1
|
Dearborn DC, Warren S, Hailer F. Meta-analysis of major histocompatibility complex (MHC) class IIA reveals polymorphism and positive selection in many vertebrate species. Mol Ecol 2022; 31:6390-6406. [PMID: 36208104 PMCID: PMC9729452 DOI: 10.1111/mec.16726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
Pathogen-mediated selection and sexual selection are important drivers of evolution. Both processes are known to target genes of the major histocompatibility complex (MHC), a gene family encoding cell-surface proteins that display pathogen peptides to the immune system. The MHC is also a model for understanding processes such as gene duplication and trans-species allele sharing. The class II MHC protein is a heterodimer whose peptide-binding groove is encoded by an MHC-IIA gene and an MHC-IIB gene. However, our literature review found that class II MHC papers on infectious disease or sexual selection included IIA data only 18% and 9% of the time, respectively. To assess whether greater emphasis on MHC-IIA is warranted, we analysed MHC-IIA sequence data from 50 species of vertebrates (fish, amphibians, birds, mammals) to test for polymorphism and positive selection. We found that the number of MHC-IIA alleles within a species was often high, and covaried with sample size and number of MHC-IIA genes assayed. While MHC-IIA variability tended to be lower than that of MHC-IIB, the difference was only ~25%, with ~3 fewer IIA alleles than IIB. Furthermore, the unexpectedly high MHC-IIA variability showed clear signatures of positive selection in most species, and positive selection on MHC-IIA was stronger in fish than in other surveyed vertebrate groups. Our findings underscore that MHC-IIA can be an important target of selection. Future studies should therefore expand the characterization of MHC-IIA at both allelic and genomic scales, and incorporate MHC-IIA into models of fitness consequences of MHC variation.
Collapse
Affiliation(s)
- Donald C Dearborn
- Biology Department, Bates College, 44 Campus Ave, Lewiston, Maine, USA,Roux Institute, Northeastern University, Fore St, Portland, Maine, USA,Co-corresponding authors: and
| | - Sophie Warren
- Biology Department, Bates College, 44 Campus Ave, Lewiston, Maine, USA,Present address: Department of Health Policy, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK
| | - Frank Hailer
- Organisms and Environment, School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK,Co-corresponding authors: and
| |
Collapse
|
2
|
O'Connor EA, Westerdahl H, Burri R, Edwards SV. Avian MHC Evolution in the Era of Genomics: Phase 1.0. Cells 2019; 8:E1152. [PMID: 31561531 PMCID: PMC6829271 DOI: 10.3390/cells8101152] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Birds are a wonderfully diverse and accessible clade with an exceptional range of ecologies and behaviors, making the study of the avian major histocompatibility complex (MHC) of great interest. In the last 20 years, particularly with the advent of high-throughput sequencing, the avian MHC has been explored in great depth in several dimensions: its ability to explain ecological patterns in nature, such as mating preferences; its correlation with parasite resistance; and its structural evolution across the avian tree of life. Here, we review the latest pulse of avian MHC studies spurred by high-throughput sequencing. Despite high-throughput approaches to MHC studies, substantial areas remain in need of improvement with regard to our understanding of MHC structure, diversity, and evolution. Recent studies of the avian MHC have nonetheless revealed intriguing connections between MHC structure and life history traits, and highlight the advantages of long-term ecological studies for understanding the patterns of MHC variation in the wild. Given the exceptional diversity of birds, their accessibility, and the ease of sequencing their genomes, studies of avian MHC promise to improve our understanding of the many dimensions and consequences of MHC variation in nature. However, significant improvements in assembling complete MHC regions with long-read sequencing will be required for truly transformative studies.
Collapse
Affiliation(s)
| | | | - Reto Burri
- Department of Population Ecology, Institute of Ecology & Evolution, Friedrich Schiller University Jena, 07737 Jena, Germany.
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Divergence between genes but limited allelic polymorphism in two MHC class II A genes in Leach's storm-petrels Oceanodroma leucorhoa. Immunogenetics 2019; 71:561-573. [PMID: 31506710 DOI: 10.1007/s00251-019-01130-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
Abstract
The major histocompatibility complex (MHC) is critical to host-pathogen interactions. Class II MHC is a heterodimer, with α and β subunits encoded by different genes. The peptide-binding groove is formed by the first domain of both subunits (α1 and β1), but studies of class II variation or natural selection focus primarily on the β subunit and II B genes. We explored MHC II A in Leach's storm-petrel, a seabird with two expressed, polymorphic II B genes. We found two II A genes, Ocle-DAA and Ocle-DBA, in contrast to the single II A gene in chicken and duck. In exon 2 which encodes the α1 domain, the storm-petrel II A genes differed strongly from each other but showed little within-gene polymorphism in 30 individuals: just one Ocle-DAA allele, and three Ocle-DBA alleles differing from each other by single non-synonymous substitutions. In a comparable sample, the two II B genes had nine markedly diverged alleles each. Differences between the α1 domains of Ocle-DAA and Ocle-DBA showed signatures of positive selection, but mainly at non-peptide-binding site (PBS) positions. In contrast, positive selection within and between the II B genes corresponded to putative PBS codons. Phylogenetic analysis of the conserved α2 domain did not reveal deep or well-supported lineages of II A genes in birds, in contrast to the pronounced differentiation of DQA, DPA, and DRA isotypes in mammals. This uncertain homology complicates efforts to compare levels of functional variation and modes of evolution of II A genes across taxa.
Collapse
|
4
|
Fu CZ, Guang XM, Wan QH, Fang SG. Genome Resequencing Reveals Congenital Causes of Embryo and Nestling Death in Crested Ibis (Nipponia nippon). Genome Biol Evol 2019; 11:2125-2135. [PMID: 31298688 PMCID: PMC6685491 DOI: 10.1093/gbe/evz149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
The crested ibis (Nipponia nippon) is endangered worldwide. Although a series of conservation measures have markedly increased the population size and distribution area of these birds, the high mortality of embryos and nestlings considerably decreases the survival potential of this bird species. High-throughput sequencing technology was utilized to compare whole genomes between ten samples from dead crested ibises (including six dead embryos and four dead nestlings aged 0-45 days) and 32 samples from living birds. The results indicated that the dead samples all shared the genetic background of a specific ancestral subpopulation. Furthermore, the dead individuals were less genetically diverse and suffered higher degrees of inbreeding compared with these measures in live birds. Several candidate genes (KLHL3, SETDB2, TNNT2, PKP1, AK1, and EXOSC3) associated with detrimental diseases were identified in the genomic regions that differed between the alive and dead samples, which are likely responsible for the death of embryos and nestlings. In addition, in these regions, we also found several genes involved in the protein catabolic process (UBE4A and LONP1), lipid metabolism (ACOT1), glycan biosynthesis and metabolism (HYAL1 and HYAL4), and the immune system (JAM2) that are likely to promote the normal development of embryos and nestlings. The aberrant conditions of these genes and biological processes may contribute to the death of embryos and nestlings. Our data identify congenital factors underlying the death of embryos and nestlings at the whole genome level, which may be useful toward informing more effective conservation efforts for this bird species.
Collapse
Affiliation(s)
- Chun-Zheng Fu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xuan-Min Guang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Qiu-Hong Wan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
5
|
Lan H, Zhou T, Wan QH, Fang SG. Genetic Diversity and Differentiation at Structurally Varying MHC Haplotypes and Microsatellites in Bottlenecked Populations of Endangered Crested Ibis. Cells 2019; 8:E377. [PMID: 31027280 PMCID: PMC6523929 DOI: 10.3390/cells8040377] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022] Open
Abstract
Investigating adaptive potential and understanding the relative roles of selection and genetic drift in populations of endangered species are essential in conservation. Major histocompatibility complex (MHC) genes characterized by spectacular polymorphism and fitness association have become valuable adaptive markers. Herein we investigate the variation of all MHC class I and II genes across seven populations of an endangered bird, the crested ibis, of which all current individuals are offspring of only two pairs. We inferred seven multilocus haplotypes from linked alleles in the Core Region and revealed structural variation of the class II region that probably evolved through unequal crossing over. Based on the low polymorphism, structural variation, strong linkage, and extensive shared alleles, we applied the MHC haplotypes in population analysis. The genetic variation and population structure at MHC haplotypes are generally concordant with those expected from microsatellites, underlining the predominant role of genetic drift in shaping MHC variation in the bottlenecked populations. Nonetheless, some populations showed elevated differentiation at MHC, probably due to limited gene flow. The seven populations were significantly differentiated into three groups and some groups exhibited genetic monomorphism, which can be attributed to founder effects. We therefore propose various strategies for future conservation and management.
Collapse
Affiliation(s)
- Hong Lan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Department of Agriculture, Zhejiang Open University, Hangzhou 310012, China.
| | - Tong Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qiu-Hong Wan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Goebel J, Promerová M, Bonadonna F, McCoy KD, Serbielle C, Strandh M, Yannic G, Burri R, Fumagalli L. 100 million years of multigene family evolution: origin and evolution of the avian MHC class IIB. BMC Genomics 2017; 18:460. [PMID: 28610613 PMCID: PMC5470263 DOI: 10.1186/s12864-017-3839-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 06/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene duplication has led to a most remarkable adaptation involved in vertebrates' host-pathogen arms-race, the major histocompatibility complex (MHC). However, MHC duplication history is as yet poorly understood in non-mammalian vertebrates, including birds. RESULTS Here, we provide evidence for the evolution of two ancient avian MHC class IIB (MHCIIB) lineages by a duplication event prior to the radiation of all extant birds >100 million years ago, and document the role of concerted evolution in eroding the footprints of the avian MHCIIB duplication history. CONCLUSIONS Our results suggest that eroded footprints of gene duplication histories may mimic birth-death evolution and that in the avian MHC the presence of the two lineages may have been masked by elevated rates of concerted evolution in several taxa. Through the presence of a range of intermediate evolutionary stages along the homogenizing process of concerted evolution, the avian MHCIIB provides a remarkable illustration of the erosion of multigene family duplication history.
Collapse
Affiliation(s)
- Julien Goebel
- Laboratory for Conservation Biology, Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Marta Promerová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Kvetna 8, 60365 Brno, Czech Republic
- Present address: Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, D-07745 Jena, Germany
| | - Francesco Bonadonna
- CNRS, UMR 5175, Centre for Functional and Evolutionary Ecology, F-34293 Montpellier, France
| | - Karen D. McCoy
- MIVEGEC UMR 5290 CNRS-IRD University of Montpellier, Centre IRD, F-34394 Montpellier, France
| | - Céline Serbielle
- MIVEGEC UMR 5290 CNRS-IRD University of Montpellier, Centre IRD, F-34394 Montpellier, France
| | - Maria Strandh
- CNRS, UMR 5175, Centre for Functional and Evolutionary Ecology, F-34293 Montpellier, France
- Present address: Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Glenn Yannic
- LECA – Laboratoire d’Écologie Alpine, UMR CNRS 5553, Université Savoie Mont Blanc, F-73376 Le Bourget-du-Lac, France
| | - Reto Burri
- Department of Population Ecology, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Structure and polymorphisms of the major histocompatibility complex in the Oriental stork, Ciconia boyciana. Sci Rep 2017; 7:42864. [PMID: 28211522 PMCID: PMC5314415 DOI: 10.1038/srep42864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/18/2017] [Indexed: 12/27/2022] Open
Abstract
The major histocompatibility complex (MHC) is highly polymorphic and plays a central role in the vertebrate immune system. Despite its functional consistency, the MHC genomic structure differs substantially among organisms. In birds, the MHCs of Galliformes and the Japanese crested ibis (Pelecaniformes) are well-characterized, but information about other avian MHCs remains scarce. The Oriental stork (Ciconia boyciana, order Ciconiiformes) is a large endangered migrant. The current Japanese population of this bird originates from a few founders; thus, understanding the genetic diversity among them is critical for effective population management. We report the structure and polymorphisms in C. boyciana MHC. One contig (approximately 128 kb) was assembled by screening of lambda phage genomic library and its complete sequence was determined, revealing a gene order of COL11A2, two copies of MHC-IIA/IIB pairs, BRD2, DMA/B1/B2, MHC-I, TAP1/2, and two copies each of pseudo MHC-I and TNXB. This structure was highly similar to that of the Japanese crested ibis, but largely different from that of Galliformes, at both the terminal regions. Genotyping of the MHC-II region detected 10 haplotypes among the six founders. These results provide valuable insights for future studies on the evolution of the avian MHCs and for conservation of C. boyciana.
Collapse
|
8
|
Chang L, He S, Mao D, Liu Y, Xiong Z, Fu D, Li B, Wei S, Xu X, Li S, Yuan H. Signatures of Crested Ibis MHC Revealed by Recombination Screening and Short-Reads Assembly Strategy. PLoS One 2016; 11:e0168744. [PMID: 27997612 PMCID: PMC5173252 DOI: 10.1371/journal.pone.0168744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 12/06/2016] [Indexed: 02/04/2023] Open
Abstract
Whole-genome shotgun (WGS) sequencing has become a routine method in genome research over the past decade. However, the assembly of highly polymorphic regions in WGS projects remains a challenge, especially for large genomes. Employing BAC library constructing, PCR screening and Sanger sequencing, traditional strategy is laborious and expensive, which hampers research on polymorphic genomic regions. As one of the most highly polymorphic regions, the major histocompatibility complex (MHC) plays a central role in the adaptive immunity of all jawed vertebrates. In this study, we introduced an efficient procedure based on recombination screening and short-reads assembly. With this procedure, we constructed a high quality 488-kb region of crested ibis MHC that consists of 3 superscaffolds and contains 50 genes. Our sequence showed comparable quality (97.29% identity) to traditional Sanger assembly, while the workload was reduced almost 7 times. Comparative study revealed distinctive features of crested ibis by exhibiting the COL11A2-BLA-BLB-BRD2 cluster and presenting both ADPRH and odorant receptor (OR) gene in the MHC region. Furthermore, the conservation of the BF-TAP1-TAP2 structure in crested ibis and other vertebrate lineages is interesting in light of the hypothesis that coevolution of functionally related genes in the primordial MHC is responsible for the appearance of the antigen presentation pathways at the birth of the adaptive immune system.
Collapse
Affiliation(s)
- Liao Chang
- College of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Shiyang He
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | | | - Zijun Xiong
- College of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Dongke Fu
- College of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bo Li
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Shuguang Wei
- College of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Shengbin Li
- College of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Hui Yuan
- BGI-Shenzhen, Shenzhen, Guangdong, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Lei W, Fang W, Lin Q, Zhou X, Chen X. Characterization of a non-classical MHC class II gene in the vulnerable Chinese egret (Egretta eulophotes). Immunogenetics 2015; 67:463-72. [PMID: 26033691 DOI: 10.1007/s00251-015-0846-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/16/2015] [Indexed: 11/28/2022]
Abstract
Genes of the major histocompatibility complex (MHC) are valuable makers of adaptive genetic variation in evolutionary ecology research, yet the non-classical MHC genes remain largely unstudied in wild vertebrates. In this study, we have characterized the non-classical MHC class II gene, Egeu-DAB4, in the vulnerable Chinese egret (Ciconiiformes, Ardeidae, Egretta eulophotes). Gene expression analyses showed that Egeu-DAB4 gene had a restricted tissue expression pattern, being expressed in seven examined tissues including the liver, heart, kidney, esophagus, stomach, gallbladder, and intestine, but not in muscle. With respect to polymorphism, only one allele of exon 2 was obtained from Egeu-DAB4 using asymmetric PCR, indicating that Egeu-DAB4 is genetically monomorphic in exon 2. Comparative analyses showed that Egeu-DAB4 had an unusual sequence, with amino acid differences suggesting that its function may differ from those of classical MHC genes. Egeu-DAB4 gene was only found in 30.56-36.56 % of examined Chinese egret individuals. Phylogenetic analysis showed a closer relationship between Egeu-DAB4 and the DAB2 genes in nine other ardeid species. These new findings provide a foundation for further studies to clarify the immunogenetics of non-classical MHC class II gene in the vulnerable Chinese egret and other ciconiiform birds.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China,
| | | | | | | | | |
Collapse
|