1
|
Yasuda A, Murase W, Kubota A, Uramaru N, Okuda K, Hakota R, Ikeda A, Kojima H. Effects of di-(2-ethylhexyl) phthalate and its metabolites on transcriptional activity via human nuclear receptors and gene expression in HepaRG cells. Toxicol In Vitro 2024; 101:105943. [PMID: 39341470 DOI: 10.1016/j.tiv.2024.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in polyvinyl chloride products. DEHP exposure in humans is of great concern due to its endocrine-disrupting properties. In this study, we characterized the agonistic activities of DEHP and its five metabolites, mono-(2-ethylhexyl) phthalate (MEHP), 5OH-MEHP, 5oxo-MEHP, 5cx-MEPP and 2cx-MMHP against human nuclear receptors, peroxisome proliferator-activated receptor α (PPARα), pregnane X receptor (PXR), and constitutive androstane receptor (CAR) using transactivation assays. In the PPARα assay, the order of the agonistic activity was MEHP >> 5cx-MEPP >5OH-MEHP, 5oxo-MEHP >2cx-MMHP > DEHP, with DEHP significantly inhibiting MEHP-induced PPARα agonistic activity. This finding was compared to the results from in silico docking simulation. In the PXR assay, DEHP showed PXR agonistic activity more potent than that of MEHP, whereas the other metabolites showed little activity. In the CAR assay, none of the tested compounds showed agonistic activity. Moreover, the expression levels of PPARα-, PXR-, and CAR-target genes in HepaRG cells exposed to DEHP or MEHP were investigated using qRT-PCR analysis. As a result, exposure to these compounds significantly upregulated PXR/CAR target genes (CYP3A4 and CYP2B6), but not PPARα target genes (CYP4A11, etc.) in HepaRG cells. Taken together, these results suggest that direct PXR and/or indirect CAR activation by several DEHP metabolites may be involved in the endocrine disruption by altering hormone metabolism.
Collapse
Affiliation(s)
- Ayaka Yasuda
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Naoto Uramaru
- School of Health and Social Services, Center for University-wide Education, Saitama Prefectural University, 820 San-Nomiya, Koshigaya, Saitama 343-8540, Japan; Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Katsuhiro Okuda
- Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Ryo Hakota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuko Ikeda
- Hokkaido University Faculty of Health Sciences, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
2
|
Poudel K, Ketema RM, Thi Thu Ngo H, Ikeda A, Minatoya M. E-waste in Vietnam: a narrative review of environmental contaminants and potential health risks. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:391-406. [PMID: 36758175 DOI: 10.1515/reveh-2022-0233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Informal electronic waste (e-waste) dismantling activities contribute to releasing hazardous compounds in the environment and potential exposure to humans and their health. These hazardous compounds include persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs) and heavy metals. This review searched papers addressing hazardous compounds emitted from e-waste recycling activities and their health effects in Vietnam. Based on the keywords searched in three electronic databases (PubMed, Psych Info, and Google scholar), we found 21 relevant studies in Vietnam. The review identifies extensive e-waste dismantling activities in Vietnam in the northern region. To measure the environmental exposure to hazardous compounds, samples such as e-waste recycling workshop dust, soil, air, and sediments were assessed, while human exposure levels were measured using participants' hair, serum, or breast milk samples. Studies that compared levels of exposure in e-waste recycling sites and reference sites indicated higher levels of PBDEs, PCBs, and heavy metals were observed in both environmental and human samples from participants in e-waste recycling sites. Among environmental samples, hazardous chemicals were the most detected in dust from e-waste recycling sites. Considering both environmental and human samples, the highest exposure difference observed with PBDE ranged from 2-48-fold higher in e-waste processing sites than in the reference sites. PCBs showed nearly 3-fold higher levels in e-waste processing sites than in reference sites. In the e-waste processing sites, age-specific higher PCB levels were observed in older recycler's serum samples. Among the heavy metals, Pb was highly detected in drinking water, indoor soil and human blood samples. While high detection of Ni in cooked rice, Mn in soil and diet, Zn in dust and As in urine were apparent. Exposure assessment from human biomonitoring showed participants, including children and mothers from the e-waste processing areas, had higher carcinogenic and non-carcinogenic risks than the reference sites. This review paper highlights the importance of further comprehensive studies on risk assessments of environmentally hazardous substances and their association with health outcomes at e-waste processing sites.
Collapse
Affiliation(s)
- Kritika Poudel
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
- Judith Lumley Centre, School of Nursing and Midwifery, La Trobe University, Bundoora, VIC, Australia
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Hien Thi Thu Ngo
- Faculty of Health Sciences, Thang Long University, Hanoi, Vietnam
| | - Atsuko Ikeda
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Machiko Minatoya
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Hansel MC, Rosenberg AM, Kinkade CW, Capurro C, Rivera-Núñez Z, Barrett ES. Exposure to Synthetic Endocrine-Disrupting Chemicals in Relation to Maternal and Fetal Sex Steroid Hormones: A Scoping Review. Curr Environ Health Rep 2024; 11:356-379. [PMID: 39037689 PMCID: PMC11324767 DOI: 10.1007/s40572-024-00455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE OF REVIEW Many synthetic endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment and highly detected among pregnant people. These chemicals may disrupt maternal and/or fetal sex steroid hormones, which are critical to pregnancy maintenance and fetal development. Here, we review the epidemiological literature examining prenatal exposure to common synthetic EDCs in relation to maternal and fetal sex steroid hormones. RECENT FINDINGS We performed a literature search using PubMed, SCOPUS, and Embase, ultimately identifying 29 articles for full review. Phenols, parabens, and persistent organic pollutants generally showed inverse associations with androgens, estrogens, and progesterone. Phthalates and per-and polyfluoroalkyl substances tended to be inversely associated with progesterone, while evidence regarding androgens and estrogens was mixed. Inconsistent, but noteworthy, differences by fetal sex and timing of exposure/outcome were observed. Overall, the literature suggests EDCs may disrupt maternal and fetal sex steroid activity, though findings are mixed. Given the pervasive, high-volume production of these synthetic chemicals and the critical functions sex steroid hormones play during gestation, additional research is warranted.
Collapse
Affiliation(s)
- Megan C Hansel
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Abigail M Rosenberg
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Camila Capurro
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
4
|
Lu CL, Wen HJ, Chen ML, Sun CW, Hsieh CJ, Wu MT, Wang SL. Prenatal phthalate exposure and sex steroid hormones in newborns: Taiwan Maternal and Infant Cohort Study. PLoS One 2024; 19:e0297631. [PMID: 38483929 PMCID: PMC10939196 DOI: 10.1371/journal.pone.0297631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/09/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Newborn anogenital distance (AGD) has been associated with prenatal exposure of phthalates. The association between prenatal phthalate exposure and sex steroid hormones in newborns is unclear. OBJECT This study aimed to examine whether cord-blood sex hormone levels were associated with prenatal phthalate exposure and newborn anogenital distance (AGD). METHODS In the Taiwan Maternal and Infant Cohort Study, we recruited 1,676 pregnant women in their third trimester in 2012-2015 in Taiwan. We determined 11 urinary phthalate metabolites in pregnant women, three maternal and five cord-blood steroid sex-hormone concentrations. Five hundred and sixty-five mother-infant pairs with sufficient data were included. Trained neonatologists measured 263 newborns' AGD. We examined the associations of prenatal phthalate metabolite levels with AGD and hormones using linear regression models and evaluated correlations between maternal and cord-blood sex hormone levels and AGD. RESULTS Compared with the male newborns exposed to maternal phthalate metabolites at the first tertile, AGD was -3.75, -3.43, and -3.53 mm shorter among those exposed at the median tertile of di-2-ethylhexyl phthalate (DEHP) metabolites, monobenzyl phthalate (MBzP), and monomethyl phthalate (MMP), respectively. Compared with those who had exposed at the first tertile, cord-blood follicle-stimulating hormone (FSH) decreased among male newborns exposed at higher levels of MMP, mono-n-butyl phthalate (MnBP), MBzP and DEHP, and among female newborns exposed at higher levels of MMP, MBzP and mono(2-ethyl-5-hydroxyhexyl) phthalate. However, we did not observe significant correlations of maternal or cord-blood sex steroid hormones with newborns' AGDs. CONCLUSIONS Alterations in cord-blood sex steroid hormone levels were associated with prenatal phthalate exposures, particularly in male newborns. Women aspiring to be pregnant should be alerted of the need of reducing phthalate exposure.
Collapse
Affiliation(s)
- Chin-Li Lu
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Food Science and Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Ming-Tsang Wu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan
| | | |
Collapse
|
5
|
Cui H, Culty M. Do macrophages play a role in the adverse effects of endocrine disrupting chemicals (EDCs) on testicular functions? FRONTIERS IN TOXICOLOGY 2023; 5:1242634. [PMID: 37720385 PMCID: PMC10501733 DOI: 10.3389/ftox.2023.1242634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
During the past decades, several endocrine disrupting chemicals (EDCs) have been confirmed to affect male reproductive function and fertility in animal studies. EDCs are suspected to exert similar effects in humans, based on strong associations between levels of antiandrogenic EDCs in pregnant women and adverse reproductive effects in infants. Testicular macrophages (tMΦ) play a vital role in modulating immunological privilege and maintaining normal testicular homeostasis as well as fetal development. Although tMΦ were not historically studied in the context of endocrine disruption, they have emerged as potential targets to consider due to their critical role in regulating cells such as spermatogonial stem cells (SSCs) and Leydig cells. Few studies have examined the impact of EDCs on the ability of testicular cells to communicate and regulate each other's functions. In this review, we recapitulate what is known about tMΦ functions and interactions with other cell types in the testis that support spermatogenesis and steroidogenesis. We also surveyed the literature for reports on the effects of the EDCs genistein and DEHP on tMΦ, SSCs, Sertoli and Leydig cells. Our goal is to explore the possibility that EDC disruption of tMΦ interactions with other cell types may play a role in their adverse effects on testicular developmental programming and functions. This approach will highlight gaps of knowledge, which, once resolved, should improve the risk assessment of EDC exposure and the development of safeguards to protect male reproductive functions.
Collapse
Affiliation(s)
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Jin S, Cui S, Xu J, Zhang X. Associations between prenatal exposure to phthalates and birth weight: A meta-analysis study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115207. [PMID: 37393820 DOI: 10.1016/j.ecoenv.2023.115207] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Previous studies have suggested that phthalates are associated with birth weight. However, most phthalate metabolites have not been fully explored. Therefore, we conducted this meta-analysis to assess the relationship between phthalate exposure and birth weight. We identified original studies that measured phthalate exposure and reported its association with infant birth weight in relevant databases. Regression coefficients (β) with 95% confidence intervals (CIs) were extracted and analyzed for risk estimation. Fixed-effects (I2 ≤ 50%) or random-effects (I2 > 50%) models were adopted according to their heterogeneity. Overall summary estimates indicated negative associations of prenatal exposure to mono-n-butyl phthalate (pooled β = -11.34 g; 95% CI: -20.98 to -1.70 g) and mono-methyl phthalate (pooled β = -8.78 g; 95% CI: -16.30 to -1.27 g). No statistical association was found between the other less commonly used phthalate metabolites and birth weight. Subgroup analyses indicated that exposure to mono-n-butyl phthalate was associated with birth weight in females (β = -10.74 g; 95% CI: -18.70 to -2.79 g). Our findings indicate that phthalate exposure might be a risk factor for low birth weight and that this relationship may be sex specific. More research is needed to promote preventive policies regarding the potential health hazards of phthalates.
Collapse
Affiliation(s)
- Shihao Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, PR China
| | - Shanshan Cui
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jinghan Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, PR China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, PR China.
| |
Collapse
|
7
|
Gao H, Chen LW, Gong C, Shen SC, Zhao JY, Xu DD, Wang Y, Tao FB, Fan XC. The associations between prenatal phthalate exposure and childhood glycolipid metabolism and blood pressure: An updated systematic review and a pilot meta-analysis of prospective cohort studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115157. [PMID: 37348219 DOI: 10.1016/j.ecoenv.2023.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
This is the first pilot meta-analysis on the association of prenatal phthalate exposure with childhood cardiometabolic risks. A systematic literature search was performed in MEDLINE, Web of Science and CNKI (Chinese National Knowledge Infrastructure) until June 5, 2023. A total of seven studies with 5746 children (2646 girls and 3100 boys) were finally included. Four, three and two studies investigated the effects of maternal phthalate exposure on childhood blood pressure (BP), blood lipids and blood glucose profiles, respectively. The pilot meta-analysis suggested that di-2-ethylhexyl phthalate (DEHP) metabolite exposure was associated with a decrease in childhood z-systolic BP (SBP, β = -0.169, 95% CI = -0.338-0.001). Furthermore, the pooled results showed negative relationships of prenatal ∑DEHP exposure with z-SBP (β = -0.109, 95% CI = -0.163 to -0.055) and z-diastolic BP (DBP, β = -0.126, 95% CI = -0.182 to -0.069) in girls. In addition, MEP exposure was associated with z-SBP in girls (β = -0.227, 95% CI = -0.387 to -0.066). The pooled result showed a positive relationship between prenatal ∑DEHP exposure and triglycerides (β = 0.103, 95% CI = 0.028-0.178). The overall results revealed that exposure to ∑DEHP throughout gestation was associated with a decrease in insulin (β = -0.074, 95% CI = -0.144 to -0.004) and glucose (β = -0.129, 95% CI = -0.199 to -0.058) in boys. Interestingly, there was an inverse relationship of prenatal mono- 3 -carboxypropyl phthalate (MCPP) exposure with glucose in pubertal boys (β = -3.749, 95% CIs = -6.758 to -0.741) but not found in postpubertal children. In conclusion, prenatal phthalate exposure interfered with cardiovascular risk in children with gender-specific differences and was influenced by puberty. Overall, prenatal ∑DEHP was negatively associated with systolic blood pressure in girls and with insulin and glucose in boys but increased the level of triglycerides.
Collapse
Affiliation(s)
- Hui Gao
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li-Wen Chen
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Chen Gong
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Shi-Chun Shen
- The First Affiliated Hospital of USTC (University of Science and Technology of China), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jia-Ying Zhao
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Dou-Dou Xu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Yang Wang
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Fang-Biao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Xiao-Chen Fan
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China.
| |
Collapse
|
8
|
Chen HK, Wang SL, Chang YH, Sun CW, Wu MT, Chen ML, Lin YJ, Hsieh CJ. Associations between maternal phthalate exposure and neonatal neurobehaviors: The Taiwan maternal and infant cohort study (TMICS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120956. [PMID: 36581241 DOI: 10.1016/j.envpol.2022.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Previous studies have shown associations between prenatal phthalate exposure and neurobehavioral changes in children. However, few studies have focused on neonatal neurobehavioral development. This study aimed to examine the associations between prenatal phthalate exposure and neonatal neurobehavioral development in the early days of life after birth. This cohort study included 283 mother-infant pairs who participated in the Taiwan Mother Infant Cohort Study during 2012-2015. Each mother was interviewed, and urine samples were collected during the third trimester of pregnancy (weeks 29-40). Eleven common phthalate metabolites in maternal urine were analyzed. The Chinese version of the Neonatal Neurobehavioral Examination was used to evaluate early infant neurobehavioral development within five days of birth. We performed multiple linear regressions to explore the associations between phthalate exposure and neonatal neurobehavioral development. Sex differences in the association between phthalate metabolites and neonatal neurobehaviors were noted. Among girls, tertiles of phthalate metabolite concentrations were associated with worse behavioral responses and tone and motor patterns in the high-molecular-weight phthalate (HMW) and low-molecular-weight phthalate (LMW) groups. Girls in the highest tertile of di-2-ethylhexyl phthalate (DEHP) and mono-isobutyl phthalate (MiBP) had a negative association with tone and motor patterns. Girls in the highest tertile of mono-n-butyl phthalate (MnBP) and MiBP showed a negative association with behavioral responses. In contrast, tertiles of phthalate metabolite exposure were associated with improved neurobehaviors in mono-methyl phthalate (MMP) among boys. The highest tertile of MMP was positively associated with behavioral responses, primitive reflexes, and tone and motor patterns. Our findings suggest that maternal phthalate exposure affects neonatal neurobehavioral development in a sex-specific manner. Despite the relatively small sample size, our findings add to the existing research linking maternal phthalate exposure to neonatal neurobehavioral development. Additional research is needed to determine the potential long-term effects of prenatal phthalate exposure on children.
Collapse
Affiliation(s)
- Hsing-Kang Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Psychiatry, Yuli Hospital, Ministry of Health and Welfare, Hualien, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Public Health, National Defense Medical Center, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi General Hospital, Hualien, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jie Lin
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Chia-Jung Hsieh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Public Health, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
9
|
Corpuz-Hilsabeck M, Culty M. Impact of endocrine disrupting chemicals and pharmaceuticals on Sertoli cell development and functions. Front Endocrinol (Lausanne) 2023; 14:1095894. [PMID: 36793282 PMCID: PMC9922725 DOI: 10.3389/fendo.2023.1095894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Sertoli cells play essential roles in male reproduction, from supporting fetal testis development to nurturing male germ cells from fetal life to adulthood. Dysregulating Sertoli cell functions can have lifelong adverse effects by jeopardizing early processes such as testis organogenesis, and long-lasting processes such as spermatogenesis. Exposure to endocrine disrupting chemicals (EDCs) is recognized as contributing to the rising incidence of male reproductive disorders and decreasing sperm counts and quality in humans. Some drugs also act as endocrine disruptors by exerting off-target effects on endocrine tissues. However, the mechanisms of toxicity of these compounds on male reproduction at doses compatible with human exposure are still not fully resolved, especially in the case of mixtures, which remain understudied. This review presents first an overview of the mechanisms regulating Sertoli cell development, maintenance, and functions, and then surveys what is known on the impact of EDCs and drugs on immature Sertoli cells, including individual compounds and mixtures, and pinpointing at knowledge gaps. Performing more studies on the impact of mixtures of EDCs and drugs at all ages is crucial to fully understand the adverse outcomes these chemicals may induce on the reproductive system.
Collapse
|
10
|
Dutta S, Banu SK, Arosh JA. Endocrine disruptors and endometriosis. Reprod Toxicol 2023; 115:56-73. [PMID: 36436816 DOI: 10.1016/j.reprotox.2022.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Endometriosis is a hormone-dependent inflammatory gynecological disease of reproductive-age women. It is clinically and pathologically characterized by the presence of functional endometrium as heterogeneous lesions outside the uterine cavity. The two major symptoms are chronic pelvic pain and infertility, which profoundly affect women's reproductive health and quality of life. This significant individual and public health concerns underscore the importance of understanding the pathogenesis of endometriosis. The environmental endocrine-disrupting chemicals (EDCs) are exogenous agents that interfere with the synthesis, secretion, transport, signaling, or metabolism of hormones responsible for homeostasis, reproduction, and developmental processes. Endometriosis has been potentially linked to exposure to EDCs. In this review, based on the robust literature search, we have selected four endocrine disruptors (i) polychlorinated biphenyls (PCB)s (ii) dioxins (TCDD) (iii) bisphenol A (BPA) and its analogs and (iv) phthalates to elucidate their critical role in the etiopathogenesis of endometriosis. The epidemiological and experimental data discussed in this review indicate that these four EDCs activate multiple intracellular signaling pathways associated with proinflammation, estrogen, progesterone, prostaglandins, cell survival, apoptosis, migration, invasion, and growth of endometriosis. The available information strongly indicates that environmental exposure to EDCs such as PCBs, dioxins, BPA, and phthalates individually or collectively contribute to the pathophysiology of endometriosis. Further understanding of the molecular mechanisms of how these EDCs establish endometriosis and therapeutic strategies to mitigate the effects of these EDCs in the pathogenesis of endometriosis are timely needed. Moreover, understanding the interactive roles of these EDCs in the pathogenesis of endometriosis will help regulate the exposure to these EDCs in reproductive age women.
Collapse
Affiliation(s)
- Sudipta Dutta
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA.
| | - Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA.
| |
Collapse
|
11
|
Mathew L, Snyder NW, Lyall K, Lee BK, McClure LA, Elliott AJ, Newschaffer CJ. The associations between prenatal phthalate exposure measured in child meconium and cognitive functioning of 12-month-old children in two cohorts at elevated risk for adverse neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 214:113928. [PMID: 35870502 PMCID: PMC9890962 DOI: 10.1016/j.envres.2022.113928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Phthalate metabolites in gestational-maternal urine represents short-term maternal exposure, but meconium, the newborn's first stool may better capture cumulative fetal exposure. We quantified phthalate metabolites in meconium from two cohorts of children at higher risk of adverse neurodevelopment and evaluated associations with their cognitive function at 12 months. METHODS Meconium phthalate metabolites were quantified in the Safe Passage Study (SPS), N = 720, a pregnancy cohort with high community-levels of prenatal alcohol use, and the Early Autism Risk Longitudinal Investigation (EARLI), N = 236, a high familial autism risk pregnancy cohort. EARLI also had second and third trimester (T2/T3) maternal urine for exposure assessment. Molar sum of di (2-ethylhexyl) (∑DEHP) metabolites and an anti-androgenic score (AAS) using mono-isobutyl, mono-n-butyl, monobenzyl (MBZP), and DEHP metabolites were computed. Cognitive function was assessed at 12 months using the Mullen Scales of Early Learning-Composite (ELC). Multivariable linear regression assessed associations between loge-transformed metabolites and ELC. Quadratic terms explored nonlinearity and interaction terms of metabolite by child's sex examined effect modification. RESULTS In SPS, MBzP (βLinear = -6.73; 95% CI: 12.04, -1.42; βquadratic = 1.95; 0.27, 3.62) and mono (2-ethyl-5-carboxypentyl), (βLinear = -3.81; -7.53, -0.27; βquadratic = 0.93; 0.09, 1.77) had U-shaped associations with ELC. In EARLI, T2 urine mono-carboxyisononyl was associated with linear decrease in ELC, indicating lower cognitive function. Interaction with sex was suggested (P < 0.2) for several urine metabolites, mostly indicating negative association between phthalates and ELC among girls but reversed among boys. Only mono-isononyl phthalate and ∑DEHP had consistent main effect associations across matrixes and cohorts, but similar interaction with sex was observed for meconium-measured ∑DEHP, AAS, MBzP, and mono (2-ethylhexyl) in both cohorts. CONCLUSIONS Few phthalate metabolites were consistently associated with children's cognitive function, but a similar set of meconium metabolites from both cohorts displayed sex-specific associations. Gestational phthalate exposure may have sexually-dimorphic associations with early cognitive function in children at higher risk for adverse neurodevelopment.
Collapse
Affiliation(s)
- Leny Mathew
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA; Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA, 19104, USA.
| | - Nathaniel W Snyder
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
| | - Brian K Lee
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA, 19104, USA
| | - Leslie A McClure
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA, 19104, USA
| | | | - Craig J Newschaffer
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA; College of Health and Human Development, Pennsylvania State University, 325 HHD Building, University Park, PA, 16802, USA
| |
Collapse
|
12
|
Hlisníková H, Nagyová M, Kolena B, Mlynček M, Trnovec T, Petrovičová I. The Joint Effect of Perceived Psychosocial Stress and Phthalate Exposure on Hormonal Concentrations during the Early Stage of Pregnancy: A Cross-Sectional Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9101561. [PMID: 36291497 PMCID: PMC9601203 DOI: 10.3390/children9101561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022]
Abstract
Phthalates alter the hormonal balance in humans during pregnancy, potentially affecting embryonic and fetal development. We studied the joint effect of exposure to phthalates, quantified by urinary phthalate metabolite concentration, and perceived psychological stress on the concentration of hormones in pregnant women (n = 90) from the Nitra region, Slovakia, up to the 15th week of pregnancy. We used high-performance liquid chromatography, tandem mass spectrometry (HPLC-MS/MS), and electro-chemiluminescence immunoassay to determine urinary concentrations of phthalates and serum concentrations of hormones, respectively. We used Cohen perceived stress scale (PSS) to evaluate the human perception of stressful situations. Our results showed that mono(carboxy-methyl-heptyl) phthalate (cx-MiNP) and a molar sum of di-iso-nonyl phthalate metabolites (ΣDiNP) were negatively associated with luteinizing hormone (LH) (p ≤ 0.05). Mono(hydroxy-methyl-octyl) phthalate (OH-MiNP) and the molar sum of high-molecular-weight phthalate metabolites (ΣHMWP) were positively associated with estradiol (p ≤ 0.05). PSS score was not significantly associated with hormonal concentrations. When the interaction effects of PSS score and monoethyl phthalate (MEP), cx-MiNP, ΣDiNP, and ΣHMWP on LH were analyzed, the associations were positive (p ≤ 0.05). Our cross-sectional study highlights that joint psychosocial stress and xenobiotic-induced stress caused by phthalates are associated with modulated concentrations of reproductive hormones in pregnant women.
Collapse
Affiliation(s)
- Henrieta Hlisníková
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94974 Nitra-Chrenová, Slovakia
- Correspondence: ; Tel.: +421-37-6408-716
| | - Miroslava Nagyová
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94974 Nitra-Chrenová, Slovakia
| | - Branislav Kolena
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94974 Nitra-Chrenová, Slovakia
| | - Miloš Mlynček
- Department of Nursing, Faculty of Social Sciences and Health Care, Constantine the Philosopher University in Nitra, 94974 Nitra-Chrenová, Slovakia
| | - Tomáš Trnovec
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 83101 Bratislava, Slovakia
| | - Ida Petrovičová
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94974 Nitra-Chrenová, Slovakia
| |
Collapse
|
13
|
Mukherjee Das A, Gogia A, Garg M, Elaiyaraja A, Arambam P, Mathur S, Babu-Rajendran R, Deo SVS, Kumar L, Das BC, Janardhanan R. Urinary concentration of endocrine-disrupting phthalates and breast cancer risk in Indian women: A case-control study with a focus on mutations in phthalate-responsive genes. Cancer Epidemiol 2022; 79:102188. [PMID: 35688051 DOI: 10.1016/j.canep.2022.102188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Phthalates are known endocrine-disrupting chemicals used indiscriminately as constituents in consumer products including food processing, and packaging, cosmetics, personal care and household items. Although, few studies have assessed the risk of breast cancer on exposure to phthalates, their association with breast cancer risk in Indian women have not yet been evaluated. METHODS We conducted a case-control study involving 171 participants. Urinary concentrations of six phthalate dieters; DMP (Dimethyl phthalate), DEP (Diethyl phthalate), DBP (Dibutyl phthalate), BBP (benzyl butyl phthalate), DEHP (Di-2-ethyl-hexyl phthalate), DINOP (Di-n-octyl phthalate) were estimated by GC-MS and geometric means were calculated. Univariate and multivariable logistic regression was performed to assess breast cancer risk on exposure to phthalates. Genes responsive to phthalates were identified through literature search and matched with NGS data, and gene-enrichment analysis was performed. RESULTS Significant associations were observed between urinary phthalate concentrations and increased risk of breast cancer for di-butyl phthalate (OR=1.5, 95% CI; 1.06, 2.11, p = 0.002) and di-2-ethyl-hexyl phthalate (>median vs ≤ median; OR=2.97, 95% CI; 1.18, 7.47, p = 0.005) in multivariable analyses. We also found several phthalate-responsive gene mutations in paired breast tumor tissues, which include PTPRD (76.19%), AR (42.86%), CYP1A1 (42.86%), CYP19A1 (23.81%), AHRR (19.05%), PIK3CA (19.05%), CYP1B1 (9.52%), RB1 (9.52%) and MMP9 (9.52%). Gene-enrichment analysis revealed that these genes form a major part of ER/PR, PPAR and HIF-1α-TGF-β signaling cascades involved in breast cancer CONCLUSION: Although the sample size is small, in this first case-control study from India, DBP and DEHP were found to be associated with increased risk of invasive breast cancer and tumor tissues revealed mutations in several phthalate-responsive genes. It is, therefore suggested that human biomonitoring in India and larger studies evaluating the early life genetic and epigenetic alterations on phthalates exposure are required to establish their role in breast carcinogenesis.
Collapse
Affiliation(s)
- Ankan Mukherjee Das
- Laboratory of Disease Dynamics and Molecular Epidemiology, Amity Institute of Public Health, Amity University Uttar Pradesh, Noida, India
| | - Ajay Gogia
- Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| | - Manoj Garg
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Arun Elaiyaraja
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, Bharathidasan University, Tamil Nadu, India
| | - Priyadarshini Arambam
- Laboratory of Disease Dynamics and Molecular Epidemiology, Amity Institute of Public Health, Amity University Uttar Pradesh, Noida, India; Batra Hospital and Medical Research Centre, New Delhi, India
| | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ramaswamy Babu-Rajendran
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, Bharathidasan University, Tamil Nadu, India
| | - S V S Deo
- Department of Surgical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Bhudev C Das
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India.
| | - Rajiv Janardhanan
- Laboratory of Disease Dynamics and Molecular Epidemiology, Amity Institute of Public Health, Amity University Uttar Pradesh, Noida, India.
| |
Collapse
|
14
|
Ivell R, Mamsen LS, Andersen CY, Anand-Ivell R. Expression and Role of INSL3 in the Fetal Testis. Front Endocrinol (Lausanne) 2022; 13:868313. [PMID: 35464060 PMCID: PMC9019166 DOI: 10.3389/fendo.2022.868313] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin-like peptide 3 (INSL3) is a small peptide hormone of the insulin-relaxin family which is produced and secreted by the fetal Leydig cells in the testes only. It appears to be undetectable in female fetuses. In the human fetus INSL3 synthesis begins immediately following gonadal sex determination at weeks 7 to 8 post coitum and the peptide can be detected in amniotic fluid 1 to 2 weeks later. INSL3 acts through a unique G-protein-coupled receptor, called RelaXin-like Family Peptide receptor 2 (RXFP2), which is expressed by the mesenchymal cells of the gubernacular ligament linking the testes to the inguinal wall. The role of INSL3 in the male fetus is to cause a thickening of the gubernaculum which then retains the testes in the inguinal region, while the remainder of the abdominal organs grow away in an antero-dorsal direction. This represents the first phase of testis descent and is followed later in pregnancy by the second inguino-scrotal phase whereby the testes pass into the scrotum through the inguinal canal. INSL3 acts as a significant biomarker for Leydig cell differentiation in the fetus and may be reduced by maternal exposure to endocrine disrupting chemicals, such as xenoestrogens or phthalates, leading to cryptorchidism. INSL3 may have other roles within the fetus, but as a Leydig cell biomarker its reduction acts also as a surrogate for anti-androgen action.
Collapse
Affiliation(s)
- Richard Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, United Kingdom
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, Section 5712, Juliane Marie Centre for Women, Children and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Section 5712, Juliane Marie Centre for Women, Children and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ravinder Anand-Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
15
|
Ghosh K, Chatterjee B, Nalla K, Behera B, Mukherjee A, Kanade SR. Di-(2-ethylhexyl) phthalate triggers DNA methyltransferase 1 expression resulting in elevated CpG-methylation and enrichment of MECP2 in the p21 promoter in vitro. CHEMOSPHERE 2022; 293:133569. [PMID: 35033518 DOI: 10.1016/j.chemosphere.2022.133569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Leaching of the plastic constituents leading to their chronic exposure to humans is a major concern for our environmental and occupational health. Our previous and other numerous studies have demonstrated that environmental chemicals like di (2-Ethylhexyl)-phthalate (DEHP) could pose a risk towards the epigenetic mechanisms. Yet, the mechanisms underlying its possible epigenotoxicity are poorly understood. We aimed to assess the impact of DEHP exposure to the human breast cancer cells (MCF-7) and resultant changes in DNA methylation regulators ultimately altering the expression of the cell cycle regulator p21 as a model gene. The MCF-7 cells were exposed to environmentally relevant concentrations (50-500 nM) for 24 h. The results showed that DEHP was proliferative towards the MCF-7 cells while it induced global DNA hypermethylation with selective upregulation of DNMT1 and MECP2. In addition, DEHP significantly reduced p53 protein and its enrichment to the DNMT1 promoter binding site, while elevating SP1 and E2F1 transcription factor levels, stimulating their binding to the promoter DNA. Coincidently, increased DNMT1 level was highly associated with loss of p21 expression and increased cyclin D1 levels. Importantly, the p21, but not cyclin D1 promoter CpG-dinucleotides were hypermethylated after exposure to 500 nM DEHP for 24 h. Furthermore, it was observed that DEHP significantly enriched DNMT1 and MECP2 to the p21 promoter to induce DNA methylation-based epigenetic silencing of p21, resulting in increased cell proliferation. Our results suggest DEHP could potentially induce the epigenetic alterations that might increase the risk of breast cancer, given that the underlying mechanisms should be fully elucidated.
Collapse
Affiliation(s)
- Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - KiranKumar Nalla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad, 500046, Telangana, India
| | - Bablu Behera
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Amit Mukherjee
- Rajiv Gandhi Centre for Diabetes and Endocrinology, JN Medical College, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Santosh R Kanade
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad, 500046, Telangana, India.
| |
Collapse
|
16
|
Schmidt S. Targeting the Macrophage: Immune Cells May Be the Key to Phthalate-Induced Liver Toxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:34003. [PMID: 35319255 PMCID: PMC8942079 DOI: 10.1289/ehp11026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/12/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
|
17
|
Xu M, Li Y, Wang X, Zhang Q, Wang L, Zhang X, Cui W, Han X, Ma N, Li H, Fang H, Tang S, Li J, Liu Z, Yang H, Jia X. Role of Hepatocyte- and Macrophage-Specific PPARγ in Hepatotoxicity Induced by Diethylhexyl Phthalate in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17005. [PMID: 35019730 PMCID: PMC8754100 DOI: 10.1289/ehp9373] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Phthalates may disturb metabolic homeostasis in the liver by interfering with the peroxisome proliferator-activated receptors (PPARs). However, the role of hepatic macrophages in the lipid metabolic dysregulation induced by diethylhexyl phthalate (DEHP) remains unclear. OBJECTIVES We aimed to evaluate the respective role of hepatocyte- and macrophage-specific PPARγ in the hepatotoxicity induced by DEHP. METHODS Wild-type (WT), hepatocyte-specific PPARγ knockout (Hep-KO), and macrophage-specific PPAR knockout (Mac-KO) mice were administered DEHP (625mg/kg body weight) by daily gavage for 28 d, followed by hepatotoxicity examination and macrophage analysis. RNA sequencing and lipid metabolomic analysis were used to characterize the molecular changes in mouse liver. Mouse bone marrow-derived macrophages (BMDMs) and human monocytic THP-1 cell-derived macrophages were used to investigate the mechanistic regulation of macrophages' polarization by DEHP and mono(2-ethylhexyl) phthalate (MEHP). RESULTS The levels of hepatic steatosis and triglyceride were significantly higher in the mice treated with DEHP compared with the control mice in the WT and Hep-KO model. Lipid accumulation induced by DEHP was notably attenuated in the Mac-KO mice, but M2-polarization of hepatic macrophages in the Mac-KO mice was significantly higher compared with the WT mice under DEHP treatment. The M2-polarization of BMDMs and human macrophages was suppressed by DEHP and MEHP. Transcriptomic and lipidomic data suggested lower levels of lipid biosynthesis, fatty acid oxidation, and oxidative phosphorylation in the Mac-KO mice compared with the WT and Hep-KO mice under DEHP treatment. CONCLUSIONS Our data suggested that the orchestrated activation of PPARα and PPARγ by MEHP may reprogram hepatic macrophages' polarization, thereby affecting lipid homeostasis in the mouse liver. Although this conclusion was based on studies conducted in mice and in vitro, these findings may aid in elucidating the health effect of environmental phthalate exposure. https://doi.org/10.1289/EHP9373.
Collapse
Affiliation(s)
- Miao Xu
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Yongning Li
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiaohong Wang
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Qiannan Zhang
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Lei Wang
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Xin Zhang
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Wenming Cui
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiaomin Han
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Ning Ma
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Haishan Li
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Hongyun Fang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingguang Li
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhaoping Liu
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Hui Yang
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xudong Jia
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
18
|
Jiang L, Qiu T, Yao X, Chen H, Yao K, Sun X, Yang G, Jiang L, Zhang C, Wang N, Zhang H, Liu X. MEHP induces pyroptosis and autophagy alternation by cathepsin B activation in INS-1 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66628-66642. [PMID: 34235687 DOI: 10.1007/s11356-021-14997-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Mono-(2-ethylhexyl) phthalate (MEHP) is a primary metabolite of di-(2-ethyl hexyl) phthalate (DEHP) in the organism, which is a major component of plasticizers used worldwide. Exposure to DEHP causes pancreatic beta-cell (INS-1 cells) dysfunction, which is associated with insulin resistance and type 2 diabetes. The present study shows that MEHP decreases the cell viability of INS-1 cells in a concentration-dependent manner and induces pyroptosis at 400 μM. Furthermore, the 400 μM MEHP causes increased lysosomal membrane permeability and cathepsin B (CTSB) release, resulting in NLRP3 activation and pyroptosis. Additionally, low concentration of MEHP (50-200 μM) induces upregulation of autophagy, while 400 μM MEHP reduces autophagy level in INS-1 cells via altering mTORC1 phosphorylation. Surprisingly, CTSB contributes to mTORC1 activation in INS-1 cells treated with 400 μM MEHP. Furthermore, autophagy can alleviate inflammatory response by reducing CTSB activation in MEHP-treated INS-1 cells. These results indicate that exposure to MEHP induces pyroptosis and upregulates autophagy levels in a CTSB-dependent manner, and autophagy plays an essential role in pyroptosis onset in INS-1 cells. Our findings provide a new perspective of the connection between CTSB and autophagy.
Collapse
Affiliation(s)
- Lijie Jiang
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, 116001, Liaoning, People's Republic of China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Segment of South lvshun Road, Dalian, 116044, Liaoning, People's Republic of China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Segment of South lvshun Road, Dalian, 116044, Liaoning, People's Republic of China
| | - Huangben Chen
- Department of Nutrition and Food Safety, School of Public Health, College of Public Health, Dalian Medical University, No.9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, People's Republic of China
| | - Kun Yao
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Segment of South lvshun Road, Dalian, 116044, Liaoning, People's Republic of China
| | - Guang Yang
- Department of Nutrition and Food Safety, School of Public Health, College of Public Health, Dalian Medical University, No.9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, People's Republic of China
| | - Liping Jiang
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No.9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, People's Republic of China
| | - Cong Zhang
- Department of Nutrition and Food Safety, School of Public Health, College of Public Health, Dalian Medical University, No.9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, People's Republic of China
| | - Ningning Wang
- Department of Nutrition and Food Safety, School of Public Health, College of Public Health, Dalian Medical University, No.9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, People's Republic of China
| | - Hongying Zhang
- Department of Pathology and Forensic Medicine, Dalian Medical University, 9 West Lvshun Southern Road, Dalian, 116044, China.
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, School of Public Health, College of Public Health, Dalian Medical University, No.9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
19
|
Toxicology and carcinogenesis studies of di(2-ethylhexyl) phthalate administered in feed to Sprague Dawley (Hsd:Sprague Dawley SD) rats. NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORT SERIES 2021:NTP-TR-601. [PMID: 35073286 PMCID: PMC8996106 DOI: 10.22427/ntp-tr-601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a member of the phthalate ester chemical class that occurs commonly in the environment and to which humans are widely exposed. Lifetime exposure to DEHP is likely to occur, including during the in utero and early postnatal windows of development. To date, no carcinogenicity assessments of DEHP have used a lifetime exposure paradigm that includes the perinatal period (gestation and lactation). The National Toxicology Program (NTP) tested the hypothesis that exposure during the perinatal period would alter the DEHP carcinogenic response quantitatively (more neoplasms) or qualitatively (different neoplasm types). Two chronic carcinogenicity assessments of DEHP were conducted in which Sprague Dawley (Hsd:Sprague Dawley SD) rats were exposed to dosed feed containing 0, 300, 1,000, 3,000, or 10,000 ppm DEHP for 2 years using different exposure paradigms. In Study 1, groups of 45 F0 time-mated females were provided dosed feed beginning on gestation day (GD) 6 through lactation. On postnatal day (PND) 21, groups of 50 F1 rats per sex continued on the study and were provided dosed feed containing the same DEHP concentration as their respective dam for 2 years. In Study 2, groups of 50 rats per sex, aged 6 to 7 weeks at study start, were provided dosed feed containing DEHP for 2 years. (Abstract Abridged).
Collapse
|
20
|
Chiang C, Pacyga DC, Strakovsky RS, Smith RL, James-Todd T, Williams PL, Hauser R, Meling DD, Li Z, Flaws JA. Urinary phthalate metabolite concentrations and serum hormone levels in pre- and perimenopausal women from the Midlife Women's Health Study. ENVIRONMENT INTERNATIONAL 2021; 156:106633. [PMID: 34004451 PMCID: PMC8380691 DOI: 10.1016/j.envint.2021.106633] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Phthalate exposure is associated with altered reproductive function, but little is known about associations between phthalate and hormone levels in midlife women. METHODS This cross-sectional analysis includes 45-54-year-old pre- and perimenopausal women from Baltimore, MD and its surrounding counties enrolled in the Midlife Women's Health Study (n = 718). Serum and urine samples were collected from participants once a week for four consecutive weeks to span the menstrual cycle. Serum samples were assayed for estradiol, testosterone, progesterone, sex hormone binding globulin (SHBG), follicle-stimulating hormone (FSH), and anti-Müllerian hormone (AMH), and geometric means were calculated for each hormone across all four weeks. Urine samples were analyzed for nine phthalate metabolites from pools of one-to-four urine samples. Phthalate metabolite concentrations were specific gravity-adjusted and assessed as individual metabolites or as molar sums of metabolites from common parents (di(2-ethylhexyl) phthalate metabolites, ∑DEHP), exposure sources (plastic, ∑Plastics; personal care products, ∑PCP), biological activity (anti-androgenic, ∑AA), and sum of all metabolites (∑Phthalates). We used linear regression models to assess overall associations of phthalate metabolites with hormones, controlling for important demographic, lifestyle, and health factors. We also explored whether associations differed by menopause status, body mass index (BMI), and race/ethnicity. RESULTS Most participants were non-Hispanic white (67%) or black (29%), college-educated (65%), employed (80%), and had somewhat higher mean urinary phthalate metabolite concentrations than other U.S. women. Overall, the following positive associations were observed between phthalate metabolites and hormones: ∑DEHP (%Δ: 4.9; 95%CI: 0.5, 9.6), ∑Plastics (%Δ: 5.1; 95%CI: 0.3, 10.0), and ∑AA (%Δ: 7.8; 95%CI: 2.3, 13.6) with estradiol; MiBP (%Δ: 6.6; 95%CI: 1.5, 12.1) with testosterone; ∑DEHP (%Δ: 8.3; 95%CI: 1.5, 15.6), ∑Plastics (%Δ: 9.8; 95%CI: 2.4, 17.7), MEP (%Δ: 4.6; 95%CI: 0.1, 9.2), ∑PCP (%Δ: 6.0; 95%CI: 0.2, 12.2), ∑Phthalates (%Δ: 9.0; 95%CI: 2.1, 16.5), and ∑AA (%Δ: 12.9; 95%CI: 4.4, 22.1) with progesterone; and MBP (%Δ: 8.5; 95%CI: 1.2, 16.3) and ∑AA (%Δ: 9.0; 95%CI: 1.3, 17.4) with AMH. Associations of phthalate metabolites with hormones differed by menopause status (strongest in premenopausal women for estradiol, progesterone, and FSH), BMI (strongest in obese women for progesterone), and race/ethnicity (strongest in non-Hispanic white women for estradiol and AMH). CONCLUSIONS We found that phthalate metabolites were positively associated with several hormones in midlife women, and that some demographic and lifestyle characteristics modified these associations. Future longitudinal studies are needed to corroborate these findings in more diverse midlife populations.
Collapse
Affiliation(s)
- Catheryne Chiang
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, United States
| | - Diana C Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, United States; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48823, United States
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, United States
| | - Rebecca L Smith
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, United States; Department of Pathobiology, University of Illinois, Urbana, IL 61802, United States
| | - Tamarra James-Todd
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Russ Hauser
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, United States
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL 61801, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, United States; Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, United States.
| |
Collapse
|
21
|
Enangue Njembele AN, Tremblay JJ. Mechanisms of MEHP Inhibitory Action and Analysis of Potential Replacement Plasticizers on Leydig Cell Steroidogenesis. Int J Mol Sci 2021; 22:ijms222111456. [PMID: 34768887 PMCID: PMC8584274 DOI: 10.3390/ijms222111456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Steroid production in Leydig cells is stimulated mainly by the pituitary luteinizing hormone, which leads to increased expression of genes involved in steroidogenesis, including the gene encoding the steroidogenic acute regulatory (STAR) protein. Mono(2-ethylhexyl)phthalate (MEHP), the active metabolite of the widely used plasticizer DEHP, is known to disrupt Leydig steroidogenesis but its mechanisms of action remain poorly understood. We found that MEHP caused a significant reduction in hormone-induced steroid hormone production in two Leydig cell lines, MA-10 and MLTC-1. Consistent with disrupted cholesterol transport, we found that MEHP represses cAMP-induced Star promoter activity. MEHP responsiveness was mapped to the proximal Star promoter, which contains multiple binding sites for several transcription factors. In addition to STAR, we found that MEHP also reduced the levels of ferredoxin reductase, a protein essential for electron transport during steroidogenesis. Finally, we tested new plasticizers as alternatives to phthalates. Two plasticizers, dioctyl succinate and 1,6-hexanediol dibenzoate, had no significant effect on hormone-induced steroidogenesis. Our current findings reveal that MEHP represses steroidogenesis by affecting cholesterol transport and its conversion into pregnenolone. We also found that two novel molecules with desirable plasticizer properties have no impact on Leydig cell steroidogenesis and could be suitable phthalate replacements.
Collapse
Affiliation(s)
- Annick N. Enangue Njembele
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 46254)
| |
Collapse
|
22
|
Kobayashi S, Sata F, Ikeda-Araki A, Miyashita C, Itoh S, Goudarzi H, Iwasaki Y, Mitsui T, Moriya K, Shinohara N, Cho K, Kishi R. Associations among maternal perfluoroalkyl substance levels, fetal sex-hormone enzymatic gene polymorphisms, and fetal sex hormone levels in the Hokkaido study. Reprod Toxicol 2021; 105:221-231. [PMID: 34536543 DOI: 10.1016/j.reprotox.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022]
Abstract
Prenatal sex hormones affect fetal growth; for example, prenatal exposure to low levels of androgen accelerates female puberty onset. We assessed the association of perfluoroalkyl substances (PFASs) in maternal sera and infant genotypes of genes encoding enzymes involved in sex steroid hormone biosynthesis on cord sera sex hormone levels in a prospective birth cohort study of healthy pregnant Japanese women (n = 224) recruited in Sapporo between July 2002 and October 2005. We analyzed PFAS and five sex hormone levels using liquid chromatography-tandem mass spectrometry. Cytochrome P450 (CYP) 17A1 (CYP17A1 rs743572), 19A1 (CYP19A1 rs10046, rs700519, and rs727479), 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1 rs6203), type 2 (HSD3B2 rs1819698, rs2854964, and rs4659175), 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1 rs605059, rs676387, and rs2676531), and type 3 (HSD17B3 rs4743709) were analyzed using real-time PCR. Multiple linear regression models were used to establish the influence of log10-transformed PFAS levels and infant genotypes on log10-transformed sex steroid hormone levels. When the interaction between perfluorooctanesulfonate (PFOS) levels and female infant genotype CYP17A1 (rs743572) on the androstenedione (A-dione) levels was considered, the estimated changes (95 % confidence intervals) in A-dione levels against PFOS levels, female infant genotype CYP17A1 (rs743572)-AG/GG, and interaction between them showed a mean increase of 0.445 (0.102, 0.787), mean increase of 0.392 (0.084, 0.707), and mean reduction of 0.579 (0.161, 0.997) (Pint = 0.007), respectively. Moreover, a female-specific interaction with testosterone levels was observed. A-dione and T levels showed positive main effects and negative interaction with PFOS levels and the female infant CYP17A1 genotype.
Collapse
Affiliation(s)
- Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Fumihiro Sata
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan; Health Center, Chuo University, 42-8, Ichigaya-Hommura-cho, Shinjuku-ku, Tokyo, 162-8473, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Houman Goudarzi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan; Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yusuke Iwasaki
- Department of Biopharmaceutics and Analytical Science, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110, Shimokato, Chuo, 409-3898, Japan
| | - Kimihiko Moriya
- Department of Renal and Genitourinary Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, North-14, West-7, Kita-ku, Sapporo, 060-8648, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
23
|
Miura R, Ikeda-Araki A, Ishihara T, Miyake K, Miyashita C, Nakajima T, Kobayashi S, Ishizuka M, Kubota T, Kishi R. Effect of prenatal exposure to phthalates on epigenome-wide DNA methylations in cord blood and implications for fetal growth: The Hokkaido Study on Environment and Children's Health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147035. [PMID: 33872906 DOI: 10.1016/j.scitotenv.2021.147035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 05/16/2023]
Abstract
Prenatal exposure to phthalates negatively affects the offspring's health. In particular, epigenetic alterations, such as DNA methylation, may connect phthalate exposure with health outcomes. Here, we evaluated the association of di-2-ethylhexyl phthalate (DEHP) exposure in utero with cord blood epigenome-wide DNA methylation in 203 mother-child pairs enrolled in the Hokkaido Study on Environment and Children's Health, using the Illumina HumanMethylation450 BeadChip. Epigenome-wide association analysis demonstrated the predominant positive associations between the levels of the primary metabolite of DEHP, mono(2-ethylhexyl) phthalate (MEHP), in maternal blood and DNA methylation levels in cord blood. The genes annotated to the CpGs positively associated with MEHP levels were enriched for pathways related to metabolism, the endocrine system, and signal transduction. Among them, methylation levels of CpGs involved in metabolism were inversely associated with the offspring's ponderal index (PI). Further, clustering and mediation analyses suggested that multiple increased methylation changes may jointly mediate the association of DEHP exposure in utero with the offspring's PI at birth. Although further studies are required to assess the impact of these changes, this study suggests that differential DNA methylation may link phthalate exposure in utero to fetal growth and further imply that DNA methylation has predictive value for the offspring's obesity.
Collapse
Affiliation(s)
- Ryu Miura
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Atsuko Ikeda-Araki
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan; Hokkaido University Faculty of Health Sciences Japan
| | - Toru Ishihara
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan; Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Kunio Miyake
- Departments of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Chihiro Miyashita
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Sumitaka Kobayashi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Mayumi Ishizuka
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takeo Kubota
- Faculty of Child Studies, Seitoku University, Chiba, Japan
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan.
| |
Collapse
|
24
|
Mitsui T. Effects of the prenatal environment on cryptorchidism: A narrative review. Int J Urol 2021; 28:882-889. [PMID: 34075642 DOI: 10.1111/iju.14600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/25/2021] [Indexed: 12/30/2022]
Abstract
Cryptorchidism, the absence of testes from the scrotum, is the most common genital disorder in boys and a risk factor for reduced fertility and testicular cancer. The mechanism responsible for cryptorchidism involves two discrete stages: a transabdominal and an inguinoscrotal phase. These phases of testicular descent are regulated by the prenatal sex hormone environment, including levels of testosterone, insulin-like factor 3, and calcitonin gene-related peptide. Environmental endocrine disruptors, which are unfavorable environmental factors, may also affect testicular descent through prenatal sex hormones. This review examined the effects of environmental factors, particularly environmental endocrine disruptors, such as phthalates, organochlorine pesticides, diethylstilbestrol, bisphenol A, dioxins/dioxin-like compounds, and perfluoroalkyl substances, and parental lifestyles on the risk of cryptorchidism. Although some studies have shown that environmental endocrine disruptors can affect testicular descent by changing the hormonal environment during the prenatal period, no significant association has been established between exposure to environmental endocrine disruptors and the incidence of cryptorchidism. Therefore, the role played by environmental endocrine disruptor exposure (if any) in the pathogenesis of cryptorchidism remains unknown. Further studies are needed to examine these issues.
Collapse
Affiliation(s)
- Takahiko Mitsui
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo, Yamanashi, Japan
| |
Collapse
|
25
|
Kishi R, Ikeda-Araki A, Miyashita C, Itoh S, Kobayashi S, Ait Bamai Y, Yamazaki K, Tamura N, Minatoya M, Ketema RM, Poudel K, Miura R, Masuda H, Itoh M, Yamaguchi T, Fukunaga H, Ito K, Goudarzi H. Hokkaido birth cohort study on environment and children's health: cohort profile 2021. Environ Health Prev Med 2021; 26:59. [PMID: 34022817 PMCID: PMC8141139 DOI: 10.1186/s12199-021-00980-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Hokkaido Study on Environment and Children's Health is an ongoing study consisting of two birth cohorts of different population sizes: the Sapporo cohort and the Hokkaido cohort. Our primary objectives are to (1) examine the effects that low-level environmental chemical exposures have on birth outcomes, including birth defects and growth retardation; (2) follow the development of allergies, infectious diseases, and neurobehavioral developmental disorders, as well as perform a longitudinal observation of child development; (3) identify high-risk groups based on genetic susceptibility to environmental chemicals; and (4) identify the additive effects of various chemicals, including tobacco. METHODS The purpose of this report is to provide an update on the progress of the Hokkaido Study, summarize recent results, and suggest future directions. In particular, this report provides the latest details from questionnaire surveys, face-to-face examinations, and a collection of biological specimens from children and measurements of their chemical exposures. RESULTS The latest findings indicate different risk factors of parental characteristics on birth outcomes and the mediating effect between socioeconomic status and children that are small for the gestational age. Maternal serum folate was not associated with birth defects. Prenatal chemical exposure and smoking were associated with birth size and growth, as well as cord blood biomarkers, such as adiponectin, leptin, thyroid, and reproductive hormones. We also found significant associations between the chemical levels and neuro development, asthma, and allergies. CONCLUSIONS Chemical exposure to children can occur both before and after birth. Longer follow-up for children is crucial in birth cohort studies to reinforce the Developmental Origins of Health and Disease hypothesis. In contrast, considering shifts in the exposure levels due to regulation is also essential, which may also change the association to health outcomes. This study found that individual susceptibility to adverse health effects depends on the genotype. Epigenome modification of DNA methylation was also discovered, indicating the necessity of examining molecular biology perspectives. International collaborations can add a new dimension to the current knowledge and provide novel discoveries in the future.
Collapse
Affiliation(s)
- Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan. .,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.,Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Naomi Tamura
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Machiko Minatoya
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Kritika Poudel
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.,Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ryu Miura
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Hideyuki Masuda
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Mariko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Takeshi Yamaguchi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Kumiko Ito
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Houman Goudarzi
- Faculty of Medicine and Graduate School of Medicine, Center for Medical Education and International Relations, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
26
|
Bustamante-Montes LP, Borja-Aburto VH, Hernández-Valero M, García-Fábila MM, Borja-Bustamante P, González-Álvarez R, Acosta-Gordillo GA. Phthalates exposure during pregnancy a study in a Mexican cohort. Toxicol Rep 2021; 8:1040-1045. [PMID: 34040995 PMCID: PMC8142082 DOI: 10.1016/j.toxrep.2021.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022] Open
Abstract
A prospective cohort study was conducted to measure the concentration levels of three primary phthalate metabolites (MBP, MEHP, MEP) during pregnancy in a group of women from the State of Mexico. The urinary concentration levels of the three phthalate primary metabolites were measured by gas chromatography mass spectrometry during the first, second and third trimesters of pregnancy. The geometric mean and 95 % CI for MBP was 20.38 μg/mL (15.35-27.09); for MEHP 13.43 μg/mL (8.93-20.20), and MEP 52.47 μg/mL (39.88-69.04) adjusted to one g of creatinine. No significant trends were observed among the studied metabolites during the pregnancy period. MBP was higher in less educated women, while women who resided in industrialized zones showed higher levels of MEHP and MEP than women from non-industrialized zones. Consumption of plastic bottled beverages was associated with MBP and MEHP phthalate exposure. Women who used non-registered brands of plastic food containers for storage or for microwave oven use showed the highest levels of MBP and MEP phthalates. The pregnant women in our study were exposed to the three studied primary phthalate metabolites, and this could present a risk to their newborns. To better integrate public health policies, major exploration of potential exposure sources and effects at the regional level is required.
Collapse
Affiliation(s)
| | - Víctor Hugo Borja-Aburto
- Instituto Mexicano del Seguro Social (IMSS), Coordinacion de Vigilancia Epidemiologica, Ciudad de Mexico, Mexico
| | | | | | - Patricia Borja-Bustamante
- Instituto Mexicano del Seguro Social (IMSS), Coordinacion de Vigilancia Epidemiologica, Ciudad de Mexico, Mexico
| | - Rafael González-Álvarez
- Universidad Autónoma de Guadalajara, Decanato de Ciencias de la Salud, Guadalajara, Jalisco, Mexico
| | | |
Collapse
|
27
|
Das MT, Kumar SS, Ghosh P, Shah G, Malyan SK, Bajar S, Thakur IS, Singh L. Remediation strategies for mitigation of phthalate pollution: Challenges and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124496. [PMID: 33187797 DOI: 10.1016/j.jhazmat.2020.124496] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/15/2020] [Accepted: 11/04/2020] [Indexed: 05/12/2023]
Abstract
Phthalates are a group of emerging xenobiotic compounds commonly used as plasticizers. In recent times, there has been an increasing concern over the risk of phthalate exposure leading to adverse effects to human health and the environment. Therefore, it is necessary to not only understand the current status of phthalate pollution, their sources, exposure routes and health impacts, but also identify remediation technologies for mitigating phthalate pollution. Present review article aims to inform its readers about the ever increasing data on health burdens posed by phthalates and simultaneously highlights the recent advancements in research to alleviate phthalate contamination from environment. The article enumerates the major phthalates in use today, traces their environmental fate, addresses their growing health hazard concerns and largely focus on to provide an in-depth understanding of the different physical, chemical and biological treatment methods currently being used or under research for alleviating the risk of phthalate pollution, their challenges and the future research perspectives.
Collapse
Affiliation(s)
- Mihir Tanay Das
- Department of Environmental Science, Fakir Mohan University, Balasore 756020, Odisha, India
| | - Smita S Kumar
- J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, Haryana, India; Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Goldy Shah
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sandeep K Malyan
- Institute for Soil, Water, and Environmental Sciences, The Volcani Center, Agricultural Research Organization (ARO), Rishon LeZion 7505101, Israel
| | - Somvir Bajar
- J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, Haryana, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Lakhveer Singh
- Department of Environmental Science, SRM University-AP, Amaravati 522502, Andhra Pradesh, India.
| |
Collapse
|
28
|
Walker C, Garza S, Papadopoulos V, Culty M. Impact of endocrine-disrupting chemicals on steroidogenesis and consequences on testicular function. Mol Cell Endocrinol 2021; 527:111215. [PMID: 33657436 DOI: 10.1016/j.mce.2021.111215] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
Testicular steroidogenesis is a tightly regulated process that produces the androgens important for the development, maintenance and function of the male reproductive system. These androgens are also essential for overall health, and well-being. Disruptions in the ability of the testis to form steroids can result in developmental abnormalities, dysfunction, and infertility. Endocrine-disrupting chemicals (EDCs) can interfere with the intricate signaling and metabolizing networks that produce androgens and promote their dysfunction. These chemicals are found ubiquitously in our environment, as they are integral components of products that are used every day. The effects of EDCs, such as bisphenols, phthalates, and alkyl chemicals, have been studied independently, revealing deleterious effects; but the combined influence of these structures on steroidogenesis has yet to be completely elucidated. This manuscript presents an updated review on EDC mixtures and their impact on testicular function and fertility, highlighting new findings that illustrate the anti-androgenic capabilities of EDC mixtures.
Collapse
Affiliation(s)
- Casandra Walker
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Samuel Garza
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and mechanisms of phthalates’ action on neurological processes and neural health: a literature review. Pharmacol Rep 2021; 73:386-404. [DOI: 10.1007/s43440-021-00215-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
|
30
|
Endocrine Disruption: Structural Interactions of Androgen Receptor against Di(2-ethylhexyl) Phthalate and Its Metabolites. TOXICS 2020; 8:toxics8040115. [PMID: 33302356 PMCID: PMC7762550 DOI: 10.3390/toxics8040115] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022]
Abstract
Diethylhexyl phthalate (DEHP) is a commonly used plasticizer in the manufacture of polyvinyl chloride plastics for household and commercial use. DEHP is a ubiquitous ecocontaminant and causes developmental and reproductive problems in children and adults. After exposure, DEHP is metabolized by endogenous hydrolysis and oxidation into the primary metabolite, mono-(2-ethylhexyl) phthalate (MEHP), and the secondary metabolites, mono-(2-ethyl-5-hydroxhexyl)phthalate (5-OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5-oxo-MEHP), mono-(2-ethyl-5-carboxypentyl) phthalate (5-cx-MEPP), and mono-[(2-carboxymethyl)hexyl] phthalate (2-cx-MMHP). Very few studies have been reported on the adverse effects of DEHP metabolites, and the available information indicates that the metabolites might also be equally or more active as compared to the parent compound. In the present study, induced fit docking was used for structural binding characterization of the above five DEHP metabolites with androgen receptor (AR) to predict the potential endocrine-disrupting effects of these metabolites in AR signaling. All the DEHP metabolites interacted with the ligand-binding pocket of AR forming amino-acid residue interactions, hydrogen bonding, and pi-pi interactions. The binding energy of DEHP with AR was similar to that of native ligand testosterone. The amino-acid residue interactions of DEHP metabolites had 91-100% similarity compared to that of testosterone. In addition, all the DEHP metabolites and testosterone showed a common hydrogen bonding interaction with amino-acid Arg-752 of AR. Taken together, the structural binding data in the present study suggested the potential for DEHP metabolites to disrupt AR signaling, which may lead to androgen-related reproductive dysfunction.
Collapse
|
31
|
Mitsui T, Araki A, Miyashita C, Ito S, Kitta T, Moriya K, Shinohara N, Takeda M, Kishi R, Yamazaki S, Ohya Y, Yaegashi N, Hashimoto K, Mori C, Ito S, Yamagata Z, Inadera H, Nakayama T, Iso H, Shima M, Kurozawa Y, Suganuma N, Kusuhara K, Katoh T. Effect of the occupational environment of parents on cryptorchidism. Pediatr Int 2020; 62:1256-1263. [PMID: 32447789 DOI: 10.1111/ped.14316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/01/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The early detection and treatment of cryptorchidism are necessary to preserve male fertility. This study aimed to assess the effect of parents' occupational environment on the incidence of cryptorchidism in their sons. METHODS The study enrolled 51 316 newborn males, whose mothers were recruited in the Japan Environment and Children's Study. We analyzed cryptorchidism incidence in male newborns according to 14 categories of occupation of their parents. We also analyzed the effect of the mother's occupational environment during gestation, including working and night-shift work, on cryptorchidism incidence. Information on occupations was obtained from self-administered questionnaires. Cryptorchidism was identified through a survey at birth or 1 month after birth using medical records. RESULTS Cryptorchidism was identified in 305 male infants (0.59%) at birth or 1 month after birth. Weight, height, head circumference, and chest circumference at birth were significantly lower in male infants with cryptorchidism than in those without the condition. Gestational age was also shorter in mothers whose infants developed cryptorchidism. Moreover, maternal age at delivery and smoking during gestation also had an effect on cryptorchidism incidence. However, multivariate analysis of the 14 categories of occupation of parents during gestation showed no significant effect on cryptorchidism incidence in their male infants. CONCLUSIONS This study revealed that the work environment of parents did not significantly affect the incidence of cryptorchidism in their sons. However, this study might have underestimated mild and transient cases of cryptorchidism. Further studies are necessary to investigate the risk factors of cryptorchidism in relation to parents' occupation.
Collapse
Affiliation(s)
- Takahiko Mitsui
- Department of Urology, University of Yamanashi Graduate School of Medical Science, Chuo-city, Japan.,Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Chihiro Miyashita
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Sachiko Ito
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Takeya Kitta
- Department of Urology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kimihiko Moriya
- Department of Urology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nobuo Shinohara
- Department of Urology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masayuki Takeda
- Department of Urology, University of Yamanashi Graduate School of Medical Science, Chuo-city, Japan
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Meconium Exposure to Phthalates, Sex and Thyroid Hormones, Birth Size and Pregnancy Outcomes in 251 Mother-Infant Pairs from Shanghai. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217711. [PMID: 33105642 PMCID: PMC7659924 DOI: 10.3390/ijerph17217711] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/20/2020] [Accepted: 10/01/2020] [Indexed: 01/14/2023]
Abstract
Phthalates are hormonally active pollutants. In-utero exposure to phthalates has been reported to be associated with birth size parameters and pregnancy outcomes. However, previous reports were inconsistent. We examined the associations between meconium exposure to phthalates and the effects on birth size parameters, pregnancy outcomes and sex and thyroid hormones in 251 mother–infant pairs from a Shanghai hospital. We measured 10 metabolites of phthalates in meconium samples collected during the first 24h after delivery. Information on seven birth size parameters (birth weight, birth length, abdominal circumference, head circumference, femur length, biparietal diameter and anogenital distance) and three pregnancy outcomes (gestational diabetes, premature rupture of membrane, and premature birth) was available from the birth record. Concentrations of free testosterone, estradiol (E2), thyroid stimulating hormone, concentrations of total and free thyroxine and triiodothyronine were measured from cord blood. Multivariate linear regression and logistic regression were used to estimate associations between phthalate exposure and health outcomes. mono-iso-butylphthalate (MiBP), mono-n-butylphthalate (MnBP) and mono-2-ethyl-5-oxohexyl phthalate (MEOHP) were positively associated with birth length and femur length which seemed more obvious in female newborn; MiBP, MnBP and mono-2-ethylhexylphthalate (MEHP) were positively associated with gestational diabetes mellitus (GDM) only in mothers with male newborns; monomethyl phthalate (MMP), MiBP and MEOHP were positively associated with E2 in male newborns. This study indicates that meconium exposure to phthalates may adversely affect some fetal growth parameters and GDM with a potential gender effect.
Collapse
|
33
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and Mechanisms of Phthalates' Action on Reproductive Processes and Reproductive Health: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6811. [PMID: 32961939 PMCID: PMC7559247 DOI: 10.3390/ijerph17186811] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
The production of plastic products, which requires phthalate plasticizers, has resulted in the problems for human health, especially that of reproductive health. Phthalate exposure can induce reproductive disorders at various regulatory levels. The aim of this review was to compile the evidence concerning the association between phthalates and reproductive diseases, phthalates-induced reproductive disorders, and their possible endocrine and intracellular mechanisms. Phthalates may induce alterations in puberty, the development of testicular dysgenesis syndrome, cancer, and fertility disorders in both males and females. At the hormonal level, phthalates can modify the release of hypothalamic, pituitary, and peripheral hormones. At the intracellular level, phthalates can interfere with nuclear receptors, membrane receptors, intracellular signaling pathways, and modulate gene expression associated with reproduction. To understand and to treat the adverse effects of phthalates on human health, it is essential to expand the current knowledge concerning their mechanism of action in the organism.
Collapse
Affiliation(s)
- Henrieta Hlisníková
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (I.P.); (B.K.); (M.Š.); (A.S.)
| | | | | | | | | |
Collapse
|
34
|
Qian Y, Shao H, Ying X, Huang W, Hua Y. The Endocrine Disruption of Prenatal Phthalate Exposure in Mother and Offspring. Front Public Health 2020; 8:366. [PMID: 32984231 PMCID: PMC7483495 DOI: 10.3389/fpubh.2020.00366] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Phthalates are a group of ubiquitous synthetic endocrine-disrupting chemicals. Fetal and neonatal periods are particularly susceptible to endocrine disorders, which prenatal exposure to phthalates causes. There is increasing evidence concerning the potential endocrine disrupting for phthalate exposure during pregnancy. This article aims to review the endocrine impairment and potential outcomes of prenatal phthalate exposure. Prenatal exposure phthalates would disrupt the levels of thyroid, sex hormone, and 25-hydroxyvitamin D in pregnant women or offspring, which results in preterm birth, preeclampsia, maternal glucose disorders, infant cryptorchidism, infant hypospadias, and shorter anogenital distance in newborns, as well as growth restriction not only in infants but also in early adolescence and childhood. The relationship of prenatal phthalate exposure with maternal and neonatal outcomes in human beings was often sex-specific associations. Because of the potentially harmful influence of prenatal phthalate exposure, steps should be taken to prevent or reduce phthalate exposure during pregnancy.
Collapse
Affiliation(s)
- Yiyu Qian
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hailing Shao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinxin Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenle Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Protective effects of melatonin on male fertility preservation and reproductive system. Cryobiology 2020; 95:1-8. [DOI: 10.1016/j.cryobiol.2020.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/25/2020] [Indexed: 12/17/2022]
|
36
|
Walker C, Ghazisaeidi S, Collet B, Boisvert A, Culty M. In utero exposure to low doses of genistein and di-(2-ethylhexyl) phthalate (DEHP) alters innate immune cells in neonatal and adult rat testes. Andrology 2020; 8:943-964. [PMID: 32533902 DOI: 10.1111/andr.12840] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Although humans are exposed to mixtures of endocrine disruptor chemicals, few studies have examined their toxicity on male reproduction. We previously found that fetal exposure to a mixture of the phytoestrogen genistein (GEN) and the plasticizer di(2-ethylhexyl) phthalate (DEHP) altered gene expression in adult rat testes. OBJECTIVES Our goal was to investigate the effects of fetal exposure to GEN-DEHP mixtures at two doses relevant to humans on testicular function and transcriptome in neonatal and adult rats. MATERIALS AND METHODS Pregnant SD rats were gavaged with vehicle, GEN or DEHP, alone or mixed at 0.1 and 10 mg/kg/day, from gestation day 14 to birth. Fertility, steroid levels, and testis morphology were examined in neonatal and adult rats. Testicular transcriptomes were examined by gene array and functional pathway analyses. Cell-specific genes/proteins were determined by quantitative real-time PCR and immunohistochemistry. RESULTS GEN-DEHP mixtures increased the rates of infertility and abnormal testes in adult rats. Gene array analysis identified more genes exclusively altered by the mixtures than individual compounds. Altered top canonical pathways included urogenital/reproductive developmental and inflammatory processes. GEN-DEHP mixtures increased innate immune cells and macrophages markers at both doses and ages, more strongly and consistently than DEHP or GEN alone. Genes exclusively increased by the mixture in adult testis related to innate immune cells and macrophages included Kitlg, Rps6ka3 (Rsk2), Nr3c1, Nqo1, Lif, Fyn, Ptprj (Dep-1), Gpr116, Pfn2, and Ptgr1. DISCUSSION AND CONCLUSION These findings demonstrate that GEN-DEHP mixtures at doses relevant to human induce adverse testicular phenotypes, concurrent with age-dependent and non-monotonic changes in testicular transcriptomes. The involvement of innate immune cells such as macrophages suggests immediate and delayed inflammatory responses which may contribute to testicular dysfunction. Moreover, these effects are complex and likely involve multiple interactions between immune and non-immune testicular cell types that will entail further studies.
Collapse
Affiliation(s)
- Casandra Walker
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Shahrzad Ghazisaeidi
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Berenice Collet
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Annie Boisvert
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.,The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
Wen Y, Rattan S, Flaws JA, Irudayaraj J. Multi and transgenerational epigenetic effects of di-(2-ethylhexyl) phthalate (DEHP) in liver. Toxicol Appl Pharmacol 2020; 402:115123. [PMID: 32628958 DOI: 10.1016/j.taap.2020.115123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/01/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a ubiquitous industrial pollutant, is a known endocrine disrupter implicated in metabolic diseases. Prenatal DEHP exposure promotes epigenetic multi- and transgenerational inheritance of adult onset disease in subsequent generations (F1-F3). However, the epigenetic toxicity is less understood in the liver. In this study, CD-1 mice were prenatally exposed to 20 μg/kg/day, 200 μg/kg/day, 500 mg/kg/day, or 750 mg/kg/day DEHP from gestational day (GD) 10.5 until birth of pups. Following prenatal exposure, the multigenerational and transgenerational effects of mRNA expression of epigenetic regulators were evaluated in F1, F2, and F3 generation mouse livers at postnatal days (PNDs) 8 and 60. Results showed that DEHP exposed mice livers exhibited significant changes in global DNA methylation levels in all three generations, with the effect being different in F2 after high dosage exposure. Histopathology indicated that DEHP exposure could induce mild damage in F1 livers. The expression levels of DNA methyltransferase 1 (Dnmt1) were significantly changed in both the F1 and F2 generations at PND 8, suggesting that maintenance Dnmt1 plays a major role in the multigenerational effect that occur in the early developmental stages. Additionally, DEHP exposure caused significant changes in ten-eleven translocation methylcytosine (Tet) dioxygenases encoding Tet1 expression in all three generations and Tet2 expression in F3 at PND 60, implicating their contributions in inducing both multi- and transgenerational effects after DEHP exposure in mouse liver. Overall, our results establish that prenatal and ancestral DEHP exposure are critical for epigenetic regulation of DNA methylation in female mouse livers.
Collapse
Affiliation(s)
- Yi Wen
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Saniya Rattan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Joseph Irudayaraj
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Micro and Nanotechnology Laboratory. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
38
|
Nishimura Y, Moriya K, Kobayashi S, Araki A, Sata F, Mitsui T, Itoh S, Miyashita C, Cho K, Kon M, Nakamura M, Kitta T, Murai S, Kishi R, Shinohara N. Association of exposure to prenatal phthalate esters and bisphenol A and polymorphisms in the ESR1 gene with the second to fourth digit ratio in school-aged children: Data from the Hokkaido study. Steroids 2020; 159:108637. [PMID: 32165209 DOI: 10.1016/j.steroids.2020.108637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 11/30/2022]
Abstract
Phthalates and bisphenol A (BPA) are estrogenic endocrine disruptors. Polymorphisms in the gene encoding estrogen receptor 1 (ESR1) may contribute to the ratio of the lengths of the second and fourth digits (2D:4D), which is considered an index of prenatal exposure to sex hormones. Thus, we investigated whether ESR1 polymorphisms modify the effects of prenatal exposure to phthalates and BPA on 2D:4D in a birth cohort. Maternal serum in the first trimester was used to determine prenatal exposure to these compounds. Six hundred twenty-three children (7 years of age) provided mean 2D:4D from photocopies and were genotyped for single nucleotide polymorphisms in ESR1, particularly PvuII (T > C, dbSNP: rs2234693), XbaI (A > G, dbSNP: rs9340799), and rs2077647 (A > G). The associations among compound exposure, mean 2D:4D, and ESR1 polymorphisms were assessed by multiple linear regression adjusted for potential cofounding factors. Boys with the AG/GG genotype at rs2077647 in the group exposed to high levels of mono(2-ethylhexyl) phthalate (MEHP) or Σ Di(2-ethylhexyl) phthalate (DEHP) showed feminized 2D:4D compared with boys with the AA genotype at rs2077647 who had low exposure to MEHP or ΣDEHP (MEHP: increase in mean 2D:4D of 1.51%, 95% confidence interval [CI]: 0.40-2.63; ΣDEHP: increase in mean 2D:4D of 1.37%, 95% CI: 0.25-2.49). No significant differences were found among girls. There were no associations between mean 2D:4D and metabolites other than MEHP or BPA. These data suggest that ESR1 polymorphisms modify the effects of prenatal exposure to DEHP on mean 2D:4D among boys.
Collapse
Affiliation(s)
- Yoko Nishimura
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan; Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Kimihiko Moriya
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan; Department of Urology, Sapporo City General Hospital, North-11, West-13, Chuo-ku, Sapporo 060-8604, Japan.
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Fumihiro Sata
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan; Health Center, Chuo University, 42-8, Ichigaya-Hommura-cho, Shinjuku-ku, Tokyo 162-8473, Japan
| | - Takahiko Mitsui
- Department of Urology, Graduate School of Medical Science, University of Yamanashi, Simokato-1110, Chuo 409-3898, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, North-14, West-5 Kita-ku, Sapporo 060-8648, Japan
| | - Masafumi Kon
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan
| | - Michiko Nakamura
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan
| | - Takeya Kitta
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan.
| | - Sachiyo Murai
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
39
|
Dutta S, Haggerty DK, Rappolee DA, Ruden DM. Phthalate Exposure and Long-Term Epigenomic Consequences: A Review. Front Genet 2020; 11:405. [PMID: 32435260 PMCID: PMC7218126 DOI: 10.3389/fgene.2020.00405] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/30/2020] [Indexed: 12/27/2022] Open
Abstract
Phthalates are esters of phthalic acid which are used in cosmetics and other daily personal care products. They are also used in polyvinyl chloride (PVC) plastics to increase durability and plasticity. Phthalates are not present in plastics by covalent bonds and thus can easily leach into the environment and enter the human body by dermal absorption, ingestion, or inhalation. Several in vitro and in vivo studies suggest that phthalates can act as endocrine disruptors and cause moderate reproductive and developmental toxicities. Furthermore, phthalates can pass through the placental barrier and affect the developing fetus. Thus, phthalates have ubiquitous presence in food and environment with potential adverse health effects in humans. This review focusses on studies conducted in the field of toxicogenomics of phthalates and discusses possible transgenerational and multigenerational effects caused by phthalate exposure during any point of the life-cycle.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Diana K Haggerty
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Daniel A Rappolee
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States.,Reproductive Stress, Inc., Grosse Pointe Farms, MI, United States
| | - Douglas M Ruden
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States.,Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
40
|
Suteau V, Briet C, Lebeault M, Gourdin L, Henrion D, Rodien P, Munier M. Human amniotic fluid-based exposure levels of phthalates and bisphenol A mixture reduce INSL3/RXFP2 signaling. ENVIRONMENT INTERNATIONAL 2020; 138:105585. [PMID: 32126385 DOI: 10.1016/j.envint.2020.105585] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/22/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The presence of chemical pollutants in the environment can affect human health. Epidemiological and in vivo experimental studies reveal reprotoxic effects (undescended testis) of phthalates (diethylhexyl phthalate (DEHP), dibutyl phthalate (DBP)) and bisphenol A (BPA), resulting in particular of a decrease in INSL3 (Insulin-Like 3 peptide) production. This hormone is essential for normal testis development and acts on a G protein-coupled receptor: RXFP2. OBJECTIVES The aim of this study was to evaluate the individual and combined impacts of DEHP, DBP, and BPA on human RXFP2 (hRXFP2) activity. METHODS We used HEK293 cells transiently transfected with hRXFP2 and receptor activity was analyzed by measuring intracellular cAMP production. The mixture was established at concentrations reported in human amniotic fluid, for the three compounds. RESULTS Individually, DEHP, DBP and BPA increased the response to INSL3 by 19.3 to 27.5%. This potentiating effect was specific for RXFP2, because it was absent in the cells which did not express this receptor. On the other hand, and interestingly, the mixture of the three compounds reduced significantly the response to INSL3 by 12%, and the observed effects were opposite to those predicted, suggesting an antagonist effect. DISCUSSION-CONCLUSION Taken together, our results demonstrate for the first time that a mixture of phthalates and BPA present in human amniotic fluid disturbs the human RXFP2 function. Moreover, we demonstrate that mixture can produce potential antagonistic effects that are not displayed by the compounds, individually.
Collapse
Affiliation(s)
- Valentine Suteau
- UMR CNRS 6015, INSERM 1083, MITOVASC Institute, 3 rue Roger Amsler, 49000 Angers, France; Department of Endocrinology, University Hospital, 4 rue Larrey, 49933 Angers, France.
| | - Claire Briet
- UMR CNRS 6015, INSERM 1083, MITOVASC Institute, 3 rue Roger Amsler, 49000 Angers, France; Department of Endocrinology, University Hospital, 4 rue Larrey, 49933 Angers, France; Reference Center for Rare Diseases of Thyroid and Hormone Receptors, University Hospital, 4 rue Larrey, 49933 Angers, France.
| | - Maÿlis Lebeault
- UMR CNRS 6015, INSERM 1083, MITOVASC Institute, 3 rue Roger Amsler, 49000 Angers, France; Department of Endocrinology, University Hospital, 4 rue Larrey, 49933 Angers, France.
| | - Louis Gourdin
- UMR CNRS 6015, INSERM 1083, MITOVASC Institute, 3 rue Roger Amsler, 49000 Angers, France; Reference Center for Rare Diseases of Thyroid and Hormone Receptors, University Hospital, 4 rue Larrey, 49933 Angers, France.
| | - Daniel Henrion
- UMR CNRS 6015, INSERM 1083, MITOVASC Institute, 3 rue Roger Amsler, 49000 Angers, France.
| | - Patrice Rodien
- UMR CNRS 6015, INSERM 1083, MITOVASC Institute, 3 rue Roger Amsler, 49000 Angers, France; Department of Endocrinology, University Hospital, 4 rue Larrey, 49933 Angers, France; Reference Center for Rare Diseases of Thyroid and Hormone Receptors, University Hospital, 4 rue Larrey, 49933 Angers, France.
| | - Mathilde Munier
- UMR CNRS 6015, INSERM 1083, MITOVASC Institute, 3 rue Roger Amsler, 49000 Angers, France; Department of Endocrinology, University Hospital, 4 rue Larrey, 49933 Angers, France; Reference Center for Rare Diseases of Thyroid and Hormone Receptors, University Hospital, 4 rue Larrey, 49933 Angers, France.
| |
Collapse
|
41
|
Shi L, Jiang L, Zhang X, Yang G, Zhang C, Yao X, Wu X, Fu M, Sun X, Liu X. Pyrroloquinoline quinone protected autophagy-dependent apoptosis induced by mono(2-ethylhexyl) phthalate in INS-1 cells. Hum Exp Toxicol 2019; 39:194-211. [PMID: 31661991 DOI: 10.1177/0960327119882983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mono(2-ethylhexyl) phthalate (MEHP) is the main metabolite of di(2-ethylhexyl) phthalate (DEHP) in organisms and is commonly used as a plasticizer. Exposure to DEHP impairs the function of islet beta cells (INS-1 cells), which is related to insulin resistance and type 2 diabetes. At present, some research data have also confirmed that MEHP has a certain damage effect on INS-1 cells. In our experiment, we found that MEHP would lead to the increase of reactive oxygen species (ROS) and the upregulation of autophagy. And downregulated ROS production by N-acetyl-L-cysteine could also reduce autophagy. In addition, MEHP-induced lysosomal membrane permeability (LMP) subsequently released cathepsin D. Additionally, MEHP induced the collapse of mitochondrial transmembrane potential and release of cytochrome c. Addition of autophagy inhibitor 3-methyladenine relieved MEHP-induced apoptosis as assessed by the expression of cleaved caspase 3, cleaved caspase 9, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay, indicating that MEHP-induced apoptosis was autophagy dependent. Cathepsin D inhibitor, pepstatin A, suppressed MEHP-induced mitochondria release of cytochrome c and apoptosis as well. Meanwhile, pyrroloquinoline quinone (PQQ), a new B vitamin, improved the above phenomenon. Taken together, our results indicate that MEHP induces autophagy-dependent apoptosis in INS-1 cells by lysosomal-mitochondrial axis. PQQ improved this process by downregulating ROS and provided a degree of protection. Our study provides a new perspective for MEHP on the cytotoxic mechanism and PQQ protection in INS-1 cells.
Collapse
Affiliation(s)
- L Shi
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, People's Republic of China
| | - L Jiang
- Preventive Medicine Laboratory, College of Public Health, Dalian Medical University, Dalian, People's Republic of China
| | - X Zhang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, People's Republic of China
| | - G Yang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, People's Republic of China
| | - C Zhang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, People's Republic of China
| | - X Yao
- Department of Occupational and Environmental Health, College of Public Health, Dalian Medical University, Dalian, People's Republic of China
| | - X Wu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - M Fu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - X Sun
- Department of Occupational and Environmental Health, College of Public Health, Dalian Medical University, Dalian, People's Republic of China
| | - X Liu
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
42
|
Christia C, Tang B, Yin SS, Luo XJ, Mai BX, Poma G, Covaci A. Simultaneous determination of legacy and emerging organophosphorus flame retardants and plasticizers in indoor dust using liquid and gas chromatography–tandem mass spectrometry: method development, validation, and application. Anal Bioanal Chem 2019; 411:7015-7025. [DOI: 10.1007/s00216-019-02078-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/23/2022]
|
43
|
Promtes K, Kaewboonchoo O, Kawai T, Miyashita K, Panyapinyopol B, Kwonpongsagoon S, Takemura S. Human exposure to phthalates from house dust in Bangkok, Thailand. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:1269-1276. [PMID: 31296107 DOI: 10.1080/10934529.2019.1637207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
The study determined concentrations of and estimated human exposure to house dust-ingested phthalates from 99 homes in Bangkok, Thailand. Phthalates in dust collected using a handheld vacuum cleaner was analyzed by gas chromatography/mass spectrometry revealing a median content of 3,477 µg g-1, range 753-13,810 µg g-1, with di-2-ethylhexylphthalate (DEHP) having the highest level (median = 1,739 µg g-1, range 467-8,172 µg g-1) followed by di-iso-nonyl phthalate (DiNP) (median = 611 µg g-1, range 15.2-11,052 µg g-1). DEHP in house dust from multi-family apartments with polyvinyl (PVC) floor material (n = 34), multi-family apartments without PVC floor material (n = 55) and single family houses without PVC floor material (n = 10) was median and range 3,009 and 568-6,898; 1,479 and range 467-8,172 and 1,207 µg g-1 and 611-3518 µg g-1, respectively. At high-end house dust DEHP level, preschool children in all three types of homes were exposed above US Environment Protection Agency reference dose (20 µg g-1). The results suggest phthalate-containing house products constitute a likely major source of phthalates in indoor home environment and pose a potential health risk to residents, particularly preschool children, in Bangkok.
Collapse
Affiliation(s)
- Kamonwan Promtes
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University , Bangkok , Thailand
| | - Orawan Kaewboonchoo
- Department of Public Health Nursing, Faculty of Public Health, Mahidol University , Bangkok , Thailand
| | - Toshio Kawai
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association , Osaka , Japan
| | - Kazuhisa Miyashita
- Department of Hygiene, School of Medicine, Wakayama Medical University , Wakayama , Japan
| | - Bunyarit Panyapinyopol
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University , Bangkok , Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT) , Bangkok , Thailand
| | - Suphaphat Kwonpongsagoon
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University , Bangkok , Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT) , Bangkok , Thailand
| | - Shigeki Takemura
- Department of Hygiene, School of Medicine, Wakayama Medical University , Wakayama , Japan
| |
Collapse
|
44
|
Ito Y, Kamijima M, Nakajima T. Di(2-ethylhexyl) phthalate-induced toxicity and peroxisome proliferator-activated receptor alpha: a review. Environ Health Prev Med 2019; 24:47. [PMID: 31279339 PMCID: PMC6612219 DOI: 10.1186/s12199-019-0802-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/28/2019] [Indexed: 11/10/2022] Open
Abstract
The plasticizer di(2-ethylhexyl) phthalate (DEHP) has been widely used in the manufacture of polyvinyl chloride-containing products such as medical and consumer goods. Humans can easily be exposed to it because DEHP is ubiquitous in the environment. Recent research on the adverse effects of DEHP has focused on reproductive and developmental toxicity in rodents and/or humans. DEHP is a representative of the peroxisome proliferators. Therefore, peroxisome proliferator-activated receptor alpha (PPARα)-dependent pathways are the expected mode of action of several kinds of DEHP-induced toxicities. In this review, we summarize DEHP kinetics and its mechanisms of carcinogenicity and reproductive and developmental toxicity in relation to PPARα. Additionally, we give an overview of the impacts of science policy on exposure sources.
Collapse
Affiliation(s)
- Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601 Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601 Japan
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| |
Collapse
|
45
|
Rattan S, Beers HK, Kannan A, Ramakrishnan A, Brehm E, Bagchi I, Irudayaraj JMK, Flaws JA. Prenatal and ancestral exposure to di(2-ethylhexyl) phthalate alters gene expression and DNA methylation in mouse ovaries. Toxicol Appl Pharmacol 2019; 379:114629. [PMID: 31211961 DOI: 10.1016/j.taap.2019.114629] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer and known endocrine disrupting chemical, which causes transgenerational reproductive toxicity in female rodents. However, the mechanisms of action underlying the transgenerational toxicity of DEHP are not understood. Therefore, this study determined the effects of prenatal and ancestral DEHP exposure on various ovarian pathways in the F1, F2, and F3 generations of mice. Pregnant CD-1 dams were orally exposed to corn oil (vehicle control) or DEHP (20 μg/kg/day-750 mg/kg/day) from gestation day 10.5 until birth. At postnatal day 21 for all generations, ovaries were removed for gene expression analysis of various ovarian pathways and for 5-methyl cytosine (5-mC) quantification. In the F1 generation, prenatal DEHP exposure disrupted the expression of cell cycle regulators, the expression of peroxisome-proliferator activating receptors, and the percentage of 5-mC compared to control. In the F2 generation, exposure to DEHP decreased the expression of steroidogenic enzymes, apoptosis factors, and ten-eleven translocation compared to controls. It also dysregulated the expression of phosphoinositide 3-kinase (PI3K) factors. In the F3 generation, ancestral DEHP exposure decreased the expression of steroidogenic enzymes, PI3K factors, cell cycle regulators, apoptosis factors, Esr2, DNA methylation mediators, and the percentage of 5-mC compared to controls. Overall, the data show that prenatal and ancestral DEHP exposure greatly suppress gene expression of pathways required for folliculogenesis and steroidogenesis in the ovary in a transgenerational manner and that gene expression may be influenced by DNA methylation. These results provide insight into some of the mechanisms of DEHP-mediated toxicity in the ovary across generations.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Hannah K Beers
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Anujaianthi Ramakrishnan
- Department of Bioengineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Emily Brehm
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Indrani Bagchi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Joseph M K Irudayaraj
- Department of Bioengineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.
| |
Collapse
|
46
|
Kamai EM, McElrath TF, Ferguson KK. Fetal growth in environmental epidemiology: mechanisms, limitations, and a review of associations with biomarkers of non-persistent chemical exposures during pregnancy. Environ Health 2019; 18:43. [PMID: 31068204 PMCID: PMC6505101 DOI: 10.1186/s12940-019-0480-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-persistent chemicals, such as phthalates, environmental phenols, organophosphate pesticides, and others, are challenging to study because of their ubiquity in the environment, diverse exposure routes, and high temporal variability of biomarkers. Nonetheless, there is interest in understanding how gestational exposure to these chemicals may affect fetal growth, as perturbations to normal fetal growth are related to a plethora of adverse health outcomes in childhood and adulthood. METHODS The purpose of this review is to describe the state of the science on this topic. We searched PubMed for studies that included both 1) biomarkers of non-persistent chemicals collected during pregnancy and 2) fetal growth outcomes measured at birth (e.g., birth weight) or by ultrasound in utero (e.g., estimated fetal weight). RESULTS The bulk of the literature we found uses biomarkers measured at a single time point in pregnancy and birth weight as the primary measure of fetal growth. There is a small, but growing, body of research that uses ultrasound measures to assess fetal growth during pregnancy. In addition to summarizing the findings of the publications we identified, we describe inconsistencies in methodology, areas for improvement, and gaps in existing knowledge that can be targeted for improvement in future work. This literature is characterized by variability in methodology, likely contributing to the inconsistency of results reported. We further discuss maternal, placental, and fetal pathways by which these classes of chemicals may affect fetal growth. CONCLUSIONS To improve understanding of how everyday chemical exposures affect fetal growth, and ultimately lifelong health outcomes, mechanisms of toxicant action should be considered alongside improved study designs for future hypothesis-driven research.
Collapse
Affiliation(s)
- Elizabeth M. Kamai
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599 USA
| | - Thomas F. McElrath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Kelly K. Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
47
|
Pan J, Yao Y, Guo X, Kong F, Zhou J, Meng X. Endoplasmic reticulum stress, a novel significant mechanism responsible for DEHP‐induced increased distance between seminiferous tubule of mouse testis. J Cell Physiol 2019; 234:19807-19823. [DOI: 10.1002/jcp.28580] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Junlin Pan
- Shandong Provincial Key Laboratory of Animal Resistance Biology College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University Jinan Shandong China
| | - YuanYuan Yao
- Shandong Provincial Key Laboratory of Animal Resistance Biology College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University Jinan Shandong China
| | - Xiuxiu Guo
- Shandong Provincial Key Laboratory of Animal Resistance Biology College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University Jinan Shandong China
| | - Fengyun Kong
- Reproductive Medical Center The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine Jinan Shandong China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University Jinan Shandong China
| | - Xiaoqian Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University Jinan Shandong China
| |
Collapse
|
48
|
Dong J, Cong Z, You M, Fu Y, Wang Y, Wang Y, Fu H, Wei L, Chen J. Effects of perinatal di (2-ethylhexyl) phthalate exposure on thyroid function in rat offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:53-60. [PMID: 30716676 DOI: 10.1016/j.etap.2019.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/14/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer in industry and displays the characteristics of an endocrine disruptor. Disorders of the maternal thyroid hormone (TH) during pregnancy can cause adverse effects on the fetus. We investigated the effects and possible mechanism of perinatal DEHP exposure on the thyroid function of pups. Pregnant female Wistar rats were randomly divided into four groups and received doses of DEHP of 0, 30, 300, 750 mg/kg/day by gavage at from gestational day (GD) 0 to postnatal day (PN) 21. The concentration of serum THs and the ultrastructure of thyroid follicular cells in the offspring were examined. Related protein level and gene expression of thyroid proteins in pups were analyzed by western blotting and real-time PCR. We found that DEHP significantly reduced total thyroxine (TT4) and increased thyroid stimulating hormone (TSH) in pups, while total triiodothyronine (TT3) showed no change. Thyroid follicular cells ultrastructure was damaged in DEHP exposed pups as viewed by electron microscopy. Furthermore, exposure to DEHP significantly increased protein and mRNA levels of thyroid transcription factor 1 (TTF-1), paired box 8 (PAX8), sodium iodide symporter (NIS) and thyroid peroxidase (TPO) in pups. In addition, levels of deiodinases of pups were also affected. These findings indicated that DEHP can disrupt thyroid function by damaging thyroid follicles and affecting TTF-1, PAX8, NIS, TPO and the deiodinase protein family.
Collapse
Affiliation(s)
- Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, People's Republic of China
| | - Zhangzhao Cong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, People's Republic of China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, People's Republic of China
| | - Yuanyuan Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, People's Republic of China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, People's Republic of China
| | - Hui Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, People's Republic of China
| | - Lingling Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, People's Republic of China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, People's Republic of China.
| |
Collapse
|
49
|
Harrison SM, Bush NC, Wang Y, Mucher ZR, Lorenzo AJ, Grimsby GM, Schlomer BJ, Büllesbach EE, Baker LA. Insulin-Like Peptide 3 (INSL3) Serum Concentration During Human Male Fetal Life. Front Endocrinol (Lausanne) 2019; 10:596. [PMID: 31611843 PMCID: PMC6737488 DOI: 10.3389/fendo.2019.00596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/13/2019] [Indexed: 12/28/2022] Open
Abstract
Context: Insulin-like peptide 3 (INSL3), a protein hormone produced by Leydig cells, may play a crucial role in testicular descent as male INSL3 knockout mice have bilateral cryptorchidism. Previous studies have measured human fetal INSL3 levels in amniotic fluid only. Objective: To measure INSL3 serum levels and mRNA in fetal umbilical cord blood and fetal testes, respectively. Design: INSL3 concentrations were assayed on 50 μl of serum from male human fetal umbilical cord blood by a non-commercial highly sensitive and specific radioimmunoassay. For secondary confirmation, quantitative real-time PCR was used to measure INSL3 relative mRNA expression in 7 age-matched human fetal testes. Setting: UT Southwestern Medical Center, Dallas, TX and Medical University of South Carolina, Charleston, SC. Patients or other Participants: Twelve human male umbilical cord blood samples and 7 human male testes were obtained from fetuses 14-21 weeks gestation. Male sex was verified by leukocyte genomic DNA SRY PCR. Interventions: None. Main Outcome Measures: Human male fetal INSL3 cord blood serum concentrations and testicular relative mRNA expression. Results: INSL3 serum concentrations during human male gestational weeks 15-20 were 2-4 times higher than published prepubertal male levels and were 5-100 times higher than previous reports of INSL3 concentrations obtained from amniotic fluid. Testicular fetal INSL3 mRNA relative expression was low from weeks 14-16, rose significantly weeks 17 and 18, and returned to low levels at week 21. Conclusions: These findings further support the role of INSL3 in human testicular descent and could prove relevant in uncovering the pathophysiology of cryptorchidism.
Collapse
Affiliation(s)
- Steven M. Harrison
- Clinical R&D Sequencing Platform, Broad Institute, MIT and Harvard, Cambridge, MA, United States
| | | | - Yi Wang
- Endocrinology Division, Department of Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zachary R. Mucher
- Department of Urology, Memorial Hermann Health System, Houston, TX, United States
| | - Armando J. Lorenzo
- Department of Pediatric Urology, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Bruce J. Schlomer
- Division of Pediatric Urology, Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Erika E. Büllesbach
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Linda A. Baker
- John W. Duckett MD Laboratory in Pediatric Urology, Division of Pediatric Urology, Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Linda A. Baker
| |
Collapse
|
50
|
Radke EG, Braun JM, Meeker JD, Cooper GS. Phthalate exposure and male reproductive outcomes: A systematic review of the human epidemiological evidence. ENVIRONMENT INTERNATIONAL 2018; 121:764-793. [PMID: 30336412 PMCID: PMC10825890 DOI: 10.1016/j.envint.2018.07.029] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 05/21/2023]
Abstract
OBJECTIVE We performed a systematic review of the epidemiology literature to identify the male reproductive effects associated with phthalate exposure. DATA SOURCES AND STUDY ELIGIBILITY CRITERIA Six phthalates were included in the review: di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), butyl benzyl phthalate (BBP), and diethyl phthalate (DEP). The initial literature search (of PubMed, Web of Science, and Toxline) included all studies of male reproductive effects in humans, and outcomes were selected for full systematic review based on data availability. STUDY EVALUATION AND SYNTHESIS METHODS For each outcome, studies were evaluated using criteria defined a priori for risk of bias and sensitivity by two reviewers using a domain-based approach. Evidence was synthesized by outcome and phthalate and strength of evidence was summarized using a structured framework. RESULTS The primary outcomes reviewed here are (number of included/excluded studies in parentheses): anogenital distance (6/1), semen parameters (15/9), time to pregnancy (3/5), testosterone (13/8), timing of pubertal development (5/15), and hypospadias/cryptorchidism (4/10). Looking at the overall hazard, there was robust evidence of an association between DEHP and DBP exposure and male reproductive outcomes; this was based primarily on studies of anogenital distance, semen parameters, and testosterone for DEHP and semen parameters and time to pregnancy for DBP. There was moderate evidence of an association between DINP and BBP exposure and male reproductive outcomes based on testosterone and semen parameters for DINP and semen parameters and time to pregnancy for BBP. DIBP and DEP were considered to have slight evidence of an association. For DIBP, the less conclusive evidence was attributed to a more limited literature base (i.e., fewer studies) and lower exposure levels in the population, decreasing the ability to observe an effect. For DEP, the findings were consistent with experimental animal data that suggest DEP does not haves as strong an anti-androgenic effect as other phthalates. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS Overall, despite some inconsistencies across phthalates in the specific outcomes associated with exposure, these results support that phthalate exposure at levels seen in human populations may have male reproductive effects, particularly DEHP and DBP. The relative strength of the evidence reflects differing levels of toxicity as well as differences in the range of exposures studied and the number of available studies. The views expressed are those of the authors and do not necessarily represent the views or policies of the U.S. EPA.
Collapse
Affiliation(s)
- Elizabeth G Radke
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, United States.
| | - Joseph M Braun
- Brown University, School of Public Health, United States
| | - John D Meeker
- University of Michigan, School of Public Health, United States
| | - Glinda S Cooper
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, United States; The Innocence Project, United States
| |
Collapse
|