1
|
Chen Y, Bao L, Dong F, Xv M, Li W, Luo T, Xing C, Yan N, Niu K, Zhang N, Fan H. Effect of fibroblasts small- conductance Ca 2+ -activated potassium channel subtype 2 (SK2) on myocardial fibrosis in pressure overload mouse. Cell Signal 2024; 124:111401. [PMID: 39260533 DOI: 10.1016/j.cellsig.2024.111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Studies have shown that Small conductance Ca2 + -activated K+ (SK) channel are expressed in fibroblasts. We aimed to determine the expression of SK2 channels in cardiac fibroblasts during myocardial hypertrophy and investigate its relationship with fibrotic remodeling. Myocardial hypertrophy and fibrotic remodeling induced by transverse aortic constriction (TAC) were assessed by echocardiography, Masson's trichrome staining and Western blot. Knockdown and overexpression of the SK2 protein were used to assess relationship between SK2 expression in fibroblasts and myocardial fibrosis. There is a positive correlation between myocardial fibrosis and SK2 channel protein expression during the development of myocardial hypertrophy. The differentiation and secretion of fibroblasts in mice with cardiac hypertrophy are enhanced, and the expression of SK2 channel protein is increased. Manipulating SK2 levels in fibroblasts can either promote or inhibit their differentiation and secretory function. Knocking down SK2 reduces the up-regulation of TGF β1, p-Smad2/3/GAPDH, p-p38/GAPDH, p-ERK1/2/GAPDH, and p-JNK/GAPDH proteins induced by Ang II in cardiac fibroblasts without significantly affecting total protein levels. AAV9-SK2-RNAi injection in mice improves cardiac function. Collectively, our study suggests that the expression of the SK2 channel is significantly increased in fibroblasts of mice with myocardial hypertrophy, potentially impacting myocardial fibrosis remodeling via the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Yihan Chen
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Limeng Bao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Fengjuan Dong
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Menru Xv
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Weidong Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Tianxia Luo
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Chenxv Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Ningning Yan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Kangli Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Ningyuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Hongkun Fan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China.
| |
Collapse
|
2
|
Van NTH, Kim WK, Nam JH. Challenges in the Therapeutic Targeting of KCa Channels: From Basic Physiology to Clinical Applications. Int J Mol Sci 2024; 25:2965. [PMID: 38474212 PMCID: PMC10932353 DOI: 10.3390/ijms25052965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Calcium-activated potassium (KCa) channels are ubiquitously expressed throughout the body and are able to regulate membrane potential and intracellular calcium concentrations, thereby playing key roles in cellular physiology and signal transmission. Consequently, it is unsurprising that KCa channels have been implicated in various diseases, making them potential targets for pharmaceutical interventions. Over the past two decades, numerous studies have been conducted to develop KCa channel-targeting drugs, including those for disorders of the central and peripheral nervous, cardiovascular, and urinary systems and for cancer. In this review, we synthesize recent findings regarding the structure and activating mechanisms of KCa channels. We also discuss the role of KCa channel modulators in therapeutic medicine. Finally, we identify the major reasons behind the delay in bringing these modulators to the pharmaceutical market and propose new strategies to promote their application.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Reisqs JB, Qu YS, Boutjdir M. Ion channel trafficking implications in heart failure. Front Cardiovasc Med 2024; 11:1351496. [PMID: 38420267 PMCID: PMC10899472 DOI: 10.3389/fcvm.2024.1351496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Heart failure (HF) is recognized as an epidemic in the contemporary world, impacting around 1%-2% of the adult population and affecting around 6 million Americans. HF remains a major cause of mortality, morbidity, and poor quality of life. Several therapies are used to treat HF and improve the survival of patients; however, despite these substantial improvements in treating HF, the incidence of HF is increasing rapidly, posing a significant burden to human health. The total cost of care for HF is USD 69.8 billion in 2023, warranting a better understanding of the mechanisms involved in HF. Among the most serious manifestations associated with HF is arrhythmia due to the electrophysiological changes within the cardiomyocyte. Among these electrophysiological changes, disruptions in sodium and potassium currents' function and trafficking, as well as calcium handling, all of which impact arrhythmia in HF. The mechanisms responsible for the trafficking, anchoring, organization, and recycling of ion channels at the plasma membrane seem to be significant contributors to ion channels dysfunction in HF. Variants, microtubule alterations, or disturbances of anchoring proteins lead to ion channel trafficking defects and the alteration of the cardiomyocyte's electrophysiology. Understanding the mechanisms of ion channels trafficking could provide new therapeutic approaches for the treatment of HF. This review provides an overview of the recent advances in ion channel trafficking in HF.
Collapse
Affiliation(s)
- Jean-Baptiste Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
| | - Yongxia Sarah Qu
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Cardiology, New York Presbyterian Brooklyn Methodist Hospital, New York, NY, United States
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY, United States
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Giommi A, Gurgel ARB, Smith GL, Workman AJ. Does the small conductance Ca 2+-activated K + current I SK flow under physiological conditions in rabbit and human atrial isolated cardiomyocytes? J Mol Cell Cardiol 2023; 183:70-80. [PMID: 37704101 DOI: 10.1016/j.yjmcc.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND The small conductance Ca2+-activated K+ current (ISK) is a potential therapeutic target for treating atrial fibrillation. AIM To clarify, in rabbit and human atrial cardiomyocytes, the intracellular [Ca2+]-sensitivity of ISK, and its contribution to action potential (AP) repolarisation, under physiological conditions. METHODS Whole-cell-patch clamp, fluorescence microscopy: to record ion currents, APs and [Ca2+]i; 35-37°C. RESULTS In rabbit atrial myocytes, 0.5 mM Ba2+ (positive control) significantly decreased whole-cell current, from -12.8 to -4.9 pA/pF (P < 0.05, n = 17 cells, 8 rabbits). By contrast, the ISK blocker apamin (100 nM) had no effect on whole-cell current, at any set [Ca2+]i (∼100-450 nM). The ISK blocker ICAGEN (1 μM: ≥2 x IC50) also had no effect on current over this [Ca2+]i range. In human atrial myocytes, neither 1 μM ICAGEN (at [Ca2+]i ∼ 100-450 nM), nor 100 nM apamin ([Ca2+]i ∼ 250 nM) affected whole-cell current (5-10 cells, 3-5 patients/group). APs were significantly prolonged (at APD30 and APD70) by 2 mM 4-aminopyridine (positive control) in rabbit atrial myocytes, but 1 μM ICAGEN had no effect on APDs, versus either pre-ICAGEN or time-matched controls. High concentration (10 μM) ICAGEN (potentially ISK-non-selective) moderately increased APD70 and APD90, by 5 and 26 ms, respectively. In human atrial myocytes, 1 μM ICAGEN had no effect on APD30-90, whether stimulated at 1, 2 or 3 Hz (6-9 cells, 2-4 patients/rate). CONCLUSION ISK does not flow in human or rabbit atrial cardiomyocytes with [Ca2+]i set within the global average diastolic-systolic range, nor during APs stimulated at physiological or supra-physiological (≤3 Hz) rates.
Collapse
Affiliation(s)
- Alessandro Giommi
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Aline R B Gurgel
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Antony J Workman
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
Terentyev D, Belevych AE, Choi BR, Hamilton S. To block or not to block: Targeting SK channels in diseased hearts. J Mol Cell Cardiol 2023; 183:98-99. [PMID: 37742783 DOI: 10.1016/j.yjmcc.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Dmitry Terentyev
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America.
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Shanna Hamilton
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
6
|
Herrera NT, Zhang X, Ni H, Maleckar MM, Heijman J, Dobrev D, Grandi E, Morotti S. Dual effects of the small-conductance Ca 2+-activated K + current on human atrial electrophysiology and Ca 2+-driven arrhythmogenesis: an in silico study. Am J Physiol Heart Circ Physiol 2023; 325:H896-H908. [PMID: 37624096 PMCID: PMC10659325 DOI: 10.1152/ajpheart.00362.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
By sensing changes in intracellular Ca2+, small-conductance Ca2+-activated K+ (SK) channels dynamically regulate the dynamics of the cardiac action potential (AP) on a beat-to-beat basis. Given their predominance in atria versus ventricles, SK channels are considered a promising atrial-selective pharmacological target against atrial fibrillation (AF), the most common cardiac arrhythmia. However, the precise contribution of SK current (ISK) to atrial arrhythmogenesis is poorly understood, and may potentially involve different mechanisms that depend on species, heart rates, and degree of AF-induced atrial remodeling. Both reduced and enhanced ISK have been linked to AF. Similarly, both SK channel up- and downregulation have been reported in chronic AF (cAF) versus normal sinus rhythm (nSR) patient samples. Here, we use our multiscale modeling framework to obtain mechanistic insights into the contribution of ISK in human atrial cardiomyocyte electrophysiology. We simulate several protocols to quantify how ISK modulation affects the regulation of AP duration (APD), Ca2+ transient, refractoriness, and occurrence of alternans and delayed afterdepolarizations (DADs). Our simulations show that ISK activation shortens the APD and atrial effective refractory period, limits Ca2+ cycling, and slightly increases the propensity for alternans in both nSR and cAF conditions. We also show that increasing ISK counteracts DAD development by enhancing the repolarization force that opposes the Ca2+-dependent depolarization. Taken together, our results suggest that increasing ISK in human atrial cardiomyocytes could promote reentry while protecting against triggered activity. Depending on the leading arrhythmogenic mechanism, ISK inhibition may thus be a beneficial or detrimental anti-AF strategy.NEW & NOTEWORTHY Using our established framework for human atrial myocyte simulations, we investigated the role of the small-conductance Ca2+-activated K+ current (ISK) in the regulation of cell function and the development of Ca2+-driven arrhythmias. We found that ISK inhibition, a promising atrial-selective pharmacological strategy against atrial fibrillation, counteracts the reentry-promoting abbreviation of atrial refractoriness, but renders human atrial myocytes more vulnerable to delayed afterdepolarizations, thus potentially increasing the propensity for ectopic (triggered) activity.
Collapse
Affiliation(s)
- Nathaniel T Herrera
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Xianwei Zhang
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Mary M Maleckar
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Jordi Heijman
- Department of Cardiology, Faculty of Health, Medicine, and Life Sciences, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dobromir Dobrev
- Faculty of Medicine, West German Heart and Vascular Center, Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, California, United States
| |
Collapse
|
7
|
Liu T, Li T, Xu D, Wang Y, Zhou Y, Wan J, Huang CLH, Tan X. Small-conductance calcium-activated potassium channels in the heart: expression, regulation and pathological implications. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220171. [PMID: 37122223 PMCID: PMC10150224 DOI: 10.1098/rstb.2022.0171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/25/2022] [Indexed: 05/02/2023] Open
Abstract
Ca2+-activated K+ channels are critical to cellular Ca2+ homeostasis and excitability; they couple intracellular Ca2+ and membrane voltage change. Of these, the small, 4-14 pS, conductance SK channels include three, KCNN1-3 encoded, SK1/KCa2.1, SK2/KCa2.2 and SK3/KCa2.3, channel subtypes with characteristic, EC50 ∼ 10 nM, 40 pM, 1 nM, apamin sensitivities. All SK channels, particularly SK2 channels, are expressed in atrial, ventricular and conducting system cardiomyocytes. Pharmacological and genetic modification results have suggested that SK channel block or knockout prolonged action potential durations (APDs) and effective refractory periods (ERPs) particularly in atrial, but also in ventricular, and sinoatrial, atrioventricular node and Purkinje myocytes, correspondingly affect arrhythmic tendency. Additionally, mitochondrial SK channels may decrease mitochondrial Ca2+ overload and reactive oxygen species generation. SK channels show low voltage but marked Ca2+ dependences (EC50 ∼ 300-500 nM) reflecting their α-subunit calmodulin (CaM) binding domains, through which they may be activated by voltage-gated or ryanodine-receptor Ca2+ channel activity. SK function also depends upon complex trafficking and expression processes and associations with other ion channels or subunits from different SK subtypes. Atrial and ventricular clinical arrhythmogenesis may follow both increased or decreased SK expression through decreased or increased APD correspondingly accelerating and stabilizing re-entrant rotors or increasing incidences of triggered activity. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dandi Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yan Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yafei Zhou
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Juyi Wan
- Department of Cardiovascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Christopher L.-H. Huang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Physiological Laboratory and Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, UK
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
8
|
Linz B, Hesselkilde EM, Skarsfeldt MA, Hertel JN, Sattler SM, Yan Y, Tfelt-Hansen J, Diness JG, Bentzen BH, Linz D, Jespersen T. Pharmacological inhibition of SK-channels with AP14145 prevents atrial arrhythmogenic changes in a porcine model for obstructive respiratory events. J Cardiovasc Electrophysiol 2023; 34:126-134. [PMID: 36482155 PMCID: PMC10107889 DOI: 10.1111/jce.15769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available pharmacological interventions. We investigated atrial antiarrhythmogenic properties and ventricular electrophysiological safety of small-conductance Ca2+ -activated K+ (SK)-channel inhibition in a porcine model for obstructive respiratory events. METHODS In spontaneously breathing pigs, obstructive respiratory events were simulated by intermittent negative upper airway pressure (INAP) applied via a pressure device connected to the intubation tube. INAP was applied for 75 s, every 10 min, three times before and three times during infusion of the SK-channel inhibitor AP14145. Atrial effective refractory periods (AERP) were acquired before (pre-INAP), during (INAP) and after (post-) INAP. AF-inducibility was determined by a S1S2 atrial pacing protocol. Ventricular arrhythmicity was evaluated by heart rate adjusted QT-interval duration (QT-paced) and electromechanical window (EMW) shortening. RESULTS During vehicle infusion, INAP transiently shortened AERP (pre-INAP: 135 ± 10 ms vs. post-INAP 101 ± 11 ms; p = .008) and increased AF-inducibility. QT-paced prolonged during INAP (pre-INAP 270 ± 7 ms vs. INAP 275 ± 7 ms; p = .04) and EMW shortened progressively throughout INAP and post-INAP (pre-INAP 80 ± 4 ms; INAP 59 ± 6 ms, post-INAP 46 ± 10 ms). AP14145 prolonged baseline AERP, partially prevented INAP-induced AERP-shortening and reduced AF-susceptibility. AP14145 did not alter QT-paced at baseline (pre-AP14145 270 ± 7 ms vs. AP14145 268 ± 6 ms, p = .83) or QT-paced and EMW-shortening during INAP. CONCLUSION In a pig model for obstructive respiratory events, the SK-channel-inhibitor AP14145 prevented INAP-associated AERP-shortening and AF-susceptibility without impairing ventricular electrophysiology. Whether SK-channels represent a target for OSA-related AF in humans warrants further study.
Collapse
Affiliation(s)
- Benedikt Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Eva M Hesselkilde
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Mark A Skarsfeldt
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark.,Acesion Pharma, Copenhagen, Denmark
| | - Julie N Hertel
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Stefan M Sattler
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Yannan Yan
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Bo H Bentzen
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark.,Acesion Pharma, Copenhagen, Denmark
| | - Dominik Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark.,Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia.,Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Thomas Jespersen
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Butler AS, Hancox JC, Marrion NV. Preferential formation of human heteromeric SK2:SK3 channels limits homomeric SK channel assembly and function. J Biol Chem 2022; 299:102783. [PMID: 36502918 PMCID: PMC9841042 DOI: 10.1016/j.jbc.2022.102783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Three isoforms of small conductance, calcium-activated potassium (SK) channel subunits have been identified (SK1-3) that exhibit a broad and overlapping tissue distribution. SK channels have been implicated in several disease states including hypertension and atrial fibrillation, but therapeutic targeting of SK channels is hampered by a lack of subtype-selective inhibitors. This is further complicated by studies showing that SK1 and SK2 preferentially form heteromeric channels during co-expression, likely limiting the function of homomeric channels in vivo. Here, we utilized a simplified expression system to investigate functional current produced when human (h) SK2 and hSK3 subunits are co-expressed. When expressed alone, hSK3 subunits were more clearly expressed on the cell surface than hSK2 subunits. hSK3 surface expression was reduced by co-transfection with hSK2. Whole-cell recording showed homomeric hSK3 currents were larger than homomeric hSK2 currents or heteromeric hSK2:hSK3 currents. The smaller amplitude of hSK2:hSK3-mediated current when compared with homomeric hSK3-mediated current suggests hSK2 subunits regulate surface expression of heteromers. Co-expression of hSK2 and hSK3 subunits produced a current that arose from a single population of heteromeric channels as exhibited by an intermediate sensitivity to the inhibitors apamin and UCL1684. Co-expression of the apamin-sensitive hSK2 subunit and a mutant, apamin-insensitive hSK3 subunit [hSK3(H485N)], produced an apamin-sensitive current. Concentration-inhibition relationships were best fit by a monophasic Hill equation, confirming preferential formation of heteromers. These data show that co-expressed hSK2 and hSK3 preferentially form heteromeric channels and suggest that the hSK2 subunit acts as a chaperone, limiting membrane expression of hSK2:hSK3 heteromeric channels.
Collapse
Affiliation(s)
- Andrew S Butler
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom.
| | - Neil V Marrion
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom.
| |
Collapse
|
10
|
Averin AS, Konakov MV, Pimenov OY, Galimova MH, Berezhnov AV, Nenov MN, Dynnik VV. Regulation of Papillary Muscle Contractility by NAD and Ammonia Interplay: Contribution of Ion Channels and Exchangers. MEMBRANES 2022; 12:1239. [PMID: 36557146 PMCID: PMC9785361 DOI: 10.3390/membranes12121239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various models, including stem cells derived and isolated cardiomyocytes with overexpressed channels, are utilized to analyze the functional interplay of diverse ion currents involved in cardiac automaticity and excitation-contraction coupling control. Here, we used β-NAD and ammonia, known hyperpolarizing and depolarizing agents, respectively, and applied inhibitory analysis to reveal the interplay of several ion channels implicated in rat papillary muscle contractility control. We demonstrated that: 4 mM β-NAD, having no strong impact on resting membrane potential (RMP) and action potential duration (APD90) of ventricular cardiomyocytes, evoked significant suppression of isometric force (F) of paced papillary muscle. Reactive blue 2 restored F to control values, suggesting the involvement of P2Y-receptor-dependent signaling in β-NAD effects. Meantime, 5 mM NH4Cl did not show any effect on F of papillary muscle but resulted in significant RMP depolarization, APD90 shortening, and a rightward shift of I-V relationship for total steady state currents in cardiomyocytes. Paradoxically, NH4Cl, being added after β-NAD and having no effect on RMP, APD, and I-V curve, recovered F to the control values, indicating β-NAD/ammonia antagonism. Blocking of HCN, Kir2.x, and L-type calcium channels, Ca2+-activated K+ channels (SK, IK, and BK), or NCX exchanger reverse mode prevented this effect, indicating consistent cooperation of all currents mediated by these channels and NCX. We suggest that the activation of Kir2.x and HCN channels by extracellular K+, that creates positive and negative feedback, and known ammonia and K+ resemblance, may provide conditions required for the activation of all the chain of channels involved in the interplay. Here, we present a mechanistic model describing an interplay of channels and second messengers, which may explain discovered antagonism of β-NAD and ammonia on rat papillary muscle contractile activity.
Collapse
Affiliation(s)
- Alexey S. Averin
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maxim V. Konakov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oleg Y. Pimenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miliausha H. Galimova
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miroslav N. Nenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Vladimir V. Dynnik
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
11
|
Husti Z, Varró A, Baczkó I. Arrhythmogenic Remodeling in the Failing Heart. Cells 2021; 10:cells10113203. [PMID: 34831426 PMCID: PMC8623396 DOI: 10.3390/cells10113203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic heart failure is a clinical syndrome with multiple etiologies, associated with significant morbidity and mortality. Cardiac arrhythmias, including ventricular tachyarrhythmias and atrial fibrillation, are common in heart failure. A number of cardiac diseases including heart failure alter the expression and regulation of ion channels and transporters leading to arrhythmogenic electrical remodeling. Myocardial hypertrophy, fibrosis and scar formation are key elements of arrhythmogenic structural remodeling in heart failure. In this article, the mechanisms responsible for increased arrhythmia susceptibility as well as the underlying changes in ion channel, transporter expression and function as well as alterations in calcium handling in heart failure are discussed. Understanding the mechanisms of arrhythmogenic remodeling is key to improving arrhythmia management and the prevention of sudden cardiac death in patients with heart failure.
Collapse
Affiliation(s)
- Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
12
|
Abstract
The physiological heart function is controlled by a well-orchestrated interplay of different ion channels conducting Na+, Ca2+ and K+. Cardiac K+ channels are key players of cardiac repolarization counteracting depolarizating Na+ and Ca2+ currents. In contrast to Na+ and Ca2+, K+ is conducted by many different channels that differ in activation/deactivation kinetics as well as in their contribution to different phases of the action potential. Together with modulatory subunits these K+ channel α-subunits provide a wide range of repolarizing currents with specific characteristics. Moreover, due to expression differences, K+ channels strongly influence the time course of the action potentials in different heart regions. On the other hand, the variety of different K+ channels increase the number of possible disease-causing mutations. Up to now, a plethora of gain- as well as loss-of-function mutations in K+ channel forming or modulating proteins are known that cause severe congenital cardiac diseases like the long-QT-syndrome, the short-QT-syndrome, the Brugada syndrome and/or different types of atrial tachyarrhythmias. In this chapter we provide a comprehensive overview of different K+ channels in cardiac physiology and pathophysiology.
Collapse
|
13
|
Takahashi M, Yokoshiki H, Mitsuyama H, Watanabe M, Temma T, Kamada R, Hagiwara H, Takahashi Y, Anzai T. SK channel blockade prevents hypoxia-induced ventricular arrhythmias through inhibition of Ca 2+/voltage uncoupling in hypertrophied hearts. Am J Physiol Heart Circ Physiol 2021; 320:H1456-H1469. [PMID: 33635168 DOI: 10.1152/ajpheart.00777.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/17/2021] [Indexed: 11/22/2022]
Abstract
Ventricular arrhythmia (VA) is the major cause of death in patients with left ventricular (LV) hypertrophy and/or acute ischemia. We hypothesized that apamin, a blocker of small-conductance Ca2+-activated K+ (SK) channels, alters Ca2+ handling and exhibits anti-arrhythmic effects in ventricular myocardium. Spontaneous hypertensive rats were used as a model of LV hypertrophy. A dual optical mapping of membrane potential (Vm) and intracellular calcium (Cai) was performed during global hypoxia (GH) on the Langendorff perfusion system. The majority of pacing-induced VAs during GH were initiated by triggered activities. Pretreatment of apamin (100 nmol/L) significantly inhibited the VA inducibility. Compared with SK channel blockers (apamin and NS8593), non-SK channel blockers (glibenclamide and 4-AP) did not exhibit anti-arrhythmic effects. Apamin prevented not only action potential duration (APD80) shortening (-18.7 [95% confidence interval, -35.2 to -6.05] ms vs. -2.75 [95% CI, -10.45 to 12.65] ms, P = 0.04) but also calcium transient duration (CaTD80) prolongation (14.52 [95% CI, 8.8-20.35] ms vs. 3.85 [95% CI, -3.3 to 12.1] ms, P < 0.01), thereby reducing CaTD80 - APD80, which denotes "Cai/Vm uncoupling" (33.22 [95% CI, 22-48.4] ms vs. 6.6 [95% CI, 0-14.85] ms, P < 0.01). The reduction of Cai/Vm uncoupling was attributable to less prolonged Ca2+ decay constant and suppression of diastolic Cai increase by apamin. The inhibition of VA inducibility and changes in APs/CaTs parameters caused by apamin was negated by the addition of ouabain, an inhibitor of Na+/K+ pump. Apamin attenuates APD shortening, Ca2+ handling abnormalities, and Cai/Vm uncoupling, leading to inhibition of VA occurrence in hypoxic hypertrophied hearts.NEW & NOTEWORTHY We demonstrated that hypoxia-induced ventricular arrhythmias were mainly initiated by Ca2+-loaded triggered activities in hypertrophied hearts. The blockades of small-conductance Ca2+-activated K+ channels, especially "apamin," showed anti-arrhythmic effects by alleviation of not only action potential duration shortening but also Ca2+ handling abnormalities, most notably the "Ca2+/voltage uncoupling."
Collapse
Affiliation(s)
- Masayuki Takahashi
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Department of Cardiovascular Medicine, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Hisashi Yokoshiki
- Department of Cardiovascular Medicine, Sapporo City General Hospital, Sapporo, Japan
| | - Hirofumi Mitsuyama
- Department of Cardiovascular Medicine, Hokkaido Ohno Memorial Hospital, Sapporo, Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Taro Temma
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Rui Kamada
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hikaru Hagiwara
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yumi Takahashi
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
14
|
Darkow E, Nguyen TT, Stolina M, Kari FA, Schmidt C, Wiedmann F, Baczkó I, Kohl P, Rajamani S, Ravens U, Peyronnet R. Small Conductance Ca 2 +-Activated K + (SK) Channel mRNA Expression in Human Atrial and Ventricular Tissue: Comparison Between Donor, Atrial Fibrillation and Heart Failure Tissue. Front Physiol 2021; 12:650964. [PMID: 33868017 PMCID: PMC8047327 DOI: 10.3389/fphys.2021.650964] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
In search of more efficacious and safe pharmacological treatments for atrial fibrillation (AF), atria-selective antiarrhythmic agents have been promoted that target ion channels principally expressed in the atria. This concept allows one to engage antiarrhythmic effects in atria, but spares the ventricles from potentially proarrhythmic side effects. It has been suggested that cardiac small conductance Ca2+-activated K+ (SK) channels may represent an atria-selective target in mammals including humans. However, there are conflicting data concerning the expression of SK channels in different stages of AF, and recent findings suggest that SK channels are upregulated in ventricular myocardium when patients develop heart failure. To address this issue, RNA-sequencing was performed to compare expression levels of three SK channels (KCNN1, KCNN2, and KCNN3) in human atrial and ventricular tissue samples from transplant donor hearts (no cardiac disease), and patients with cardiac disease in sinus rhythm or with AF. In addition, for control purposes expression levels of several genes known to be either chamber-selective or differentially expressed in AF and heart failure were determined. In atria, as compared to ventricle from transplant donor hearts, we confirmed higher expression of KCNN1 and KCNA5, and lower expression of KCNJ2, whereas KCNN2 and KCNN3 were statistically not differentially expressed. Overall expression of KCNN1 was low compared to KCNN2 and KCNN3. Comparing atrial tissue from patients with AF to sinus rhythm samples we saw downregulation of KCNN2 in AF, as previously reported. When comparing ventricular tissue from heart failure patients to non-diseased samples, we found significantly increased ventricular expression of KCNN3 in heart failure, as previously published. The other channels showed no significant difference in expression in either disease. Our results add weight to the view that SK channels are not likely to be an atria-selective target, especially in failing human hearts, and modulators of these channels may prove to have less utility in treating AF than hoped. Whether targeting SK1 holds potential remains to be elucidated.
Collapse
Affiliation(s)
- Elisa Darkow
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thong T Nguyen
- Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Marina Stolina
- Department of Cardiometabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Fabian A Kari
- Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Department of Cardiovascular Surgery, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sridharan Rajamani
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
15
|
Qi MM, Qian LL, Wang RX. Modulation of SK Channels: Insight Into Therapeutics of Atrial Fibrillation. Heart Lung Circ 2021; 30:1130-1139. [PMID: 33642173 DOI: 10.1016/j.hlc.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 11/19/2022]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in the world. Although much technological progress in the treatment of AF has been made, there is an urgent need for better treatment of AF due to its high rates of morbidity and mortality. The anti-arrhythmic drugs currently approved for marketing have significant limitations and side effects such as life-threatening ventricular arrhythmias and hypotension. The small conductance Ca2+-activated K+ channels (SK channels) are dependent on intracellular Ca2+ concentrations, which tightly integrate with membrane potential. Given the predominant expression in the atria of many species, including humans, they are now emerging as a therapeutic target for treating AF. This review aimed to illustrate the characteristics and function of SK channels. Moreover, it discussed the regulation of SK channels and their potential as a therapeutic target of AF.
Collapse
Affiliation(s)
- Miao-Miao Qi
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
16
|
Zhang XD, Thai PN, Lieu DK, Chiamvimonvat N. Cardiac small-conductance calcium-activated potassium channels in health and disease. Pflugers Arch 2021; 473:477-489. [PMID: 33624131 PMCID: PMC7940285 DOI: 10.1007/s00424-021-02535-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022]
Abstract
Small-conductance Ca2+-activated K+ (SK, KCa2) channels are encoded by KCNN genes, including KCNN1, 2, and 3. The channels play critical roles in the regulation of cardiac excitability and are gated solely by beat-to-beat changes in intracellular Ca2+. The family of SK channels consists of three members with differential sensitivity to apamin. All three isoforms are expressed in human hearts. Studies over the past two decades have provided evidence to substantiate the pivotal roles of SK channels, not only in healthy heart but also with diseases including atrial fibrillation (AF), ventricular arrhythmia, and heart failure (HF). SK channels are prominently expressed in atrial myocytes and pacemaking cells, compared to ventricular cells. However, the channels are significantly upregulated in ventricular myocytes in HF and pulmonary veins in AF models. Interests in cardiac SK channels are further fueled by recent studies suggesting the possible roles of SK channels in human AF. Therefore, SK channel may represent a novel therapeutic target for atrial arrhythmias. Furthermore, SK channel function is significantly altered by human calmodulin (CaM) mutations, linked to life-threatening arrhythmia syndromes. The current review will summarize recent progress in our understanding of cardiac SK channels and the roles of SK channels in the heart in health and disease.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, One Shields Avenue, GBSF 6315, Davis, CA, 95616, USA.
- Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Mather, CA, 95655, USA.
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, One Shields Avenue, GBSF 6315, Davis, CA, 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Mather, CA, 95655, USA
| | - Deborah K Lieu
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, One Shields Avenue, GBSF 6315, Davis, CA, 95616, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, One Shields Avenue, GBSF 6315, Davis, CA, 95616, USA.
- Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Mather, CA, 95655, USA.
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
17
|
Fenner MF, Gatta G, Sattler S, Kuiper M, Hesselkilde EM, Adler DMT, Smerup M, Schotten U, Sørensen U, Diness JG, Jespersen T, Verheule S, Van Hunnik A, Buhl R. Inhibition of Small-Conductance Calcium-Activated Potassium Current ( I K,Ca) Leads to Differential Atrial Electrophysiological Effects in a Horse Model of Persistent Atrial Fibrillation. Front Physiol 2021; 12:614483. [PMID: 33633584 PMCID: PMC7900437 DOI: 10.3389/fphys.2021.614483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Small-conductance Ca2+-activated K+ (KCa2) channels have been proposed as a possible atrial-selective target to pharmacologically terminate atrial fibrillation (AF) and to maintain sinus rhythm. However, it has been hypothesized that the importance of the KCa2 current—and thereby the efficacy of small-conductance Ca2+-activated K+ current (IK,Ca) inhibition—might be negatively related to AF duration and the extent of AF-induced remodeling. Experimental Approach and Methods To address the hypothesis of the efficacy of IK,Ca inhibition being dependent on AF duration, the anti-arrhythmic properties of the IK,Ca inhibitor NS8593 (5 mg/kg) and its influence on atrial conduction were studied using epicardial high-density contact mapping in horses with persistent AF. Eleven Standardbred mares with tachypacing-induced persistent AF (42 ± 5 days of AF) were studied in an open-chest experiment. Unipolar AF electrograms were recorded and isochronal high-density maps analyzed to allow for the reconstruction of wave patterns and changes in electrophysiological parameters, such as atrial conduction velocity and AF cycle length. Atrial anti-arrhythmic properties and adverse effects of NS8593 on ventricular electrophysiology were evaluated by continuous surface ECG monitoring. Results IK,Ca inhibition by NS8593 administered intravenously had divergent effects on right and left AF complexity and propagation properties in this equine model of persistent AF. Despite global prolongation of AF cycle length, a slowing of conduction in the right atrium led to increased anisotropy and electrical dissociation, thus increasing AF complexity. In contrast, there was no significant change in AF complexity in the LA, and cardioversion of AF was not achieved. Conclusions Intra-atrial heterogeneity in response to IK,Ca inhibition by NS8593 was observed. The investigated dose of NS8593 increased the AF cycle length but was not sufficient to induce cardioversion. In terms of propagation properties during AF, IK,Ca inhibition by NS8593 led to divergent effects in the right and left atrium. This divergent behavior may have impeded the cardioversion success.
Collapse
Affiliation(s)
- Merle Friederike Fenner
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Giulia Gatta
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Stefan Sattler
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marion Kuiper
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Eva Melis Hesselkilde
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ditte M T Adler
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Morten Smerup
- Department of Cardiothoracic Surgery, The Heart Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | | | | | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Arne Van Hunnik
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
18
|
The regulation of the small-conductance calcium-activated potassium current and the mechanisms of sex dimorphism in J wave syndrome. Pflugers Arch 2021; 473:491-506. [PMID: 33411079 DOI: 10.1007/s00424-020-02500-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
Apamin-sensitive small-conductance calcium-activated potassium (SK) current (IKAS) plays an important role in cardiac repolarization under a variety of physiological and pathological conditions. The regulation of cardiac IKAS relies on SK channel expression, intracellular Ca2+, and interaction between SK channel and intracellular Ca2+. IKAS activation participates in multiple types of arrhythmias, including atrial fibrillation, ventricular tachyarrhythmias, and automaticity and conduction abnormality. Recently, sex dimorphisms in autonomic control have been noticed in IKAS activation, resulting in sex-differentiated action potential morphology and arrhythmogenesis. This review provides an update on the Ca2+-dependent regulation of cardiac IKAS and the role of IKAS on arrhythmias, with a special focus on sex differences in IKAS activation. We propose that sex dimorphism in autonomic control of IKAS may play a role in J wave syndrome.
Collapse
|
19
|
Wu AZ, Chen M, Yin D, Everett TH, Chen Z, Rubart M, Weiss JN, Qu Z, Chen PS. Sex-specific I KAS activation in rabbit ventricles with drug-induced QT prolongation. Heart Rhythm 2021; 18:88-97. [PMID: 32707174 PMCID: PMC7796981 DOI: 10.1016/j.hrthm.2020.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Female sex is a known risk factor for drug-induced long QT syndrome (diLQTS). We recently demonstrated a sex difference in apamin-sensitive small-conductance Ca2+-activated K+ current (IKAS) activation during β-adrenergic stimulation. OBJECTIVE The purpose of this study was to test the hypothesis that there is a sex difference in IKAS in the rabbit models of diLQTS. METHODS We evaluated the sex difference in ventricular repolarization in 15 male and 22 female Langendorff-perfused rabbit hearts with optical mapping techniques during atrial pacing. HMR1556 (slowly activating delayed rectifier K+ current [IKs] blocker), E4031 (rapidly activating delayed rectifier K+ current [IKr] blocker) and sea anemone toxin (ATX-II, late Na+ current [INaL] activator) were used to simulate types 1-3 long QT syndrome, respectively. Apamin, an IKAS blocker, was then added to determine the magnitude of further QT prolongation. RESULTS HMR1556, E4031, and ATX-II led to the prolongation of action potential duration at 80% repolarization (APD80) in both male and female ventricles at pacing cycle lengths of 300-400 ms. Apamin further prolonged APD80 (pacing cycle length 350 ms) from 187.8±4.3 to 206.9±7.1 (P=.014) in HMR1556-treated, from 209.9±7.8 to 224.9±7.8 (P=.003) in E4031-treated, and from 174.3±3.3 to 188.1±3.0 (P=.0002) in ATX-II-treated female hearts. Apamin did not further prolong the APD80 in male hearts. The Cai transient duration (CaiTD) was significantly longer in diLQTS than baseline but without sex differences. Apamin did not change CaiTD. CONCLUSION We conclude that IKAS is abundantly increased in female but not in male ventricles with diLQTS. Increased IKAS helps preserve the repolarization reserve in female ventricles treated with IKs and IKr blockers or INaL activators.
Collapse
Affiliation(s)
- Adonis Z Wu
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mu Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Dechun Yin
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas H Everett
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zhenhui Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael Rubart
- Department of Pediatrics, Riley Heart Research Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - James N Weiss
- Departments of Medicine (Cardiology), Physiology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Zhilin Qu
- Departments of Medicine (Cardiology), Physiology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
20
|
Weisbrod D. Small and Intermediate Calcium Activated Potassium Channels in the Heart: Role and Strategies in the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:590534. [PMID: 33329039 PMCID: PMC7719780 DOI: 10.3389/fphys.2020.590534] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium-activated potassium channels are a heterogeneous family of channels that, despite their different biophysical characteristics, structures, and pharmacological signatures, play a role of transducer between the ubiquitous intracellular calcium signaling and the electric variations of the membrane. Although this family of channels was extensively described in various excitable and non-excitable tissues, an increasing amount of evidences shows their functional role in the heart. This review aims to focus on the physiological role and the contribution of the small and intermediate calcium-activated potassium channels in cardiac pathologies.
Collapse
|
21
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
22
|
Saljic A, Muthukumarasamy KM, la Cour JM, Boddum K, Grunnet M, Berchtold MW, Jespersen T. Impact of arrhythmogenic calmodulin variants on small conductance Ca 2+ -activated K + (SK3) channels. Physiol Rep 2020; 7:e14210. [PMID: 31587513 PMCID: PMC6778599 DOI: 10.14814/phy2.14210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Calmodulin (CaM) is a ubiquitous Ca2+‐sensing protein regulating many important cellular processes. Several CaM‐associated variants have been identified in a small group of patients with cardiac arrhythmias. The mechanism remains largely unknown, even though a number of ion channels, including the ryanodine receptors and the L‐type calcium channels have been shown to be functionally affected by the presence of mutant CaM. CaM is constitutively bound to the SK channel, which underlies the calcium‐gated ISK contributing to cardiac repolarization. The CaM binding to SK channels is essential for gating, correct assembly, and membrane expression. To elucidate the effect of nine different arrhythmogenic CaM variants on SK3 channel function, HEK293 cells stably expressing SK3 were transiently co‐transfected with CaMWT or variant and whole‐cell patch‐clamp recordings were performed with a calculated free Ca2+ concentration of 400 nmol/L. MDCK cells were transiently transfected with SK3 and/or CaMWT or variant to address SK3 and CaM localization by immunocytochemistry. The LQTS‐associated variants CaMD96V, CaMD130G, and CaMF142L reduced ISK,Ca compared with CaMWT (P < 0.01, P < 0.001, and P < 0.05, respectively). The CPVT associated variant CaMN54I also reduced the ISK,Ca (P < 0.05), which was linked to an accumulation of SK3/CaMN54I channel complexes in intracellular compartments (P < 0.05). The CPVT associated variants, CaMA103V and CaMD132E only revealed a tendency toward reduced current, while the variants CaMF90L and CaMN98S, causing LQTS syndrome, did not have any impact on ISK,Ca. In conclusion, we found that the arrhythmogenic CaM variants CaMN54I, CaMD96V, CaMD130G, and CaMF142L significantly down‐regulate the SK3 channel current, but with distinct mechanism.
Collapse
Affiliation(s)
- Arnela Saljic
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kalai Mangai Muthukumarasamy
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Marstrand la Cour
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Boddum
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Werner Berchtold
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Impact of I SK Voltage and Ca 2+/Mg 2+-Dependent Rectification on Cardiac Repolarization. Biophys J 2020; 119:690-704. [PMID: 32668235 DOI: 10.1016/j.bpj.2020.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022] Open
Abstract
Cardiac small conductance Ca2+-activated K+ (SK) channels are activated solely by Ca2+, but the SK current (ISK) is inwardly rectified. However, the impact of inward rectification in shaping action potentials (APs) in ventricular cardiomyocytes under β-adrenergic stimulation or in disease states remains undefined. Two processes underlie this inward rectification: an intrinsic rectification caused by an electrostatic energy barrier from positively charged amino acids at the inner pore and a voltage-dependent Ca2+/Mg2+ block. Thus, Ca2+ has a biphasic effect on ISK, activating at low [Ca2+] yet inhibiting ISK at high [Ca2+]. We examined the effect of ISK rectification on APs in rat cardiomyocytes by simultaneously recording whole-cell apamin-sensitive currents and Ca2+ transients during an AP waveform and developed a computer model of SK channels with rectification features. The typical profile of ISK during AP clamp included an initial peak (mean 1.6 pA/pF) followed by decay to the point that submembrane [Ca2+] reached ∼10 μM. During the rest of the AP stimulus, ISK either plateaued or gradually increased as the cell repolarized and submembrane [Ca2+] decreased further. We used a six-state gating model combined with intrinsic and Ca2+/Mg2+-dependent rectification to simulate ISK and investigated the relative contributions of each type of rectification to AP shape. This SK channel model replicates key features of ISK recording during AP clamp showing that intrinsic rectification limits ISK at high Vm during the early and plateau phase of APs. Furthermore, the initial rise of Ca2+ transients activates, but higher [Ca2+] blocks SK channels, yielding a transient outward-like ISK trajectory. During the decay phase of Ca2+, the Ca2+-dependent block is released, causing ISK to rise again and contribute to repolarization. Therefore, ISK is an important repolarizing current, and the rectification characteristics of an SK channel determine its impact on early, plateau, and repolarization phases of APs.
Collapse
|
24
|
Gal P, Klaassen ES, Bergmann KR, Saghari M, Burggraaf J, Kemme MJB, Sylvest C, Sørensen U, Bentzen BH, Grunnet M, Diness JG, Edvardsson N. First Clinical Study with AP30663 - a K Ca 2 Channel Inhibitor in Development for Conversion of Atrial Fibrillation. Clin Transl Sci 2020; 13:1336-1344. [PMID: 32725783 PMCID: PMC7719388 DOI: 10.1111/cts.12835] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/22/2020] [Indexed: 11/30/2022] Open
Abstract
Pharmacological cardioversion of atrial fibrillation (AF) is frequently inefficacious. AP30663, a small conductance Ca2+ activated K+ (KCa2) channel blocker, prolonged the atrial effective refractory period in preclinical studies and subsequently converted AF into normal sinus rhythm. This first‐in‐human study evaluated the safety and tolerability, and pharmacokinetic (PK) and pharmacodynamic (PD) effects were explored. Forty‐seven healthy male volunteers (23.7 ± 3.0 years) received AP30663 intravenously in ascending doses. Due to infusion site reactions, changes to the formulation and administration were implemented in the latter 24 volunteers. Extractions from a 24‐hour continuous electrocardiogram were used to evaluate the PD effect of AP30663. Data were analyzed with a repeated measure analysis of covariance, noncompartmental analysis, and concentration‐effect analysis. In total, 33 of 34 adverse events considered related to AP30663 exposure were related to the infusion site, mild in severity, and temporary in nature, although full recovery took up to 110 days. After formulation and administration changes, the local infusion site reaction remained, but the median duration was shorter despite higher dose levels. AP30663 displayed a less than dose proportional increase in peak plasma concentration (Cmax) and a terminal half‐life of around 5 hours. In healthy volunteers, no effect of AP30663 was observed on electrocardiographic parameters, other than a concentration‐dependent effect on the corrected QT Fridericia’s formula interval (+18.8 ± 4.3 ms for the highest dose level compared with time matched placebo). In conclusion, administration of AP30663, a novel KCa2 channel inhibitor, was safe and well‐tolerated systemically in humans, supporting further development in patients with AF undergoing cardioversion.
Collapse
Affiliation(s)
- Pim Gal
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Mahdi Saghari
- Centre for Human Drug Research, Leiden, The Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands.,Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | | | | | | | | | | | | | - Nils Edvardsson
- Acesion Pharma ApS, Copenhagen, Denmark.,Department of Molecular and Clinical Medicine/Cardiology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Yu Y, Luo D, Li Z, Zhang J, Li F, Qiao J, Yu F, Li M. Inhibitory Effects of Dronedarone on Small Conductance Calcium Activated Potassium Channels in Patients with Chronic Atrial Fibrillation: Comparison to Amiodarone. Med Sci Monit 2020; 26:e924215. [PMID: 32470968 PMCID: PMC7282350 DOI: 10.12659/msm.924215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Dysfunction of small conductance calcium activated potassium (SK) channels plays a vital role in atrial arrhythmogenesis. Amiodarone and dronedarone are the most effective class III antiarrhythmic drugs. It is unclear whether the antiarrhythmic effect of amiodarone and dronedarone is related to SK channel inhibition. MATERIAL AND METHODS Tissue samples were obtained from the right atria of 46 patients with normal sinus rhythm and 39 patients with chronic atrial fibrillation. Isolated atrial myocytes were obtained by enzymatic dissociation. KCNN2 (SK2) channels were transiently expressed in human embryonic kidney (HEK)-293 cells. SK currents were recorded using whole-cell conventional patch clamp techniques. RESULTS Amiodarone and dronedarone showed a concentration-dependent inhibitory effect on SK currents (IKAS) in atrial myocytes from normal sinus rhythm patients and chronic atrial fibrillation patients. The suppressed efficacy of dronedarone and amiodarone on IKAS was greater in atrial myocytes from chronic atrial fibrillation patients than that from normal sinus rhythm patients. Furthermore, in patients with chronic atrial fibrillation, the IC₅₀ value was 2.42 µM with dronedarone and 8.03 µM with amiodarone. In HEK-293 cells with transiently transfected SK2 channels, both dronedarone and amiodarone had a dose-dependent inhibitory effect on IKAS. The IC₅₀ value was 1.7 µM with dronedarone and 7.2 µM with amiodarone in cells from patients with chronic atrial fibrillation. Compared to amiodarone, dronedarone is more efficacy to inhibit IKAS and could be a potential intervention for patients with chronic atrial fibrillation. CONCLUSIONS Dronedarone provides a great degree of IKAS inhibition in atrial myocytes from chronic atrial fibrillation than amiodarone. IKAS might be a potential target of amiodarone and dronedarone for the management of chronic atrial fibrillation.
Collapse
Affiliation(s)
- Yiyan Yu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Department of Electrocardiography, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Dan Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Zhiyi Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Juan Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Fang Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jie Qiao
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Fengxu Yu
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
26
|
Diness JG, Abildgaard L, Bomholtz SH, Skarsfeldt MA, Edvardsson N, Sørensen US, Grunnet M, Bentzen BH. Inhibition of K Ca2 Channels Decreased the Risk of Ventricular Arrhythmia in the Guinea Pig Heart During Induced Hypokalemia. Front Pharmacol 2020; 11:749. [PMID: 32508659 PMCID: PMC7251152 DOI: 10.3389/fphar.2020.00749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Hypokalemia reduces the cardiac repolarization reserve. This prolongs the QT-interval and increases the risk of ventricular arrhythmia; a risk that is exacerbated by administration of classical class 3 anti-arrhythmic agents.Small conductance Ca2+-activated K+-channels (KCa2) are a promising new atrial selective target for treatment of atrial fibrillation. Under physiological conditions KCa2 plays a minor role in ventricular repolarization. However, this might change under hypokalemia because of concomitant increases in ventriculay -60r intracellur Ca2+. PURPOSE To study the effects of pharmacological KCa2 channel inhibition by the compounds AP14145, ICA, or AP30663 under hypokalemic conditions as compared to dofetilide and hypokalemia alone time-matched controls (TMC). METHODS The current at +10 mV was compared in HEK293 cells stably expressing KCa2.3 perfused first with normo- and then hypokalemic solutions (4 mM K+ and 2.5 mM K+, respectively). Guinea pig hearts were isolated and perfused with normokalemic (4 mM K+) Krebs-Henseleit solution, followed by perfusion with drug or vehicle control. The perfusion was then changed to hypokalemic solution (2.5 mM K+) in presence of drug. 30 animals were randomly assigned to 5 groups: ICA, AP14145, AP30663, dofetilide, or TMC. QT-interval, the interval from the peak to the end of the T wave (Tp-Te), ventricular effective refractory period (VERP), arrhythmia score, and ventricular fibrillation (VF) incidence were recorded. RESULTS Hypokalemia slightly increased KCa2.3 current compared to normokalemia. Application of KCa2 channel inhibitors and dofetilide prolonged the QT interval corrected for heart rate. Dofetilide, but none of the KCa2 channel inhibitors increased Tp-Te during hypokalemia. During hypokalemia 4/6 hearts in the TMC group developed VF (two spontaneously, two by S1S2 stimulation) whereas 5/6 hearts developed VF in the dofetilide group (two spontaneously, three by S1S2 stimulation). In comparison, 0/6, 1/6, and 1/6 hearts developed VF when treated with the KCa2 channel inhibitors AP30663, ICA, or AP14145, respectively. CONCLUSION Hypokalemia was associated with an increased incidence of VF, an effect that also seen in the presence of dofetilide. In comparison, the structurally and functionally different KCa2 channel inhibitors, ICA, AP14145, and AP30663 protected the heart from hypokalemia induced VF. These results support that KCa2 inhibition may be associated with a better safety and tolerability profile than dofetilide.
Collapse
Affiliation(s)
| | | | - Sofia Hammami Bomholtz
- Acesion Pharma, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark Alexander Skarsfeldt
- Acesion Pharma, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nils Edvardsson
- Acesion Pharma, Copenhagen, Denmark
- Department of Molecular and Clinical Medicine/Cardiology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Bo Hjorth Bentzen
- Acesion Pharma, Copenhagen, Denmark
- Department of Molecular and Clinical Medicine/Cardiology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Citerni C, Kirchhoff J, Olsen LH, Sattler SM, Grunnet M, Edvardsson N, Bentzen BH, Diness JG. Inhibition of K Ca2 and K v11.1 Channels in Pigs With Left Ventricular Dysfunction. Front Pharmacol 2020; 11:556. [PMID: 32435191 PMCID: PMC7219273 DOI: 10.3389/fphar.2020.00556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Background Inhibition of KCa2 channels, conducting IKCa, can convert atrial fibrillation (AF) to sinus rhythm and protect against its induction. IKCa inhibition has been shown to possess functional atrial selectivity with minor effects on ventricles. Under pathophysiological conditions with ventricular remodeling, however, inhibiting IKCa can exhibit both proarrhythmic and antiarrhythmic ventricular effects. The aim of this study was to evaluate the effects of the IKCa inhibitor AP14145, when given before or after the IKr blocker dofetilide, on cardiac function and ventricular proarrhythmia markers in pigs with or without left ventricular dysfunction (LVD). Methods Landrace pigs were randomized into an AF group (n = 6) and two control groups: SHAM1 (n = 8) and SHAM2 (n = 4). AF pigs were atrially tachypaced (A-TP) for 43 ± 4 days until sustained AF and LVD developed. A-TP and SHAM1 pigs received 20 mg/kg AP14145 followed by 100 µg/kg dofetilide whereas SHAM2 pigs received the same drugs in the opposite order. Proarrhythmic markers such as short-term variability of QT (STVQT) and RR (STVRR) intervals, and the number of premature ventricular complexes (PVCs) were measured at baseline and after administration of drugs. The influence on cardiac function was assessed by measuring cardiac output, stroke volume, and relevant echocardiographic parameters. Results IKCa inhibition by AP14145 did not increase STVQT or STVRR in any of the pigs. IKr inhibition by dofetilide markedly increased STVQT in the A-TP pigs, but not in SHAM operated pigs. Upon infusion of AP14145 the number of PVCs decreased or remained unchanged both when AP14145 was infused after baseline and after dofetilide. Conversely, the number of PVCs increased or remained unchanged upon dofetilide infusion. Neither AP14145 nor dofetilide affected relevant echocardiographic parameters, cardiac output, or stroke volume in any of the groups. Conclusion IKCa inhibition with AP14145 was not proarrhythmic in healthy pigs, or in the presence of LVD resulting from A-TP. In pigs already challenged with 100 µg/kg dofetilide there were no signs of proarrhythmia when 20 mg/kg AP14145 were infused. KCa2 channel inhibition did not affect cardiac function, implying that KCa2 inhibitors can be administered safely also in the presence of LV dysfunction.
Collapse
Affiliation(s)
- Carlotta Citerni
- Biomedical Institute, University of Copenhagen, Copenhagen, Denmark.,Acesion Pharma, Copenhagen, Denmark
| | | | - Lisbeth Høier Olsen
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Stefan Michael Sattler
- Biomedical Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Heart Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Nils Edvardsson
- Acesion Pharma, Copenhagen, Denmark.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bo Hjorth Bentzen
- Biomedical Institute, University of Copenhagen, Copenhagen, Denmark.,Acesion Pharma, Copenhagen, Denmark
| | | |
Collapse
|
28
|
Gu H, Han SM, Park KK. Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease. Toxins (Basel) 2020; 12:E195. [PMID: 32204567 PMCID: PMC7150898 DOI: 10.3390/toxins12030195] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Bee venom is a natural toxin produced by honeybees and plays an important role in defending bee colonies. Bee venom has several kinds of peptides, including melittin, apamin, adolapamine, and mast cell degranulation peptides. Apamin accounts for about 2%-3% dry weight of bee venom and is a peptide neurotoxin that contains 18 amino acid residues that are tightly crosslinked by two disulfide bonds. It is well known for its pharmacological functions, which irreversibly block Ca2+-activated K+ (SK) channels. Apamin regulates gene expression in various signal transduction pathways involved in cell development. The aim of this study was to review the current understanding of apamin in the treatment of apoptosis, fibrosis, and central nervous system diseases, which are the pathological processes of various diseases. Apamin's potential therapeutic and pharmacological applications are also discussed.
Collapse
Affiliation(s)
- Hyemin Gu
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Sang Mi Han
- National Academy of Agricultural Science, Jeonjusi, Jeonbuk 54875, Korea;
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| |
Collapse
|
29
|
Cardiomyocyte calcium handling in health and disease: Insights from in vitro and in silico studies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 157:54-75. [PMID: 32188566 DOI: 10.1016/j.pbiomolbio.2020.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/31/2019] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) plays a central role in cardiomyocyte excitation-contraction coupling. To ensure an optimal electrical impulse propagation and cardiac contraction, Ca2+ levels are regulated by a variety of Ca2+-handling proteins. In turn, Ca2+ modulates numerous electrophysiological processes. Accordingly, Ca2+-handling abnormalities can promote cardiac arrhythmias via various mechanisms, including the promotion of afterdepolarizations, ion-channel modulation and structural remodeling. In the last 30 years, significant improvements have been made in the computational modeling of cardiomyocyte Ca2+ handling under physiological and pathological conditions. However, numerous questions involving the Ca2+-dependent regulation of different macromolecular complexes, cross-talk between Ca2+-dependent regulatory pathways operating over a wide range of time scales, and bidirectional interactions between electrophysiology and mechanics remain to be addressed by in vitro and in silico studies. A better understanding of disease-specific Ca2+-dependent proarrhythmic mechanisms may facilitate the development of improved therapeutic strategies. In this review, we describe the fundamental mechanisms of cardiomyocyte Ca2+ handling in health and disease, and provide an overview of currently available computational models for cardiomyocyte Ca2+ handling. Finally, we discuss important uncertainties and open questions about cardiomyocyte Ca2+ handling and highlight how synergy between in vitro and in silico studies may help to answer several of these issues.
Collapse
|
30
|
Yin D, Yang N, Tian Z, Wu AZ, Xu D, Chen M, Kamp NJ, Wang Z, Shen C, Chen Z, Lin SF, Rubart-von der Lohe M, Chen PS, Everett TH. Effects of ondansetron on apamin-sensitive small conductance calcium-activated potassium currents in pacing-induced failing rabbit hearts. Heart Rhythm 2020; 17:332-340. [PMID: 31513946 PMCID: PMC6982558 DOI: 10.1016/j.hrthm.2019.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ondansetron, a widely prescribed antiemetic, has been implicated in drug-induced long QT syndrome. Recent patch clamp experiments have shown that ondansetron inhibits the apamin-sensitive small conductance calcium-activated potassium current (IKAS). OBJECTIVE The purpose of this study was to determine whether ondansetron causes action potential duration (APD) prolongation by IKAS inhibition. METHODS Optical mapping was performed in rabbit hearts with pacing-induced heart failure (HF) and in normal hearts before and after ondansetron (100 nM) infusion. APD at 80% repolarization (APD80) and arrhythmia inducibility were determined. Additional studies with ondansetron were performed in normal hearts perfused with hypokalemic Tyrode's (2.4 mM) solution before or after apamin administration. RESULTS The corrected QT interval in HF was 326 ms (95% confidence interval [CI] 306-347 ms) at baseline and 364 ms (95% CI 351-378 ms) after ondansetron infusion (P < .001). Ondansetron significantly prolonged APD80 in the HF group and promoted early afterdepolarizations, steepened the APD restitution curve, and increased ventricular vulnerability. Ventricular fibrillation was not inducible in HF ventricles at baseline, but after ondansetron infusion, ventricular fibrillation was induced in 5 of the 7 ventricles (P = .021). In hypokalemia, apamin prolonged APD80 from 163 ms (95% CI 146-180 ms) to 180 ms (95% CI 156-204 ms) (P = .018). Subsequent administration of ondansetron failed to further prolong APD80 (180 ms [95% CI 156-204 ms] vs 179 ms [95% CI 165-194 ms]; P = .789). The results were similar when ondansetron was administered first, followed by apamin. CONCLUSION Ondansetron is a specific IKAS blocker at therapeutic concentrations. Ondansetron may prolong the QT interval in HF by inhibiting small conductance calcium-activated potassium channels, which increases the vulnerability to ventricular arrhythmias.
Collapse
Affiliation(s)
- Dechun Yin
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Na Yang
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Gynecological and Obstetric Ultrasound, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhipeng Tian
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Adonis Z Wu
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Institute of Biomedical Engineering, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Dongzhu Xu
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mu Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Nicholas J Kamp
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zhuo Wang
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changyu Shen
- Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Zhenhui Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shien-Fong Lin
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Institute of Biomedical Engineering, National Chiao Tung University, Hsin-Chu, Taiwan
| | | | - Peng-Sheng Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas H Everett
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
31
|
Hamilton S, Polina I, Terentyeva R, Bronk P, Kim TY, Roder K, Clements RT, Koren G, Choi BR, Terentyev D. PKA phosphorylation underlies functional recruitment of sarcolemmal SK2 channels in ventricular myocytes from hypertrophic hearts. J Physiol 2019; 598:2847-2873. [PMID: 30771223 PMCID: PMC7496687 DOI: 10.1113/jp277618] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Small-conductance Ca2+ -activated K+ (SK) channels expressed in ventricular myocytes are dormant in health, yet become functional in cardiac disease. SK channels are voltage independent and their gating is controlled by intracellular [Ca2+ ] in a biphasic manner. Submicromolar [Ca2+ ] activates the channel via constitutively-bound calmodulin, whereas higher [Ca2+ ] exerts inhibitory effect during depolarization. Using a rat model of cardiac hypertrophy induced by thoracic aortic banding, we found that functional upregulation of SK2 channels in hypertrophic rat ventricular cardiomyocytes is driven by protein kinase A (PKA) phosphorylation. Using site-directed mutagenesis, we identified serine-465 as the site conferring PKA-dependent effects on SK2 channel function. PKA phosphorylation attenuates ISK rectification by reducing the Ca2+ /voltage-dependent inhibition of SK channels without changing their sensitivity to activating submicromolar [Ca2+ ]i . This mechanism underlies the functional recruitment of SK channels not only in cardiac disease, but also in normal physiology, contributing to repolarization under conditions of enhanced adrenergic drive. ABSTRACT Small-conductance Ca2+ -activated K+ (SK) channels expressed in ventricular myocytes (VMs) are dormant in health, yet become functional in cardiac disease. We aimed to test the hypothesis that post-translational modification of SK channels under conditions accompanied by enhanced adrenergic drive plays a central role in disease-related activation of the channels. We investigated this phenomenon using a rat model of hypertrophy induced by thoracic aortic banding (TAB). Western blot analysis using anti-pan-serine/threonine antibodies demonstrated enhanced phosphorylation of immunoprecipitated SK2 channels in VMs from TAB rats vs. Shams, which was reversible by incubation of the VMs with PKA inhibitor H89 (1 μmol L-1 ). Patch clamped VMs under basal conditions from TABs but not Shams exhibited outward current sensitive to the specific SK inhibitor apamin (100 nmol L-1 ), which was eliminated by inhibition of PKA (1 μmol L-1 ). Beta-adrenergic stimulation (isoproterenol, 100 nmol L-1 ) evoked ISK in VMs from Shams, resulting in shortening of action potentials in VMs and ex vivo optically mapped Sham hearts. Using adenoviral gene transfer, wild-type and mutant SK2 channels were overexpressed in adult rat VMs, revealing serine-465 as the site that elicits PKA-dependent phosphorylation effects on SK2 channel function. Concurrent confocal Ca2+ imaging experiments established that PKA phosphorylation lessens rectification of ISK via reduction Ca2+ /voltage-dependent inhibition of the channels at high [Ca2+ ] without affecting their sensitivity to activation by Ca2+ in the submicromolar range. In conclusion, upregulation of SK channels in diseased VMs is mediated by hyperadrenergic drive in cardiac hypertrophy, with functional effects on the channel conferred by PKA-dependent phosphorylation at serine-465.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Iuliia Polina
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA.,Medical University of South Carolina, Department of Medicine, Division of Nephrology, Charleston, SC, USA
| | - Radmila Terentyeva
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Peter Bronk
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA
| | - Tae Yun Kim
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA
| | - Karim Roder
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA
| | - Richard T Clements
- Department of Surgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA.,Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | - Gideon Koren
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA
| | - Bum-Rak Choi
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
32
|
Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW, Dibb KM. Calcium in the Pathophysiology of Atrial Fibrillation and Heart Failure. Front Physiol 2018; 9:1380. [PMID: 30337881 PMCID: PMC6180171 DOI: 10.3389/fphys.2018.01380] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Atrial fibrillation (AF) is commonly associated with heart failure. A bidirectional relationship exists between the two-AF exacerbates heart failure causing a significant increase in heart failure symptoms, admissions to hospital and cardiovascular death, while pathological remodeling of the atria as a result of heart failure increases the risk of AF. A comprehensive understanding of the pathophysiology of AF is essential if we are to break this vicious circle. In this review, the latest evidence will be presented showing a fundamental role for calcium in both the induction and maintenance of AF. After outlining atrial electrophysiology and calcium handling, the role of calcium-dependent afterdepolarizations and atrial repolarization alternans in triggering AF will be considered. The atrial response to rapid stimulation will be discussed, including the short-term protection from calcium overload in the form of calcium signaling silencing and the eventual progression to diastolic calcium leak causing afterdepolarizations and the development of an electrical substrate that perpetuates AF. The role of calcium in the bidirectional relationship between heart failure and AF will then be covered. The effects of heart failure on atrial calcium handling that promote AF will be reviewed, including effects on both atrial myocytes and the pulmonary veins, before the aspects of AF which exacerbate heart failure are discussed. Finally, the limitations of human and animal studies will be explored allowing contextualization of what are sometimes discordant results.
Collapse
Affiliation(s)
- Nathan C. Denham
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | - Katharine M. Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
33
|
Gu M, Zhu Y, Yin X, Zhang DM. Small-conductance Ca 2+-activated K + channels: insights into their roles in cardiovascular disease. Exp Mol Med 2018; 50:1-7. [PMID: 29651007 PMCID: PMC5938042 DOI: 10.1038/s12276-018-0043-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
Life-threatening malignant arrhythmias in pathophysiological conditions can increase the mortality and morbidity of patients with cardiovascular diseases. Cardiac electrical activity depends on the coordinated propagation of excitatory stimuli and the generation of action potentials in cardiomyocytes. Action potential formation results from the opening and closing of ion channels. Recent studies have indicated that small-conductance calcium-activated potassium (SK) channels play a critical role in cardiac repolarization in pathophysiological but not normal physiological conditions. The aim of this review is to describe the role of SK channels in healthy and diseased hearts, to suggest cardiovascular pathophysiologic targets for intervention, and to discuss studies of agents that target SK channels for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingxia Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, 210006, Nanjing, China
- Department of Cardiology, Nanjing Central Hospital, Jiangsu, 210018, Nanjing, China
| | - Yanrong Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, 210006, Nanjing, China
| | - Xiaorong Yin
- Department of Cardiology, Nanjing Central Hospital, Jiangsu, 210018, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, 210006, Nanjing, China.
| |
Collapse
|
34
|
Fan HK, Luo TX, Zhao WD, Mu YH, Yang Y, Guo WJ, Tu HY, Zhang Q. Functional interaction of Junctophilin 2 with small- conductance Ca 2+ -activated potassium channel subtype 2(SK2) in mouse cardiac myocytes. Acta Physiol (Oxf) 2018; 222. [PMID: 29055091 PMCID: PMC6084295 DOI: 10.1111/apha.12986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 10/15/2017] [Accepted: 10/15/2017] [Indexed: 12/17/2022]
Abstract
Aim Junctophilins (JPs), a protein family of the junctional membrane complex, maintain the close conjunction between cell surface and intracellular membranes in striate muscle cells mediating the crosstalk between extracellular Ca2+ entry and intracellular Ca2+ release. The small‐conductance Ca2+‐activated K+ channels are activated by the intracellular calcium and play an essential role in the cardiac action potential profile. Molecular mechanisms of regulation of the SK channels are still uncertain. Here, we sought to determine whether there is a functional interaction of junctophilin type 2 (JP2) with the SK channels and whether JP2 gene silencing might modulate the function of SK channels in cardiac myocytes. Methods Association of JP2 with SK2 channel in mouse heart tissue as well as HEK293 cells was studied using in vivo and in vitro approaches. siRNA knockdown of JP2 gene was assessed by real‐time PCR. The expression of proteins was analysed by Western blotting. Ca2+‐activated K+ current (IK,Ca) in infected adult mouse cardiac myocytes was recorded using whole‐cell voltage‐clamp technique. The intracellular Ca2+ transient was measured using an IonOptix photometry system. Results We showed for the first time that JP2 associates with the SK2 channel in native cardiac tissue. JP2, via the membrane occupation and recognition nexus (MORN motifs) in its N‐terminus, directly interacted with SK2 channels. A colocalization of the SK2 channel with its interaction protein of JP2 was found in the cardiac myocytes. Moreover, we demonstrated that JP2 is necessary for the proper cell surface expression of the SK2 channel in HEK293. Functional experiments indicated that knockdown of JP2 caused a significant decrease in the density of IK,Ca and reduced the amplitude of the Ca2+ transient in infected cardiomyocytes. Conclusion The present data provide evidence that the functional interaction between JP2 and SK2 channels is present in the native mouse heart tissue. Junctophilin 2, as junctional membrane complex (JMC) protein, is an important regulator of the cardiac SK channels.
Collapse
Affiliation(s)
- H. K. Fan
- Department of Physiology; School of Medicine; Zhengzhou University; Zhengzhou China
| | - T. X. Luo
- Department of Physiology; School of Medicine; Zhengzhou University; Zhengzhou China
| | - W. D. Zhao
- Faculty of Medicine; KU Leuven; Leuven Belgium
| | - Y. H. Mu
- Department of Pathophysiology; School of Medicine; Xinxiang Medical College; Xinxiang China
| | - Y. Yang
- Department of Physiology; School of Medicine; Zhengzhou University; Zhengzhou China
| | - W. J. Guo
- Department of Physiology; School of Medicine; Zhengzhou University; Zhengzhou China
| | - H. Y. Tu
- Department of Physiology; School of Medicine; Zhengzhou University; Zhengzhou China
| | - Q. Zhang
- Department of Physiology; School of Medicine; Zhengzhou University; Zhengzhou China
| |
Collapse
|
35
|
A novel mechanism underlies atrazine toxicity in quails (Coturnix Coturnix coturnix): triggering ionic disorder via disruption of ATPases. Oncotarget 2018; 7:83880-83892. [PMID: 27924060 PMCID: PMC5356632 DOI: 10.18632/oncotarget.13794] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/22/2016] [Indexed: 01/19/2023] Open
Abstract
The widely used atrazine has been reported to exhibit extensive ecological hazards. Due to the biological accumulation, atrazine elicits widespread toxic effects on different organisms. However, true proof for the mechanism of atrazine-induced toxicity is lacking. To determine the potential mechanism by which atrazine exerted toxic effects, quails were treated with atrazine (0, 50, 250 and 500 mg/kg) by gavage administration for 45 days. Atrazine significantly increased the histological alterations and serum creatine kinase, lactate dehydrogenase and choline esterase levels. A marked disorder in ionic (Na+, K+, Ca2+ and Mg2+)contents and the decrease of ATPases (Na+-K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and Ca2+-Mg2+-ATPase) activities were observed in the heart and liver of atrazine-exposed quails. Of note, it was also observed that atrazine suppressed the transcription of Na+, K+ transfer associated genes (Na+-K+-ATPase subunits) and Ca2+ transfer associated genes (Ca2+-ATPase subunits, solute carriers) in heart and liver. In conclusion, atrazine induced cardiac and hepatic damage via causing the ionic disorder, triggering the transcription of the ion transporters and leading the histopathological and functional alternations in the heart and liver of quails. This study demonstrated atrazine significantly induced the ionic disorder via decreasing the ATPases activities and disturbing the transcription of the ion transporters.
Collapse
|
36
|
Diness JG, Skibsbye L, Simó-Vicens R, Santos JL, Lundegaard P, Citerni C, Sauter DRP, Bomholtz SH, Svendsen JH, Olesen SP, Sørensen US, Jespersen T, Grunnet M, Bentzen BH. Termination of Vernakalant-Resistant Atrial Fibrillation by Inhibition of Small-Conductance Ca 2+-Activated K + Channels in Pigs. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.005125. [PMID: 29018164 PMCID: PMC5647113 DOI: 10.1161/circep.117.005125] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/21/2017] [Indexed: 11/17/2022]
Abstract
Supplemental Digital Content is available in the text. Background Evidence has emerged that small-conductance Ca2+-activated K+ (SK) channels constitute a new target for treatment of atrial fibrillation (AF). SK channels are predominantly expressed in the atria as compared with the ventricles. Various marketed antiarrhythmic drugs are limited by ventricular adverse effects and efficacy loss as AF progresses. Methods and Results A total of 43 pigs were used for the studies. AF reversion in conscious long-term tachypaced pigs: Pigs were subjected to atrial tachypacing (7 Hz) until they developed sustained AF that could not be reverted by vernakalant 4 mg/kg (18.8±3.3 days of atrial tachypacing). When the SK channel inhibitor AP14145 was tested in these animals, vernakalant-resistant AF was reverted to sinus rhythm, and reinduction of AF by burst pacing (50 Hz) was prevented in 8 of 8 pigs. Effects on refractory period and AF duration in open chest pigs: The effects of AP14145 and vernakalant on the effective refractory periods and acute burst pacing-induced AF were examined in anaesthetized open chest pigs. Both vernakalant and AP14145 significantly prolonged atrial refractoriness and reduced AF duration without affecting the ventricular refractoriness or blood pressure in pigs subjected to 7 days atrial tachypacing, as well as in sham-operated control pigs. Conclusions SK currents play a role in porcine atrial repolarization, and pharmacological inhibition of these with AP14145 demonstrates antiarrhythmic effects in a vernakalant-resistant porcine model of AF. These results suggest SK channel blockers as potentially interesting anti-AF drugs.
Collapse
Affiliation(s)
- Jonas Goldin Diness
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.).
| | - Lasse Skibsbye
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.)
| | - Rafel Simó-Vicens
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.)
| | - Joana Larupa Santos
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.)
| | - Pia Lundegaard
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.)
| | - Carlotta Citerni
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.)
| | - Daniel Rafael Peter Sauter
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.)
| | - Sofia Hammami Bomholtz
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.)
| | - Jesper Hastrup Svendsen
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.)
| | - Søren-Peter Olesen
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.)
| | - Ulrik S Sørensen
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.)
| | - Thomas Jespersen
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.)
| | - Morten Grunnet
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.)
| | - Bo Hjorth Bentzen
- From the Acesion Pharma, Copenhagen, Denmark (J.G.D., R.S.-V., C.C., D.R.P.S., S.H.B., U.S.S., M.G., B.H.B.); Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.S., J.L.S., P.L., D.R.P.S., S.-P.O., T.J., M.G., B.H.B.); and the Heart Centre, Rigshospitalet, Copenhagen, Denmark (J.H.S.)
| |
Collapse
|
37
|
Kim TY, Terentyeva R, Roder KHF, Li W, Liu M, Greener I, Hamilton S, Polina I, Murphy KR, Clements RT, Dudley SC, Koren G, Choi BR, Terentyev D. SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. Cardiovasc Res 2017; 113:343-353. [PMID: 28096168 DOI: 10.1093/cvr/cvx005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/12/2017] [Indexed: 01/17/2023] Open
Abstract
Aims Plasmamembrane small conductance Ca2+-activated K+ (SK) channels were implicated in ventricular arrhythmias in infarcted and failing hearts. Recently, SK channels were detected in the inner mitochondria membrane (IMM) (mSK), and their activation protected from acute ischaemia-reperfusion injury by reducing intracellular levels of reactive oxygen species (ROS). We hypothesized that mSK play an important role in regulating mitochondrial function in chronic cardiac diseases. We investigated the role of mSK channels in Ca2+-dependent ventricular arrhythmia using rat model of cardiac hypertrophy induced by banding of the ascending aorta thoracic aortic banding (TAB). Methods and results Dual Ca2+ and membrane potential optical mapping of whole hearts derived from TAB rats revealed that membrane-permeable SK enhancer NS309 (2 μM) improved aberrant Ca2+ homeostasis and abolished VT/VF induced by β-adrenergic stimulation. Using whole cell patch-clamp and confocal Ca2+ imaging of cardiomyocytes derived from TAB hearts (TCMs) we found that membrane-permeable SK enhancers NS309 and CyPPA (10 μM) attenuated frequency of spontaneous Ca2+ waves and delayed afterdepolarizations. Furthermore, mSK inhibition enhanced (UCL-1684, 1 μM); while activation reduced mitochondrial ROS production in TCMs measured with MitoSOX. Protein oxidation assays demonstrated that increased oxidation of ryanodine receptors (RyRs) in TCMs was reversed by SK enhancers. Experiments in permeabilized TCMs showed that SK enhancers restored SR Ca2+ content, suggestive of substantial improvement in RyR function. Conclusion These data suggest that enhancement of mSK channels in hypertrophic rat hearts protects from Ca2+-dependent arrhythmia and suggest that the protection is mediated via decreased mitochondrial ROS and subsequent decreased oxidation of reactive cysteines in RyR, which ultimately leads to stabilization of RyR-mediated Ca2+ release.
Collapse
Affiliation(s)
- Tae Yun Kim
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Radmila Terentyeva
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Karim H F Roder
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Weiyan Li
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Man Liu
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Ian Greener
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Shanna Hamilton
- Division of Cancer and Genetics, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Iuliia Polina
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Kevin R Murphy
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Richard T Clements
- Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren, Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI 02903-4141, USA
| | - Samuel C Dudley
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Gideon Koren
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Bum-Rak Choi
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Dmitry Terentyev
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| |
Collapse
|
38
|
Ravens U. Atrial-selective K + channel blockers: potential antiarrhythmic drugs in atrial fibrillation? Can J Physiol Pharmacol 2017; 95:1313-1318. [PMID: 28738160 DOI: 10.1139/cjpp-2017-0024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the wake of demographic change in Western countries, atrial fibrillation has reached an epidemiological scale, yet current strategies for drug treatment of the arrhythmia lack sufficient efficacy and safety. In search of novel medications, atrial-selective drugs that specifically target atrial over other cardiac functions have been developed. Here, I will address drugs acting on potassium (K+) channels that are either predominantly expressed in atria or possess electrophysiological properties distinct in atria from ventricles. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting IKur, the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting IK,ACh, the Ca2+-activated K+ channels of small conductance (SK) conducting ISK, and the two-pore domain K+ (K2P) channels (tandem of P domains, weak inward-rectifying K+ channels (TWIK-1), TWIK-related acid-sensitive K+ channels (TASK-1 and TASK-3)) that are responsible for voltage-independent background currents ITWIK-1, ITASK-1, and ITASK-3. Direct drug effects on these channels are described and their putative value in treatment of atrial fibrillation is discussed. Although many potential drug targets have emerged in the process of unravelling details of the pathophysiological mechanisms responsible for atrial fibrillation, we do not know whether novel antiarrhythmic drugs will be more successful when modulating many targets or a single specific one. The answer to this riddle can only be solved in a clinical context.
Collapse
Affiliation(s)
- Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, University of Freiburg, Germany; Institute of Physiology, Medical Faculty Carl Gustav Carus, TU Dresden, Germany.,Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, University of Freiburg, Germany; Institute of Physiology, Medical Faculty Carl Gustav Carus, TU Dresden, Germany
| |
Collapse
|
39
|
Yin D, Hsieh YC, Tsai WC, Wu AZY, Jiang Z, Chan YH, Xu D, Yang N, Shen C, Chen Z, Lin SF, Chen PS, Everett TH. Role of Apamin-Sensitive Calcium-Activated Small-Conductance Potassium Currents on the Mechanisms of Ventricular Fibrillation in Pacing-Induced Failing Rabbit Hearts. Circ Arrhythm Electrophysiol 2017; 10:e004434. [PMID: 28213506 DOI: 10.1161/circep.116.004434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/05/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ventricular fibrillation (VF) during heart failure is characterized by stable reentrant spiral waves (rotors). Apamin-sensitive small-conductance calcium-activated potassium currents (IKAS) are heterogeneously upregulated in failing hearts. We hypothesized that IKAS influences the location and stability of rotors during VF. METHODS AND RESULTS Optical mapping was performed on 9 rabbit hearts with pacing-induced heart failure. The epicardial right ventricular and left ventricular surfaces were simultaneously mapped in a Langendorff preparation. At baseline and after apamin (100 nmol/L) infusion, the action potential duration (APD80) was determined, and VF was induced. Areas with a >50% increase in the maximum action potential duration (ΔAPD) after apamin infusion were considered to have a high IKAS distribution. At baseline, the distribution density of phase singularities during VF in high IKAS distribution areas was higher than in other areas (0.0035±0.0011 versus 0.0014±0.0010 phase singularities/pixel; P=0.004). In addition, high dominant frequencies also colocalized to high IKAS distribution areas (26.0 versus 17.9 Hz; P=0.003). These correlations were eliminated during VF after apamin infusion, as the number of phase singularities (17.2 versus 11.0; P=0.009) and dominant frequencies (22.1 versus 16.2 Hz; P=0.022) were all significantly decreased. In addition, reentrant spiral waves became unstable after apamin infusion, and the duration of VF decreased. CONCLUSIONS The IKAS current influences the mechanism of VF in failing hearts as phase singularities, high dominant frequencies, and reentrant spiral waves all correlated to areas of high IKAS. Apamin eliminated this relationship and reduced VF vulnerability.
Collapse
Affiliation(s)
- Dechun Yin
- From the Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.Y., Y.-C.H., W.-C.T., A.Z.-Y.W., Z.J., Y.-H.C., D.X., N.Y., Z.C., S.-F.L., P.-S.C., T.H.E.); Department of Cardiology (D.Y.) and Department of Gynecological and Obstetric Ultrasound (N.Y.), First Affiliated Hospital of Harbin Medical University, China; Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei (Y.-C.H.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan (W.-C.T.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (A.Z.-Y.W., S.-F.L.); Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.J.); Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C.); Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan (D.X.); and Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.S.)
| | - Yu-Cheng Hsieh
- From the Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.Y., Y.-C.H., W.-C.T., A.Z.-Y.W., Z.J., Y.-H.C., D.X., N.Y., Z.C., S.-F.L., P.-S.C., T.H.E.); Department of Cardiology (D.Y.) and Department of Gynecological and Obstetric Ultrasound (N.Y.), First Affiliated Hospital of Harbin Medical University, China; Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei (Y.-C.H.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan (W.-C.T.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (A.Z.-Y.W., S.-F.L.); Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.J.); Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C.); Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan (D.X.); and Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.S.)
| | - Wei-Chung Tsai
- From the Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.Y., Y.-C.H., W.-C.T., A.Z.-Y.W., Z.J., Y.-H.C., D.X., N.Y., Z.C., S.-F.L., P.-S.C., T.H.E.); Department of Cardiology (D.Y.) and Department of Gynecological and Obstetric Ultrasound (N.Y.), First Affiliated Hospital of Harbin Medical University, China; Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei (Y.-C.H.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan (W.-C.T.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (A.Z.-Y.W., S.-F.L.); Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.J.); Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C.); Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan (D.X.); and Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.S.)
| | - Adonis Zhi-Yang Wu
- From the Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.Y., Y.-C.H., W.-C.T., A.Z.-Y.W., Z.J., Y.-H.C., D.X., N.Y., Z.C., S.-F.L., P.-S.C., T.H.E.); Department of Cardiology (D.Y.) and Department of Gynecological and Obstetric Ultrasound (N.Y.), First Affiliated Hospital of Harbin Medical University, China; Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei (Y.-C.H.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan (W.-C.T.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (A.Z.-Y.W., S.-F.L.); Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.J.); Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C.); Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan (D.X.); and Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.S.)
| | - Zhaolei Jiang
- From the Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.Y., Y.-C.H., W.-C.T., A.Z.-Y.W., Z.J., Y.-H.C., D.X., N.Y., Z.C., S.-F.L., P.-S.C., T.H.E.); Department of Cardiology (D.Y.) and Department of Gynecological and Obstetric Ultrasound (N.Y.), First Affiliated Hospital of Harbin Medical University, China; Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei (Y.-C.H.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan (W.-C.T.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (A.Z.-Y.W., S.-F.L.); Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.J.); Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C.); Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan (D.X.); and Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.S.)
| | - Yi-Hsin Chan
- From the Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.Y., Y.-C.H., W.-C.T., A.Z.-Y.W., Z.J., Y.-H.C., D.X., N.Y., Z.C., S.-F.L., P.-S.C., T.H.E.); Department of Cardiology (D.Y.) and Department of Gynecological and Obstetric Ultrasound (N.Y.), First Affiliated Hospital of Harbin Medical University, China; Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei (Y.-C.H.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan (W.-C.T.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (A.Z.-Y.W., S.-F.L.); Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.J.); Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C.); Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan (D.X.); and Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.S.)
| | - Dongzhu Xu
- From the Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.Y., Y.-C.H., W.-C.T., A.Z.-Y.W., Z.J., Y.-H.C., D.X., N.Y., Z.C., S.-F.L., P.-S.C., T.H.E.); Department of Cardiology (D.Y.) and Department of Gynecological and Obstetric Ultrasound (N.Y.), First Affiliated Hospital of Harbin Medical University, China; Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei (Y.-C.H.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan (W.-C.T.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (A.Z.-Y.W., S.-F.L.); Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.J.); Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C.); Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan (D.X.); and Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.S.)
| | - Na Yang
- From the Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.Y., Y.-C.H., W.-C.T., A.Z.-Y.W., Z.J., Y.-H.C., D.X., N.Y., Z.C., S.-F.L., P.-S.C., T.H.E.); Department of Cardiology (D.Y.) and Department of Gynecological and Obstetric Ultrasound (N.Y.), First Affiliated Hospital of Harbin Medical University, China; Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei (Y.-C.H.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan (W.-C.T.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (A.Z.-Y.W., S.-F.L.); Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.J.); Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C.); Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan (D.X.); and Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.S.)
| | - Changyu Shen
- From the Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.Y., Y.-C.H., W.-C.T., A.Z.-Y.W., Z.J., Y.-H.C., D.X., N.Y., Z.C., S.-F.L., P.-S.C., T.H.E.); Department of Cardiology (D.Y.) and Department of Gynecological and Obstetric Ultrasound (N.Y.), First Affiliated Hospital of Harbin Medical University, China; Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei (Y.-C.H.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan (W.-C.T.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (A.Z.-Y.W., S.-F.L.); Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.J.); Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C.); Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan (D.X.); and Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.S.)
| | - Zhenhui Chen
- From the Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.Y., Y.-C.H., W.-C.T., A.Z.-Y.W., Z.J., Y.-H.C., D.X., N.Y., Z.C., S.-F.L., P.-S.C., T.H.E.); Department of Cardiology (D.Y.) and Department of Gynecological and Obstetric Ultrasound (N.Y.), First Affiliated Hospital of Harbin Medical University, China; Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei (Y.-C.H.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan (W.-C.T.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (A.Z.-Y.W., S.-F.L.); Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.J.); Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C.); Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan (D.X.); and Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.S.)
| | - Shien-Fong Lin
- From the Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.Y., Y.-C.H., W.-C.T., A.Z.-Y.W., Z.J., Y.-H.C., D.X., N.Y., Z.C., S.-F.L., P.-S.C., T.H.E.); Department of Cardiology (D.Y.) and Department of Gynecological and Obstetric Ultrasound (N.Y.), First Affiliated Hospital of Harbin Medical University, China; Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei (Y.-C.H.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan (W.-C.T.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (A.Z.-Y.W., S.-F.L.); Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.J.); Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C.); Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan (D.X.); and Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.S.)
| | - Peng-Sheng Chen
- From the Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.Y., Y.-C.H., W.-C.T., A.Z.-Y.W., Z.J., Y.-H.C., D.X., N.Y., Z.C., S.-F.L., P.-S.C., T.H.E.); Department of Cardiology (D.Y.) and Department of Gynecological and Obstetric Ultrasound (N.Y.), First Affiliated Hospital of Harbin Medical University, China; Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei (Y.-C.H.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan (W.-C.T.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (A.Z.-Y.W., S.-F.L.); Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.J.); Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C.); Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan (D.X.); and Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.S.)
| | - Thomas H Everett
- From the Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.Y., Y.-C.H., W.-C.T., A.Z.-Y.W., Z.J., Y.-H.C., D.X., N.Y., Z.C., S.-F.L., P.-S.C., T.H.E.); Department of Cardiology (D.Y.) and Department of Gynecological and Obstetric Ultrasound (N.Y.), First Affiliated Hospital of Harbin Medical University, China; Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei (Y.-C.H.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan (W.-C.T.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (A.Z.-Y.W., S.-F.L.); Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.J.); Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C.); Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan (D.X.); and Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.S.).
| |
Collapse
|
40
|
Abstract
Despite the epidemiological scale of atrial fibrillation, current treatment strategies are of limited efficacy and safety. Ideally, novel drugs should specifically correct the pathophysiological mechanisms responsible for atrial fibrillation with no other cardiac or extracardiac actions. Atrial-selective drugs are directed toward cellular targets with sufficiently different characteristics in atria and ventricles to modify only atrial function. Several potassium (K+) channels with either predominant expression in atria or distinct electrophysiological properties in atria and ventricles can serve as atrial-selective drug targets. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting IKur, the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting IK,ACh, the Ca2+-activated K+ channels of small conductance (SK) conducting ISK, and the two pore domain K+ (K2P) channels TWIK-1, TASK-1 and TASK-3 that are responsible for voltage-independent background currents ITWIK-1, ITASK-1, and ITASK-3. Here, we briefly review the characteristics of these K+ channels and their roles in atrial fibrillation. The antiarrhythmic potential of drugs targeting the described channels is discussed as well as their putative value in treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany; Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany; Department of Physiology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany.
| | - Katja E Odening
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany; Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
| |
Collapse
|
41
|
Abstract
Small-conductance Ca2+-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti–atrial fibrillation principle.
Collapse
|
42
|
Abstract
Any disturbance of electrical impulse formation in the heart and of impulse conduction or action potential (AP) repolarization can lead to rhythm disorders. Potassium (K(+)) channels play a prominent role in the AP repolarization process. In this review we describe the causes and mechanisms of proarrhythmic effects that arise as a response to blockers of cardiac K(+) channels. The largest and chemically most diverse groups of compound targets are Kv11.1 (hERG) and Kv7.1 (KvLQT1) channels. Finally, the proarrhythmic propensity of atrial-selective K(+) blockers inhibiting Kv1.5, Kir3.1/3.4, SK, and K2P channels is discussed.
Collapse
Affiliation(s)
- Lasse Skibsbye
- Danish Arrhythmia Research Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, 3 Copenhagen N DK-2200, Denmark
| | - Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Institut für Pharmakologie und Toxikologie, TU Dresden, Fetscherstrasse 74, Dresden D-01307, Germany.
| |
Collapse
|
43
|
Lin J, Li HX, Xia J, Li XN, Jiang XQ, Zhu SY, Ge J, Li JL. The chemopreventive potential of lycopene against atrazine-induced cardiotoxicity: modulation of ionic homeostasis. Sci Rep 2016; 6:24855. [PMID: 27112537 PMCID: PMC4845055 DOI: 10.1038/srep24855] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/05/2016] [Indexed: 12/06/2022] Open
Abstract
People who drink water contaminated with atrazine (ATR) over many years can experience problems with their cardiovascular system. Lycopene (LYC) has been shown to exhibit cardiovascular disease preventive effects. However, chemopreventive potential of LYC against ATR-induced cardiotoxicity remains unclear. To determine the effects of ATR and/or LYC on heart, mice were treated with ATR (50 mg/kg or 200 mg/kg) and/or LYC (5 mg/kg) by intragastric administration for 21 days. Histopathological and biochemical analyses, including analysis of ion concentrations (Na+, K+, Ca2+ and Mg2+), ATPases (Na+-K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and Ca2+-Mg2+-ATPase) activities and the transcription of their subunits, were performed on heart. The results revealed that ATR led to decreased Creative Kinase (CK) activity and increased histological alterations. Furthermore, a significant change in Na+, K+ and Ca2+ content and the down-regulation of Na+-K+-ATPase and Ca2+-ATPase activities and the mRNA expression of their subunits were observed in ATR-exposed mice. Notably, supplementary LYC significantly protected the heart against ATR-induced damage. In conclusion, ATR induced cardiotoxicity by modulating cardiac ATPase activity and the transcription of its subunits, thereby triggering ionic disturbances. However, supplementary LYC significantly combated ATR-induced cardiotoxicity via the regulation of ATPase activity and subunit transcription. Thus, LYC exhibited a significant chemopreventive potential against ATR-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hui-Xin Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jun Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiu-Qing Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
44
|
Smith SA, Hughes LD, Kline CF, Kempton AN, Dorn LE, Curran J, Makara M, Webb TR, Wright P, Voigt N, Binkley PF, Janssen PML, Kilic A, Carnes CA, Dobrev D, Rasband MN, Hund TJ, Mohler PJ. Dysfunction of the β2-spectrin-based pathway in human heart failure. Am J Physiol Heart Circ Physiol 2016; 310:H1583-91. [PMID: 27106045 DOI: 10.1152/ajpheart.00875.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/11/2016] [Indexed: 11/22/2022]
Abstract
β2-Spectrin is critical for integrating membrane and cytoskeletal domains in excitable and nonexcitable cells. The role of β2-spectrin for vertebrate function is illustrated by dysfunction of β2-spectrin-based pathways in disease. Recently, defects in β2-spectrin association with protein partner ankyrin-B were identified in congenital forms of human arrhythmia. However, the role of β2-spectrin in common forms of acquired heart failure and arrhythmia is unknown. We report that β2-spectrin protein levels are significantly altered in human cardiovascular disease as well as in large and small animal cardiovascular disease models. Specifically, β2-spectrin levels were decreased in atrial samples of patients with atrial fibrillation compared with tissue from patients in sinus rhythm. Furthermore, compared with left ventricular samples from nonfailing hearts, β2-spectrin levels were significantly decreased in left ventricle of ischemic- and nonischemic heart failure patients. Left ventricle samples of canine and murine heart failure models confirm reduced β2-spectrin protein levels. Mechanistically, we identify that β2-spectrin levels are tightly regulated by posttranslational mechanisms, namely Ca(2+)- and calpain-dependent proteases. Furthermore, consistent with this data, we observed Ca(2+)- and calpain-dependent loss of β2-spectrin downstream effector proteins, including ankyrin-B in heart. In summary, our findings illustrate that β2-spectrin and downstream molecules are regulated in multiple forms of cardiovascular disease via Ca(2+)- and calpain-dependent proteolysis.
Collapse
Affiliation(s)
- Sakima A Smith
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio;
| | - Langston D Hughes
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Crystal F Kline
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Amber N Kempton
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Lisa E Dorn
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Jerry Curran
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Michael Makara
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Tyler R Webb
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Patrick Wright
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Niels Voigt
- Faculty of Medicine, Institute of Pharmacology, University Duisburg-Essen, Essen, Germany; and
| | - Philip F Binkley
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Paul M L Janssen
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Ahmet Kilic
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Cynthia A Carnes
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Dobromir Dobrev
- Faculty of Medicine, Institute of Pharmacology, University Duisburg-Essen, Essen, Germany; and
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| |
Collapse
|
45
|
Tsai WC, Chan YH, Hsueh CH, Everett TH, Chang PC, Choi EK, Olaopa MA, Lin SF, Shen C, Kudela MA, Rubart-von der Lohe M, Chen Z, Jadiya P, Tomar D, Luvison E, Anzalone N, Patel VV, Chen PS. Small conductance calcium-activated potassium current and the mechanism of atrial arrhythmia in mice with dysfunctional melanocyte-like cells. Heart Rhythm 2016; 13:1527-35. [PMID: 26961301 DOI: 10.1016/j.hrthm.2016.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND The melanin synthesis enzyme dopachrome tautomerase (Dct) regulates intracellular Ca(2+) in melanocytes. Homozygous Dct knockout (Dct(-/-)) adult mice are vulnerable to atrial arrhythmias (AA). OBJECTIVE The purpose of this study was to determine whether apamin-sensitive small conductance Ca(2+)-activated K(+) (SK) currents are upregulated in Dct(-/-) mice and contribute to AA. METHODS Optical mapping was used to study the membrane potential of the right atrium in Langendorff perfused Dct(-/-) (n = 9) and Dct(+/-) (n = 9) mice. RESULTS Apamin prolonged action potential duration (APD) by 18.8 ms (95% confidence interval [CI] 13.4-24.1 ms) in Dct(-/-) mice and by 11.5 ms (95% CI 5.4-17.6 ms) in Dct(+/-) mice at a pacing cycle length of 150 ms (P = .047). The pacing cycle length threshold to induce APD alternans was 48 ms (95% CI 34-62 ms) for Dct(-/-) mice and 21 ms (95% CI 12-29 ms) for Dct(+/-) mice (P = .002) at baseline, and it was 35 ms (95% CI 21-49 ms) for Dct(-/-) mice and 22 ms (95% CI 11-32 ms) for Dct(+/-) mice (P = .025) after apamin administration. Apamin prolonged post-burst pacing APD by 8.9 ms (95% CI 3.9-14.0 ms) in Dct(-/-) mice and by 1.5 ms (95% CI 0.7-2.3 ms) in Dct(+/-) mice (P = .005). Immunoblot and quantitative polymerase chain reaction analyses showed that protein and transcripts levels of SK1 and SK3 were increased in the right atrium of Dct(-/-) mice. AA inducibility (89% vs 11%; P = .003) and duration (281 seconds vs 66 seconds; P = .008) were greater in Dct(-/-) mice than in Dct(+/-) mice at baseline, but not different (22% vs 11%; P = 1.00) after apamin administration. Five of 8 (63%) induced atrial fibrillation episodes in Dct(-/-) mice had focal drivers. CONCLUSION Apamin-sensitive SK current upregulation in Dct(-/-) mice plays an important role in the mechanism of AA.
Collapse
Affiliation(s)
- Wei-Chung Tsai
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsin Chan
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chia-Hsiang Hsueh
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Thomas H Everett
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Po-Cheng Chang
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Eue-Keun Choi
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Michael A Olaopa
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shien-Fong Lin
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan
| | - Changyu Shen
- Department of Biostatistics, Indiana University School of Medicine and the Fairbanks School of Public Health, Indianapolis, Indiana
| | - Maria Aleksandra Kudela
- Department of Biostatistics, Indiana University School of Medicine and the Fairbanks School of Public Health, Indianapolis, Indiana
| | | | - Zhenhui Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pooja Jadiya
- Cardiovascular Research Center, Department of Physiology, Section of Clinical Cardiac Electrophysiology, Philadelphia, Pennsylvania
| | - Dhanendra Tomar
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Emily Luvison
- Cardiovascular Research Center, Department of Physiology, Section of Clinical Cardiac Electrophysiology, Philadelphia, Pennsylvania
| | - Nicholas Anzalone
- Cardiovascular Research Center, Department of Physiology, Section of Clinical Cardiac Electrophysiology, Philadelphia, Pennsylvania
| | - Vickas V Patel
- Cardiovascular Research Center, Department of Physiology, Section of Clinical Cardiac Electrophysiology, Philadelphia, Pennsylvania,; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Peng-Sheng Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
46
|
Apamin-Sensitive Small Conductance Calcium-Activated Potassium Channels were Negatively Regulated by Captopril in Volume-Overload Heart Failure Rats. J Membr Biol 2016; 249:429-36. [PMID: 26924798 DOI: 10.1007/s00232-016-9882-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/16/2016] [Indexed: 11/27/2022]
Abstract
In heart failure (HF), the malignant arrhythmias occur frequently; a study demonstrated that upregulation of I KAS resulted in recurrent spontaneous ventricular fibrillation in HF. However, the regulation of SK channels was poorly understood. The activation of SK channels depended on [Ca(2+)]i and PP2A; studies suggested that angiotensin II can regulate them. So, we hypothesized that in HF, the excess of angiotensin may regulate the SK channels and result in the remodeling of SK channels. To test the hypothesis, we used volume-overload-induced HF rat model, treated with captopril, performed whole-cell patch clamp to record apamin-sensitive currents (I KAS), and I-V curve was studied. The sensitivity of I KAS to [Ca(2+)]i was also explored by setting various [Ca(2+)]i (10, 100, 500, 900, 1000, and 10,000 nM), and the steady-state Ca(2+) response of I KAS was attained and performed Hill fitting with the equation (y = 1/[1 + (EC50/x) (n) ]). Immunofluorescent staining, real-time PCR, Western blot were also carried out to furtherly investigate the underlying molecular mechanisms of the regulation. Captopril significantly decreased the mean density of I KAS when [Ca(2+)]i was 500, 900, 1000, and 10000 nM. The Hill fitting showed significantly different EC50 values and the Hill coefficients and showed captopril significantly shifted rightward the steady-state Ca(2+) response of I KAS. The results of real-time PCR and Western blot demonstrated captopril decreased the mRNA and protein expression of SK3 channels. Captopril significantly downregulated the sensitivity of SK channels to [Ca(2+)]i and the SK3 channels expression in HF, and reversed the SK channels remodeling.
Collapse
|
47
|
Ortega A, Tarazón E, Roselló-Lletí E, Gil-Cayuela C, Lago F, González-Juanatey JR, Cinca J, Jorge E, Martínez-Dolz L, Portolés M, Rivera M. Patients with Dilated Cardiomyopathy and Sustained Monomorphic Ventricular Tachycardia Show Up-Regulation of KCNN3 and KCNJ2 Genes and CACNG8-Linked Left Ventricular Dysfunction. PLoS One 2015; 10:e0145518. [PMID: 26710323 PMCID: PMC4692400 DOI: 10.1371/journal.pone.0145518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/05/2015] [Indexed: 01/26/2023] Open
Abstract
AIMS Disruptions in cardiac ion channels have shown to influence the impaired cardiac contraction in heart failure. We sought to determine the altered gene expression profile of this category in dilated cardiomyopathy (DCM) patients and relate the altered gene expression with the clinical signs present in our patients, such as ventricular dysfunction and sustained monomorphic ventricular tachycardia (SMVT). METHODS AND RESULTS Left ventricular (LV) tissue samples were used in RNA-sequencing technique to elucidate the transcriptomic changes of 13 DCM patients compared to controls (n = 10). We analyzed the differential gene expression of cardiac ion channels, and we found a total of 34 altered genes. We found that the calcium channel CACNG8 mRNA and protein levels were down-regulated and highly and inversely related with LV ejection fraction (LVEF) (r = -0.78, P<0.01). Furthermore, the potassium channels KCNN3 and KCNJ2 mRNA and protein levels were up-regulated and showed also a significant and inverse correlation with LVEF (r = -0.61, P<0.05; r = -0.60, P<0.05) in patients with SMVT. CONCLUSION A broad set of deregulated genes have been identified by RNA-sequencing technique. The relationship of CACNG8, KCNN3 and KCNJ2 with LVEF, and the up-regulation of KCNN3 and KCNJ2 in all patients with SMVT, irrespective of CACNG8 expression, suggest a significant role for these three ion flux related genes in the LV dysfunction present in this cardiomyopathy and an important relationship between KCNN3 and KCNJ2 up-regulation and the presence of SMVT.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Estefanía Tarazón
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Carolina Gil-Cayuela
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Jose-Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan Cinca
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Esther Jorge
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Luis Martínez-Dolz
- Heart Failure and Transplantation Unit, Cardiology Department, La Fe University Hospital, Valencia, Spain
| | - Manuel Portolés
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- * E-mail:
| |
Collapse
|
48
|
|
49
|
Zhang XD, Lieu DK, Chiamvimonvat N. Small-conductance Ca2+ -activated K+ channels and cardiac arrhythmias. Heart Rhythm 2015; 12:1845-51. [PMID: 25956967 PMCID: PMC4662728 DOI: 10.1016/j.hrthm.2015.04.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 01/04/2023]
Abstract
Small-conductance Ca2+ -activated K+ (SK, KCa2) channels are unique in that they are gated solely by changes in intracellular Ca2+ and, hence, function to integrate intracellular Ca2+ and membrane potentials on a beat-to-beat basis. Recent studies have provided evidence for the existence and functional significance of SK channels in the heart. Indeed, our knowledge of cardiac SK channels has been greatly expanded over the past decade. Interests in cardiac SK channels are further driven by recent studies suggesting the critical roles of SK channels in human atrial fibrillation, the SK channel as a possible novel therapeutic target in atrial arrhythmias, and upregulation of SK channels in heart failure in animal models and in human heart failure. However, there remain critical gaps in our knowledge. Specifically, blockade of SK channels in cardiac arrhythmias has been shown to be both antiarrhythmic and proarrhythmic. This contemporary review provides an overview of the literature on the role of cardiac SK channels in cardiac arrhythmias and serves as a discussion platform for the current clinical perspectives. At the translational level, development of SK channel blockers as a new therapeutic strategy in the treatment of atrial fibrillation and the possible proarrhythmic effects merit further considerations and investigations.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California.
| | - Deborah K Lieu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California; Department of Veterans Affairs, Northern California Health Care System, Mather, California.
| |
Collapse
|
50
|
Yu CC, Corr C, Shen C, Shelton R, Yadava M, Rhea IB, Straka S, Fishbein MC, Chen Z, Lin SF, Lopshire JC, Chen PS. Small conductance calcium-activated potassium current is important in transmural repolarization of failing human ventricles. Circ Arrhythm Electrophysiol 2015; 8:667-76. [PMID: 25908692 DOI: 10.1161/circep.114.002296] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 04/13/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND The transmural distribution of apamin-sensitive small conductance Ca(2+)-activated K(+) (SK) current (IKAS) in failing human ventricles remains unclear. METHODS AND RESULTS We optically mapped left ventricular wedge preparations from 12 failing native hearts and 2 rejected cardiac allografts explanted during transplant surgery. We determined transmural action potential duration (APD) before and after 100 nmol/L apamin administration in all wedges and after sequential administration of apamin, chromanol, and E4031 in 4 wedges. Apamin prolonged APD from 363 ms (95% confidence interval [CI], 341-385) to 409 (95% CI, 385-434; P<0.001) in all hearts, and reduced the transmural conduction velocity from 36 cm/s (95% CI, 30-42) to 32 cm/s (95% CI, 27-37; P=0.001) in 12 native failing hearts at 1000 ms pacing cycle length (PCL). The percent APD prolongation is negatively correlated with baseline APD and positively correlated with PCL. Only 1 wedge had M-cell islands. The percentages of APD prolongation in the last 4 hearts at 2000 ms PCL after apamin, chromanol, and E4031 were 9.1% (95% CI, 3.9-14.2), 17.3% (95% CI, 3.1-31.5), and 35.9% (95% CI, 15.7-56.1), respectively. Immunohistochemical staining of subtype 2 of SK protein showed increased expression in intercalated discs of myocytes. CONCLUSIONS SK current is important in the transmural repolarization in failing human ventricles. The magnitude of IKAS is positively correlated with the PCL, but negatively correlated with APD when PCL is fixed. There is abundant subtype 2 of SK protein in the intercalated discs of myocytes.
Collapse
Affiliation(s)
- Chih-Chieh Yu
- From the Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology (C.-C.Y., C.C., R.S., M.Y., I.B.R., S.S., Z.C., S.-F.L., J.C.L., P.-S.C.) and Department of Biostatistics (C.S.), Indiana University School of Medicine, Indianapolis; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (C.-C.Y.); Fairbanks School of Public Health, School of Medicine, Indiana University, Indianapolis (C.S.); Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (M.C.F.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.); and Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN (J.C.L.)
| | - Christopher Corr
- From the Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology (C.-C.Y., C.C., R.S., M.Y., I.B.R., S.S., Z.C., S.-F.L., J.C.L., P.-S.C.) and Department of Biostatistics (C.S.), Indiana University School of Medicine, Indianapolis; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (C.-C.Y.); Fairbanks School of Public Health, School of Medicine, Indiana University, Indianapolis (C.S.); Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (M.C.F.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.); and Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN (J.C.L.)
| | - Changyu Shen
- From the Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology (C.-C.Y., C.C., R.S., M.Y., I.B.R., S.S., Z.C., S.-F.L., J.C.L., P.-S.C.) and Department of Biostatistics (C.S.), Indiana University School of Medicine, Indianapolis; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (C.-C.Y.); Fairbanks School of Public Health, School of Medicine, Indiana University, Indianapolis (C.S.); Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (M.C.F.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.); and Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN (J.C.L.)
| | - Richard Shelton
- From the Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology (C.-C.Y., C.C., R.S., M.Y., I.B.R., S.S., Z.C., S.-F.L., J.C.L., P.-S.C.) and Department of Biostatistics (C.S.), Indiana University School of Medicine, Indianapolis; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (C.-C.Y.); Fairbanks School of Public Health, School of Medicine, Indiana University, Indianapolis (C.S.); Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (M.C.F.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.); and Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN (J.C.L.)
| | - Mrinal Yadava
- From the Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology (C.-C.Y., C.C., R.S., M.Y., I.B.R., S.S., Z.C., S.-F.L., J.C.L., P.-S.C.) and Department of Biostatistics (C.S.), Indiana University School of Medicine, Indianapolis; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (C.-C.Y.); Fairbanks School of Public Health, School of Medicine, Indiana University, Indianapolis (C.S.); Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (M.C.F.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.); and Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN (J.C.L.)
| | - Isaac B Rhea
- From the Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology (C.-C.Y., C.C., R.S., M.Y., I.B.R., S.S., Z.C., S.-F.L., J.C.L., P.-S.C.) and Department of Biostatistics (C.S.), Indiana University School of Medicine, Indianapolis; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (C.-C.Y.); Fairbanks School of Public Health, School of Medicine, Indiana University, Indianapolis (C.S.); Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (M.C.F.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.); and Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN (J.C.L.)
| | - Susan Straka
- From the Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology (C.-C.Y., C.C., R.S., M.Y., I.B.R., S.S., Z.C., S.-F.L., J.C.L., P.-S.C.) and Department of Biostatistics (C.S.), Indiana University School of Medicine, Indianapolis; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (C.-C.Y.); Fairbanks School of Public Health, School of Medicine, Indiana University, Indianapolis (C.S.); Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (M.C.F.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.); and Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN (J.C.L.)
| | - Michael C Fishbein
- From the Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology (C.-C.Y., C.C., R.S., M.Y., I.B.R., S.S., Z.C., S.-F.L., J.C.L., P.-S.C.) and Department of Biostatistics (C.S.), Indiana University School of Medicine, Indianapolis; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (C.-C.Y.); Fairbanks School of Public Health, School of Medicine, Indiana University, Indianapolis (C.S.); Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (M.C.F.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.); and Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN (J.C.L.)
| | - Zhenhui Chen
- From the Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology (C.-C.Y., C.C., R.S., M.Y., I.B.R., S.S., Z.C., S.-F.L., J.C.L., P.-S.C.) and Department of Biostatistics (C.S.), Indiana University School of Medicine, Indianapolis; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (C.-C.Y.); Fairbanks School of Public Health, School of Medicine, Indiana University, Indianapolis (C.S.); Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (M.C.F.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.); and Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN (J.C.L.)
| | - Shien-Fong Lin
- From the Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology (C.-C.Y., C.C., R.S., M.Y., I.B.R., S.S., Z.C., S.-F.L., J.C.L., P.-S.C.) and Department of Biostatistics (C.S.), Indiana University School of Medicine, Indianapolis; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (C.-C.Y.); Fairbanks School of Public Health, School of Medicine, Indiana University, Indianapolis (C.S.); Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (M.C.F.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.); and Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN (J.C.L.)
| | - John C Lopshire
- From the Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology (C.-C.Y., C.C., R.S., M.Y., I.B.R., S.S., Z.C., S.-F.L., J.C.L., P.-S.C.) and Department of Biostatistics (C.S.), Indiana University School of Medicine, Indianapolis; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (C.-C.Y.); Fairbanks School of Public Health, School of Medicine, Indiana University, Indianapolis (C.S.); Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (M.C.F.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.); and Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN (J.C.L.)
| | - Peng-Sheng Chen
- From the Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology (C.-C.Y., C.C., R.S., M.Y., I.B.R., S.S., Z.C., S.-F.L., J.C.L., P.-S.C.) and Department of Biostatistics (C.S.), Indiana University School of Medicine, Indianapolis; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (C.-C.Y.); Fairbanks School of Public Health, School of Medicine, Indiana University, Indianapolis (C.S.); Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (M.C.F.); Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.); and Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN (J.C.L.).
| |
Collapse
|