1
|
Wan Yusuf, WN, Tang, SP, Mohd Ashari, and NS, Abd Aziz CB. Use of Honey in Immune Disorders and Human Immunodeficiency Virus. HONEY 2023:235-249. [DOI: 10.1002/9781119113324.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
2
|
Al-Kafaween MA, Alwahsh M, Mohd Hilmi AB, Abulebdah DH. Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12020337. [PMID: 36830249 PMCID: PMC9952753 DOI: 10.3390/antibiotics12020337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Honey is considered to be a functional food with health-promoting properties. However, its potential health benefits can be affected by individual composition that varies between honey types. Although studies describing the health benefits of Tualang honey (TH), Kelulut honey (KH), and Sidr honey (SH) are scarce, these honey types showed a comparable therapeutic efficacy to Manuka honey (MH). The purpose of this review is to characterise the physicochemical, biological, and therapeutic properties of TH, KH, and SH. Findings showed that these honeys have antibacterial, antifungal, antiviral, antioxidant, antidiabetic, antiobesity, anticancer, anti-inflammatory and wound-healing properties and effects on the cardiovascular system, nervous system, and respiratory system. The physicochemical characteristics of TH, KH, and SH were compared with MH and discussed, and results showed that they have high-quality contents and excellent biological activity sources. Flavonoids and polyphenols, which act as antioxidants, are two main bioactive molecules present in honey. The activity of honey depends on the type of bee, sources of nectar, and the geographic region where the bees are established. In conclusion, TH, KH, and SH could be considered as natural therapeutic agents for various medicinal purposes compared with MH. Therefore, TH, KH, and SH have a great potential to be developed for modern medicinal use.
Collapse
Affiliation(s)
- Mohammad A. Al-Kafaween
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
- Correspondence: (M.A.A.-K.); (A.B.M.H.); Tel.: +6-099988548 (A.B.M.H.); Fax: +6-096687896 (A.B.M.H.)
| | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Abu Bakar Mohd Hilmi
- Department of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
- Correspondence: (M.A.A.-K.); (A.B.M.H.); Tel.: +6-099988548 (A.B.M.H.); Fax: +6-096687896 (A.B.M.H.)
| | - Dina H. Abulebdah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
3
|
Asma ST, Bobiş O, Bonta V, Acaroz U, Shah SRA, Istanbullugil FR, Arslan-Acaroz D. General Nutritional Profile of Bee Products and Their Potential Antiviral Properties against Mammalian Viruses. Nutrients 2022; 14:nu14173579. [PMID: 36079835 PMCID: PMC9460612 DOI: 10.3390/nu14173579] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Bee products have been extensively employed in traditional therapeutic practices to treat several diseases and microbial infections. Numerous bioactive components of bee products have exhibited several antibacterial, antifungal, antiviral, anticancer, antiprotozoal, hepatoprotective, and immunomodulatory properties. Apitherapy is a form of alternative medicine that uses the bioactive properties of bee products to prevent and/or treat different diseases. This review aims to provide an elaborated vision of the antiviral activities of bee products with recent advances in research. Since ancient times, bee products have been well known for their several medicinal properties. The antiviral and immunomodulatory effects of bee products and their bioactive components are emerging as a promising alternative therapy against several viral infections. Numerous studies have been performed, but many clinical trials should be conducted to evaluate the potential of apitherapy against pathogenic viruses. In that direction, here, we review and highlight the potential roles of bee products as apitherapeutics in combating numerous viral infections. Available studies validate the effectiveness of bee products in virus inhibition. With such significant antiviral potential, bee products and their bioactive components/extracts can be effectively employed as an alternative strategy to improve human health from individual to communal levels as well.
Collapse
Affiliation(s)
- Syeda Tasmia Asma
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Otilia Bobiş
- Department of Beekeeping and Sericulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: (O.B.); (U.A.)
| | - Victoriţa Bonta
- Department of Beekeeping and Sericulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- Correspondence: (O.B.); (U.A.)
| | - Syed Rizwan Ali Shah
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Fatih Ramazan Istanbullugil
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Damla Arslan-Acaroz
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| |
Collapse
|
4
|
Rahman MM, Islam MR, Akash S, Mim SA, Rahaman MS, Emran TB, Akkol EK, Sharma R, Alhumaydhi FA, Sweilam SH, Hossain ME, Ray TK, Sultana S, Ahmed M, Sobarzo-Sánchez E, Wilairatana P. In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective. Front Cell Infect Microbiol 2022; 12:929430. [PMID: 36072227 PMCID: PMC9441699 DOI: 10.3389/fcimb.2022.929430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/03/2022] [Indexed: 12/07/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a substantial number of deaths around the world, making it a serious and pressing public health hazard. Phytochemicals could thus provide a rich source of potent and safer anti-SARS-CoV-2 drugs. The absence of approved treatments or vaccinations continues to be an issue, forcing the creation of new medicines. Computer-aided drug design has helped to speed up the drug research and development process by decreasing costs and time. Natural compounds like terpenoids, alkaloids, polyphenols, and flavonoid derivatives have a perfect impact against viral replication and facilitate future studies in novel drug discovery. This would be more effective if collaboration took place between governments, researchers, clinicians, and traditional medicine practitioners' safe and effective therapeutic research. Through a computational approach, this study aims to contribute to the development of effective treatment methods by examining the mechanisms relating to the binding and subsequent inhibition of SARS-CoV-2 ribonucleic acid (RNA)-dependent RNA polymerase (RdRp). The in silico method has also been employed to determine the most effective drug among the mentioned compound and their aquatic, nonaquatic, and pharmacokinetics' data have been analyzed. The highest binding energy has been reported -11.4 kcal/mol against SARS-CoV-2 main protease (7MBG) in L05. Besides, all the ligands are non-carcinogenic, excluding L04, and have good water solubility and no AMES toxicity. The discovery of preclinical drug candidate molecules and the structural elucidation of pharmacological therapeutic targets have expedited both structure-based and ligand-based drug design. This review article will assist physicians and researchers in realizing the enormous potential of computer-aided drug design in the design and discovery of therapeutic molecules, and hence in the treatment of deadly diseases.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sadia Afsana Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Md. Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Tanmay Kumar Ray
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
532-nm Laser-Excited Raman Spectroscopic Evaluation of Iranian Honey. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
6
|
Seraglio SKT, Schulz M, Brugnerotto P, Silva B, Gonzaga LV, Fett R, Costa ACO. Quality, composition and health-protective properties of citrus honey: A review. Food Res Int 2021; 143:110268. [PMID: 33992369 DOI: 10.1016/j.foodres.2021.110268] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
Citrus honey is one of the most important monofloral honeys produced and consumed worldwide. This honey has pleasant sensorial characteristics, which include light color and typical aroma and flavor. Besides that, several constituents such as minerals, phenolic and volatile compounds, amino acids, sugars, enzymes, vitamins, methylglyoxal and organic acids are found in citrus honey. Moreover, potential biological properties have been associated with citrus honey. All these factors make it highly desired by consumers, increasing its market value, which can stimulates the practice of fraud. Also, citrus honey is susceptible to contamination and to inadequate processing. All these factors can compromise the quality, safety and authenticity of citrus honey. In this sense, this review aims to update and to discuss, for the first time, the data available in the literature about the physicochemical and the sensorial characteristics, composition, health properties, contamination, authenticity and adulteration of citrus honey. With this background, we aim to provide data that can guide future researches related to this honey.
Collapse
Affiliation(s)
| | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Patricia Brugnerotto
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Bibiana Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Al Naggar Y, Giesy JP, Abdel-Daim MM, Javed Ansari M, Al-Kahtani SN, Yahya G. Fighting against the second wave of COVID-19: Can honeybee products help protect against the pandemic? Saudi J Biol Sci 2021; 28:1519-1527. [PMID: 33519274 PMCID: PMC7832137 DOI: 10.1016/j.sjbs.2020.12.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus Disease (COVID-19) has infected people in 210 nations and has been declared a pandemic on March 12, 2020 by the World Health Organization (WHO). In the absence of effective treatment and/or vaccines for COVID-19, natural products of known therapeutic and antiviral activity could offer an inexpensive, effective option for managing the disease. Benefits of products of honey bees such as honey, propolis, and bee venom, against various types of diseases have been observed. Honey bees products are well known for their nutritional and medicinal values, they have been employed for ages for various therapeutic purposes. In this review, promising effects of various bee products against the emerging pandemic COVID-19 are discussed. Products of honey bees that contain mixtures of potentially active chemicals, possess unique properties that might help to protect, fight, and alleviate symptoms of COVID-19 infection.
Collapse
Affiliation(s)
- Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher weg 8, 06120 Halle (Saale), Germany
| | - John P. Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon SKS7N 5B3, Canada
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 15 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Saad N. Al-Kahtani
- Arid Land Agriculture Department, College of Agricultural Sciences & Foods, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Galal Yahya
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, 44519 Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, Kaiserslautern 67663, Germany
| |
Collapse
|
8
|
Obossou EK, Shikamoto Y, Hoshino Y, Kohno H, Ishibasi Y, Kozasa T, Taguchi M, Sakakibara I, Tonooka K, Shinozuka T, Mori K. Effect of manuka honey on human immunodeficiency virus type 1 reverse transcriptase activity. Nat Prod Res 2021; 36:1552-1557. [PMID: 33550857 DOI: 10.1080/14786419.2021.1880403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Manuka honey (MkH), derived from New Zealand manuka tree (Leptospermum scoparium), is considered a therapeutic agent owing to its antibacterial, antioxidant, antifungal, antiviral, anti-inflammatory, and wound healing activities. In this study, the inhibitory effect of five honey types, including MkH, on HIV-1 RT activity was evaluated, using an RT assay colorimetric kit, according to the manufacturer's instructions with slight modifications. MkH exerted the strongest inhibitory effect in a dose-dependent manner, with a half maximal inhibitory concentration (IC50) of approximately 14.8 mg/mL. Moreover, among the MkH constituents, methylglyoxal (MGO) and 2-methoxybenzoic acid (2-MBA) were determined to possess anti-HIV-1 RT activity. MGO and 2-MBA in MkH were identified by High Performance Liquid Chromatography (HPLC) and Liquid Chromatograph - Mass Spectrometry (LC-MS/MS). The findings suggest that the inhibitory effect of MkH on the HIV-1 RT activity is mediated by multiple constituents with different physical and chemical properties.
Collapse
Affiliation(s)
| | - Yasuo Shikamoto
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Yuki Hoshino
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Hayato Kohno
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Yukiko Ishibasi
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Tohru Kozasa
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Maho Taguchi
- Laboratory of Regulatory Sciences, Yokohama University of Pharmacy, Yokohama, Japan
| | - Iwao Sakakibara
- Department of Chinese Herbal Medicine, Yokohama University of Pharmacy, Yokohama, Japan
| | - Keiko Tonooka
- Department of Pathophysiology, Yokohama University of Pharmacy, Yokohama, Japan
| | - Tatsuo Shinozuka
- Department of Pathophysiology, Yokohama University of Pharmacy, Yokohama, Japan
| | - Kazuya Mori
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama, Japan
| |
Collapse
|
9
|
Abedi F, Ghasemi S, Farkhondeh T, Azimi-Nezhad M, Shakibaei M, Samarghandian S. Possible Potential Effects of Honey and Its Main Components Against Covid-19 Infection. Dose Response 2021; 19:1559325820982423. [PMID: 33867892 PMCID: PMC8020257 DOI: 10.1177/1559325820982423] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 01/25/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral pneumonia that is spreading rapidly worldwide. The main feature of this disease is a severe acute respiratory syndrome and caused by coronavirus 2 (SARS-CoV-2). There are several unknowns about the pathogenesis and therapeutically treatment of COVID-19 infection. In addition, available treatment protocols have not been effective in managing COVID-19 infection. It is proposed that natural anti-oxidants such as lemon, green tea, saffron, curcuma longa, etc. with high flavonoids like safranal, crocin, crocetin, catechins, resveratrol, calebin A, curcumin have therapeutic potential against viral infections. In this context, honey and its main components are being investigated as an option for patients with COVID-19. The present study may indicate that honey and its main components inhibit the entry of the virus into the host cell and its replication as well as modulate the inflammatory cascade. This review provides basic information for the possible potential effects of honey and its main components for fighting with SARS-CoV-2.
Collapse
Affiliation(s)
- Farshid Abedi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeedeh Ghasemi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Azimi-Nezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
10
|
Al-Hatamleh MAI, Hatmal MM, Sattar K, Ahmad S, Mustafa MZ, Bittencourt MDC, Mohamud R. Antiviral and Immunomodulatory Effects of Phytochemicals from Honey against COVID-19: Potential Mechanisms of Action and Future Directions. Molecules 2020; 25:E5017. [PMID: 33138197 PMCID: PMC7672575 DOI: 10.3390/molecules25215017] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
The new coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has recently put the world under stress, resulting in a global pandemic. Currently, there are no approved treatments or vaccines, and this severe respiratory illness has cost many lives. Despite the established antimicrobial and immune-boosting potency described for honey, to date there is still a lack of evidence about its potential role amid COVID-19 outbreak. Based on the previously explored antiviral effects and phytochemical components of honey, we review here evidence for its role as a potentially effective natural product against COVID-19. Although some bioactive compounds in honey have shown potential antiviral effects (i.e., methylglyoxal, chrysin, caffeic acid, galangin and hesperidinin) or enhancing antiviral immune responses (i.e., levan and ascorbic acid), the mechanisms of action for these compounds are still ambiguous. To the best of our knowledge, this is the first work exclusively summarizing all these bioactive compounds with their probable mechanisms of action as antiviral agents, specifically against SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (S.A.)
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Kamran Sattar
- Department of Medical Education, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia;
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (S.A.)
| | - Mohd Zulkifli Mustafa
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Marcelo De Carvalho Bittencourt
- Université de Lorraine, CNRS, UMR 7365, IMoPA, F-54000 Nancy, France;
- Université de Lorraine, CHRU-Nancy, Laboratoire d’Immunologie, F-54000 Nancy, France
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (S.A.)
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
11
|
Milordini G, Zacco E, Percival M, Puglisi R, Dal Piaz F, Temussi P, Pastore A. The Role of Glycation on the Aggregation Properties of IAPP. Front Mol Biosci 2020; 7:104. [PMID: 32582762 PMCID: PMC7284065 DOI: 10.3389/fmolb.2020.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Epidemiological evidence shows an increased risk for developing Alzheimer's disease in people affected by diabetes, a pathology associated with increased hyperglycemia. A potential factor that could explain this link could be the role that sugars may play in both diseases under the form of glycation. Contrary to glycosylation, glycation is an enzyme-free reaction that leads to formation of toxic advanced glycation end-products (AGEs). In diabetes, the islet amyloid polypeptide (IAPP or amylin) is found to be heavily glycated and to form toxic amyloid-like aggregates, similar to those observed for the Aβ peptides, often also heavily glycated, observed in Alzheimer patients. Here, we studied the effects of glycation on the structure and aggregation properties of IAPP with several biophysical techniques ranging from fluorescence to circular dichroism, mass spectrometry and atomic force microscopy. We demonstrate that glycation occurs exclusively on the N-terminal lysine leaving the only arginine (Arg11) unmodified. At variance with recent studies, we show that the dynamical interplay between glycation and aggregation affects the structure of the peptide, slows down the aggregation process and influences the aggregate morphology.
Collapse
Affiliation(s)
- Giulia Milordini
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Elsa Zacco
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Matthew Percival
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Rita Puglisi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Fabrizio Dal Piaz
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Pierandrea Temussi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| |
Collapse
|
12
|
Wan Yusuf WN, Wan Mohammad WMZ, Gan SH, Mustafa M, Abd Aziz CB, Sulaiman SA. Tualang honey ameliorates viral load, CD4 counts and improves quality of life in asymptomatic human immunodeficiency virus infected patients. J Tradit Complement Med 2019; 9:249-256. [PMID: 31453119 PMCID: PMC6702152 DOI: 10.1016/j.jtcme.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/28/2022] Open
Abstract
This is the first study to report on the effects of honey in asymptomatic HIV positive subjects in ameliorating CD4 count, viral load (VL) and quality of life (QOL). It is a randomized, controlled, open labelled study, comparing the effects of Tualang honey (TH) administration for six months at three different doses: 20 g (THL), 40 g (THI) or 60 g (THH) daily compared with control (no administered treatment, THC). Only asymptomatic HIV positive subjects (n=95) having CD4 count 250-600 cell/ml, not on antiretrovirals were enrolled. Blood, (together with QOL questionnaires administration) were investigated at baseline, three and six months (CD4 cell count) while VL was determined only at baseline and six months. Significant reductions in CD4 counts in THL and THC groups (p= 0.003 for both) were seen with no significant reductions in the CD4 counts in THI and THH groups (p=0.447 and 0.053 respectively). There was improvement in VL in THC and THI (130% and 32% respectively) and reductions in THL and THH (26% and 8% respectively). Within and between group analyses for VL indicated significant differences between THL and THH compared to THC. In addition, significant improvement in QOL of groups which received TH was noted. TH has the potential to improve the QOL (physical and psychological) and CD4 counts. There was a trend of lower VL in asymptomatic HIV subjects following TH administration thus supporting the possible role of TH in boosting the immune system by improving CD4 counts, causing VL reductions in HIV positive subjects.
Collapse
Affiliation(s)
- Wan Nazirah Wan Yusuf
- Pharmacology Department, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | | | - Siew Hua Gan
- School of Pharmacy, Building 2, Level 5, Room 40 (2-5-40), Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Mahiran Mustafa
- Infectious Disease Unit, Department of Medicine, Raja Perempuan Zainab II Hospital, 15586, Kota Bharu, Kelantan, Malaysia
| | - Che Badariah Abd Aziz
- Physiology Department, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Siti Amrah Sulaiman
- Pharmacology Department, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
13
|
Behbahani M. Anti-human immunodeficiency virus-1 activities of pratensein and pratensein glycoside from Alhaji maurorum and its parasite Cuscuta kotchiana. Chin J Integr Med 2017:10.1007/s11655-017-2820-2. [PMID: 29043598 DOI: 10.1007/s11655-017-2820-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To test the anti-human immunodeficiency virus (HIV) activity of pure compounds isolated from aerial part extracts of Alhaji maurorum and its parasite Cuscuta kotchiana. METHODS The anti-HIV-1 and anti-HIV-2 activities of these extracts were performed by use of quantitative polymerase chain reaction assay and high pure viral nucleic acid kit. The most active fractions against HIV-1 were detected by nuclear magnetic resonance as pratensein and pratensein glycoside respectively in A. maurorum and C. campestris. RESULTS These two extracts have low toxicity on HIV-2 replication. The 50% effective concentration for HIV-1 replication of pratensein and pratensein glycoside were 100 and 22 μg/mL, respectively. The time of addition assay showed that pratensein and pratensein glycoside were most effective when added at the early stage (0-4 h) of virus replication. CONCLUSION The pratensein glycoside inhibits HIV-1 replication in host cells more than pratensein and both extracts are potent inhibitors of HIV-1 entry.
Collapse
Affiliation(s)
- Mandana Behbahani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran.
| |
Collapse
|
14
|
Seo DJ, Choi C. Inhibition of Murine Norovirus and Feline Calicivirus by Edible Herbal Extracts. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:35-44. [PMID: 27807684 DOI: 10.1007/s12560-016-9269-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Human noroviruses (HuNoVs) cause foodborne and waterborne viral gastroenteritis worldwide. Because HuNoV culture systems have not been developed thus far, no available medicines or vaccines preventing infection with HuNoVs exist. Some herbal extracts were considered as phytomedicines because of their bioactive components. In this study, the inhibitory effects of 29 edible herbal extracts against the norovirus surrogates murine norovirus (MNV) and feline calicivirus (FCV) were examined. FCV was significantly inhibited to 86.89 ± 2.01 and 48.71 ± 7.38% by 100 μg/mL of Camellia sinensis and Ficus carica, respectively. Similarly, ribavirin at a concentration of 100 μM significantly reduced the titer of FCV by 77.69 ± 10.40%. Pleuropterus multiflorus (20 μg/mL) showed antiviral activity of 53.33 ± 5.77, and 50.00 ± 16.67% inhibition was observed after treatment with 20 μg/mL of Alnus japonica. MNV was inhibited with ribavirin by 59.22 ± 16.28% at a concentration of 100 μM. Interestingly, MNV was significantly inhibited with 150 µg/mL Inonotus obliquus and 50 μg/mL Crataegus pinnatifida by 91.67 ± 5.05 and 57.66 ± 3.36%, respectively. Treatment with 20 µg/mL Coriandrum sativum slightly reduced MNV by 45.24 ± 4.12%. The seven herbal extracts of C. sinensis, F. carica, P. multiflorus, A. japonica, I. obliquus, C. pinnatifida, and C. sativum may have the potential to control noroviruses without cytotoxicity.
Collapse
Affiliation(s)
- Dong Joo Seo
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi, 17546, South Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi, 17546, South Korea.
| |
Collapse
|
15
|
Petretto GL, Tuberoso CIG, Fenu MA, Rourke JP, Belhaj O, Pintore G. Antioxidant activity, color chromaticity coordinates, and chemical characterization of monofloral honeys from Morocco. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1230745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | | | - Omar Belhaj
- Institut Agronomique et Veterinaire Hassan II, Agdal Rabat, Morocco
| | - Giorgio Pintore
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| |
Collapse
|