Faith PD P = .007). Conclusions and Clinical Importance Although tylosin influences the microbiota of dogs with ARE, we failed to find any specific characteristic in the microbiota of dogs with ARE.
Collapse
Affiliation(s)
- Enrico Bottero
- Endovet Group, Rome, Italy.,Ospedale Veterinario San Francesco, Milan, Italy
| | - Riccardo Ferriani
- Endovet Group, Rome, Italy.,Ospedale Veterinario San Francesco, Milan, Italy
| | | | | | - Simona Astorina
- Endovet Group, Rome, Italy.,Clinica Veterinaria Città di Catania, Catania, Italy
| | | | | | | | | | - Paola Gianella
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
32
|
Araki R, Iwanaga K, Ueda K, Shima A, Ishihara G, Aizu M, Fukayama T, Isaka M. Comparison of Intestinal Microbiota Between Healthy and MMVD Chihuahuas Using 16S rRNA Gene Amplicon Sequencing. Front Vet Sci 2022; 9:846492. [PMID: 35433906 PMCID: PMC9007596 DOI: 10.3389/fvets.2022.846492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Myxomatous mitral valve disease (MMVD) is the most common cause of congestive heart failure in dogs, and although complications of MMVD to the lungs and kidneys have been identified, complications to the gut are less well understood. The intestinal microbiota is an important factor in the gut, and although the association between heart disease and the intestinal microbiota has been shown in human medicine, it is unknown in dogs. The study aimed to evaluate the relationship between MMVD and gut microbiota. A total of 69 healthy Chihuahuas and Chihuahuas with MMVD were evaluated for cardiac health by echocardiography and chest radiography and grouped according to ACVIM guidelines. Fecal samples were collected from all cases and 16S rRNA sequencing was used to reveal the intestinal microbiota. There were significant differences in LA/Ao, LVIDd, E vel, VHS, and VLAS with the severity of ACVIM. On the other hand, there were no significant differences in the diversity and composition of gut microbiota among the groups. The present study did not identify the effects of MMVD on the gut microbiota.
Collapse
Affiliation(s)
- Ryuji Araki
- Yokohama Yamate Dog & Cat Medical Center, Yokohama, Japan
- Tokyo Veterinary Cardiology Center, Tokyo, Japan
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Koji Iwanaga
- Tokyo Veterinary Cardiology Center, Tokyo, Japan
| | - Kazunori Ueda
- Yokohama Yamate Dog & Cat Medical Center, Yokohama, Japan
| | | | | | | | | | - Mitsuhiro Isaka
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
- *Correspondence: Mitsuhiro Isaka
| |
Collapse
|
33
|
Sato-Takada K, Flemming AM, Voordouw MJ, Carr AP. Parvovirus enteritis and other risk factors associated with persistent gastrointestinal signs in dogs later in life: a retrospective cohort study. BMC Vet Res 2022; 18:96. [PMID: 35277172 PMCID: PMC8915519 DOI: 10.1186/s12917-022-03187-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/24/2022] [Indexed: 11/12/2022] Open
Abstract
Background Parvoviral enteritis (PE) is a viral gastrointestinal (GI) infection of dogs. Recovery from PE has been associated with persistent GI signs later in life. The objectives of this study were: (i) To determine whether dogs that have recovered from PE (post-parvo dogs) had an increased risk of persistent GI signs compared to uninfected control dogs. (ii) To investigate the lifestyle and clinicopathologic factors that are associated with persistent GI signs in post-parvo dogs. Methods A total of 86 post-parvo dogs and 52 age-matched control dogs were enrolled in this retrospective cohort study. Many years after hospitalization for PE, the owners were interviewed about the health and habits of their dogs using a questionnaire. We used generalized linear mixed effects models to test whether parvovirus enteritis and other risk factors are associated with owner-recognized general health problems in all dogs and with owner-recognized persistent GI signs in post-parvo dogs. Results The prevalence of persistent GI signs was significantly higher in post-parvo dogs compared to control dogs (57% vs 25%, P < 0.001). Markers of disease severity at the time of hospital admission such as neutropenia, low body temperature (BT), and treatment with an antiemetic medication (metoclopramide) were significant risk factors for persistent GI signs in post-parvo dogs. For example, PE-affected dogs that were hypothermic at hospital admission (BT of 37.2 °C) were 16.6 × more likely to have GI signs later in life compared to hyperthermic dogs (BT of 40.4 °C). The presence of persistent GI signs in post-parvo dogs was a risk factor for health problems in other organ systems. Conclusions Parvovirus enteritis is a significant risk factor for persistent GI signs in dogs highlighting the importance of prevention. The risk factors identified in the present study may guide future investigations on the mechanisms that link parvovirus enteritis to chronic health problems in dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03187-7.
Collapse
|
34
|
Lappin MR, Zug A, Hovenga C, Gagne J, Cross E. Efficacy of feeding a diet containing a high concentration of mixed fiber sources for management of acute large bowel diarrhea in dogs in shelters. J Vet Intern Med 2022; 36:488-492. [PMID: 35174561 PMCID: PMC8965269 DOI: 10.1111/jvim.16360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Background Use of diets with increased concentrations of dietary fiber is thought to be beneficial in the management of dogs with large bowel diarrhea. Objective To determine whether feeding a diet with high concentrations of soluble and insoluble fiber to dogs with acute colitis would be superior to feeding a diet with typical fiber levels. Animals A total of 52 dogs with acute signs of large bowel diarrhea housed in an animal shelter were entered into the study; 11 dogs per diet completed the protocol. Methods In this randomized, prospective study, dogs with a fecal score of 4, 5, 6, or 7 and signs of acute colitis were fed a high fiber diet (4.54% soluble; 15.16% insoluble fiber) or a standard diet (0.6% soluble; 5.33% insoluble fiber) and fecal scores compared over the course of the study with significance defined as P < .05. Results All dogs fed the high fiber diet (11/11; 100%) had a fecal score <5 on the day of adoption or day 9, which was statistically different (P < .04) than dogs fed the standard diet (6/11 dogs; 55%; 95% CI: 23‐83). The proportions of stools with a fecal score >4 were greater (P = .0001) in the dogs fed the standard diet (29/48 samples; 60%; 95% CI: 45‐74) compared to the high fiber diet (8/50 samples; 16%; 95% CI: 7‐29). Conclusions and Clinical Importance The results support feeding the high fiber diet described herein to dogs with acute large bowel diarrhea.
Collapse
Affiliation(s)
- Michael R Lappin
- Department of Clinical Sciences, Center for Companion Animal Studies, Colorado State University, Fort Collins, Colorado, USA
| | - Amy Zug
- Department of Clinical Sciences, Center for Companion Animal Studies, Colorado State University, Fort Collins, Colorado, USA
| | - Claire Hovenga
- Department of Clinical Sciences, Center for Companion Animal Studies, Colorado State University, Fort Collins, Colorado, USA
| | - Jason Gagne
- Nestle Purina PetCare, St. Louis, Missouri, USA
| | - Emily Cross
- Nestle Purina PetCare, St. Louis, Missouri, USA
| |
Collapse
|
35
|
Eguchi A, Mizukami S, Nakamura M, Masuda S, Murayama H, Kawashima M, Inohana M, Nagahara R, Kobayashi M, Yamashita R, Uomoto S, Makino E, Ohtsuka R, Takahashi N, Hayashi SM, Maronpot RR, Shibutani M, Yoshida T. Metronidazole enhances steatosis-related early-stage hepatocarcinogenesis in high fat diet-fed rats through DNA double-strand breaks and modulation of autophagy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:779-789. [PMID: 34341928 DOI: 10.1007/s11356-021-15689-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease is a hepatic disorder with deposition of fat droplets and has a high risk of progression to steatosis-related hepatitis and irreversible hepatic cancer. Metronidazole (MNZ) is an antiprotozoal and antimicrobial agent widely used to treat patients infected with anaerobic bacteria and intestinal parasites; however, MNZ has also been shown to induce liver tumors in rodents. To investigate the effects of MNZ on steatosis-related early-stage hepatocarcinogenesis, male rats treated with N-nitrosodiethylamine following 2/3 hepatectomy at week 3 were received a control basal diet, high fat diet (HFD), or HFD containing 0.5% MNZ. The HFD induced obesity and steatosis in the liver, accompanied by altered expression of Pparg and Fasn, genes related to lipid metabolism. MNZ increased nuclear translocation of lipid metabolism-related transcription factor peroxisome proliferator-activated receptor gamma in hepatocytes, together with altered liver expression of lipid metabolism genes (Srebf1, Srebf2, Pnpla2). Furthermore, MNZ significantly increased the number of preneoplastic liver foci, accompanied by DNA double-strand breaks and late-stage autophagy inhibition, as reflected by increased levels of γ-H2AX, LC3, and p62. Therefore, MNZ could induce steatosis-related hepatocarcinogenesis by inducing DNA double-strand breaks and modulating autophagy in HFD-fed rats.
Collapse
Affiliation(s)
- Ayumi Eguchi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Misato Nakamura
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Sousuke Masuda
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Hirotada Murayama
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Masashi Kawashima
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mari Inohana
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Rei Nagahara
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Risako Yamashita
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Suzuka Uomoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Emi Makino
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Ryoichi Ohtsuka
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Naofumi Takahashi
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka, 561-8588, Japan
| | | | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
36
|
Short- and long-term effects of amoxicillin/clavulanic acid or doxycycline on the gastrointestinal microbiome of growing cats. PLoS One 2021; 16:e0253031. [PMID: 34910719 PMCID: PMC8673677 DOI: 10.1371/journal.pone.0253031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Antibiotic treatment in early life influences gastrointestinal (GI) microbial composition and function. In humans, the resultant intestinal dysbiosis is associated with an increased risk for certain diseases later in life. The objective of this study was to determine the temporal effects of antibiotic treatment on the GI microbiome of young cats. Fecal samples were collected from cats randomly allocated to receive either amoxicillin/clavulanic acid (20 mg/kg q12h) for 20 days (AMC group; 15 cats) or doxycycline (10 mg/kg q24h) for 28 days (DOX group;15 cats) as part of the standard treatment of upper respiratory tract infection. In addition, feces were collected from healthy control cats (CON group;15 cats). All cats were approximately two months of age at enrolment. Samples were collected on days 0 (baseline), 20 or 28 (AMC and DOX, respectively; last day of treatment), 60, 120, and 300. DNA was extracted and sequencing of the 16S rRNA gene and qPCR assays were performed. Fecal microbial composition was different on the last day of treatment for AMC cats, and 1 month after the end of antibiotic treatment for DOX cats, compared to CON cats. Species richness was significantly greater in DOX cats compared to CON cats on the last day of treatment. Abundance of Enterobacteriales was increased, and that of Erysipelotrichi was decreased in cats of the AMC group on the last day of treatment compared to CON cats. The abundance of the phylum Proteobacteria was increased in cats of the DOX group on days 60 and 120 compared to cats of the CON group. Only minor differences in abundances between the treatment groups and the control group were present on day 300. Both antibiotics appear to delay the developmental progression of the microbiome, and this effect is more profound during treatment with amoxicillin/clavulanic acid and one month after treatment with doxycycline. Future studies are required to determine if these changes influence microbiome function and whether they have possible effects on disease susceptibility in cats.
Collapse
|
37
|
Impact of Antibiotic Therapies on Resistance Genes Dynamic and Composition of the Animal Gut Microbiota. Animals (Basel) 2021; 11:ani11113280. [PMID: 34828011 PMCID: PMC8614244 DOI: 10.3390/ani11113280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are major disruptors of the gastrointestinal microbiota, depleting bacterial species beneficial for the host health and favoring the emergence of potential pathogens. Furthermore, the intestine is a reactor of antibiotic resistance emergence, and the presence of antibiotics exacerbates the selection of resistant bacteria that can disseminate in the environment and propagate to further hosts. We reviewed studies analyzing the effect of antibiotics on the intestinal microbiota and antibiotic resistance conducted on animals, focusing on the main food-producing and companion animals. Irrespective of antibiotic classes and animal hosts, therapeutic dosage decreased species diversity and richness favoring the bloom of potential enteropathogens and the selection of antibiotic resistance. These negative effects of antibiotic therapies seem ineluctable but often were mitigated when an antibiotic was administered by parenteral route. Sub-therapeutic dosages caused the augmentation of taxa involved in sugar metabolism, suggesting a link with weight gain. This result should not be interpreted positively, considering that parallel information on antibiotic resistance selection was rarely reported and selection of antibiotic resistance is known to occur also at low antibiotic concentration. However, studies on the effect of antibiotics as growth promoters put the basis for understanding the gut microbiota composition and function in this situation. This knowledge could inspire alternative strategies to antibiotics, such as probiotics, for improving animal performance. This review encompasses the analysis of the main animal hosts and all antibiotic classes, and highlights the future challenges and gaps of knowledge that should be filled. Further studies are necessary for elucidating pharmacodynamics in animals in order to improve therapy duration, antibiotic dosages, and administration routes for mitigating negative effects of antibiotic therapies. Furthermore, this review highlights that studies on aminoglycosides are almost inexistent, and they should be increased, considering that aminoglycosides are the first most commonly used antibiotic family in companion animals. Harmonization of experimental procedures is necessary in this research field. In fact, current studies are based on different experimental set-up varying for antibiotic dosage, regimen, administration, and downstream microbiota analysis. In the future, shotgun metagenomics coupled with long-reads sequencing should become a standard experimental approach enabling to gather comprehensive knowledge on GIM in terms of composition and taxonomic functions, and of ARGs. Decorticating GIM in animals will unveil revolutionary strategies for medication and improvement of animals' health status, with positive consequences on global health.
Collapse
|
38
|
Suchodolski JS. Analysis of the gut microbiome in dogs and cats. Vet Clin Pathol 2021; 50 Suppl 1:6-17. [PMID: 34514619 PMCID: PMC9292158 DOI: 10.1111/vcp.13031] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
The gut microbiome is an important immune and metabolic organ. Intestinal bacteria produce various metabolites that influence the health of the intestine and other organ systems, including kidney, brain, and heart. Changes in the microbiome in diseased states are termed dysbiosis. The concept of dysbiosis is constantly evolving and includes changes in microbiome diversity and/or structure and functional changes (eg, altered production of bacterial metabolites). Molecular tools are now the standard for microbiome analysis. Sequencing of microbial genes provides information about the bacteria present and their functional potential but lacks standardization and analytical validation of methods and consistency in the reporting of results. This makes it difficult to compare results across studies or for individual clinical patients. The Dysbiosis Index (DI) is a validated quantitative PCR assay for canine fecal samples that measures the abundance of seven important bacterial taxa and summarizes the results as one single number. Reference intervals are established for dogs, and the DI can be used to assess the microbiome in clinical patients over time and in response to therapy (eg, fecal microbiota transplantation). In situ hybridization or immunohistochemistry allows the identification of mucosa‐adherent and intracellular bacteria in animals with intestinal disease, especially granulomatous colitis. Future directions include the measurement of bacterial metabolites in feces or serum as markers for the appropriate function of the microbiome. This article summarizes different approaches to the analysis of gut microbiota and how they might be applicable to research studies and clinical practice in dogs and cats.
Collapse
Affiliation(s)
- Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
39
|
Pereira AM, Clemente A. Dogs' Microbiome From Tip to Toe. Top Companion Anim Med 2021; 45:100584. [PMID: 34509665 DOI: 10.1016/j.tcam.2021.100584] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
Microbiota and microbiome, which refers, respectively, to the microorganisms and conjoint of microorganisms and genes are known to live in symbiosis with hosts, being implicated in health and disease. The advancements and cost reduction associated with high-throughput sequencing techniques have allowed expanding the knowledge of microbial communities in several species, including dogs. Throughout their body, dogs harbor distinct microbial communities according to the location (e.g., skin, ear canal, conjunctiva, respiratory tract, genitourinary tract, gut), which have been a target of study mostly in the last couple of years. Although there might be a core microbiota for different body sites, shared by dogs, it is likely influenced by intrinsic factors such as age, breed, and sex, but also by extrinsic factors such as the environment (e.g., lifestyle, urban vs rural), and diet. It starts to become clear that some medical conditions are mediated by alterations in microbiota namely dysbiosis. Moreover, understanding microbial colonization and function can be used to prevent medical conditions, for instance, modulation of gut microbiota of puppies is more effective to ensure a healthy gut than interventions in adults. This paper gathers current knowledge of dogs' microbial communities, exploring their function, implications in the development of diseases, and potential interactions among communities while providing hints for further research.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- University of the Azores, Faculty of Agricultural and Environmental Sciences, Institute of Agricultural and Environmental Research and Technology (IITAA). Rua Capitão João d'Ávila, Azores, Portugal.
| | - Alfonso Clemente
- Department of Physiology and Biochemistry in Animal Nutrition, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
40
|
El-Sayed A, Aleya L, Kamel M. Microbiota and epigenetics: promising therapeutic approaches? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49343-49361. [PMID: 34319520 PMCID: PMC8316543 DOI: 10.1007/s11356-021-15623-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/20/2021] [Indexed: 04/15/2023]
Abstract
The direct/indirect responsibility of the gut microbiome in disease induction in and outside the digestive tract is well studied. These results are usually from the overpopulation of certain species on the cost of others, interaction with beneficial microflora, interference with normal epigenetic control mechanisms, or suppression of the immune system. Consequently, it is theoretically possible to cure such disorders by rebalancing the microbiome inside our bodies. This can be achieved by changing the lifestyle pattern and diet or by supplementation with beneficial bacteria or their metabolites. Various approaches have been explored to manipulate the normal microbial inhabitants, including nutraceutical, supplementations with prebiotics, probiotics, postbiotics, synbiotics, and antibiotics, or through microbiome transplantation (fecal, skin, or vaginal microbiome transplantation). In the present review, the interaction between the microbiome and epigenetics and their role in disease induction is discussed. Possible future therapeutic approaches via the reestablishment of equilibrium in our internal micro-ecosystem are also highlighted.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
41
|
Inclusion of small intestinal absorption and simulated mucosal surfaces further improve the Mucosal Simulator of the Canine Intestinal Microbial Ecosystem (M-SCIME™). Res Vet Sci 2021; 140:100-108. [PMID: 34418788 DOI: 10.1016/j.rvsc.2021.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022]
Abstract
While a large set of in vitro models are available to study the effects of specific food ingredients (e.g. pre- and probiotics) on the human gut microbiome, the availability of such models for companion animals is limited. Since improving gut health of such animals is an emerging research field, the Simulator of the Canine Intestinal Microbial Ecosystem (SCIME™) was recently developed and validated with in vivo data. The current study presents a further improvement of this model by using an alternative method for feed preparation, i.e. by administering digestive enzymes to mimic upper gastro-intestinal digestion followed by a dialysis approach to mimic small intestinal absorption. As opposed to the previously implemented method, this resulted in a more optimal simulation of protein digestion and absorption. Further, upon entrance in the colon, increased production of the health-promoting butyrate and lower levels of Lactobacillus spp. and Bifidobacterium spp. were observed, which corresponded better with obtained in vivo data. A second model improvement consisted of the implementation of a mucosal environment to not only simulate luminal but also mucosal microbiota. In consistency with the human model for which this technology was previously validated, it was found that for all canine microbiota mucin beads were enriched with members of the Lachnospiraceae (~ Clostridium cluster XIVa), a family containing multiple well-known butyrate producers. The SCIME™ was thus upgraded to a so-called Mucosal SCIME™ (M-SCIME™). In conclusion, the current study presents improvements of the SCIME™, further increasing the relevance of obtained data with this in vitro model for dogs.
Collapse
|
42
|
Martínez-López LM, Perez-Gonzalez A, Washington EA, Woodward AP, Roth-Schulze AJ, Dandrieux JRS, Johnstone T, Prakash N, Jex A, Mansfield C. Hierarchical modelling of immunoglobulin coated bacteria in dogs with chronic enteropathy shows reduction in coating with disease remission but marked inter-individual and treatment-response variability. PLoS One 2021; 16:e0255012. [PMID: 34411114 PMCID: PMC8376084 DOI: 10.1371/journal.pone.0255012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic enteropathies are a common problem in dogs, but many aspects of the pathogenesis remain unknown, making the therapeutic approach challenging in some cases. Environmental factors are intimately related to the development and perpetuation of gastrointestinal disease and the gut microbiome has been identified as a contributing factor. Previous studies have identified dysbiosis and reduced bacterial diversity in the gastrointestinal microbiota of dogs with chronic enteropathies. In this case-controlled study, we use flow cytometry and 16S rRNA sequencing to characterise bacteria highly coated with IgA or IgG in faecal samples from dogs with chronic enteropathy and evaluated their correlation with disease and resolution of the clinical signs. IgA and IgG-coated faecal bacterial counts were significantly higher during active disease compared to healthy dogs and decreased with the resolution of the clinical signs. Characterisation of taxa-specific coating of the intestinal microbiota with IgA and IgG showed marked variation between dogs and disease states, and different patterns of immunoglobulin enrichment were observed in dogs with chronic enteropathy, particularly for Erysipelotrichaceae, Clostridicaceae, Enterobacteriaceae, Prevotellaceae and Bacteroidaceae, families. Although, members of these bacterial groups have been associated with strong immunogenic properties and could potentially constitute important biomarkers of disease, their significance and role need to be further investigated.
Collapse
Affiliation(s)
- Lina María Martínez-López
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Alexis Perez-Gonzalez
- Melbourne Cytometry Platform, Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | | | - Andrew P. Woodward
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | | | - Julien R. S. Dandrieux
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Thurid Johnstone
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Nathalee Prakash
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Aaron Jex
- Veterinary Biosciences, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Caroline Mansfield
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
43
|
Totzeck A, Ramakrishnan E, Schlag M, Stolte B, Kizina K, Bolz S, Thimm A, Stettner M, Marchesi JR, Buer J, Kleinschnitz C, Verhasselt HL, Hagenacker T. Gut bacterial microbiota in patients with myasthenia gravis: results from the MYBIOM study. Ther Adv Neurol Disord 2021; 14:17562864211035657. [PMID: 34394728 PMCID: PMC8361534 DOI: 10.1177/17562864211035657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Myasthenia gravis (MG) is an autoimmune neuromuscular disease, with gut microbiota considered to be a pathogenetic factor. Previous pilot studies have found differences in the gut microbiota of patients with MG and healthy individuals. To determine whether gut microbiota has a pathogenetic role in MG, we compared the gut microbiota of patients with MG with that of patients with non-inflammatory and inflammatory neurological disorders of the peripheral nervous system (primary endpoint) and healthy volunteers (secondary endpoint). Methods: Faecal samples were collected from patients with MG (n = 41), non-inflammatory neurological disorder (NIND, n = 18), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 6) and healthy volunteers (n = 12). DNA was isolated from these samples, and the variable regions of the 16S rRNA gene were sequenced and statistically analysed. Results: No differences were found in alpha- and beta-diversity indices computed between the MG, NIND and CIDP groups, indicating an unaltered bacterial diversity and structure of the microbial community. However, the alpha-diversity indices, namely Shannon, Chao 1 and abundance-based coverage estimators, were significantly reduced between the MG group and healthy volunteers. Deltaproteobacteria and Faecalibacterium were abundant within the faecal microbiota of patients with MG compared with controls with non-inflammatory diseases. Conclusion: Although the overall diversity and structure of the gut microbiota did not differ between the MG, NIND and CIDP groups, the significant difference in the abundance of Deltaproteobacteria and Faecalibacterium supports the possible role of gut microbiota as a contributor to pathogenesis of MG. Further studies are needed to confirm these findings and to develop possible treatment strategies.
Collapse
Affiliation(s)
- Andreas Totzeck
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr 55, Essen, 45147, Germany
| | - Elakiya Ramakrishnan
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melina Schlag
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benjamin Stolte
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Kizina
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Saskia Bolz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Thimm
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Julian R Marchesi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
44
|
Bermudez Sanchez S, Pilla R, Sarawichitr B, Gramenzi A, Marsilio F, Steiner JM, Lidbury JA, Woods GRT, Suchodolski JS, German AJ. Untargeted fecal metabolome analysis in obese dogs after weight loss achieved by feeding a high-fiber-high-protein diet. Metabolomics 2021; 17:66. [PMID: 34228201 PMCID: PMC8260550 DOI: 10.1007/s11306-021-01815-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION In humans and companion animals, obesity is accompanied by metabolic derangements. Studies have revealed differences in the composition of the fecal microbiome between obese dogs and those with an ideal body weight. OBJECTIVES We have previously reported that the fecal microbiome in obese dogs changes after controlled weight reduction, induced by feeding a diet high in fiber and protein. Despite these findings, it is unclear if taxonomic differences infer differences at the functional level between obese dogs and those with an ideal body weight. METHODOLOGY Untargeted fecal metabolome analysis was performed on dogs with obesity before and after weight loss achieved by feeding a high-fiber-high-protein diet. RESULTS Fecal metabolome analysis revealed a total of 13 compounds that changed in concentration in obese dogs after weight loss. Of these compounds, metabolites associated with bacterial metabolism decreased after weight loss including purine, L-(-)-methionine, coumestrol, and the alkaloids 1-methylxanthine and trigonelline. Conversely, the polyphenols (-)-epicatechin and matairesinol and the quinoline derivatives 1,5-isoquinolinediol and 2-hydroxiquinoline increased after weight loss. CONCLUSION These results suggest differences in intestinal microbiome at the functional level after weight loss, but further studies are needed to determine the role of these compounds in the etiology of obesity and weight loss.
Collapse
Affiliation(s)
- Sandra Bermudez Sanchez
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
- Veterinary Medicine Sciences, University of Teramo, Teramo, Italy.
| | - Rachel Pilla
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Benjamin Sarawichitr
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Fulvio Marsilio
- Veterinary Medicine Sciences, University of Teramo, Teramo, Italy
| | - Joerg M Steiner
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Georgiana R T Woods
- Institute of Life Course and Medical Sciences, University of Liverpool, Leahurst, Neston, UK
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alexander J German
- Institute of Life Course and Medical Sciences, University of Liverpool, Leahurst, Neston, UK
| |
Collapse
|
45
|
Whittemore JC, Price JM, Moyers T, Suchodolski JS. Effects of Synbiotics on the Fecal Microbiome and Metabolomic Profiles of Healthy Research Dogs Administered Antibiotics: A Randomized, Controlled Trial. Front Vet Sci 2021; 8:665713. [PMID: 34124225 PMCID: PMC8187564 DOI: 10.3389/fvets.2021.665713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Antibiotic-associated gastrointestinal signs occurred in 100% of dogs administered enrofloxacin with metronidazole in a previous study, and signs partially were mitigated by synbiotics. The objective of this randomized, double-blinded, placebo-controlled trial was to compare the fecal microbiome and metabolome of dogs administered enrofloxacin and metronidazole, followed by either a placebo or a bacterial/yeast synbiotic combination. Methods: Twenty-two healthy research dogs were randomized to two treatment groups. There were three study periods: baseline, treatment, and washout. Dogs were administered enrofloxacin (10 mg/kg qd) and metronidazole (12.5 mg/kg BID), followed 1 h later by placebo or a commercially-available synbiotic combination (BID), per os for 21 days with reevaluation 56 days thereafter. Fecal samples were collected on days 5–7 (baseline), 26–28, and 82–84. The fecal microbiome was analyzed by qPCR and sequencing of 16S rRNA genes; time-of-flight mass spectrometry was used to determine metabolomic profiles. Split plot repeated measures mixed model ANOVA was used to compare results between treatment groups. P < 0.05 was considered significant, with Benjamini and Hochberg's False Discovery Rate used to adjust for multiple comparisons. Results: Alpha diversity metrics differed significantly over time in both treatment groups, with incomplete recovery by days 82–84. Beta diversity and the dysbiosis index differed significantly over time and between treatment groups, with incomplete recovery at days 82–84 for dogs in the placebo group. Significant group-by-time interactions were noted for 15 genera, including Adlercreutzia, Bifidobacterium, Slackia, Turicibacter, Clostridium (including C. hiranonis) [Ruminococcus], Erysipelotrichaceae_g_, [Eubacterium], and Succinivibrionaceae_g_. Concurrent group and time effects were present for six genera, including Collinsella, Ruminococcaceae_g_, and Prevotella. Metabolite profiles differed significantly by group-by-time, group, and time for 28, 20, and 192 metabolites, respectively. These included short-chain fatty acid, bile acid, tryptophan, sphingolipid, benzoic acid, and cinnaminic acid metabolites, as well as fucose and ethanolamine. Changes in many taxa and metabolites persisted through days 82–84. Conclusion: Antibiotic administration causes sustained dysbiosis and dysmetabolism in dogs. Significant group-by-time interactions were noted for a number of taxa and metabolites, potentially contributing to decreased antibiotic-induced gastrointestinal effects in dogs administered synbiotics.
Collapse
Affiliation(s)
- Jacqueline C Whittemore
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Joshua M Price
- Office of Information Technology, University of Tennessee, Knoxville, TN, United States
| | - Tamberlyn Moyers
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Jan S Suchodolski
- The Gastrointestinal Laboratory, Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
46
|
Comparison of the Therapeutic Effect of Treatment with Antibiotics or Nutraceuticals on Clinical Activity and the Fecal Microbiome of Dogs with Acute Diarrhea. Animals (Basel) 2021; 11:ani11061484. [PMID: 34063855 PMCID: PMC8223982 DOI: 10.3390/ani11061484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Acute diarrhea in dogs is one of the most common reasons for veterinary visits. Although this disorder is generally self-limiting, antibiotics are still frequently used as treatment for acute diarrhea in clinical practice. Antimicrobial resistance represents a major challenge for public health and requires immediate and drastic solutions. To date, the emergence and spread of antimicrobial resistance has been attributed to the misuse or indiscriminate use of antibiotics. The aim of this study is to compare the effects on clinical activity and fecal microbiota of the administration of an antibiotic combination in comparison to a nutraceutical product in dogs with acute non-hemorrhagic diarrhea. The results of the present study suggest that this nutraceutical treatment had a similar clinical effect compared to the antibiotic formulation and may represent an alternative to commonly used antimicrobial therapy. Abstract Dogs with acute diarrhea are often presented to clinical practice and, although this generally represents a self-limiting condition, antibiotics are still frequently used as treatment. The aim of this study was to evaluate the effects in dogs with acute non-hemorrhagic diarrhea of the administration of an antibiotic combination in comparison to a nutraceutical product. Thirty dogs were enrolled and randomly assigned to two groups: 15 dogs (group A) received a nutraceutical commercial product while 15 dogs (group B) received an antimicrobial combination of metronidazole and spiramycin. For each dog, the Canine Acute Diarrhea Severity Index, the fecal microbiota and the Dysbiosis Index were assessed. Both stool consistency and frequency decreased on day 2 in the dogs of group A compared to baseline, while in group B, these parameters significantly decreased at days 3 and 4. The global concern for rising antibiotic resistance associated with indiscriminate use of antimicrobials, in both humans and animals, suggests the necessity of avoiding empirical and injudicious use of these molecules in diarrheic dogs. These results suggest that the nutraceutical treatment had a similar clinical effect compared to the antibiotic formulation, representing a valid antibiotic-sparing therapeutic approach in canine acute diarrhea.
Collapse
|
47
|
Werner M, Unterer S. [Use of antimicrobials in acute canine diarrhea - overview of potential risks, indications and alternatives]. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2021; 49:110-120. [PMID: 33902119 DOI: 10.1055/a-1395-2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In Germany, antibiotics are frequently used in dogs with gastrointestinal disorders such as acute diarrhea. In line with global efforts to limit antibiotic use, this literature review aims to provide a guideline for the rational and judicious use of antibiotics in acute canine diarrhea. Antibiotics can lead to gastrointestinal side effects and may exert a negative influence on the intestinal microbiota in addition to increasing the occurrence of resistant bacteria. There is also evidence that chronic immunological diseases may be triggered by the administration of antibiotics. Therefore, these should not be administered in uncomplicated acute diarrhea without signs of sepsis or systemic inflammatory reaction. In addition, enteropathogenic bacteria usually do not play a role in the etiology of acute diarrhea. For select clinical entities such as acute hemorrhagic diarrhea syndrome, antibiotic therapy should only be recommended in cases displaying signs of bacterial translocation with subsequent sepsis. In the case of parvovirosis, on the other hand, the administration of antibiotics is unavoidable due to the immunological incompetence of the dog caused by the accompanying severe neutropenia.
Collapse
Affiliation(s)
- Melanie Werner
- Medizinische Kleintierklinik, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Stefan Unterer
- Medizinische Kleintierklinik, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| |
Collapse
|
48
|
Ciuca L, Pepe P, Bosco A, Caccio SM, Maurelli MP, Sannella AR, Vismarra A, Cringoli G, Kramer L, Rinaldi L, Genchi M. Effectiveness of Fenbendazole and Metronidazole Against Giardia Infection in Dogs Monitored for 50-Days in Home-Conditions. Front Vet Sci 2021; 8:626424. [PMID: 33842570 PMCID: PMC8032893 DOI: 10.3389/fvets.2021.626424] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/27/2021] [Indexed: 12/20/2022] Open
Abstract
A field trial performed in-home conditions was conducted on 24 dogs naturally infected with Giardia, in order to compare the efficacy of fenbendazole and metronidazole. Animals were allocated in groups randomly in order to obtain two groups of 12 dogs each with similar parasitic loads of Giardia cysts: dogs in Group A were treated with fenbendazole (Panacur®, Intervet Italia Srl) administered at the dose of 50 mg/kg orally once a day for 5 consecutive days, dogs in Group B were treated with metronidazole (Flagyl®, Zambon Italia Srl) administered orally at the dose of 50 mg/kg, once a day for 5 consecutive days. All the dogs that were shedding Giardia cysts after the first treatment (Day 0) were retreated (either at Day 7 or at Day 14 or at Day 21) until a negative result was obtained with the same treatment. Additionally, all the dogs were re-examined at Day 50. All the dogs were tested for the presence of Giardia cysts using a fecal flotation method (FLOTAC). The percent efficacy of the treatments (A and B) was calculated at each sampling point (Days 7, 14, 21, and 50) as reduction in mean Giardia cysts. After the first therapy, on day 7, 4/12 (33.3%) dogs tested positive for Giardia cysts in the Group A and 5/12 (41.7%) in the Group B. Efficacies at (Days 7, 14, 21, and 50) of the treatments against Giardia infection were 80.9, 94, 100, and 97% in the Group A and 70.8, 99, 100, and 97.1% in the Group B. Statistically significant differences were not observed between the efficacy of Fenbendazole and Metronidazole against infection by G. duodenalis (P = 0.686). Molecular analysis revealed full homology (i.e., 100% with JN416550) with the canine specific assemblage D in six positive dogs. Different hypotheses might explain the re-appearance of the Giardia cysts in some dogs after treatment, e.g., re-infection from the home environment, the correct medication given by the owners, the diet, as well as treatment failure, but also biological issues related to the intermittent excretion of Giardia cysts.
Collapse
Affiliation(s)
- Lavinia Ciuca
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Paola Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Antonio Bosco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Simone Mario Caccio
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Paola Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Anna Rosa Sannella
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Alice Vismarra
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Laura Kramer
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Marco Genchi
- Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
49
|
Franzin M, Stefančič K, Lucafò M, Decorti G, Stocco G. Microbiota and Drug Response in Inflammatory Bowel Disease. Pathogens 2021; 10:211. [PMID: 33669168 PMCID: PMC7919657 DOI: 10.3390/pathogens10020211] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
A mutualistic relationship between the composition, function and activity of the gut microbiota (GM) and the host exists, and the alteration of GM, sometimes referred as dysbiosis, is involved in various immune-mediated diseases, including inflammatory bowel disease (IBD). Accumulating evidence suggests that the GM is able to influence the efficacy of the pharmacological therapy of IBD and to predict whether individuals will respond to treatment. Additionally, the drugs used to treat IBD can modualate the microbial composition. The review aims to investigate the impact of the GM on the pharmacological therapy of IBD and vice versa. The GM resulted in an increase or decrease in therapeutic responses to treatment, but also to biotransform drugs to toxic metabolites. In particular, the baseline GM composition can help to predict if patients will respond to the IBD treatment with biologic drugs. On the other hand, drugs can affect the GM by incrementing or reducing its diversity and richness. Therefore, the relationship between the GM and drugs used in the treatment of IBD can be either beneficial or disadvantageous.
Collapse
Affiliation(s)
- Martina Franzin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Katja Stefančič
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (K.S.); (G.S.)
| | - Marianna Lucafò
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (K.S.); (G.S.)
| |
Collapse
|
50
|
Prosberg MV, Kringel H, Kapel JS, Kapel BS, Fredensborg BL, Petersen AM, Hansen LH, Nielsen DS, Kapel HS, Jacobsen KR, Mikkelsen LF, Kapel CMO. Pre-clinical evaluation of the effect of co-medication with antibiotics and oral steroids in Göttingen Minipigs on the biological activity of the probiotic medicinal product TSO (Trichuris suis ova). Parasitol Res 2021; 120:743-746. [PMID: 33409625 DOI: 10.1007/s00436-020-07004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
The probiotic medicinal product TSO (Trichuris suis ova) is administered to patients with active ulcerative colitis in an ongoing clinical phase IIb trial where the typical co-medications are steroids (prednisolone or budesonide) and antibiotics (e.g., phenoxymethylpenicillin). The present pre-clinical study evaluates the effects of these co-medications on the biological activity of TSO in Göttingen Minipigs. This translationally relevant pre-clinical model allows administration of TSO with and without oral steroids or antibiotics in a manner similar to the administration to patients, followed by quantification of the biological activity of TSO. The biological activity of TSO was not affected by oral steroids but was reduced by oral antibiotics. Fecal calprotectin, the common marker of intestinal inflammation in patients with UC, did not differ between groups.
Collapse
Affiliation(s)
- M V Prosberg
- Department of Gastroenterology, Copenhagen University Hospital Hvidovre, Kettegaard Allé 30, 2650, Hvidovre, Denmark
| | - H Kringel
- ParaTech A/S, Dr. Neergaards Vej 3, 2970, Hoersholm, Denmark.
| | - J S Kapel
- ParaTech A/S, Dr. Neergaards Vej 3, 2970, Hoersholm, Denmark
| | - B S Kapel
- ParaTech A/S, Dr. Neergaards Vej 3, 2970, Hoersholm, Denmark
| | - B L Fredensborg
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A M Petersen
- Department of Gastroenterology, Copenhagen University Hospital Hvidovre, Kettegaard Allé 30, 2650, Hvidovre, Denmark.,Department of Microbiology, Copenhagen University Hospital Hvidovre, Kettegaard Allé 30, 2650, Hvidovre, Denmark
| | - L H Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - D S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - H S Kapel
- ParaTech A/S, Dr. Neergaards Vej 3, 2970, Hoersholm, Denmark
| | - K R Jacobsen
- Ellegaard Göttingen Minipigs A/S, Soroe Landevej 302, 4261, Dalmose, Denmark
| | - L F Mikkelsen
- Ellegaard Göttingen Minipigs A/S, Soroe Landevej 302, 4261, Dalmose, Denmark
| | - C M O Kapel
- ParaTech A/S, Dr. Neergaards Vej 3, 2970, Hoersholm, Denmark.,Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|