1
|
Shen M, Zhao K, Luo X, Guo L, Ma Z, Wen L, Lin S, Lin Y, Sun H, Ahmad S. Genome mining of WOX-ARF gene linkage in Machilus pauhoi underpinned cambial activity associated with IAA induction. FRONTIERS IN PLANT SCIENCE 2024; 15:1364086. [PMID: 39114465 PMCID: PMC11303294 DOI: 10.3389/fpls.2024.1364086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
As an upright tree with multifunctional economic application, Machilus pauhoi is an excellent choice in modern forestry from Lauraceae. The growth characteristics is of great significance for its molecular breeding and improvement. However, there still lack the information of WUSCHEL-related homeobox (WOX) and Auxin response factor (ARF) gene family, which were reported as specific transcription factors in plant growth as well as auxin signaling. Here, a total of sixteen MpWOX and twenty-one MpARF genes were identified from the genome of M. pauhoi. Though member of WOX conserved in the Lauraceae, MpWOX and MpARF genes were unevenly distributed on 12 chromosomes as a result of region duplication. These genes presented 45 and 142 miRNA editing sites, respectively, reflecting a potential post-transcriptional restrain. Overall, MpWOX4, MpWOX13a, MpWOX13b, MpARF6b, MpARF6c, and MpARF19a were highly co-expressed in the vascular cambium, forming a working mode as WOX-ARF complex. MpWOXs contains typical AuxRR-core and TGA-element cis-acting regulatory elements in this auxin signaling linkage. In addition, under IAA and NPA treatments, MpARF2a and MpWOX1a was highly sensitive to IAA response, showing significant changes after 6 hours of treatment. And MpWOX1a was significantly inhibited by NPA treatment. Through all these solid analysis, our findings provide a genetic foundation to growth mechanism analysis and further molecular designing breeding in Machilus pauhoi.
Collapse
Affiliation(s)
- Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Xianmei Luo
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Lingling Guo
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhirui Ma
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Lei Wen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siqing Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yingxuan Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongyan Sun
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Sagheer Ahmad
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Fu Z, Yuan X, Zhao Y, Wang X, Lu L, Wang H, Li Y, Gao J, Wang L, Zhang H. Identification of ARF Genes and Elucidation of the Regulatory Effects of PsARF16a on the Dormancy of Tree Peony Plantlets. Genes (Basel) 2024; 15:666. [PMID: 38927602 PMCID: PMC11203063 DOI: 10.3390/genes15060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The low survival rate of transplanted plantlets, which has limited the utility of tissue-culture-based methods for the rapid propagation of tree peonies, is due to plantlet dormancy after rooting. We previously determined that the auxin response factor PsARF may be a key regulator of tree peony dormancy. To clarify the mechanism mediating tree peony plantlet dormancy, PsARF genes were systematically identified and analyzed. Additionally, PsARF16a was transiently expressed in the leaves of tree peony plantlets to examine its regulatory effects on a downstream gene network. Nineteen PsARF genes were identified and divided into four classes. All PsARF genes encoded proteins with conserved B3 and ARF domains. The number of motifs, exons, and introns varied between PsARF genes in different classes. The overexpression of PsARF16a altered the expression of NCED, ZEP, PYL, GA2ox1, GID1, and other key genes in abscisic acid (ABA) and gibberellin (GA) signal transduction pathways, thereby promoting ABA synthesis and decreasing GA synthesis. Significant changes to the expression of some key genes contributing to starch and sugar metabolism (e.g., AMY2A, BAM3, BGLU, STP, and SUS2) may be associated with the gradual conversion of sugar into starch. This study provides important insights into PsARF functions in tree peonies.
Collapse
Affiliation(s)
- Zhenzhu Fu
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xin Yuan
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yinge Zhao
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaohui Wang
- Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471022, China
| | - Lin Lu
- Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471022, China
| | - Huijuan Wang
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanmin Li
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jie Gao
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Limin Wang
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hechen Zhang
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
3
|
Xu L, Liu Y, Zhang J, Wu W, Hao Z, He S, Li Y, Shi J, Chen J. Genomic survey and expression analysis of LcARFs reveal multiple functions to somatic embryogenesis in Liriodendron. BMC PLANT BIOLOGY 2024; 24:94. [PMID: 38326748 PMCID: PMC10848544 DOI: 10.1186/s12870-024-04765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Auxin response factors (ARFs) are critical transcription factors that mediate the auxin signaling pathway and are essential for regulating plant growth. However, there is a lack of understanding regarding the ARF gene family in Liriodendron chinense, a vital species in landscaping and economics. Thus, further research is needed to explore the roles of ARFs in L. chinense and their potential applications in plant development. RESULT In this study, we have identified 20 LcARF genes that belong to three subfamilies in the genome of L. chinense. The analysis of their conserved domains, gene structure, and phylogeny suggests that LcARFs may be evolutionarily conserved and functionally similar to other plant ARFs. The expression of LcARFs varies in different tissues. Additionally, they are also involved in different developmental stages of somatic embryogenesis. Overexpression of LcARF1, LcARF2a, and LcARF5 led to increased activity within callus. Additionally, our promoter-GFP fusion study indicated that LcARF1 may play a role in embryogenesis. Overall, this study provides insights into the functions of LcARFs in plant development and embryogenesis, which could facilitate the improvement of somatic embryogenesis in L. chinense. CONCLUSION The research findings presented in this study shed light on the regulatory roles of LcARFs in somatic embryogenesis in L. chinense and may aid in accelerating the breeding process of this tree species. By identifying the specific LcARFs involved in different stages of somatic embryogenesis, this study provides a basis for developing targeted breeding strategies aimed at optimizing somatic embryogenesis in L. chinense, which holds great potential for improving the growth and productivity of this economically important species.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Ye Liu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Jiaji Zhang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Weihuang Wu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Shichan He
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Yiran Li
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China.
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
4
|
Peng Y, Zhao K, Zheng R, Chen J, Zhu X, Xie K, Huang R, Zhan S, Su Q, Shen M, Niu M, Chen X, Peng D, Ahmad S, Liu ZJ, Zhou Y. A Comprehensive Analysis of Auxin Response Factor Gene Family in Melastoma dodecandrum Genome. Int J Mol Sci 2024; 25:806. [PMID: 38255880 PMCID: PMC10815038 DOI: 10.3390/ijms25020806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Auxin Response Factors (ARFs) mediate auxin signaling and govern diverse biological processes. However, a comprehensive analysis of the ARF gene family and identification of their key regulatory functions have not been conducted in Melastoma dodecandrum, leading to a weak understanding of further use and development for this functional shrub. In this study, we successfully identified a total of 27 members of the ARF gene family in M. dodecandrum and classified them into Class I-III. Class II-III showed more significant gene duplication than Class I, especially for MedARF16s. According to the prediction of cis-regulatory elements, the AP2/ERF, BHLH, and bZIP transcription factor families may serve as regulatory factors controlling the transcriptional pre-initiation expression of MedARF. Analysis of miRNA editing sites reveals that miR160 may play a regulatory role in the post-transcriptional expression of MeARF. Expression profiles revealed that more than half of the MedARFs exhibited high expression levels in the stem compared to other organs. While there are some specific genes expressed only in flowers, it is noteworthy that MedARF16s, MedARF7A, and MedARF9B, which are highly expressed in stems, also demonstrate high expressions in other organs of M. dodecandrum. Further hormone treatment experiments revealed that these MedARFs were sensitive to auxin changes, with MedARF6C and MedARF7A showing significant and rapid changes in expression upon increasing exogenous auxin. In brief, our findings suggest a crucial role in regulating plant growth and development in M. dodecandrum by responding to changes in auxin. These results can provide a theoretical basis for future molecular breeding in Myrtaceae.
Collapse
Affiliation(s)
- Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (M.S.)
| | - Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Kai Xie
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Ruiliu Huang
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Suying Zhan
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Qiuli Su
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (M.S.)
| | - Muqi Niu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Xiuming Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Sagheer Ahmad
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| |
Collapse
|
5
|
Qin S, Fu S, Yang Y, Sun Q, Wang J, Dong Y, Gu X, Wang T, Xie X, Mo X, Jiang H, Yu Y, Yan J, Chu J, Zheng B, He Y. Comparative Microscopic, Transcriptome and IAA Content Analyses Reveal the Stem Growth Variations in Two Cultivars Ilex verticillata. PLANTS (BASEL, SWITZERLAND) 2023; 12:1941. [PMID: 37653858 PMCID: PMC10220661 DOI: 10.3390/plants12101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Ilex verticillata is not only an excellent ornamental tree species for courtyards, but it is also a popular bonsai tree. 'Oosterwijk' and 'Red sprite' are two varieties of Ilex verticillata. The former has a long stem with few branches, while the latter has a short stem. In order to explain the stem growth differences between the two cultivars 'Oosterwijk' and 'Red sprite', determination of the microstructure, transcriptome sequence and IAA content was carried out. The results showed that the xylem thickness, vessel area and vessel number of 'Oosterwijk' were larger than in 'Red sprite'. In addition, our analysis revealed that the differentially expressed genes which were enriched in phenylpropanoid biosynthesis; phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis in the black and tan modules of the two varieties. We found that AST, HCT and bHLH 94 may be key genes in the formation of shoot difference. Moreover, we found that the IAA content and auxin-related DEGs GH3.6, GH3, ATRP5, IAA27, SAUR36-like, GH3.6-like and AIP 10A5-like may play important roles in the formation of shoot differences. In summary, these results indicated that stem growth variations of 'Oosterwijk' and 'Red sprite' were associated with DEGs related to phenylpropanoid biosynthesis, phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis, as well as auxin content and DEGs related to the auxin signaling pathway.
Collapse
Affiliation(s)
- Sini Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Siyi Fu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Qiumin Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Jingqi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Yanling Dong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Xinyi Gu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Tao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Xiaoting Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China;
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou 310058, China;
| | - Youxiang Yu
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (J.Y.); (J.C.)
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (J.Y.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| |
Collapse
|
6
|
Tao GY, Xie YH, Li WF, Li KP, Sun C, Wang HM, Sun XM. LkARF7 and LkARF19 overexpression promote adventitious root formation in a heterologous poplar model by positively regulating LkBBM1. Commun Biol 2023; 6:372. [PMID: 37020138 PMCID: PMC10076273 DOI: 10.1038/s42003-023-04731-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Cuttage propagation involves adventitious root formation induced by auxin. In our previous study, Larix kaempferi BABY BOOM 1 (LkBBM1), which is known to regulate adventitious root formation, was affected by auxin. However, the relationship between LkBBM1 and auxin remains unclear. Auxin response factors (ARFs) are a class of important transcription factors in the auxin signaling pathway and modulate the expression of early auxin-responsive genes by binding to auxin response elements. In the present study, we identified 14 L. kaempferi ARFs (LkARFs), and found LkARF7 and LkARF19 bound to LkBBM1 promoter and enhanced its transcription using yeast one-hybrid, ChIP-qPCR, and dual-luciferase assays. In addition, the treatment with naphthalene acetic acid promoted the expression of LkARF7 and LkARF19. We also found that overexpression of these two genes in poplar promoted adventitious root formation. Furthermore, LkARF19 interacted with the DEAD-box ATP-dependent RNA helicase 53-like protein to form a heterodimer to regulate adventitious root formation. Altogether, our results reveal an additional regulatory mechanism underlying the control of adventitious root formation by auxin.
Collapse
Affiliation(s)
- Gui-Yun Tao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yun-Hui Xie
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wan-Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Kui-Peng Li
- Guangxi Forestry Research Institute, Guangxi, 530009, China
| | - Chao Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hong-Ming Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Gansu, 741000, China
| | - Xiao-Mei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
7
|
Genome-Wide Identification and Characterization of Auxin Response Factor (ARF) Gene Family Involved in Wood Formation and Response to Exogenous Hormone Treatment in Populus trichocarpa. Int J Mol Sci 2023; 24:ijms24010740. [PMID: 36614182 PMCID: PMC9820880 DOI: 10.3390/ijms24010740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Auxin is a key regulator that virtually controls almost every aspect of plant growth and development throughout its life cycle. As the major components of auxin signaling, auxin response factors (ARFs) play crucial roles in various processes of plant growth and development. In this study, a total of 35 PtrARF genes were identified, and their phylogenetic relationships, chromosomal locations, synteny relationships, exon/intron structures, cis-elements, conserved motifs, and protein characteristics were systemically investigated. We also analyzed the expression patterns of these PtrARF genes and revealed that 16 of them, including PtrARF1, 3, 7, 11, 13-17, 21, 23, 26, 27, 29, 31, and 33, were preferentially expressed in primary stems, while 15 of them, including PtrARF2, 4, 6, 9, 10, 12, 18-20, 22, 24, 25, 28, 32, and 35, participated in different phases of wood formation. In addition, some PtrARF genes, with at least one cis-element related to indole-3-acetic acid (IAA) or abscisic acid (ABA) response, responded differently to exogenous IAA and ABA treatment, respectively. Three PtrARF proteins, namely PtrARF18, PtrARF23, and PtrARF29, selected from three classes, were characterized, and only PtrARF18 was a transcriptional self-activator localized in the nucleus. Moreover, Y2H and bimolecular fluorescence complementation (BiFC) assay demonstrated that PtrARF23 interacted with PtrIAA10 and PtrIAA28 in the nucleus, while PtrARF29 interacted with PtrIAA28 in the nucleus. Our results provided comprehensive information regarding the PtrARF gene family, which will lay some foundation for future research about PtrARF genes in tree development and growth, especially the wood formation, in response to cellular signaling and environmental cues.
Collapse
|
8
|
Systematic Identification and Expression Analysis of the Auxin Response Factor (ARF) Gene Family in Ginkgo biloba L. Int J Mol Sci 2022; 23:ijms23126754. [PMID: 35743196 PMCID: PMC9223646 DOI: 10.3390/ijms23126754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Auxin participates in various physiological and molecular response-related developmental processes and is a pivotal hormone that regulates phenotypic formation in plants. Auxin response factors (ARFs) are vital transcription factors that mediate downstream auxin signaling by explicitly binding to auxin-responsive genes' promoters. Here, to investigate the possible developmental regulatory functions of ARFs in Ginkgo biloba, through employing comprehensive bioinformatics, we recognized 15 putative GbARF members. Conserved domains and motifs, gene and protein structure, gene duplication, GO enrichment, transcriptome expression profiles, and qRT-PCR all showed that Group I and III members were highly conserved. Among them, GbARF10b and GbARF10a were revealed as transcriptional activators in the auxin response for the development of Ginkgo male flowers through sequences alignment, cis-elements analysis and GO annotation; the results were corroborated for the treatment of exogenous SA. Moreover, the GbARFs expansion occurred predominantly by segmental duplication, and most GbARFs have undergone purifying selection. The Ka/Ks ratio test identified the functional consistence of GbARF2a and GbARF2c, GbARF10b, and GbARF10a in tissue expression profiles and male flower development. In summary, our study established a new research basis for exploring Ginkgo GbARF members' roles in floral organ development and hormone response.
Collapse
|
9
|
Genome-Wide Identification of the Eucalyptus urophylla GATA Gene Family and Its Diverse Roles in Chlorophyll Biosynthesis. Int J Mol Sci 2022; 23:ijms23095251. [PMID: 35563644 PMCID: PMC9102942 DOI: 10.3390/ijms23095251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
GATA transcription factors have been demonstrated to play key regulatory roles in plant growth, development, and hormonal response. However, the knowledge concerning the evolution of GATA genes in Eucalyptus urophylla and their trans-regulatory interaction is indistinct. Phylogenetic analysis and study of conserved motifs, exon structures, and expression patterns resolved the evolutionary relationships of these GATA proteins. Phylogenetic analysis showed that EgrGATAs are broadly distributed in four subfamilies. Cis-element analysis of promoters revealed that EgrGATA genes respond to light and are influenced by multiple hormones and abiotic stresses. Transcriptome analysis revealed distinct temporal and spatial expression patterns of EgrGATA genes in various tissues of E. urophylla S.T.Blake, which was confirmed by real-time quantitative PCR (RT-qPCR). Further research revealed that EurGNC and EurCGA1 were localized in the nucleus, and EurGNC directly binds to the cis-element of the EurGUN5 promoter, implying its potential roles in the regulation of chlorophyll synthesis. This comprehensive study provides new insights into the evolution of GATAs and could help to improve the photosynthetic assimilation and vegetative growth of E. urophylla at the genetic level.
Collapse
|
10
|
Overexpression of EgrIAA20 from Eucalyptus grandis, a Non-Canonical Aux/ IAA Gene, Specifically Decouples Lignification of the Different Cell-Types in Arabidopsis Secondary Xylem. Int J Mol Sci 2022; 23:ijms23095068. [PMID: 35563457 PMCID: PMC9100763 DOI: 10.3390/ijms23095068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Wood (secondary xylem) formation is regulated by auxin, which plays a pivotal role as an integrator of developmental and environmental cues. However, our current knowledge of auxin-signaling during wood formation is incomplete. Our previous genome-wide analysis of Aux/IAAs in Eucalyptus grandis showed the presence of the non-canonical paralog member EgrIAA20 that is preferentially expressed in cambium. We analyzed its cellular localization using a GFP fusion protein and its transcriptional activity using transactivation assays, and demonstrated its nuclear localization and strong auxin response repressor activity. In addition, we functionally tested the role of EgrIAA20 by constitutive overexpression in Arabidopsis to investigate for phenotypic changes in secondary xylem formation. Transgenic Arabidopsis plants overexpressing EgrIAA20 were smaller and displayed impaired development of secondary fibers, but not of other wood cell types. The inhibition in fiber development specifically affected their cell wall lignification. We performed yeast-two-hybrid assays to identify EgrIAA20 protein partners during wood formation in Eucalyptus, and identified EgrIAA9A, whose ortholog PtoIAA9 in poplar is also known to be involved in wood formation. Altogether, we showed that EgrIAA20 is an important auxin signaling component specifically involved in controlling the lignification of wood fibers.
Collapse
|
11
|
Karannagoda N, Spokevicius A, Hussey S, Cassan-Wang H, Grima-Pettenati J, Bossinger G. Eucalyptus grandis AUX/INDOLE-3-ACETIC ACID 13 (EgrIAA13) is a novel transcriptional regulator of xylogenesis. PLANT MOLECULAR BIOLOGY 2022; 109:51-65. [PMID: 35292886 PMCID: PMC9072461 DOI: 10.1007/s11103-022-01255-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Our Induced Somatic Sector Analysis and protein-protein interaction experiments demonstrate that Eucalyptus grandis IAA13 regulates xylem fibre and vessel development, potentially via EgrIAA13 modules involving ARF2, ARF5, ARF6 and ARF19. Auxin is a crucial phytohormone regulating multiple aspects of plant growth and differentiation, including regulation of vascular cambium activity, xylogenesis and its responsiveness towards gravitropic stress. Although the regulation of these biological processes greatly depends on auxin and regulators of the auxin signalling pathway, many of their specific functions remain unclear. Therefore, the present study aims to functionally characterise Eucalyptus grandis AUX/INDOLE-3-ACETIC ACID 13 (EgrIAA13), a member of the auxin signalling pathway. In Eucalyptus and Populus, EgrIAA13 and its orthologs are preferentially expressed in the xylogenic tissues and downregulated in tension wood. Therefore, to further investigate EgrIAA13 and its function during xylogenesis, we conducted subcellular localisation and Induced Somatic Sector Analysis experiments using overexpression and RNAi knockdown constructs of EgrIAA13 to create transgenic tissue sectors on growing stems of Eucalyptus and Populus. Since Aux/IAAs interact with Auxin Responsive Factors (ARFs), in silico predictions of IAA13-ARF interactions were explored and experimentally validated via yeast-2-hybrid experiments. Our results demonstrate that EgrIAA13 localises to the nucleus and that downregulation of EgrIAA13 impedes Eucalyptus xylem fibre and vessel development. We also observed that EgrIAA13 interacts with Eucalyptus ARF2, ARF5, ARF6 and ARF19A. Based on these results, we conclude that EgrIAA13 is a regulator of Eucalyptus xylogenesis and postulate that the observed phenotypes are likely to result from alterations in the auxin-responsive transcriptome via IAA13-ARF modules such as EgrIAA13-EgrARF5. Our results provide the first insights into the regulatory role of EgrIAA13 during xylogenesis.
Collapse
Affiliation(s)
- Nadeeshani Karannagoda
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC, 3363, Australia.
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, Victoria, 3083, Australia.
| | - Antanas Spokevicius
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC, 3363, Australia
| | - Steven Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Hua Cassan-Wang
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC, 3363, Australia
| |
Collapse
|
12
|
Effect of the PmARF6 Gene from Masson Pine (Pinus massoniana) on the Development of Arabidopsis. Genes (Basel) 2022; 13:genes13030469. [PMID: 35328022 PMCID: PMC8949783 DOI: 10.3390/genes13030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Masson pine (Pinus massoniana) is a core industrial tree species that is used for afforestation in southern China. Previous studies have shown that Auxin Response Factors (ARFs) are involved in the growth and development of various species, but the function of ARFs in Masson pine is unclear. In this research, we cloned and identified Masson pine ARF6 cDNA (PmARF6). The results showed that PmARF6 encodes a protein of 681 amino acids that is highly expressed in female flowers. Subcellular analysis showed that the PmARF6 protein occurred predominantly in the nucleus and cytomembrane of Masson pine cells. Compared with wild-type (WT) Arabidopsis, transgenic Arabidopsis plants overexpressing PmARF6 had fewer rosette leaves, and their flower development was slower. These results suggest that overexpression of PmARF6 may inhibit the flower and leaf development of Masson pine and provide new insights into the underlying developmental mechanism.
Collapse
|
13
|
Su L, Xu M, Zhang J, Wang Y, Lei Y, Li Q. Genome-wide identification of auxin response factor ( ARF) family in kiwifruit ( Actinidia chinensis) and analysis of their inducible involvements in abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1261-1276. [PMID: 34177147 PMCID: PMC8212266 DOI: 10.1007/s12298-021-01011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 05/13/2023]
Abstract
UNLABELLED Auxin response factor (ARF) acts as a vital component of auxin signaling and participates in growth, development, and stress responses in plants. In the present study, we comprehensively analyzed kiwifruit's (Actinidia chinensis) ARF genes (AcARFs) and their involvement in abiotic stress response. We identified a total of 41 AcARFs encoding ARFs in the A. chinensis genome. AcARF genes were characterized by the classic ARF_resp and a B3 domain and primarily localized on the cytoplasm and nucleus. AcARFs were categorized into eight subgroups as per the phylogenetic analysis. Synteny analysis showed that 35 gene pairs in AcARF family underwent segmental and whole genome duplication events. Promoter cis-element prediction revealed that AcARFs might be involved in abiotic factors related to stress response, which was later assessed and validated by qRT-PCR based expression analysis. Additionally, AcARFs showed tissue-specific expression. These findings extend our understanding of the functional roles of AcARFs in stress responses. Taken together, the systematic annotation of the AcARF family genes provides a platform for the functional and evolutionary study, which might help in elucidating the precise roles of the AcARFs in stress responses. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01011-4.
Collapse
Affiliation(s)
- Liyan Su
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, Shaanxi People’s Republic of China
- Rural Science and Technology Development Center, Xi’an, 710054 Shaanxi People’s Republic of China
| | - Ming Xu
- Rural Science and Technology Development Center, Xi’an, 710054 Shaanxi People’s Republic of China
| | - Jiudong Zhang
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, Shaanxi People’s Republic of China
| | - Yihang Wang
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, Shaanxi People’s Republic of China
| | - Yushan Lei
- Rural Science and Technology Development Center, Xi’an, 710054 Shaanxi People’s Republic of China
| | - Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Xiema street, Beibei, Chongqing, 400712 People’s Republic of China
| |
Collapse
|
14
|
Knockout of Auxin Response Factor SlARF4 Improves Tomato Resistance to Water Deficit. Int J Mol Sci 2021; 22:ijms22073347. [PMID: 33805879 PMCID: PMC8037468 DOI: 10.3390/ijms22073347] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Auxin response factors (ARFs) play important roles in various plant physiological processes; however, knowledge of the exact role of ARFs in plant responses to water deficit is limited. In this study, SlARF4, a member of the ARF family, was functionally characterized under water deficit. Real-time fluorescence quantitative polymerase chain reaction (PCR) and β-glucuronidase (GUS) staining showed that water deficit and abscisic acid (ABA) treatment reduced the expression of SlARF4. SlARF4 was expressed in the vascular bundles and guard cells of tomato stomata. Loss of function of SlARF4 (arf4) by using Clustered Regularly Interspaced Short Palindromic Repeats/Cas 9 (CRISPR/Cas 9) technology enhanced plant resistance to water stress and rehydration ability. The arf4 mutant plants exhibited curly leaves and a thick stem. Malondialdehyde content was significantly lower in arf4 mutants than in wildtype plants under water stress; furthermore, arf4 mutants showed higher content of antioxidant substances, superoxide dismutase, actual photochemical efficiency of photosystem II (PSII), and catalase activities. Stomatal and vascular bundle morphology was changed in arf4 mutants. We identified 628 differentially expressed genes specifically expressed under water deficit in arf4 mutants; six of these genes, including ABA signaling pathway-related genes, were differentially expressed between the wildtype and arf4 mutants under water deficit and unlimited water supply. Auxin responsive element (AuxRE) elements were found in these genes' promoters indicating that SlARF4 participates in ABA signaling pathways by regulating the expression of SlABI5/ABF and SCL3, thereby influencing stomatal morphology and vascular bundle development and ultimately improving plant resistance to water deficit.
Collapse
|
15
|
Yu L, Liu C, Li J, Jia B, Qi X, Ming R, Qin G. Identification of Candidate Auxin Response Factors Involved in Pomegranate Seed Coat Development. FRONTIERS IN PLANT SCIENCE 2020; 11:536530. [PMID: 33042173 PMCID: PMC7522551 DOI: 10.3389/fpls.2020.536530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Auxin response factors (ARFs) are transcription factors, regulating the auxin signaling pathways involved in plant development and related processes. In this study, we performed the genome-wide identification and characterization of ARFs in pomegranate and compared them with ARFs from three other species. Seventeen PgrARFs were identified and clustered into four groups, according to their phylogenetic relationship with the remaining 59 ARFs. A recent whole-genome duplication event in pomegranate may have contributed to the expansion and diversification of PgrARFs. Genomic truncation and variant splicing mechanisms contributed to the divergence of PgrARFs, a conclusion that was supported by different exon-intron structures of genes and incomplete conserved domains of PgrARFs in a specific phylogenetic group (group III). Interestingly, the absence of motifs from certain PgrARF genes corresponded to their low transcription levels, which contrasted to the highly expressed PgrARFs with intact motifs. Specifically, PgrARF1 and PgrARF2 highly expressed in both inner and outer seed coat, and phylogenetically related to Arabidopsis orthologs which mediates cell divisions in seed coat. We infer these two PgrARFs might involve in seed coat development through cell divisions in response to auxin regulation. These findings provided information on the characteristics and evolutionary relationships of PgrARFs, but also shed lights on their potential roles during seed coat development in pomegranate.
Collapse
Affiliation(s)
- Li’ang Yu
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chunyan Liu
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jiyu Li
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Botao Jia
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiaoxiao Qi
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gaihua Qin
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
16
|
Cui J, Li X, Li J, Wang C, Cheng D, Dai C. Genome-wide sequence identification and expression analysis of ARF family in sugar beet ( Beta vulgaris L.) under salinity stresses. PeerJ 2020; 8:e9131. [PMID: 32547857 PMCID: PMC7276148 DOI: 10.7717/peerj.9131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 04/14/2020] [Indexed: 02/05/2023] Open
Abstract
Auxin response factor (ARF) proteins respond to biological and abiotic stresses and play important roles in regulating plant growth and development. In this study, based on the genome-wide database of sugar beet, 16 BvARF proteins were identified. A detailed investigation into the BvARF family is performed, including analysis of the conserved domains, chromosomal locations, phylogeny, exon-intron structure, conserved motifs, subcellular localization, gene ontology (GO) annotations and expression profiles of BvARF under salt-tolerant condition. The majority of BvARF proteins contain B3 domain, AUX_RESP domain and AUX/IAA domain and a few lacked of AUX/IAA domain. Phylogenetic analysis suggests that the 16 BvARF proteins are clustered into six groups. Expression profile analysis shows that most of these BvARF genes in sugar beet under salinity stress were up-regulated or down-regulated to varying degrees and nine of the BvARF genes changed significantly. They were thought to have a significant response to salinity stress. The current study provides basic information for the BvARF genes and will pave the way for further studies on the roles of BvARF genes in regulating sugar beet's growth, development and responses to salinity stress.
Collapse
Affiliation(s)
- Jie Cui
- Harbin Institute of Technology, Harbin, China
| | - Xinyan Li
- Harbin Institute of Technology, Harbin, China
| | - Junliang Li
- Harbin Institute of Technology, Harbin, China
| | - Congyu Wang
- Harbin Institute of Technology, Harbin, China
| | - Dayou Cheng
- Harbin Institute of Technology, Harbin, China
| | - Cuihong Dai
- Harbin Institute of Technology, Harbin, China
| |
Collapse
|
17
|
Implementing the CRISPR/Cas9 Technology in Eucalyptus Hairy Roots Using Wood-Related Genes. Int J Mol Sci 2020; 21:ijms21103408. [PMID: 32408486 PMCID: PMC7279396 DOI: 10.3390/ijms21103408] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/25/2023] Open
Abstract
Eucalypts are the most planted hardwoods worldwide. The availability of the Eucalyptus grandis genome highlighted many genes awaiting functional characterization, lagging behind because of the lack of efficient genetic transformation protocols. In order to efficiently generate knock-out mutants to study the function of eucalypts genes, we implemented the powerful CRISPR/Cas9 gene editing technology with the hairy roots transformation system. As proofs-of-concept, we targeted two wood-related genes: Cinnamoyl-CoA Reductase1 (CCR1), a key lignin biosynthetic gene and IAA9A an auxin dependent transcription factor of Aux/IAA family. Almost all transgenic hairy roots were edited but the allele-editing rates and spectra varied greatly depending on the gene targeted. Most edition events generated truncated proteins, the prevalent edition types were small deletions but large deletions were also quite frequent. By using a combination of FT-IR spectroscopy and multivariate analysis (partial least square analysis (PLS-DA)), we showed that the CCR1-edited lines, which were clearly separated from the controls. The most discriminant wave-numbers were attributed to lignin. Histochemical analyses further confirmed the decreased lignification and the presence of collapsed vessels in CCR1-edited lines, which are characteristics of CCR1 deficiency. Although the efficiency of editing could be improved, the method described here is already a powerful tool to functionally characterize eucalypts genes for both basic research and industry purposes.
Collapse
|
18
|
Khaksar G, Sirikantaramas S. Auxin Response Factor 2A Is Part of the Regulatory Network Mediating Fruit Ripening Through Auxin-Ethylene Crosstalk in Durian. FRONTIERS IN PLANT SCIENCE 2020; 11:543747. [PMID: 33013965 PMCID: PMC7509138 DOI: 10.3389/fpls.2020.543747] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/24/2020] [Indexed: 05/15/2023]
Abstract
Fruit ripening is a highly coordinated developmental process driven by a complex hormonal network. Ethylene is the main regulator of climacteric fruit ripening. However, a putative role of other key phytohormones in this process cannot be excluded. We previously observed an increasing level of auxin during the post-harvest ripening of the durian fruit, which occurred concomitantly with the rise in the climacteric ethylene biosynthesis. Herein, we connect the key auxin signaling component, auxin response factors (ARFs), with the regulatory network that controls fruit ripening in durian through the identification and functional characterization of a candidate ripening-associated ARF. Our transcriptome-wide analysis identified 15 ARF members in durian (DzARFs), out of which 12 were expressed in the fruit pulp. Most of these DzARFs showed a differential expression, but DzARF2A had a marked ripening-associated expression pattern during post-harvest ripening in Monthong, a commercial durian cultivar from Thailand. Phylogenetic analysis of DzARF2A based on its tomato orthologue predicted a role in ripening through the regulation of ethylene biosynthesis. Transient expression of DzARF2A in Nicotiana benthamiana leaves significantly upregulated the expression levels of ethylene biosynthetic genes, pointing to a ripening-associated role of DzARF2A through the transcriptional regulation of ethylene biosynthesis. Dual-luciferase reporter assay determined that DzARF2A trans-activates durian ethylene biosynthetic genes. We previously reported significantly higher auxin level during post-harvest ripening in a fast-ripening cultivar (Chanee) compared to a slow-ripening one (Monthong). DzARF2A expression was significantly higher during post-harvest ripening in the fast-ripening cultivars (Chanee and Phuangmanee) compared to that of the slow-ripening ones (Monthong and Kanyao). Thus, higher auxin level could upregulate the expression of DzARF2A during ripening of a fast-ripening cultivar. The auxin-induced expression of DzARF2A confirmed its responsiveness to exogenous auxin treatment in a dose-dependent manner, suggesting an auxin-mediated role of DzARF2A in fruit ripening. We suggest that high DzARF2A expression would activate ARF2A-mediated transcription of ethylene biosynthetic genes, leading to increased climacteric ethylene biosynthesis (auxin-ethylene crosstalk) and faster ripening. Hence, we demonstrated DzARF2A as a new component of the regulatory network possibly mediating durian fruit ripening through transcriptional regulation of ethylene biosynthetic genes.
Collapse
Affiliation(s)
- Gholamreza Khaksar
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supaart Sirikantaramas
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Die JV, Elmassry MM, LeBlanc KH, Awe OI, Dillman A, Busby B. geneHummus: an R package to define gene families and their expression in legumes and beyond. BMC Genomics 2019; 20:591. [PMID: 31319791 PMCID: PMC6639926 DOI: 10.1186/s12864-019-5952-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND During the last decade, plant biotechnological laboratories have sparked a monumental revolution with the rapid development of next sequencing technologies at affordable prices. Soon, these sequencing technologies and assembling of whole genomes will extend beyond the plant computational biologists and become commonplace within the plant biology disciplines. The current availability of large-scale genomic resources for non-traditional plant model systems (the so-called 'orphan crops') is enabling the construction of high-density integrated physical and genetic linkage maps with potential applications in plant breeding. The newly available fully sequenced plant genomes represent an incredible opportunity for comparative analyses that may reveal new aspects of genome biology and evolution. The analysis of the expansion and evolution of gene families across species is a common approach to infer biological functions. To date, the extent and role of gene families in plants has only been partially addressed and many gene families remain to be investigated. Manual identification of gene families is highly time-consuming and laborious, requiring an iterative process of manual and computational analysis to identify members of a given family, typically combining numerous BLAST searches and manually cleaning data. Due to the increasing abundance of genome sequences and the agronomical interest in plant gene families, the field needs a clear, automated annotation tool. RESULTS Here, we present the geneHummus package, an R-based pipeline for the identification and characterization of plant gene families. The impact of this pipeline comes from a reduction in hands-on annotation time combined with high specificity and sensitivity in extracting only proteins from the RefSeq database and providing the conserved domain architectures based on SPARCLE. As a case study we focused on the auxin receptor factors gene (ARF) family in Cicer arietinum (chickpea) and other legumes. CONCLUSION We anticipate that our pipeline should be suitable for any taxonomic plant family, and likely other gene families, vastly improving the speed and ease of genomic data processing.
Collapse
Affiliation(s)
- Jose V. Die
- Department of Genetics ETSIAM, University of Córdoba, Córdoba, Spain
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Moamen M. Elmassry
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
- Department of Biological Sciences, Texas Tech University, TX, Lubbock, 79409 USA
| | - Kimberly H. LeBlanc
- National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Blvd, Bethesda, MD 20892 USA
| | - Olaitan I. Awe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
- Department of Computer Science, University of Ibadan, Ibadan, Nigeria
| | - Allissa Dillman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Ben Busby
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| |
Collapse
|
20
|
The auxin response factor gene family in allopolyploid Brassica napus. PLoS One 2019; 14:e0214885. [PMID: 30958842 PMCID: PMC6453480 DOI: 10.1371/journal.pone.0214885] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
Auxin response factor (ARF) is a member of the plant-specific B3 DNA binding superfamily. Here, we report the results of a comprehensive analysis of ARF genes in allotetraploid Brassica napus (2n = 38, AACC). Sixty-seven ARF genes were identified in B. napus (BnARFs) and divided into four subfamilies (I–IV). Sixty-one BnARFs were distributed on all chromosomes except C02; the remaining were on Ann and Cnn. The full length of the BnARF proteins was highly conserved especially within each subfamily with all members sharing the N-terminal DNA binding domain (DBD) and the middle region (MR), and most contained the C-terminal dimerization domain (PBI). Twenty-one members had a glutamine-rich MR that may be an activator and the remaining were repressors. Accordingly, the intron patterns are highly conserved in each subfamily or clade, especially in DBD and PBI domains. Several members in subfamily III are potential targets for miR167. Many putative cis-elements involved in phytohormones, light signaling responses, and biotic and abiotic stress were identified in BnARF promoters, implying their possible roles. Most ARF proteins are likely to interact with auxin/indole-3-acetic acid (Aux/IAA) -related proteins, and members from different subfamilies generally shared many common interaction proteins. Whole genome-wide duplication (WGD) by hybridization between Brassica rapa and Brassica oleracea and segmental duplication led to gene expansion. Gene loss following WGD is biased with the An-subgenome retaining more ancestral genes than the Cn-subgenome. BnARFs have wide expression profiles across vegetative and reproductive organs during different developmental stages. No obvious expression bias was observed between An- and Cn-subgenomes. Most synteny-pair genes had similar expression patterns, indicating their functional redundancy. BnARFs were sensitive to exogenous IAA and 6-BA treatments especially subfamily III. The present study provides insights into the distribution, phylogeny, and evolution of ARF gene family.
Collapse
|
21
|
Xiao G, He P, Zhao P, Liu H, Zhang L, Pang C, Yu J. Genome-wide identification of the GhARF gene family reveals that GhARF2 and GhARF18 are involved in cotton fibre cell initiation. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4323-4337. [PMID: 29897556 PMCID: PMC6093391 DOI: 10.1093/jxb/ery219] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/06/2017] [Indexed: 05/12/2023]
Abstract
Auxin signalling plays an essential role in regulating plant development. Auxin response factors (ARFs), which are critical components of auxin signalling, modulate the expression of early auxin-responsive genes by binding to auxin response factor elements (AuxREs). However, there has been no comprehensive characterization of this gene family in cotton. Here, we identified 56 GhARF genes in the assembled Gossypium hirsutum genome. This gene family was divided into 17 subfamilies, and 44 members of them were distributed across 21 chromosomes. GhARF6 and GhARF11 subfamily genes were predominantly expressed in vegetative tissues, whereas GhARF2 and GhARF18 subfamily genes were highly expressed during seed fibre cell initiation. GhARF2-1 and GhARF18-1 were exclusively expressed in trichomes, organs similar to cotton seed fibre cells, and overexpression of these genes in Arabidopsis enhances trichome initiation. Comparative transcriptome analysis combined with AuxRE prediction revealed 11 transcription factors as potential target genes of GhARF2 and GhARF18. Six of these genes were significantly expressed during seed fibre cell initiation and were bound by GhARF2-1 and GhARF18-1 in yeast one-hybrid assays. Our results suggest that GhARF2 and GhARF18 genes may be key regulators of cotton seed fibre initiation by regulating the expression of several transcription factor genes. This study deepens our understanding of auxin-mediated initiation of cotton seed fibre cells and helps us in breeding better cotton varieties in the future.
Collapse
Affiliation(s)
- Guanghui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Correspondence: , , or
| | - Peng He
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Peng Zhao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Hao Liu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Li Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Correspondence: , , or
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Correspondence: , , or
| |
Collapse
|
22
|
Tang Y, Bao X, Liu K, Wang J, Zhang J, Feng Y, Wang Y, Lin L, Feng J, Li C. Genome-wide identification and expression profiling of the auxin response factor (ARF) gene family in physic nut. PLoS One 2018; 13:e0201024. [PMID: 30067784 PMCID: PMC6070241 DOI: 10.1371/journal.pone.0201024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
Auxin response factors (ARF) are important transcription factors which mediate the transcription of auxin responsive genes by binding directly to auxin response elements (AuxREs) found in the promoter regions of these genes. To date, no information has been available about the genome-wide organization of the ARF transcription factor family in physic nut. In this study, 17 ARF genes (JcARFs) are identified in the physic nut genome. A detailed investigation into the physic nut ARF gene family is performed, including analysis of the exon-intron structure, conserved domains, conserved motifs, phylogeny, chromosomal locations, potential small RNA targets and expression profiles under various conditions. Phylogenetic analysis suggests that the 17 JcARF proteins are clustered into 6 groups, and most JcARF proteins from the physic nut reveal closer relationships with those from Arabidopsis than those from rice. Of the 17 JcARF genes, eight are predicted to be the potential targets of small RNAs; most of the genes show differential patterns of expression among four tissues (root, stem cortex, leaf, and seed); and qRT-PCR indicates that the expression of all JcARF genes is inhibited or induced in response to exogenous auxin. Expression profile analysis based on RNA-seq data shows that in leaves, 11 of the JcARF genes respond to at least one abiotic stressor (drought and/or salinity) at, as a minimum, at least one time point. Our results provide valuable information for further studies on the roles of JcARF genes in regulating physic nut's growth, development and responses to abiotic stress.
Collapse
Affiliation(s)
- Yuehui Tang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Henan, Zhoukou, China
| | - Xinxin Bao
- School of Journalism and Communication, Zhoukou Normal University, Henan, Zhoukou, China
| | - Kun Liu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Henan, Zhoukou, China
| | - Jian Wang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Henan, Zhoukou, China
| | - Ju Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Henan, Zhoukou, China
| | - Youwei Feng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Yangyang Wang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Luoxiao Lin
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Jingcheng Feng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Chengwei Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Henan, Zhoukou, China
| |
Collapse
|
23
|
Zhou X, Wu X, Li T, Jia M, Liu X, Zou Y, Liu Z, Wen F. Identification, characterization, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon. Funct Integr Genomics 2018; 18:709-724. [PMID: 29926224 DOI: 10.1007/s10142-018-0622-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 06/03/2018] [Accepted: 06/07/2018] [Indexed: 11/30/2022]
Abstract
Auxin response factors (ARFs) are one type of essential family of transcription factors that bind with auxin response elements (AuxRE), and play vital roles in variety of plant development and physiological processes. Brachypodium distachyon, related to the major cereal grain species, were recently developed to be a good model organism for functional genomics research. So far, genome-wide overview of the ARF gene family in B. distachyon was not available. Here, a systemic analysis of ARF gene family members in B. distachyon was performed. A comprehensive overview of the characterization of the BdARFs was obtained by multiple bioinformatics analyses, including the gene and protein structure, chromosome locations, conserved motifs of proteins, phylogenetic analysis, and cis-elements in promoters of BdARF. Results showed that all BdARFs contained conserved DBD, MR, and CTD could be divided into four classes, Ia, IIa, IIb, and III. Expression profiles of BdARF genes indicated that they were expressed across various tissues and organs, which could be clustered into three main expression groups, and most of BdARF genes were involved in phytohormone signal transduction pathways and regulated physiological process in responding to multiple environmental stresses. And predicted regulatory network between B. distachyon ARFs and IAAs was also discussed. Our genomics analysis of BdARFs could yield new insights into the complexity of the control of BdARF genes and lead to potential applications in the investigation of the accurate regulatory mechanisms of ARFs in herbaceous plants.
Collapse
Affiliation(s)
- Xiaojian Zhou
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinshen Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Yulan Zou
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Zixia Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
24
|
Die JV, Gil J, Millan T. Genome-wide identification of the auxin response factor gene family in Cicer arietinum. BMC Genomics 2018; 19:301. [PMID: 29703137 PMCID: PMC5921756 DOI: 10.1186/s12864-018-4695-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Background Auxin Response Factors act as critical components of the auxin-signaling pathway by regulating the transcription of auxin-responsive genes. The release of the chickpea reference genome provides an opportunity to identify and characterize the ARF gene family in this important legume by a data mining coupled by comparative genomics approaches. Results We performed a comprehensive characterization and analysis of 24 ARF genes in the chickpea reference genome. Comparative phylogenetic analysis of the ARF from chickpea, Medicago and Arabidopsis suggests that recent duplications have played a very limited role in the expansion of the ARF chickpea family. Gene structure analysis based on exon-intron organization provides additional evidence to support the evolutionary relationship among the ARF members. Conserved motif analysis shows that most of the proteins fit into the canonical ARF structure model, but 9 proteins lack or have a truncated dimerization domain. The mechanisms underlying the diversification of the ARF gene family are based on duplications, variations in domain organization and alternative splicing. Concerning duplications, segmental, but not tandem duplications, have contributed to the expansion of the gene family. Moreover, the duplicated pair genes have evolved mainly under the influence of purifying selection pressure with restricted functional divergence. Expression profiles responding to various environmental stimuli show a close relationship between tissue and expression patterns. Promoter sequence analysis reveals an enrichment of several cis-regulatory elements related to symbiosis, and modulation of plant gene expression during the interaction with microbes. Conclusions In conclusion, this study provides a comprehensive overview of the ARF gene family in chickpea. Globally, our data supports that auxin signaling pathway regulates a wide range of physiological processes and stress responses. Our findings could further provide new insights into the complexity of the regulation of ARF at the transcription level that may be useful to develop rational chickpea breeding strategies to improve development or stress responses. Our study also provides a foundation for comparative genomic analyses and a framework to trace the dynamic evolution of ARF genes on a large time-scale within the legume family. Electronic supplementary material The online version of this article (10.1186/s12864-018-4695-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jose V Die
- Department of Genetics, ETSIAM, University of Córdoba, Córdoba, Spain.
| | - Juan Gil
- Department of Genetics, ETSIAM, University of Córdoba, Córdoba, Spain
| | - Teresa Millan
- Department of Genetics, ETSIAM, University of Córdoba, Córdoba, Spain
| |
Collapse
|
25
|
Niu J, Bi Q, Deng S, Chen H, Yu H, Wang L, Lin S. Identification of AUXIN RESPONSE FACTOR gene family from Prunus sibirica and its expression analysis during mesocarp and kernel development. BMC PLANT BIOLOGY 2018; 18:21. [PMID: 29368590 PMCID: PMC5784662 DOI: 10.1186/s12870-017-1220-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/20/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Auxin response factors (ARFs) in auxin signaling pathway are an important component that can regulate the transcription of auxin-responsive genes involved in almost all aspects of plant growth and development. To our knowledge, the comprehensive and systematic characterization of ARF genes has never been reported in Prunus sibirica, a novel woody biodiesel feedstock in China. RESULTS In this study, we identified 14 PsARF genes with a perfect open reading frame (ORF) in P. sibirica by using its previous transcriptomic data. Conserved motif analysis showed that all identified PsARF proteins had typical DNA-binding and ARF domain, but 5 members (PsARF3, 8 10, 16 and 17) lacked the dimerization domain. Phylogenetic analysis of the ARF proteins generated from various plant species indicated that ARFs could be categorized into 4 major groups (Class I, II, III and IV), in which all identified ARFs from P. sibirica showed a closest relationship with those from P. mume. Comparison of the expression profiles of 14 PsARF genes in different developmental stages of Siberian apricot mesocarp (SAM) and kernel (SAK) reflected distinct temporal or spatial expression patterns for PsARF genes. Additionally, based on the expressed data from fruit and seed development of multiple plant species, we identified 1514 ARF-correlated genes using weighted gene co-expression network analysis (WGCNA). And the major portion of ARF-correlated gene was characterized to be involved in protein, nucleic acid and carbohydrate metabolic, transport and regulatory processes. CONCLUSIONS In summary, we systematically and comprehensively analyzed the structure, expression pattern and co-expression network of ARF gene family in P. sibirica. All our findings provide theoretical foundation for the PsARF gene family and will pave the way for elucidating the precise role of PsARF genes in SAM and SAK development.
Collapse
Affiliation(s)
- Jun Niu
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228 China
| | - Quanxin Bi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Shuya Deng
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228 China
| | - Huiping Chen
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228 China
| | - Haiyan Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Libing Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Shanzhi Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 10083 China
| |
Collapse
|
26
|
Baranwal VK, Negi N, Khurana P. Auxin Response Factor Genes Repertoire in Mulberry: Identification, and Structural, Functional and Evolutionary Analyses. Genes (Basel) 2017; 8:genes8090202. [PMID: 28841197 PMCID: PMC5615343 DOI: 10.3390/genes8090202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/31/2022] Open
Abstract
Auxin Response Factors (ARFs) are at the core of the regulation mechanism for auxin-mediated responses, along with AUX/IAA proteins.They are critical in the auxin-mediated control of various biological responses including development and stress. A wild mulberry species genome has been sequenced and offers an opportunity to investigate this important gene family. A total of 17 ARFs have been identified from mulberry (Morus notabilis) which show a wide range of expression patterns. Of these 17 ARFs, 15 have strong acidic isoelectric point (pI) values and a molecular mass ranging from 52 kDa to 101 kDa. The putative promoters of these ARFs harbour cis motifs related to light-dependent responses, various stress responses and hormone regulations suggestive of their multifactorial regulation. The gene ontology terms for ARFs indicate their role in flower development, stress, root morphology and other such development and stress mitigation related activities. Conserved motif analysis showed the presence of all typical domains in all but four members that lack the PB1 domain and thus represent truncated ARFs. Expression analysis of these ARFs suggests their preferential expression in tissues ranging from leaf, root, winter bud, bark and male flowers. These ARFs showed differential expression in the leaf tissue of M. notabilis, Morus laevigata and Morus serrata. Insights gained from this analysis have implications in mulberry improvement programs.
Collapse
Affiliation(s)
- Vinay Kumar Baranwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| | - Nisha Negi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
27
|
Rodrigues MI, Takeda AAS, Bravo JP, Maia IG. The Eucalyptus Tonoplast Intrinsic Protein (TIP) Gene Subfamily: Genomic Organization, Structural Features, and Expression Profiles. FRONTIERS IN PLANT SCIENCE 2016; 7:1810. [PMID: 27965702 PMCID: PMC5127802 DOI: 10.3389/fpls.2016.01810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Plant aquaporins are water channels implicated in various physiological processes, including growth, development and adaptation to stress. In this study, the Tonoplast Intrinsic Protein (TIP) gene subfamily of Eucalyptus, an economically important woody species, was investigated and characterized. A genome-wide survey of the Eucalyptus grandis genome revealed the presence of eleven putative TIP genes (referred as EgTIP), which were individually assigned by phylogeny to each of the classical TIP1-5 groups. Homology modeling confirmed the presence of the two highly conserved NPA (Asn-Pro-Ala) motifs in the identified EgTIPs. Residue variations in the corresponding selectivity filters, that might reflect differences in EgTIP substrate specificity, were observed. All EgTIP genes, except EgTIP5.1, were transcribed and the majority of them showed organ/tissue-enriched expression. Inspection of the EgTIP promoters revealed the presence of common cis-regulatory elements implicated in abiotic stress and hormone responses pointing to an involvement of the identified genes in abiotic stress responses. In line with these observations, additional gene expression profiling demonstrated increased expression under polyethylene glycol-imposed osmotic stress. Overall, the results obtained suggest that these novel EgTIPs might be functionally implicated in eucalyptus adaptation to stress.
Collapse
Affiliation(s)
- Marcela I. Rodrigues
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
| | - Agnes A. S. Takeda
- Department of Physics and Biophysics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
- Institute of Biotechnology, São Paulo State UniversityBotucatu, Brazil
| | - Juliana P. Bravo
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
| | - Ivan G. Maia
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
| |
Collapse
|
28
|
Xu Z, Ji A, Song J, Chen S. Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza. Biol Open 2016; 5:848-57. [PMID: 27230647 PMCID: PMC4920185 DOI: 10.1242/bio.017178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Auxin response factors (ARFs) can function as transcriptional activators or repressors to regulate the expression of auxin response genes by specifically binding to auxin response elements (AuxREs) during plant development. Based on a genome-wide strategy using the medicinal model plant Salvia miltiorrhiza, 25 S. miltiorrhiza ARF (SmARF) gene family members in four classes (class Ia, IIa, IIb and III) were comprehensively analyzed to identify characteristics including gene structures, conserved domains, phylogenetic relationships and expression patterns. In a hybrid analysis of the phylogenetic tree, microRNA targets, and expression patterns of SmARFs in different organs, root tissues, and methyl jasmonate or indole-3-acetic acid treatment conditions, we screened for candidate SmARFs involved in various developmental processes of S. miltiorrhiza. Based on this analysis, we predicted that SmARF25, SmARF7, SmARF16 and SmARF20 are involved in flower, leaf, stem and root development, respectively. With the further insight into the targets of miR160 and miR167, specific SmARF genes in S. miltiorrhiza might encode products that participate in biological processes as described for ARF genes in Arabidopsis. Our results provide a foundation for understanding the molecular basis and regulatory mechanisms of SmARFs in S. miltiorrhiza. Summary: Genome-wide analysis identified 25 ARF gene members (seven transcriptional activators and 18 repressors) in S. miltiorrhiza. The gene structures, functional domains, miRNA targets and expression patterns were analyzed in detail.
Collapse
Affiliation(s)
- Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Aijia Ji
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Shilin Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing 100700, China
| |
Collapse
|
29
|
Plasencia A, Soler M, Dupas A, Ladouce N, Silva-Martins G, Martinez Y, Lapierre C, Franche C, Truchet I, Grima-Pettenati J. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1381-93. [PMID: 26579999 PMCID: PMC11388834 DOI: 10.1111/pbi.12502] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/02/2015] [Accepted: 10/17/2015] [Indexed: 05/26/2023]
Abstract
Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage-specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time-consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co-transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild-type ones. We further demonstrated that co-transformed hairy roots are suitable for medium-throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT-qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down-regulation of the Eucalyptus cinnamoyl-CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.
Collapse
Affiliation(s)
- Anna Plasencia
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Marçal Soler
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Annabelle Dupas
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Nathalie Ladouce
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Guilherme Silva-Martins
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Yves Martinez
- FRAIB, CNRS, Cell Imaging Plateform, Castanet Tolosan, France
| | - Catherine Lapierre
- INRA/AgroParisTech, UMR1318, Saclay Plant Science, Jean-Pierre Bourgin Institute (IJPB), Versailles, France
| | | | - Isabelle Truchet
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Jacqueline Grima-Pettenati
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| |
Collapse
|
30
|
Li SB, Xie ZZ, Hu CG, Zhang JZ. A Review of Auxin Response Factors (ARFs) in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:47. [PMID: 26870066 PMCID: PMC4737911 DOI: 10.3389/fpls.2016.00047] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/12/2016] [Indexed: 05/18/2023]
Abstract
Auxin is a key regulator of virtually every aspect of plant growth and development from embryogenesis to senescence. Previous studies have indicated that auxin regulates these processes by controlling gene expression via a family of functionally distinct DNA-binding auxin response factors (ARFs). ARFs are likely components that confer specificity to auxin response through selection of target genes as transcription factors. They bind to auxin response DNA elements (AuxRE) in the promoters of auxin-regulated genes and either activate or repress transcription of these genes depending on a specific domain in the middle of the protein. Genetic studies have implicated various ARFs in distinct developmental processes through loss-of-function mutant analysis. Recent advances have provided information on the regulation of ARF gene expression, the role of ARFs in growth and developmental processes, protein-protein interactions of ARFs and target genes regulated by ARFs in plants. In particular, protein interaction and structural studies of ARF proteins have yielded novel insights into the molecular basis of auxin-regulated transcription. These results provide the foundation for predicting the contributions of ARF genes to the biology of other plants.
Collapse
|
31
|
Xu YX, Mao J, Chen W, Qian TT, Liu SC, Hao WJ, Li CF, Chen L. Identification and expression profiling of the auxin response factors (ARFs) in the tea plant (Camellia sinensis (L.) O. Kuntze) under various abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 98:46-56. [PMID: 26637949 DOI: 10.1016/j.plaphy.2015.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Auxin response factor (ARF) proteins are a multigene family of regulators involved in various physiological and developmental processes in plants. However, their modes of action in the tea plant (Camellia sinensis) remain largely unknown. In this study, we identified 15 members of the tea ARF gene family, using the public information about C. sinensis, both in our laboratory, as well as in other laboratories, and analyzed their phylogenetic relationships, conserved domains and the compositions of the amino acids in the middle region. A comprehensive expression analysis in different tissues and organs revealed that many ARF genes were expressed in a tissue-specific manner, suggesting they have different functions in the growth and development processes of the tea plant. The expression analysis under three forms of auxin (indole-3-acetic acid, 2,4-dichlorophenoxyacetic acid, naphthylacetic acid) treatment showed that the majority of the ARF genes were down-regulated in the shoots and up-regulated in the roots, suggesting opposite action mechanisms of the ARF genes in the shoots and roots. The expression levels of most ARF genes were changed under various phytohormone and abiotic stresses, indicating the ARF gene family plays important roles in various phytohormone and abiotic stress signals and may mediate the crosstalk between phytohormones and abiotic stresses. The current study provides basic information for the ARF genes of the tea plant and will pave the way for deciphering the precise role of ARFs in tea developmental processes and breeding stress-tolerant tea varieties.
Collapse
Affiliation(s)
- Yan-Xia Xu
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science/ Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Juan Mao
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science/ Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Wei Chen
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science/ Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Ting-Ting Qian
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science/ Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Sheng-Chuan Liu
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science/ Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Wan-Jun Hao
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science/ Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Chun-Fang Li
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science/ Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Liang Chen
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science/ Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China.
| |
Collapse
|
32
|
Zhang X, Yan F, Tang Y, Yuan Y, Deng W, Li Z. Auxin Response Gene SlARF3 Plays Multiple Roles in Tomato Development and is Involved in the Formation of Epidermal Cells and Trichomes. PLANT & CELL PHYSIOLOGY 2015; 56:2110-24. [PMID: 26412778 DOI: 10.1093/pcp/pcv136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 09/17/2015] [Indexed: 05/24/2023]
Abstract
The auxin response factor (ARF) genes encode a large family of proteins involved in auxin signaling transduction. SlARF3, a member of the ARF gene family, encodes a protein containing two conserved domains, B3 and ARF, and lacking an Aux/IAA domain. Expression analysis showed that SlARF3 has a particularly high expression level in trichomes. In situ hybridization also detected the SlARF3 transcripts in epidermal pavement cells of leaves. The physiological function of SlARF3 was studied by using the RNA interference (RNAi) strategy. SlARF3-down-regulated plants exhibited decreased density of epidermal pavement cells and obviously reduced density of type I, V and VI trichomes of leaves, which indicates the important role of SlARF3 in the formation of trichomes and epidermal cells in tomato. The number of shoot xylem cells was also decreased in SlARF3-down-regulated lines. Furthermore, RNA-sequencing (RNA-Seq) analysis identified 51 differentially expressed genes (DEGs) belonging to 14 transcription factor (TF) families, such as MYB, bHLH, WD40 and C2H2 zinc finger. Twenty-seven DEGs were involved in the metabolism and signaling transduction of phytohormones, such as auxin, ethylene and gibberellin. These results indicated the important roles of the TFs and hormones in auxin-dependent transcriptional regulation of trichome formation in tomato. Taken together, our results demonstrate that SlARF3 plays an important role in the formation of epidermal cells and trichomes and reveal novel and specific functions for ARFs in tomato developmental processes.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Genetic Engineering Research Center, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, School of Life Science, Chongqing University, Chongging 400030, PR China These authors contributed equally to this work
| | - Fang Yan
- Genetic Engineering Research Center, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, School of Life Science, Chongqing University, Chongging 400030, PR China These authors contributed equally to this work
| | - Yuwei Tang
- Genetic Engineering Research Center, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, School of Life Science, Chongqing University, Chongging 400030, PR China
| | - Yujin Yuan
- Genetic Engineering Research Center, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, School of Life Science, Chongqing University, Chongging 400030, PR China
| | - Wei Deng
- Genetic Engineering Research Center, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, School of Life Science, Chongqing University, Chongging 400030, PR China
| | - Zhengguo Li
- Genetic Engineering Research Center, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, School of Life Science, Chongqing University, Chongging 400030, PR China
| |
Collapse
|
33
|
Yu H, Soler M, San Clemente H, Mila I, Paiva JAP, Myburg AA, Bouzayen M, Grima-Pettenati J, Cassan-Wang H. Comprehensive genome-wide analysis of the Aux/IAA gene family in Eucalyptus: evidence for the role of EgrIAA4 in wood formation. PLANT & CELL PHYSIOLOGY 2015; 56:700-14. [PMID: 25577568 DOI: 10.1093/pcp/pcu215] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/23/2014] [Indexed: 05/23/2023]
Abstract
Auxin plays a pivotal role in various plant growth and development processes, including vascular differentiation. The modulation of auxin responsiveness through the auxin perception and signaling machinery is believed to be a major regulatory mechanism controlling cambium activity and wood formation. To gain more insights into the roles of key Aux/IAA gene regulators of the auxin response in these processes, we identified and characterized members of the Aux/IAA family in the genome of Eucalyptus grandis, a tree of worldwide economic importance. We found that the gene family in Eucalyptus is slightly smaller than that in Populus and Arabidopsis, but all phylogenetic groups are represented. High-throughput expression profiling of different organs and tissues highlighted several Aux/IAA genes expressed in vascular cambium and/or developing xylem, some showing differential expression in response to developmental (juvenile vs. mature) and/or to environmental (tension stress) cues. Based on the expression profiles, we selected a promising candidate gene, EgrIAA4, for functional characterization. We showed that EgrIAA4 protein is localized in the nucleus and functions as an auxin-responsive repressor. Overexpressing a stabilized version of EgrIAA4 in Arabidopsis dramatically impeded plant growth and fertility and induced auxin-insensitive phenotypes such as inhibition of primary root elongation, lateral root emergence and agravitropism. Interestingly, the lignified secondary walls of the interfascicular fibers appeared very late, whereas those of the xylary fibers were virtually undetectable, suggesting that EgrIAA4 may play crucial roles in fiber development and secondary cell wall deposition.
Collapse
Affiliation(s)
- Hong Yu
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III, UPS, CNRS, BP 42617, Auzeville, F-31326 Castanet Tolosan, France
| | - Marçal Soler
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III, UPS, CNRS, BP 42617, Auzeville, F-31326 Castanet Tolosan, France
| | - Hélène San Clemente
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III, UPS, CNRS, BP 42617, Auzeville, F-31326 Castanet Tolosan, France
| | - Isabelle Mila
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, F-31326 Castanet-Tolosan, France INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, F-31326 Castanet-Tolosan, France
| | - Jorge A P Paiva
- Instituto de Investigação Científica e Tropical (IICT/MNE), Palácio Burnay, Rua da Junqueira, 30, 1349-007 Lisboa, Portugal IBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Mondher Bouzayen
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, F-31326 Castanet-Tolosan, France INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, F-31326 Castanet-Tolosan, France
| | - Jacqueline Grima-Pettenati
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III, UPS, CNRS, BP 42617, Auzeville, F-31326 Castanet Tolosan, France
| | - Hua Cassan-Wang
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III, UPS, CNRS, BP 42617, Auzeville, F-31326 Castanet Tolosan, France
| |
Collapse
|
34
|
Hu W, Zuo J, Hou X, Yan Y, Wei Y, Liu J, Li M, Xu B, Jin Z. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. FRONTIERS IN PLANT SCIENCE 2015; 6:742. [PMID: 26442055 PMCID: PMC4569978 DOI: 10.3389/fpls.2015.00742] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/31/2015] [Indexed: 05/18/2023]
Abstract
Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Jiao Zuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiaowan Hou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yunxie Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Meiying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Biyu Xu, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua County, Haikou City, Hainan Province 571101, China
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Zhiqiang Jin, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Yilong W Road 2, Longhua County, Haikou City, Hainan Province 570102, China
| |
Collapse
|