1
|
van Heerden A, Pham NQ, Wingfield BD, Wingfield MJ, Wilken PM. Six type-I PKS classes and highly conserved melanin and elsinochrome gene clusters found in diverse Elsinoë species. BMC Genomics 2024; 25:990. [PMID: 39438784 PMCID: PMC11515665 DOI: 10.1186/s12864-024-10920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024] Open
Abstract
Elsinoë species are phytopathogenic fungi that cause serious scab diseases on economically important plants. The disease symptoms arise from the effects of a group of phytotoxins known as elsinochromes, produced via a type-I polyketide synthase (PKS) biosynthetic pathway. The elsinochrome gene cluster was first annotated in Elsinoë fawcettii where the main type-I PKS gene was characterized as EfPKS1. A later study showed that this gene and the associated cluster had not been correctly annotated, and that EfPKS1 was actually the anchor gene of the melanin biosynthetic pathway. A new type-I PKS gene EfETB1 associated with elsinochrome production was also identified. The aim of this study was to identify all type-I PKS genes in the genomes of seven Elsinoë species with the goal of independently verifying the PKS containing clusters for both melanin and elsinochrome production. A total of six type-I PKS classes were identified, although there was variation between the species in the number and type of classes present. Genes similar to the E. fawcettii EfPKS1 and EfETB1 type-I PKS genes were associated with melanin and elsinochrome production respectively in all species. The complete melanin and elsinochrome PKS containing clusters were subsequently annotated in all the species with high levels of synteny across Elsinoë species. This study provides a genus-level overview of type-I PKS distribution in Elsinoë species, including an additional line of support for the annotation of the melanin and elsinochrome PKS containing clusters in these important plant pathogens.
Collapse
Affiliation(s)
- Alishia van Heerden
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Nam Q Pham
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
2
|
Brauer EK, Bosnich W, Holy K, Thapa I, Krishnan S, Moatter Syed, Bredow M, Sproule A, Power M, Johnston A, Cloutier M, Haribabu N, Izhar U H Khan, Diallo JS, Monaghan J, Chabot D, Overy DP, Subramaniam R, Piñeros M, Blackwell B, Harris LJ. A cyclic lipopeptide from Fusarium graminearum targets plant membranes to promote virulence. Cell Rep 2024; 43:114384. [PMID: 38970790 DOI: 10.1016/j.celrep.2024.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024] Open
Abstract
Microbial plant pathogens deploy amphipathic cyclic lipopeptides to reduce surface tension in their environment. While plants can detect these molecules to activate cellular stress responses, the role of these lipopeptides or associated host responses in pathogenesis are not fully clear. The gramillin cyclic lipopeptide is produced by the Fusarium graminearum fungus and is a virulence factor and toxin in maize. Here, we show that gramillin promotes virulence and necrosis in both monocots and dicots by disrupting ion balance across membranes. Gramillin is a cation-conducting ionophore and causes plasma membrane depolarization. This disruption triggers cellular signaling, including a burst of reactive oxygen species (ROS), transcriptional reprogramming, and callose production. Gramillin-induced ROS depends on expression of host ILK1 and RBOHD genes, which promote fungal induction of virulence genes during infection and host susceptibility. We conclude that gramillin's ionophore activity targets plant membranes to coordinate attack by the F. graminearum fungus.
Collapse
Affiliation(s)
- Elizabeth K Brauer
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; Department of Biology, University of Ottawa, Ottawa, ON K1N 9A7, Canada.
| | - Whynn Bosnich
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Kirsten Holy
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Indira Thapa
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Srinivasan Krishnan
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Moatter Syed
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; Department of Biology, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Melissa Bredow
- Biology Department, Queen's University, Biological Sciences Complex, 116 Barrie St., Kingston, ON K7L 3N6, Canada
| | - Amanda Sproule
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Monique Power
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; Department of Biology, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Anne Johnston
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Michel Cloutier
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Naveen Haribabu
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Jacqueline Monaghan
- Biology Department, Queen's University, Biological Sciences Complex, 116 Barrie St., Kingston, ON K7L 3N6, Canada
| | - Denise Chabot
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - David P Overy
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Miguel Piñeros
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA; Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, NY 14853, USA
| | - Barbara Blackwell
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Linda J Harris
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
3
|
Scott K, Konkel Z, Gluck-Thaler E, Valero David GE, Simmt CF, Grootmyers D, Chaverri P, Slot J. Endophyte genomes support greater metabolic gene cluster diversity compared with non-endophytes in Trichoderma. PLoS One 2023; 18:e0289280. [PMID: 38127903 PMCID: PMC10735191 DOI: 10.1371/journal.pone.0289280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/14/2023] [Indexed: 12/23/2023] Open
Abstract
Trichoderma is a cosmopolitan genus with diverse lifestyles and nutritional modes, including mycotrophy, saprophytism, and endophytism. Previous research has reported greater metabolic gene repertoires in endophytic fungal species compared to closely-related non-endophytes. However, the extent of this ecological trend and its underlying mechanisms are unclear. Some endophytic fungi may also be mycotrophs and have one or more mycoparasitism mechanisms. Mycotrophic endophytes are prominent in certain genera like Trichoderma, therefore, the mechanisms that enable these fungi to colonize both living plants and fungi may be the result of expanded metabolic gene repertoires. Our objective was to determine what, if any, genomic features are overrepresented in endophytic fungi genomes in order to undercover the genomic underpinning of the fungal endophytic lifestyle. Here we compared metabolic gene cluster and mycoparasitism gene diversity across a dataset of thirty-eight Trichoderma genomes representing the full breadth of environmental Trichoderma's diverse lifestyles and nutritional modes. We generated four new Trichoderma endophyticum genomes to improve the sampling of endophytic isolates from this genus. As predicted, endophytic Trichoderma genomes contained, on average, more total biosynthetic and degradative gene clusters than non-endophytic isolates, suggesting that the ability to create/modify a diversity of metabolites potential is beneficial or necessary to the endophytic fungi. Still, once the phylogenetic signal was taken in consideration, no particular class of metabolic gene cluster was independently associated with the Trichoderma endophytic lifestyle. Several mycoparasitism genes, but no chitinase genes, were associated with endophytic Trichoderma genomes. Most genomic differences between Trichoderma lifestyles and nutritional modes are difficult to disentangle from phylogenetic divergences among species, suggesting that Trichoderma genomes maybe particularly well-equipped for lifestyle plasticity. We also consider the role of endophytism in diversifying secondary metabolism after identifying the horizontal transfer of the ergot alkaloid gene cluster to Trichoderma.
Collapse
Affiliation(s)
- Kelsey Scott
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States of America
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States of America
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland
| | | | - Coralie Farinas Simmt
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States of America
| | - Django Grootmyers
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States of America
| | - Priscila Chaverri
- Department of Natural Sciences, Bowie State University, Bowie, MD, United States of America
- School of Biology and Natural Products Research Center (CIPRONA), University of Costa Rica, San José, Costa Rica
| | - Jason Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States of America
- Center for Psychedelic Drug Research and Education, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
4
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
5
|
Severinsen MM, Westphal KR, Terp M, Sørensen T, Olsen A, Bachleitner S, Studt-Reinhold L, Wimmer R, Sondergaard TE, Sørensen JL. Filling out the gaps - identification of fugralins as products of the PKS2 cluster in Fusarium graminearum. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1264366. [PMID: 38025899 PMCID: PMC10667903 DOI: 10.3389/ffunb.2023.1264366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
As one of the grain crop pathogenic fungi with the greatest impacts on agricultural economical as well as human health, an elaborate understanding of the life cycle and subsequent metabolome of Fusarium graminearum is of great interest. Throughout the lifetime of the fungus, it is known to produce a wide array of secondary metabolites, including polyketides. One of the F. graminearum polyketides which has remained a mystery until now has been elucidated in this work. Previously, it was suggested that the biosynthetic product of the PKS2 gene cluster was involved in active mycelial growth, the exact mechanism, however, remained unclear. In our work, disruption and overexpression of the PKS2 gene in F. graminearum enabled structural elucidation of a linear and a cyclic tetraketide with a double methyl group, named fugralin A and B, respectively. Further functional characterization showed that the compounds are not produced during infection, and that deletion and overexpression did not affect pathogenicity or visual growth. The compounds were shown to be volatile, which could point to possible functions that can be investigated further in future studies.
Collapse
Affiliation(s)
- Manja Mølgaard Severinsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Mikael Terp
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Simone Bachleitner
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lena Studt-Reinhold
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
6
|
O'Mara SP, Broz K, Schwister EM, Singh L, Dong Y, Elmore JM, Kistler HC. The Fusarium graminearum Transporters Abc1 and Abc6 Are Important for Xenobiotic Resistance, Trichothecene Accumulation, and Virulence to Wheat. PHYTOPATHOLOGY 2023; 113:1916-1923. [PMID: 37260101 DOI: 10.1094/phyto-09-22-0345-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The plant pathogenic fungus Fusarium graminearum is the causal agent of Fusarium head blight (FHB) disease on small-grain cereals. F. graminearum produces trichothecene mycotoxins such as deoxynivalenol (DON) that are required for full virulence. DON must be exported outside the cell to cause FHB disease, a process that may require the involvement of membrane-bound transporters. In this study, we show that the deletion of membrane-bound transporters results in reduced DON accumulation as well as reduced FHB symptoms on wheat. Deletion of the ATP-binding cassette (ABC) transporter gene Abc1 results in the greatest reduction in DON accumulation and virulence. Deletion of another ABC transporter gene, Abc6, also reduces FHB symptoms to a lesser degree. Combining deletions fails to reduce DON accumulation or virulence in an additive fashion, even when a ∆abc1 deletion is included. Heterologous expression of F. graminearum transporters in a DON-sensitive strain of yeast confirms Abc1 as a major DON resistance mechanism; furthermore, it suggests that Abc1 is directly participating in DON transport rather than facilitating DON transport though other means. Yeast expression further indicates that multiple transporters, including Abc1, play an important role in resistance to the wheat phytoalexin 2-benzoxazolinone (BOA) and other xenobiotics. Thus, Abc1 may contribute to virulence on wheat both by facilitating export of DON and by providing resistance to the wheat phytoalexin BOA. This research provides useful information that may aid in designing novel management techniques of FHB or other destructive plant diseases.
Collapse
Affiliation(s)
- Sean P O'Mara
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | - Karen Broz
- U.S. Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
| | - Erin M Schwister
- U.S. Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
| | - Lovepreet Singh
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | - Yanhong Dong
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - J Mitch Elmore
- U.S. Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - H Corby Kistler
- U.S. Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
7
|
Lin C, Feng XL, Liu Y, Li ZC, Li XZ, Qi J. Bioinformatic Analysis of Secondary Metabolite Biosynthetic Potential in Pathogenic Fusarium. J Fungi (Basel) 2023; 9:850. [PMID: 37623621 PMCID: PMC10455296 DOI: 10.3390/jof9080850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Fusarium species are among the filamentous fungi with the most pronounced impact on agricultural production and human health. The mycotoxins produced by pathogenic Fusarium not only attack various plants including crops, causing various plant diseases that lead to reduced yields and even death, but also penetrate into the food chain of humans and animals to cause food poisoning and consequent health hazards. Although sporadic studies have revealed some of the biosynthetic pathways of Fusarium toxins, they are insufficient to satisfy the need for a comprehensive understanding of Fusarium toxin production. In this study, we focused on 35 serious pathogenic Fusarium species with available genomes and systematically analyzed the ubiquity of the distribution of identified Fusarium- and non-Fusarium-derived fungal toxin biosynthesis gene clusters (BGCs) in these species through the mining of core genes and the comparative analysis of corresponding BGCs. Additionally, novel sesterterpene synthases and PKS_NRPS clusters were discovered and analyzed. This work is the first to systematically analyze the distribution of related mycotoxin biosynthesis in pathogenic Fusarium species. These findings enhance the knowledge of mycotoxin production and provide a theoretical grounding for the prevention of fungal toxin production using biotechnological approaches.
Collapse
Affiliation(s)
- Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xi-long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yu Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhao-chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
8
|
Shostak K, González-Peña Fundora D, Blackman C, Witte T, Sproule A, Overy D, Eranthodi A, Thakor N, Foroud NA, Subramaniam R. Epistatic Relationship between MGV1 and TRI6 in the Regulation of Biosynthetic Gene Clusters in Fusarium graminearum. J Fungi (Basel) 2023; 9:816. [PMID: 37623587 PMCID: PMC10455978 DOI: 10.3390/jof9080816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Genetic studies have shown that the MAP kinase MGV1 and the transcriptional regulator TRI6 regulate many of the same biosynthetic gene clusters (BGCs) in Fusarium graminearum. This study sought to investigate the relationship between MGV1 and TRI6 in the regulatory hierarchy. Transgenic F. graminearum strains constitutively expressing MGV1 and TRI6 were generated to address both independent and epistatic regulation of BGCs by MGV1 and TRI6. We performed a comparative transcriptome analysis between axenic cultures grown in nutrient-rich and secondary metabolite-inducing conditions. The results indicated that BGCs regulated independently by Mgv1 included genes of BGC52, whereas genes uniquely regulated by TRI6 included the gene cluster (BGC49) that produces gramillin. To understand the epistatic relationship between MGV1 and TRI6, CRISPR/Cas9 was used to insert a constitutive promoter to drive TRI6 expression in the Δmgv1 strain. The results indicate that BGCs that produce deoxynivalenol and fusaoctaxin are co-regulated, with TRI6 being partially regulated by MGV1. Overall, the findings from this study indicate that MGV1 provides an articulation point to differentially regulate various BGCs. Moreover, TRI6, embedded in one of the BGCs provides specificity to regulate the expression of the genes in the BGC.
Collapse
Affiliation(s)
- Kristina Shostak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
| | - Dianevys González-Peña Fundora
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (D.G.-P.F.); (A.E.)
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 4M4, Canada;
| | - Christopher Blackman
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
- Department of Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Tom Witte
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
| | - David Overy
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
| | - Anas Eranthodi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (D.G.-P.F.); (A.E.)
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 4M4, Canada;
| | - Nora A. Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (D.G.-P.F.); (A.E.)
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
- Department of Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
9
|
Hicks C, Witte TE, Sproule A, Hermans A, Shields SW, Colquhoun R, Blackman C, Boddy CN, Subramaniam R, Overy DP. CRISPR-Cas9 Gene Editing and Secondary Metabolite Screening Confirm Fusarium graminearum C16 Biosynthetic Gene Cluster Products as Decalin-Containing Diterpenoid Pyrones. J Fungi (Basel) 2023; 9:695. [PMID: 37504684 PMCID: PMC10381663 DOI: 10.3390/jof9070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 07/29/2023] Open
Abstract
Fusarium graminearum is a causal organism of Fusarium head blight in cereals and maize. Although a few secondary metabolites produced by F. graminearum are considered disease virulence factors, many molecular products of biosynthetic gene clusters expressed by F. graminearum during infection and their associated role in the disease are unknown. In particular, the predicted meroterpenoid products of the biosynthetic gene cluster historically designated as "C16" are likely associated with pathogenicity. Presented here are the results of CRISPR-Cas9 gene-editing experiments disrupting the polyketide synthase and terpene synthase genes associated with the C16 biosynthetic gene cluster in F. graminearum. Culture medium screening experiments using transformant strains were profiled by UHPLC-HRMS and targeted MS2 experiments to confirm the associated secondary metabolite products of the C16 biosynthetic gene cluster as the decalin-containing diterpenoid pyrones, FDDP-D and FDDP-E. Both decalin-containing diterpenoid pyrones were confirmed to be produced in wheat heads challenged with F. graminearum in growth chamber trials. The extent to which the F. graminearum C16 biosynthetic gene cluster is dispersed within the genus Fusarium is discussed along with a proposed role of the FDDPs as pathogen virulence factors.
Collapse
Affiliation(s)
- Carmen Hicks
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Thomas E Witte
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Amanda Sproule
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Anne Hermans
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Samuel W Shields
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Ronan Colquhoun
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Chris Blackman
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Christopher N Boddy
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Rajagopal Subramaniam
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - David P Overy
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
10
|
Liu N, Liu C, Song Y, Han X, Zhang G, Feng Z, Wang B, Bu Y, Ou J, Gong Y. Genome and Transcriptome Analysis of Ascochyta pisi Provides Insights into the Pathogenesis of Ascochyta Blight of Pea. Microbiol Spectr 2023; 11:e0448822. [PMID: 36645309 PMCID: PMC9927284 DOI: 10.1128/spectrum.04488-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023] Open
Abstract
Ascochyta blight caused by Ascochyta pisi is a major constraint to pea (Pisum sativum L.) production worldwide. Deciphering the pathogenic mechanism of A. pisi on peas will help in breeding resistant pea varieties and developing effective approaches for disease management. However, little is known about the genomic features and pathogenic factors of A. pisi. In this study, we first report that A. pisi is one of the causal agents of ascochyta blight disease of pea in China. The genome of the representative isolate A. pisi HNA23 was sequenced using PacBio and Illumina sequencing technologies. The HNA23 genome assembly is almost 41.5 Mb in size and harbors 10,796 putative protein-encoding genes. We predicted 555 carbohydrate-active enzymes (CAZymes), 1,008 secreted proteins, 74 small secreted cysteine-rich proteins (SSCPs), and 26 secondary metabolite biosynthetic gene clusters (SMGCs). A comparison of A. pisi genome features with the features of 6 other available genomes of Ascochyta species showed that CAZymes, the secretome, and SMGCs of this genus are considerably conserved. Importantly, the transcriptomes of HNA23 during infection of peas at three stages were further analyzed. We found that 245 CAZymes and 29 SSCPs were upregulated at all three tested infection stages. SMGCs were also trigged, but most of them were induced at only one stage of infection. Together, our results provide important genomic information on Ascochyta spp. and offer insights into the pathogenesis of A. pisi. IMPORTANCE Ascochyta blight is a major disease of legumes worldwide. Ascochyta pisi and other Ascochyta species have been identified as pathogens of ascochyta blight. Here, we first report that A. pisi causes ascochyta blight of pea in China, and we report the high-quality, fully annotated genome of A. pisi. Comparative genome analysis was performed to elucidate the differences and similarities among 7 Ascochyta species. We predict abundant CAZymes (569 per species), secreted proteins (851 per species), and prolific secondary metabolite gene clusters (29 per species) in these species. We identified a set of genes that may be responsible for fungal virulence based on transcriptomes in planta, including CAZymes, SSCPs, and secondary metabolites. The findings from the comparative genome analysis highlight the genetic diversity and help in understanding the evolutionary relationship of Ascochyta species. In planta transcriptome analysis provides reliable information for further investigation of the mechanism of the interaction between Ascochyta spp. and legumes.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chao Liu
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Yajing Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xingmin Han
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Guwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhijuan Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Bin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuanpeng Bu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinwen Ou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaming Gong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Oliveira L, Chevrollier N, Dallery JF, O'Connell RJ, Lebrun MH, Viaud M, Lespinet O. CusProSe: a customizable protein annotation software with an application to the prediction of fungal secondary metabolism genes. Sci Rep 2023; 13:1417. [PMID: 36697464 PMCID: PMC9876896 DOI: 10.1038/s41598-023-27813-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
We report here a new application, CustomProteinSearch (CusProSe), whose purpose is to help users to search for proteins of interest based on their domain composition. The application is customizable. It consists of two independent tools, IterHMMBuild and ProSeCDA. IterHMMBuild allows the iterative construction of Hidden Markov Model (HMM) profiles for conserved domains of selected protein sequences, while ProSeCDA scans a proteome of interest against an HMM profile database, and annotates identified proteins using user-defined rules. CusProSe was successfully used to identify, in fungal genomes, genes encoding key enzyme families involved in secondary metabolism, such as polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), hybrid PKS-NRPS and dimethylallyl tryptophan synthases (DMATS), as well as to characterize distinct terpene synthases (TS) sub-families. The highly configurable characteristics of this application makes it a generic tool, which allows the user to refine the function of predicted proteins, to extend detection to new enzymes families, and may also be applied to biological systems other than fungi and to other proteins than those involved in secondary metabolism.
Collapse
Affiliation(s)
- Leonor Oliveira
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France.
| | - Nicolas Chevrollier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France.,Orphanet-INSERM, US14, Plateforme des Maladies Rares, Paris, France
| | - Jean-Felix Dallery
- Université Paris-Saclay, INRAE, UR BIOGER, 78850, Thiverval-Grignon, France
| | | | - Marc-Henri Lebrun
- Université Paris-Saclay, INRAE, UR BIOGER, 78850, Thiverval-Grignon, France
| | - Muriel Viaud
- Université Paris-Saclay, INRAE, UR BIOGER, 78850, Thiverval-Grignon, France
| | - Olivier Lespinet
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Tu Q, Wang L, An Q, Shuai J, Xia X, Dong Y, Zhang X, Li G, He Y. Comparative transcriptomics identifies the key in planta-expressed genes of Fusarium graminearum during infection of wheat varieties. Front Genet 2023; 14:1166832. [PMID: 37144121 PMCID: PMC10151574 DOI: 10.3389/fgene.2023.1166832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Fusarium head blight (FHB), caused mainly by the fungus Fusarium graminearum, is one of the most devastating diseases in wheat, which reduces the yield and quality of grain. Fusarium graminearum infection of wheat cells triggers dynamic changes of gene expression in both F. graminearum and wheat, leading to molecular interactions between pathogen and host. The wheat plant in turn activates immune signaling or host defense pathways against FHB. However, the mechanisms by which F. graminearum infects wheat varieties with different levels of host resistance are largely limited. In this study, we conducted a comparative analysis of the F. graminearum transcriptome in planta during the infection of susceptible and resistant wheat varieties at three timepoints. A total of 6,106 F. graminearum genes including those functioning in cell wall degradation, synthesis of secondary metabolites, virulence, and pathogenicity were identified during the infection of different hosts, which were regulated by hosts with different genetic backgrounds. Genes enriched with metabolism of host cell wall components and defense response processes were specifically dynamic during the infection with different hosts. Our study also identified F. graminearum genes that were specifically suppressed by signals derived from the resistant plant host. These genes may represent direct targets of the plant defense against infection by this fungus. Briefly, we generated databases of in planta-expressed genes of F. graminearum during infection of two different FHB resistance level wheat varieties, highlighted their dynamic expression patterns and functions of virulence, invasion, defense response, metabolism, and effector signaling, providing valuable insight into the interactions between F. graminearum and susceptible/resistant wheat varieties.
Collapse
Affiliation(s)
- Qiang Tu
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Lirong Wang
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Qi An
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Jie Shuai
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xiaobo Xia
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yifan Dong
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xu Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Gang Li, ; Yi He,
| | - Yi He
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- *Correspondence: Gang Li, ; Yi He,
| |
Collapse
|
13
|
Sharma T, Sridhar PS, Blackman C, Foote SJ, Allingham JS, Subramaniam R, Loewen MC. Fusarium graminearum Ste3 G-Protein Coupled Receptor: A Mediator of Hyphal Chemotropism and Pathogenesis. mSphere 2022; 7:e0045622. [PMID: 36377914 PMCID: PMC9769807 DOI: 10.1128/msphere.00456-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Fungal hyphal chemotropism has been shown to be a major contributor to host-pathogen interactions. Previous studies on Fusarium species have highlighted the involvement of the Ste2 G-protein-coupled receptor (GPCR) in mediating polarized hyphal growth toward host-released peroxidase. Here, the role of the opposite mating type GPCR, Ste3, is characterized with respect to Fusarium graminearum chemotropism and pathogenicity. Fgste3Δ deletion strains were found to be compromised in the chemotropic response toward peroxidase, development of lesions on germinating wheat, and infection of Arabidopsis thaliana leaves. In the absence of FgSte3 or FgSte2, F. graminearum cells exposed to peroxidase showed no phosphorylation of the cell-wall integrity, mitogen-activated protein kinase pathway component Mgv1. In addition, transcriptomic gene expression profiling yielded a list of genes involved in cellular reorganization, cell wall remodeling, and infection-mediated responses that were differentially modulated by peroxidase when FgSte3 was present. Deletion of FgSte3 yielded the downregulation of genes associated with mycotoxin biosynthesis and appressorium development, compared to the wild-type strain, both in the presence of peroxidase. Together, these findings contribute to our understanding of the mechanism underlying fungal chemotropism and pathogenesis while raising the novel hypothesis that FgSte2 and FgSte3 are interdependent on each other for the mediation of the redirection of hyphal growth in response to host-derived peroxidase. IMPORTANCE Fusarium head blight of wheat, caused by the filamentous fungus Fusarium graminearum, leads to devastating global food shortages and economic losses. Fungal hyphal chemotropism has been shown to be a major contributor to host-pathogen interactions. Here, the role of the opposite mating type GPCR, Ste3, is characterized with respect to F. graminearum chemotropism and pathogenicity. These findings contribute to our understanding of the mechanisms underlying fungal chemotropism and pathogenesis.
Collapse
Affiliation(s)
- Tanya Sharma
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Pooja S. Sridhar
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Christopher Blackman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Simon J. Foote
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, Ontario, Canada
| | - John S. Allingham
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Rajagopal Subramaniam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Michele C. Loewen
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
14
|
Seidl B, Rehak K, Bueschl C, Parich A, Buathong R, Wolf B, Doppler M, Mitterbauer R, Adam G, Khewkhom N, Wiesenberger G, Schuhmacher R. Gramiketides, Novel Polyketide Derivatives of Fusarium graminearum, Are Produced during the Infection of Wheat. J Fungi (Basel) 2022; 8:1030. [PMID: 36294594 PMCID: PMC9605136 DOI: 10.3390/jof8101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
The plant pathogen Fusarium graminearum is a proficient producer of mycotoxins and other in part still unknown secondary metabolites, some of which might act as virulence factors on wheat. The PKS15 gene is expressed only in planta, so far hampering the identification of an associated metabolite. Here we combined the activation of silent gene clusters by chromatin manipulation (kmt6) with blocking the metabolic flow into the competing biosynthesis of the two major mycotoxins deoxynivalenol and zearalenone. Using an untargeted metabolomics approach, two closely related metabolites were found in triple mutants (kmt6 tri5 pks4,13) deficient in production of the major mycotoxins deoxynivalenol and zearalenone, but not in strains with an additional deletion in PKS15 (kmt6 tri5 pks4,13 pks15). Characterization of the metabolites, by LC-HRMS/MS in combination with a stable isotope-assisted tracer approach, revealed that they are likely hybrid polyketides comprising a polyketide part consisting of malonate-derived acetate units and a structurally deviating part. We propose the names gramiketide A and B for the two metabolites. In a biological experiment, both gramiketides were formed during infection of wheat ears with wild-type but not with pks15 mutants. The formation of the two gramiketides during infection correlated with that of the well-known virulence factor deoxynivalenol, suggesting that they might play a role in virulence.
Collapse
Affiliation(s)
- Bernhard Seidl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Katrin Rehak
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Alexandra Parich
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Raveevatoo Buathong
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Ngamwongwan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Bernhard Wolf
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Maria Doppler
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Rudolf Mitterbauer
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Netnapis Khewkhom
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Ngamwongwan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| |
Collapse
|
15
|
Sayari M, Dolatabadian A, El-Shetehy M, Rehal PK, Daayf F. Genome-Based Analysis of Verticillium Polyketide Synthase Gene Clusters. BIOLOGY 2022; 11:biology11091252. [PMID: 36138731 PMCID: PMC9495618 DOI: 10.3390/biology11091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Fungi can produce many types of secondary metabolites, including mycotoxins. Poisonous mushrooms and mycotoxins that cause food spoilage have been known for a very long time. For example, Aspergillus flavus, which can grow on grains and nuts, produces highly toxic substances called Aflatoxins. Despite their menace to other living organisms, mycotoxins can be used for medicinal purposes, i.e., as antibiotics, growth-promoting compounds, and other kinds of drugs. These and other secondary metabolites produced by plant-pathogenic fungi may cause host plants to display disease symptoms and may play a substantial role in disease progression. Therefore, the identification and characterization of the genes involved in their biosynthesis are essential for understanding the molecular mechanism involved in their biosynthetic pathways and further promoting sustainable knowledge-based crop production. Abstract Polyketides are structurally diverse and physiologically active secondary metabolites produced by many organisms, including fungi. The biosynthesis of polyketides from acyl-CoA thioesters is catalyzed by polyketide synthases, PKSs. Polyketides play roles including in cell protection against oxidative stress, non-constitutive (toxic) roles in cell membranes, and promoting the survival of the host organisms. The genus Verticillium comprises many species that affect a wide range of organisms including plants, insects, and other fungi. Many are known as causal agents of Verticillium wilt diseases in plants. In this study, a comparative genomics approach involving several Verticillium species led us to evaluate the potential of Verticillium species for producing polyketides and to identify putative polyketide biosynthesis gene clusters. The next step was to characterize them and predict the types of polyketide compounds they might produce. We used publicly available sequences from ten species of Verticillium including V. dahliae, V. longisporum, V. nonalfalfae, V. alfalfae, V. nubilum, V. zaregamsianum, V. klebahnii, V. tricorpus, V. isaacii, and V. albo-atrum to identify and characterize PKS gene clusters by utilizing a range of bioinformatic and phylogenetic approaches. We found 32 putative PKS genes and possible clusters in the genomes of Verticillium species. All the clusters appear to be complete and functional. In addition, at least five clusters including putative DHN-melanin-, cytochalasin-, fusarielien-, fujikurin-, and lijiquinone-like compounds may belong to the active PKS repertoire of Verticillium. These results will pave the way for further functional studies to understand the role of these clusters.
Collapse
Affiliation(s)
- Mohammad Sayari
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Mohamed El-Shetehy
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Pawanpuneet Kaur Rehal
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Fouad Daayf
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
- Correspondence:
| |
Collapse
|
16
|
Characterization of Host-Specific Genes from Pine- and Grass-Associated Species of the Fusarium fujikuroi Species Complex. Pathogens 2022; 11:pathogens11080858. [PMID: 36014979 PMCID: PMC9415769 DOI: 10.3390/pathogens11080858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The Fusarium fujikuroi species complex (FFSC) includes socioeconomically important pathogens that cause disease for numerous crops and synthesize a variety of secondary metabolites that can contaminate feedstocks and food. Here, we used comparative genomics to elucidate processes underlying the ability of pine-associated and grass-associated FFSC species to colonize tissues of their respective plant hosts. We characterized the identity, possible functions, evolutionary origins, and chromosomal positions of the host-range-associated genes encoded by the two groups of fungi. The 72 and 47 genes identified as unique to the respective genome groups were potentially involved in diverse processes, ranging from transcription, regulation, and substrate transport through to virulence/pathogenicity. Most genes arose early during the evolution of Fusarium/FFSC and were only subsequently retained in some lineages, while some had origins outside Fusarium. Although differences in the densities of these genes were especially noticeable on the conditionally dispensable chromosome of F. temperatum (representing the grass-associates) and F. circinatum (representing the pine-associates), the host-range-associated genes tended to be located towards the subtelomeric regions of chromosomes. Taken together, these results demonstrate that multiple mechanisms drive the emergence of genes in the grass- and pine-associated FFSC taxa examined. It also highlighted the diversity of the molecular processes potentially underlying niche-specificity in these and other Fusarium species.
Collapse
|
17
|
Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts. Nat Microbiol 2022; 7:831-843. [PMID: 35618775 DOI: 10.1038/s41564-022-01131-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
Abstract
Plant-pathogenic fungi form intimate interactions with their associated bacterial microbiota during their entire life cycle. However, little is known about the structure, functions and interaction mechanisms of bacterial communities associated with fungal fruiting bodies (perithecia). Here we examined the bacterial microbiome of perithecia formed by Fusarium graminearum, the major pathogenic fungus causing Fusarium head blight in cereals. A total of 111 shared bacterial taxa were identified in the microbiome of 65 perithecium samples collected from 13 geographic locations. Within a representative culture collection, 113 isolates exhibited antagonistic activity against F. graminearum, with Pantoea agglomerans ZJU23 being the most efficient in reducing fungal growth and infectivity. Herbicolin A was identified as the key antifungal compound secreted by ZJU23. Genetic and chemical approaches led to the discovery of its biosynthetic gene cluster. Herbicolin A showed potent in vitro and in planta efficacy towards various fungal pathogens and fungicide-resistant isolates, and exerted a fungus-specific mode of action by directly binding and disrupting ergosterol-containing lipid rafts. Furthermore, herbicolin A exhibited substantially higher activity (between 5- and 141-fold higher) against the human opportunistic fungal pathogens Aspergillus fumigatus and Candida albicans in comparison with the clinically used fungicides amphotericin B and fluconazole. Its mode of action, which is distinct from that of other antifungal drugs, and its efficacy make herbicolin A a promising antifungal drug to combat devastating fungal pathogens, both in agricultural and clinical settings.
Collapse
|
18
|
Shin YK, Kim DW, Lee SW, Lee MJ, Gi Baek S, Lee T, Yun SH. Functional roles of all five putative hydrophobin genes in growth, development and secondary metabolism in Fusarium graminearum. Fungal Genet Biol 2022; 160:103683. [DOI: 10.1016/j.fgb.2022.103683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 11/04/2022]
|
19
|
Zhao Y, Sun H, Li J, Ju C, Huang J. The Transcription Factor FgAtrR Regulates Asexual and Sexual Development, Virulence, and DON Production and Contributes to Intrinsic Resistance to Azole Fungicides in Fusarium graminearum. BIOLOGY 2022; 11:biology11020326. [PMID: 35205191 PMCID: PMC8869466 DOI: 10.3390/biology11020326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
Simple Summary Fusarium graminearum is a devastating plant pathogen that can cause wheat head blight. Azole fungicides are commonly used chemicals for control of this disease. However, F. graminearum strains resistant to these fungicides have emerged. To better understand the azole resistance mechanism of F. graminearum, we identified and characterized the Zn(II)2-Cys6 transcription factor FgAtrR in F. graminearum. We found that FgAtrR played critical roles in vegetative growth, conidia production, perithecium formation, and virulence on wheat heads and corn silks. FgAtrR was also involved in the resistance to azole antifungals by regulating the expression of the drug target FgCYP51s and efflux pump transporters. These results broadened our understanding of the azole resistance mechanisms of F. graminearum. Abstract Fusarium graminearum is the predominant causal agent of cereal Fusarium head blight disease (FHB) worldwide. The application of chemical fungicides such as azole antifungals is still the primary method for FHB control. However, to date, our knowledge of transcriptional regulation in the azole resistance of F. graminearum is quite limited. In this study, we identified and functionally characterized a Zn(II)2-Cys6 transcription factor FgAtrR in F. graminearum. We constructed a FgAtrR deletion mutant and found that deletion of FgAtrR resulted in faster radial growth with serious pigmentation defects, significantly reduced conidial production, and an inability to form perithecia. The pathogenicity of the ΔFgAtrR mutant on wheat spikes and corn silks was severely impaired with reduced deoxynivalenol production, while the tolerance to prochloraz and propiconazole of the deletion mutant was also significantly decreased. RNA-seq indicated that many metabolic pathways were affected by the deletion of FgAtrR. Importantly, FgAtrR could regulate the expression of the FgCYP51A and ABC transporters, which are the main contributors to azole resistance. These results demonstrated that FgAtrR played essential roles in asexual and sexual development, DON production, and pathogenicity, and contributed to intrinsic resistance to azole fungicides in F. graminearum. This study will help us improve the understanding of the azole resistance mechanism in F. graminearum.
Collapse
|
20
|
Ding Y, Gardiner DM, Kazan K. Transcriptome analysis reveals infection strategies employed by Fusarium graminearum as a root pathogen. Microbiol Res 2021; 256:126951. [PMID: 34972022 DOI: 10.1016/j.micres.2021.126951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/27/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
The fungal pathogen Fusarium graminearum (Fg) infects both heads and roots of cereal crops causing several economically important diseases such as head blight, seedling blight, crown rot and root rot. Trichothecene mycotoxins such as deoxynivalenol (DON), a well-known virulence factor, produced by Fg during disease development is also an important health concern. Although how Fg infects above-ground tissues is relatively well studied, very little is known about molecular processes employed by the pathogen during below-ground infection. Also unknown is the role of DON during root infection. In the present study, we analyzed the transcriptome of Fg during root infection of the model cereal Brachypodium distachyon (Bd). We also compared our Fg transcriptome data obtained during Bd root infection with those reported during wheat head infection. These analyses suggested that both shared and unique infection strategies were employed by the pathogen during colonization of different host tissues. Several metabolite biosynthesis genes induced in Fg during root infection could be linked to phytohormone production, implying that the pathogen likely interferes with root specific defenses. In addition, to understand the role of DON in Fg root infection, we analyzed the transcriptome of the DON deficient Tri5 mutant. These analyses showed that the absence of DON had a significant effect on fungal transcriptional responses. Although DON was produced in infected roots, this mycotoxin did not act as a Fg virulence factor during root infection. Our results reveal new mechanistic insights into the below-ground strategies employed by Fg that may benefit the development of new genetic tools to combat this important cereal pathogen.
Collapse
Affiliation(s)
- Yi Ding
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, 2570, New South Wales, Australia; Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 306 Carmody Road, St Lucia, 4067, Queensland, Australia.
| | - Donald M Gardiner
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, St Lucia, 4067, Queensland, Australia; Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 306 Carmody Road, St Lucia, 4067, Queensland, Australia
| | - Kemal Kazan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, St Lucia, 4067, Queensland, Australia; Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 306 Carmody Road, St Lucia, 4067, Queensland, Australia.
| |
Collapse
|
21
|
Filho JAF, Rosolen RR, Almeida DA, de Azevedo PHC, Motta MLL, Aono AH, dos Santos CA, Horta MAC, de Souza AP. Trends in biological data integration for the selection of enzymes and transcription factors related to cellulose and hemicellulose degradation in fungi. 3 Biotech 2021; 11:475. [PMID: 34777932 PMCID: PMC8548487 DOI: 10.1007/s13205-021-03032-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fungi are key players in biotechnological applications. Although several studies focusing on fungal diversity and genetics have been performed, many details of fungal biology remain unknown, including how cellulolytic enzymes are modulated within these organisms to allow changes in main plant cell wall compounds, cellulose and hemicellulose, and subsequent biomass conversion. With the advent and consolidation of DNA/RNA sequencing technology, different types of information can be generated at the genomic, structural and functional levels, including the gene expression profiles and regulatory mechanisms of these organisms, during degradation-induced conditions. This increase in data generation made rapid computational development necessary to deal with the large amounts of data generated. In this context, the origination of bioinformatics, a hybrid science integrating biological data with various techniques for information storage, distribution and analysis, was a fundamental step toward the current state-of-the-art in the postgenomic era. The possibility of integrating biological big data has facilitated exciting discoveries, including identifying novel mechanisms and more efficient enzymes, increasing yields, reducing costs and expanding opportunities in the bioprocess field. In this review, we summarize the current status and trends of the integration of different types of biological data through bioinformatics approaches for biological data analysis and enzyme selection.
Collapse
Affiliation(s)
- Jaire A. Ferreira Filho
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Rafaela R. Rosolen
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Deborah A. Almeida
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Paulo Henrique C. de Azevedo
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Maria Lorenza L. Motta
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Alexandre H. Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Clelton A. dos Santos
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | - Maria Augusta C. Horta
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Anete P. de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Department of Plant Biology, Institute of Biology, UNICAMP, Universidade Estadual de Campinas, Campinas, SP 13083-875 Brazil
| |
Collapse
|
22
|
Tang G, Yuan J, Wang J, Zhang YZ, Xie SS, Wang H, Tao Z, Liu H, Kistler HC, Zhao Y, Duan CG, Liu W, Ma Z, Chen Y. Fusarium BP1 is a reader of H3K27 methylation. Nucleic Acids Res 2021; 49:10448-10464. [PMID: 34570240 PMCID: PMC8501951 DOI: 10.1093/nar/gkab844] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Histone H3 lysine 27 methylation catalyzed by polycomb repressive complex 2 (PRC2) is conserved from fungi to humans and represses gene transcription. However, the mechanism for recognition of methylated H3K27 remains unclear, especially in fungi. Here, we found that the bromo-adjacent homology (BAH)-plant homeodomain (PHD) domain containing protein BAH–PHD protein 1 (BP1) is a reader of H3K27 methylation in the cereal fungal pathogen Fusarium graminearum. BP1 interacts with the core PRC2 component Suz12 and directly binds methylated H3K27. BP1 is distributed in a subset of genomic regions marked by H3K27me3 and co-represses gene transcription. The BP1 deletion mutant shows identical phenotypes on mycelial growth and virulence, as well as similar expression profiles of secondary metabolite genes to the strain lacking the H3K27 methyltransferase Kmt6. More importantly, BP1 can directly bind DNA through its PHD finger, which might increase nucleosome residence and subsequently reinforce transcriptional repression in H3K27me3-marked target regions. A phylogenetic analysis showed that BP1 orthologs are mainly conserved in fungi. Overall, our findings provide novel insights into the mechanism by which PRC2 mediates gene repression in fungi, which is distinct from the PRC1-PRC2 system in plants and mammals.
Collapse
Affiliation(s)
- Guangfei Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianlong Yuan
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jing Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi-Zhe Zhang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Si-Si Xie
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, Northwest A&F University, Yangling 712100, China
| | - H Corby Kistler
- Cereal Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, Saint Paul, MN 55108, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Bachleitner S, Sulyok M, Sørensen JL, Strauss J, Studt L. The H4K20 methyltransferase Kmt5 is involved in secondary metabolism and stress response in phytopathogenic Fusarium species. Fungal Genet Biol 2021; 155:103602. [PMID: 34214671 DOI: 10.1016/j.fgb.2021.103602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
Fusarium fujikuroi and Fusarium graminearum are agronomically important plant pathogens, both infecting important staple food plants and thus leading to huge economic losses worldwide. F.fujikuroi belongs to the Fusarium fujikuroi species complex (FFSC) and causes bakanae disease on rice, whereas F.graminearum, a member of the Fusarium graminearum species complex (FGSC), is the causal agent of Fusarium Head Blight (FHB) disease on wheat, barley and maize. In recent years, the importance of chromatin regulation became evident in the plant-pathogen interaction. Several processes, including posttranslational modifications of histones, have been described as regulators of virulence and the biosynthesis of secondary metabolites. In this study, we have functionally characterised methylation of lysine 20 histone 4 (H4K20me) in both Fusarium species. We identified the respective genes solely responsible for H4K20 mono-, di- and trimethylation in F.fujikuroi (FfKMT5) and F.graminearum (FgKMT5). We show that loss of Kmt5 affects colony growth in F.graminearum while this is not the case for F.fujikuroi. Similarly, FgKmt5 is required for full virulence in F.graminearum as Δfgkmt5 is hypovirulent on wheat, whereas the F.fujikuroi Δffkmt5 strain did not deviate from the wild type during rice infection. Lack of Kmt5 had distinct effects on the secondary metabolism in both plant pathogens with the most pronounced effects on fusarin biosynthesis in F.fujikuroi and zearalenone biosynthesis in F.graminearum. Next to this, loss of Kmt5 resulted in an increased tolerance towards oxidative and osmotic stress in both species.
Collapse
Affiliation(s)
- Simone Bachleitner
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, Tulln 3430, Austria
| | - Jens Laurids Sørensen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, DK-9000 Aalborg, Denmark
| | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Lena Studt
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
24
|
Rush TA, Shrestha HK, Gopalakrishnan Meena M, Spangler MK, Ellis JC, Labbé JL, Abraham PE. Bioprospecting Trichoderma: A Systematic Roadmap to Screen Genomes and Natural Products for Biocontrol Applications. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:716511. [PMID: 37744103 PMCID: PMC10512312 DOI: 10.3389/ffunb.2021.716511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 09/26/2023]
Abstract
Natural products derived from microbes are crucial innovations that would help in reaching sustainability development goals worldwide while achieving bioeconomic growth. Trichoderma species are well-studied model fungal organisms used for their biocontrol properties with great potential to alleviate the use of agrochemicals in agriculture. However, identifying and characterizing effective natural products in novel species or strains as biological control products remains a meticulous process with many known challenges to be navigated. Integration of recent advancements in various "omics" technologies, next generation biodesign, machine learning, and artificial intelligence approaches could greatly advance bioprospecting goals. Herein, we propose a roadmap for assessing the potential impact of already known or newly discovered Trichoderma species for biocontrol applications. By screening publicly available Trichoderma genome sequences, we first highlight the prevalence of putative biosynthetic gene clusters and antimicrobial peptides among genomes as an initial step toward predicting which organisms could increase the diversity of natural products. Next, we discuss high-throughput methods for screening organisms to discover and characterize natural products and how these findings impact both fundamental and applied research fields.
Collapse
Affiliation(s)
- Tomás A. Rush
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Him K. Shrestha
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Margaret K. Spangler
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - J. Christopher Ellis
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Jesse L. Labbé
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Paul E. Abraham
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
25
|
Westphal KR, Bachleitner S, Severinsen MM, Brundtø ML, Hansen FT, Sørensen T, Wollenberg RD, Lysøe E, Studt L, Sørensen JL, Sondergaard TE, Wimmer R. Cyclic, Hydrophobic Hexapeptide Fusahexin Is the Product of a Nonribosomal Peptide Synthetase in Fusarium graminearum. JOURNAL OF NATURAL PRODUCTS 2021; 84:2070-2080. [PMID: 34292732 DOI: 10.1021/acs.jnatprod.0c00947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The plant pathogenic fungus Fusarium graminearum is known to produce a wide array of secondary metabolites during plant infection. This includes several nonribosomal peptides. Recently, the fusaoctaxin (NRPS5/9) and gramilin (NRPS8) gene clusters were shown to be induced by host interactions. To widen our understanding of this important pathogen, we investigated the involvement of the NRPS4 gene cluster during infection and oxidative and osmotic stress. Overexpression of NRPS4 led to the discovery of a new cyclic hexapeptide, fusahexin (1), with the amino acid sequence cyclo-(d-Ala-l-Leu-d-allo-Thr-l-Pro-d-Leu-l-Leu). The structural analyses revealed an unusual ether bond between a proline Cδ to Cβ of the preceding threonine resulting in an oxazine ring system. The comparative genomic analyses showed that the small gene cluster only encodes an ABC transporter in addition to the five-module nonribosomal peptide synthetase (NRPS). Based on the structure of fusahexin and the domain architecture of NRPS4, we propose a biosynthetic model in which the terminal module is used to incorporate two leucine units. So far, iterative use of NRPS modules has primarily been described for siderophore synthetases, which makes NRPS4 a rare example of a fungal nonsiderophore NRPS with distinct iterative module usage.
Collapse
Affiliation(s)
- Klaus R Westphal
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Simone Bachleitner
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Manja M Severinsen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Mathias L Brundtø
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Frederik T Hansen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Rasmus D Wollenberg
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, NO-1433 Ås, Norway
| | - Lena Studt
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Jens L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, DK-6700 Esbjerg, Denmark
| | - Teis E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| |
Collapse
|
26
|
Havenga M, Wingfield BD, Wingfield MJ, Dreyer LL, Roets F, Aylward J. Genetic response to nitrogen starvation in the aggressive Eucalyptus foliar pathogen Teratosphaeria destructans. Curr Genet 2021; 67:981-990. [PMID: 34432124 DOI: 10.1007/s00294-021-01208-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/20/2021] [Accepted: 08/21/2021] [Indexed: 12/13/2022]
Abstract
Teratosphaeria destructans is one of the most aggressive foliar pathogens of Eucalyptus. The biological factors underpinning T. destructans infections, which include shoot and leaf blight on young trees, have never been interrogated. Thus, the means by which the pathogen modifies its host environment to overcome host defences remain unknown. By applying transcriptome sequencing, the aim of this study was to compare gene expression in a South African isolate of T. destructans grown on nitrogen-deficient and complete media. This made it possible to identify upregulated genes in a nitrogen-starved environment, often linked to the pathogenicity of the fungus. The results support the hypothesis that nitrogen starvation in T. destructans likely mirrors an in planta genetic response. This is because 45% of genes that were highly upregulated under nitrogen starvation have previously been reported to be associated with infection in other pathogen systems. These included several CAZymes, fungal effector proteins, peptidases, kinases, toxins, lipases and proteins associated with detoxification of toxic compounds. Twenty-five secondary metabolites were identified and expressed in both nitrogen-deficient and complete conditions. Additionally, the most highly expressed genes in both growth conditions had pathogenicity-related functions. This study highlights the large number of expressed genes associated with pathogenicity and overcoming plant defences. As such, the generated baseline knowledge regarding pathogenicity and aggressiveness in T. destructans is a valuable reference for future in planta work.
Collapse
Affiliation(s)
- Minette Havenga
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa. .,Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa.
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Léanne L Dreyer
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.,Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
27
|
Yang Q, Wang W, Lin Y, Lin Y, Tang Z, Wang J, Tao J, Tang W, Liu W. Characterization of a carboxyl methyltransferase in Fusarium graminearum provides insights into the biosynthesis of fusarin A. Org Biomol Chem 2021; 19:6638-6643. [PMID: 34195739 DOI: 10.1039/d1ob01010g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fusarium graminearum is a major fungal pathogen that causes a series of devastating crop diseases by producing a variety of mycotoxins. Fusarins are a class of polyketide-nonribosomal peptide hybrids. In Fusarium mycotoxins, a variable 2-pyrrolidone ring conjugates with a polyene chain substituted with a methyl ester moiety. The enzymatic route through which fusarin A, a major member of the fusarin family with a characteristic tetrohydrofuran-coupled pyrrolidone ring, is formed in F. graminearum has not been established. By targeting the final step in the biosynthesis of fusarin A, we report here an S-adenosyl methionine-dependent carboxyl methyltransferase responsible for the formation of the methyl ester moiety by in vivo gene inactivation, isolation and characterization of a key fusarin intermediate, and in vitro biochemical characterization. Related findings provide insights into the poorly understood biosynthetic pathway of fusarin A. Additionally, bioactivity assays demonstrate that the methyl ester is necessary for fusarin cytotoxicity.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Wanqiu Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Yueting Lin
- Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Yuqi Lin
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Jiang Tao
- Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China. and Laboratory of Oral Microbiota and Systemic Disease, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weihua Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. and Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
28
|
Comparative Genomics of Eight Fusarium graminearum Strains with Contrasting Aggressiveness Reveals an Expanded Open Pangenome and Extended Effector Content Signatures. Int J Mol Sci 2021; 22:ijms22126257. [PMID: 34200775 PMCID: PMC8230406 DOI: 10.3390/ijms22126257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/25/2023] Open
Abstract
Fusarium graminearum, the primary cause of Fusarium head blight (FHB) in small-grain cereals, demonstrates remarkably variable levels of aggressiveness in its host, producing different infection dynamics and contrasted symptom severity. While the secreted proteins, including effectors, are thought to be one of the essential components of aggressiveness, our knowledge of the intra-species genomic diversity of F. graminearum is still limited. In this work, we sequenced eight European F. graminearum strains of contrasting aggressiveness to characterize their respective genome structure, their gene content and to delineate their specificities. By combining the available sequences of 12 other F. graminearum strains, we outlined a reference pangenome that expands the repertoire of the known genes in the reference PH-1 genome by 32%, including nearly 21,000 non-redundant sequences and gathering a common base of 9250 conserved core-genes. More than 1000 genes with high non-synonymous mutation rates may be under diverse selection, especially regarding the trichothecene biosynthesis gene cluster. About 900 secreted protein clusters (SPCs) have been described. Mostly localized in the fast sub-genome of F. graminearum supposed to evolve rapidly to promote adaptation and rapid responses to the host's infection, these SPCs gather a range of putative proteinaceous effectors systematically found in the core secretome, with the chloroplast and the plant nucleus as the main predicted targets in the host cell. This work describes new knowledge on the intra-species diversity in F. graminearum and emphasizes putative determinants of aggressiveness, providing a wealth of new candidate genes potentially involved in the Fusarium head blight disease.
Collapse
|
29
|
Laurent B, Moinard M, Spataro C, Chéreau S, Zehraoui E, Blanc R, Lasserre P, Ponts N, Foulongne-Oriol M. QTL mapping in Fusarium graminearum identified an allele of FgVe1 involved in reduced aggressiveness. Fungal Genet Biol 2021; 153:103566. [PMID: 33991664 DOI: 10.1016/j.fgb.2021.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Fusarium graminearum is one of the most frequent causal agents of the Fusarium Head Blight, a cereal disease spread throughout the world, reducing grain production and quality. F. graminearum isolates are genetically and phenotypically highly diverse. Notably, remarkable variations of aggressiveness between isolates have been observed, which could reflect an adaptive potential of this pathogen. In this study, we aimed to characterize the genetic basis of aggressiveness variation observed in an F1 population (n = 94), for which genome sequences of both parental strains are available. Aggressiveness was assessed by a panel of in planta and in vitro proxies during two phenotyping trials including, among others, disease severity and mycotoxin accumulation in wheat spike. One major and single QTL was mapped for all the traits measured, on chromosome I, that explained up to 90% of the variance for disease severity. The confidence interval at the QTL spanned 1.2 Mb and contained 428 genes on the reference genome. Of these, four candidates were selected based on the postulate that a non-synonymous mutation affecting protein function may be responsible for phenotypic differences. Finally, a new mutation was identified and functionally validated in the gene FgVe1, coding for a velvet protein known to be involved in pathogenicity and secondary metabolism production in several fungi.
Collapse
Affiliation(s)
| | | | | | | | - Enric Zehraoui
- INRAE, MycSA, F-33882 Villenave d'Ornon, France; Université de Bordeaux, INRAE, EGFV, F-33882 Villenave d'Ornon, France
| | - Richard Blanc
- INRAE, UCA, UMR 1095 GDEC, F-63100 Clermont-Ferrand, France
| | | | - Nadia Ponts
- INRAE, MycSA, F-33882 Villenave d'Ornon, France
| | | |
Collapse
|
30
|
Cui Y, Wu B, Peng A, Song X, Chen X. The Genome of Banana Leaf Blight Pathogen Fusarium sacchari str. FS66 Harbors Widespread Gene Transfer From Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2021; 12:629859. [PMID: 33613610 PMCID: PMC7889605 DOI: 10.3389/fpls.2021.629859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Fusarium species have been identified as pathogens causing many different plant diseases, and here we report an emerging banana leaf blight (BLB) caused by F. sacchari (Fs) discovered in Guangdong, China. From the symptomatic tissues collected in the field, a fungal isolate was obtained, which induced similar symptoms on healthy banana seedlings after inoculation. Koch's postulates were fulfilled after the re-isolation of the pathogen. Phylogenetic analysis on two gene segments and the whole genome sequence identified the pathogen belonging to Fs and named as Fs str. FS66. A 45.74 Mb genome of FS66 was acquired through de novo assembly using long-read sequencing data, and its contig N50 (1.97 Mb) is more than 10-fold larger than the previously available genome in the species. Based on transcriptome sequencing and ab initio gene annotation, a total of 14,486 protein-encoding genes and 418 non-coding RNAs were predicted. A total of 48 metabolite biosynthetic gene clusters including the fusaric acid biosynthesis gene cluster were predicted in silico in the FS66 genome. Comparison between FS66 and other 11 Fusarium genomes identified tens to hundreds of genes specifically gained and lost in FS66, including some previously correlated with Fusarium pathogenicity. The FS66 genome also harbors widespread gene transfer on the core chromosomes putatively from F. oxysporum species complex (FOSC), including 30 involved in Fusarium pathogenicity/virulence. This study not only reports the BLB caused by Fs, but also provides important information and clues for further understanding of the genome evolution among pathogenic Fusarium species.
Collapse
Affiliation(s)
- Yiping Cui
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bo Wu
- School of Computing, Clemson University, Clemson, SC, United States
| | - Aitian Peng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaobing Song
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xia Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
31
|
Saha P, Sarkar A, Sabnam N, Shirke MD, Mahesh HB, Nikhil A, Rajamani A, Gowda M, Roy-Barman S. Comparative analysis of secondary metabolite gene clusters in different strains of Magnaporthe oryzae. FEMS Microbiol Lett 2020; 368:6045507. [PMID: 33355334 DOI: 10.1093/femsle/fnaa216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Rice blast caused by Magnaporthe oryzae continues to be a major constraint in rice production worldwide. Rice is one of the staple crops in India and rice blast causes huge economic losses. Interestingly, the Indian subcontinent is the centre for origin and diversity of rice as well as the Magnaporthe species complex. Secondary metabolites are known to play important role in pathogenesis and M. oryzae has high potential of genes involved in secondary metabolism but, unfortunately most of them remain uncharacterized. In the present study, we analysed the draft genome assemblies of M. oryzae strains isolated from different parts of India, for putative secondary metabolite key gene (SMKG) clusters encoding polyketide synthases, non-ribosomal peptide synthetases, diterpene cyclases and dimethylallyl tryptophan synthase. Based on the complete genome sequence of 70-15 strain and its previous reports of identified SMKGs, we have identified the key genes for the interrogated strains. Expression analysis of these genes amongst different strains indicates how they have evolved depending on the host and environmental conditions. To our knowledge, this study is first of its kind where the secondary metabolism genes and their role in functional adaptation were studied across several strains of M. oryzae.
Collapse
Affiliation(s)
- Pallabi Saha
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Rd, A-zone, Durgapur, West Bengal-713209, India
| | - Atrayee Sarkar
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Rd, A-zone, Durgapur, West Bengal-713209, India
| | - Nazmiara Sabnam
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Rd, A-zone, Durgapur, West Bengal-713209, India.,Department of Life Sciences, Presidency University, 86/1 College street, Kolkata, West Bengal-700073, India
| | - Meghana D Shirke
- Centre for Functional Genomics and Bioinformatics, The University of Trans-Disciplinary Health Sciences and Technology, 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru-560064, India
| | - H B Mahesh
- Department of Genetics and Plant Breeding, College of Agriculture, V. C. Farm, Mandya, University of Agricultural Sciences, Bengaluru-560065, India
| | - Aman Nikhil
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Rd, A-zone, Durgapur, West Bengal-713209, India
| | - Anantharamanan Rajamani
- Genome Analysis Laboratory, Rubber Research Institute of India, Kottayam, Kerala-686009, India
| | - Malali Gowda
- Centre for Functional Genomics and Bioinformatics, The University of Trans-Disciplinary Health Sciences and Technology, 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru-560064, India
| | - Subhankar Roy-Barman
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Rd, A-zone, Durgapur, West Bengal-713209, India
| |
Collapse
|
32
|
Kim DW, Shin YK, Lee SW, Wimonmuang K, Kang KB, Lee YS, Yun SH. FgPKS7 is an essential player in mating-type-mediated regulatory pathway required for completing sexual cycle in Fusarium graminearum. Environ Microbiol 2020; 23:1972-1990. [PMID: 33169919 DOI: 10.1111/1462-2920.15305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/03/2020] [Indexed: 12/01/2022]
Abstract
Secondary metabolism is intimately linked to developmental processes in filamentous fungi. In a previous study, we revealed that several polyketide synthase (PKS) genes, including FgPKS7, are specifically induced during formation of the sexual fruiting body (perithecium) in the cereal pathogen Fusarium graminearum. The function of PKS7, which is essential for perithecial development and hyphal growth, is interchangeable between two phylogenetically related species, F. graminearum and F. asiaticum, but not conserved in the more distantly related species F. fujikuroi and F. neocosmosporiellum. FgPKS7 is under the control of global or upstream regulators including the mating-type (MAT) locus and regulates numerous downstream genes that are transcriptionally specific to and functionally essential for sexual development, several other PKS genes, and ABC transporter genes for azole resistance in F. graminearum. FgPKS7 is an essential element for proper sexual development and participates in a regulatory network controlled by the MAT locus. Although the chemical identity of FgPKS7 remains unclear, FgPKS7 is likely involved in chemical reaction(s) for synthesis of metabolite(s) that control or promote perithecial maturation in F. graminearum. This study provides in-depth insights into the direct role of secondary metabolites in sexual development of filamentous fungi.
Collapse
Affiliation(s)
- Da-Woon Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Yoo-Kyoung Shin
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sang-Won Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Kanphassorn Wimonmuang
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Young-Sang Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, Republic of Korea
| |
Collapse
|
33
|
Mentges M, Glasenapp A, Boenisch M, Malz S, Henrissat B, Frandsen RJ, Güldener U, Münsterkötter M, Bormann J, Lebrun M, Schäfer W, Martinez‐Rocha AL. Infection cushions of Fusarium graminearum are fungal arsenals for wheat infection. MOLECULAR PLANT PATHOLOGY 2020; 21:1070-1087. [PMID: 32573086 PMCID: PMC7368127 DOI: 10.1111/mpp.12960] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/07/2020] [Accepted: 05/09/2020] [Indexed: 05/22/2023]
Abstract
Fusarium graminearum is one of the most destructive plant pathogens worldwide, causing fusarium head blight (FHB) on cereals. F. graminearum colonizes wheat plant surfaces with specialized unbranched hyphae called runner hyphae (RH), which develop multicelled complex appressoria called infection cushions (IC). IC generate multiple penetration sites, allowing the fungus to enter the plant cuticle. Complex infection structures are typical for several economically important plant pathogens, yet with unknown molecular basis. In this study, RH and IC formed on the surface of wheat paleae were isolated by laser capture microdissection. RNA-Seq-based transcriptomic analyses were performed on RH and IC and compared to mycelium grown in complete medium (MY). Both RH and IC displayed a high number of infection up-regulated genes (982), encoding, among others, carbohydrate-active enzymes (CAZymes: 140), putative effectors (PE: 88), or secondary metabolism gene clusters (SMC: 12 of 67 clusters). RH specifically up-regulated one SMC corresponding to aurofusarin biosynthesis, a broad activity antibiotic. IC specifically up-regulated 248 genes encoding mostly putative virulence factors such as 7 SMC, including the mycotoxin deoxynivalenol and the newly identified fusaoctaxin A, 33 PE, and 42 CAZymes. Furthermore, we studied selected candidate virulence factors using cellular biology and reverse genetics. Hence, our results demonstrate that IC accumulate an arsenal of proven and putative virulence factors to facilitate the invasion of epidermal cells.
Collapse
Affiliation(s)
- Michael Mentges
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| | - Anika Glasenapp
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| | - Marike Boenisch
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| | - Sascha Malz
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| | | | - Rasmus J.N. Frandsen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKgs. LyngbyDenmark
| | - Ulrich Güldener
- Department of BioinformaticsTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems BiologyMünchenGermany
- Present address:
Functional Genomics and BioinformaticsSopron UniversitySopronHungary
| | - Jörg Bormann
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| | | | - Wilhelm Schäfer
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| | - Ana Lilia Martinez‐Rocha
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| |
Collapse
|
34
|
Shostak K, Bonner C, Sproule A, Thapa I, Shields SWJ, Blackwell B, Vierula J, Overy D, Subramaniam R. Activation of biosynthetic gene clusters by the global transcriptional regulator TRI6 in Fusarium graminearum. Mol Microbiol 2020; 114:664-680. [PMID: 32692880 DOI: 10.1111/mmi.14575] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 12/30/2022]
Abstract
In F. graminearum, the transcription factor TRI6 positively regulates the trichothecene biosynthetic gene cluster (BGC) leading to the production of the secondary metabolite 15-acetyl deoxynivalenol. Secondary metabolites are not essential for survival, instead, they enable the pathogen to successfully infect its host. F. graminearum has the potential to produce a diverse array of secondary metabolites (SMs). However, given high functional specificity and energetic cost, most of these clusters remain silent, unless the organism is subjected to an environment conducive to SM production. Alternatively, secondary metabolite gene clusters (SMCs) can be activated by genetically manipulating their activators or repressors. In this study, a combination of transcriptomic and metabolomics analyses with a deletion and overexpressor mutants of TRI6 was used to establish the role of TRI6 in the regulation of several BGCs in F. graminearum. Evidence for direct and indirect regulation of BGCs by TRI6 was obtained by chromatin immunoprecipitation and yeast two-hybrid experiments. The results showed that the trichothecene genes are under direct control, while the gramillin gene cluster is indirectly controlled by TRI6 through its interaction with the pathway-specific transcription factor GRA2.
Collapse
Affiliation(s)
- Kristina Shostak
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Christopher Bonner
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Indira Thapa
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Samuel W J Shields
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Barbara Blackwell
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - John Vierula
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Overy
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Rajagopal Subramaniam
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
35
|
Demissie ZA, Witte T, Robinson KA, Sproule A, Foote SJ, Johnston A, Harris LJ, Overy DP, Loewen MC. Transcriptomic and Exometabolomic Profiling Reveals Antagonistic and Defensive Modes of Clonostachys rosea Action Against Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:842-858. [PMID: 32116115 DOI: 10.1094/mpmi-11-19-0310-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mycoparasite Clonostachys rosea ACM941 is under development as a biocontrol organism against Fusarium graminearum, the causative agent of Fusarium head blight in cereals. To identify molecular factors associated with this interaction, the transcriptomic and exometabolomic profiles of C. rosea and F. graminearum GZ3639 were compared during coculture. Prior to physical contact, the antagonistic activity of C. rosea correlated with a response heavily dominated by upregulation of polyketide synthase gene clusters, consistent with the detected accumulation of corresponding secondary metabolite products. Similarly, prior to contact, trichothecene gene clusters were upregulated in F. graminearum, while those responsible for fusarielin and fusarin biosynthesis were downregulated, correlating with an accumulation of trichothecene products in the interaction zone over time. A concomitant increase in 15-acetyl deoxynivalenol-3-glucoside in the interaction zone was also detected, with C. rosea established as the source of this detoxified mycotoxin. After hyphal contact, C. rosea was found to predominantly transcribe genes encoding cell wall-degradation enzymes, major facilitator superfamily sugar transporters, anion:cation symporters, as well as alternative carbon source utilization pathways, together indicative of a transition to necrotropism at this stage. F. graminearum notably activated the transcription of phosphate starvation pathway signature genes at this time. Overall, a number of signature molecular mechanisms likely contributing to antagonistic activity by C. rosea against F. graminearum, as well as its mycotoxin tolerance, are identified in this report, yielding several new testable hypotheses toward understanding the basis of C. rosea as a biocontrol agent for continued agronomic development and application.
Collapse
Affiliation(s)
- Zerihun A Demissie
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Thomas Witte
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Kelly A Robinson
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Simon J Foote
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Anne Johnston
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Linda J Harris
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - David P Overy
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Michele C Loewen
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
36
|
González-Montiel GA, Kaweesa EN, Feau N, Hamelin RC, Stone JK, Loesgen S. Chemical, Bioactivity, and Biosynthetic Screening of Epiphytic Fungus Zasmidium pseudotsugae. Molecules 2020; 25:molecules25102358. [PMID: 32438585 PMCID: PMC7287617 DOI: 10.3390/molecules25102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/26/2022] Open
Abstract
We report the first secondary metabolite, 8,8′-bijuglone, obtained from pure cultures of the slow growing Douglas fir- (Pseudotsuga menziesii var. menziesii) foliage-associated fungus Zasmidium pseudotsugae. The quinone was characterized using extensive LC/MS and NMR-based spectroscopic methods. 8,8′-Bijuglone exhibited moderate antibiotic activity against Gram-positive pathogens and weak cytotoxic activity in the NCI-60 cell line panel and in our in-house human colon carcinoma (HCT-116) cell line. An analysis of the fungal genome sequence to assess its metabolic potential was implemented using the bioinformatic tool antiSMASH. In total, 36 putative biosynthetic gene clusters were found with a majority encoding for polyketides (17), followed by non-ribosomal peptides (14), terpenes (2), ribosomal peptides (1), and compounds with mixed biosynthetic origin (2). This study demonstrates that foliage associated fungi of conifers produce antimicrobial metabolites and suggests this guild of fungi may present a rich source of novel molecules.
Collapse
Affiliation(s)
| | - Elizabeth N. Kaweesa
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (G.A.G.-M.); (E.N.K.)
- Whitney Laboratory for Marine Bioscience and Department of Chemistry, University of Florida, St. Augustine, FL 32080, USA
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1ZA, Canada;
| | - Richard C. Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1ZA, Canada;
- Faculté de Foresterie et Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada;
| | - Jeffrey K. Stone
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (G.A.G.-M.); (E.N.K.)
- Whitney Laboratory for Marine Bioscience and Department of Chemistry, University of Florida, St. Augustine, FL 32080, USA
- Correspondence: ; Tel.: +904-201-8437
| |
Collapse
|
37
|
Dynamic network inference and association computation discover gene modules regulating virulence, mycotoxin and sexual reproduction in Fusarium graminearum. BMC Genomics 2020; 21:179. [PMID: 32093656 PMCID: PMC7041293 DOI: 10.1186/s12864-020-6596-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
Background The filamentous fungus Fusarium graminearum causes devastating crop diseases and produces harmful mycotoxins worldwide. Understanding the complex F. graminearum transcriptional regulatory networks (TRNs) is vital for effective disease management. Reconstructing F. graminearum dynamic TRNs, an NP (non-deterministic polynomial) -hard problem, remains unsolved using commonly adopted reductionist or co-expression based approaches. Multi-omic data such as fungal genomic, transcriptomic data and phenomic data are vital to but so far have been largely isolated and untapped for unraveling phenotype-specific TRNs. Results Here for the first time, we harnessed these resources to infer global TRNs for F. graminearum using a Bayesian network based algorithm called “Module Networks”. The inferred TRNs contain 49 regulatory modules that show condition-specific gene regulation. Through a thorough validation based on prior biological knowledge including functional annotations and TF binding site enrichment, our network prediction displayed high accuracy and concordance with existing knowledge. One regulatory module was partially validated using network perturbations caused by Tri6 and Tri10 gene disruptions, as well as using Tri6 Chip-seq data. We then developed a novel computational method to calculate the associations between modules and phenotypes, and identified major module groups regulating different phenotypes. As a result, we identified TRN subnetworks responsible for F. graminearum virulence, sexual reproduction and mycotoxin production, pinpointing phenotype-associated modules and key regulators. Finally, we found a clear compartmentalization of TRN modules in core and lineage-specific genomic regions in F. graminearum, reflecting the evolution of the TRNs in fungal speciation. Conclusions This system-level reconstruction of filamentous fungal TRNs provides novel insights into the intricate networks of gene regulation that underlie key processes in F. graminearum pathobiology and offers promise for the development of improved disease control strategies.
Collapse
|
38
|
Pathogenicity and Virulence Factors of Fusarium graminearum Including Factors Discovered Using Next Generation Sequencing Technologies and Proteomics. Microorganisms 2020; 8:microorganisms8020305. [PMID: 32098375 PMCID: PMC7075021 DOI: 10.3390/microorganisms8020305] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/19/2023] Open
Abstract
Fusarium graminearum is a devasting mycotoxin-producing pathogen of grain crops. F. graminearum has been extensively studied to understand its pathogenicity and virulence factors. These studies gained momentum with the advent of next-generation sequencing (NGS) technologies and proteomics. NGS and proteomics have enabled the discovery of a multitude of pathogenicity and virulence factors of F. graminearum. This current review aimed to trace progress made in discovering F. graminearum pathogenicity and virulence factors in general, as well as pathogenicity and virulence factors discovered using NGS, and to some extent, using proteomics. We present more than 100 discovered pathogenicity or virulence factors and conclude that although a multitude of pathogenicity and virulence factors have already been discovered, more work needs to be done to take advantage of NGS and its companion applications of proteomics.
Collapse
|
39
|
Graham-Taylor C, Kamphuis LG, Derbyshire MC. A detailed in silico analysis of secondary metabolite biosynthesis clusters in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum. BMC Genomics 2020; 21:7. [PMID: 31898475 PMCID: PMC6941272 DOI: 10.1186/s12864-019-6424-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/23/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The broad host range pathogen Sclerotinia sclerotiorum infects over 400 plant species and causes substantial yield losses in crops worldwide. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but little is known about the secondary metabolite repertoire of S. sclerotiorum. In this study, we predicted secondary metabolite biosynthetic gene clusters in the genome of S. sclerotiorum and analysed their expression during infection of Brassica napus using an existing transcriptome data set. We also investigated their sequence diversity among a panel of 25 previously published S. sclerotiorum isolate genomes. RESULTS We identified 80 putative secondary metabolite clusters. Over half of the clusters contained at least three transcriptionally coregulated genes. Comparative genomics revealed clusters homologous to clusters in the closely related plant pathogen Botrytis cinerea for production of carotenoids, hydroxamate siderophores, DHN melanin and botcinic acid. We also identified putative phytotoxin clusters that can potentially produce the polyketide sclerin and an epipolythiodioxopiperazine. Secondary metabolite clusters were enriched in subtelomeric genomic regions, and those containing paralogues showed a particularly strong association with repeats. The positional bias we identified was borne out by intraspecific comparisons that revealed putative secondary metabolite genes suffered more presence / absence polymorphisms and exhibited a significantly higher sequence diversity than other genes. CONCLUSIONS These data suggest that S. sclerotiorum produces numerous secondary metabolites during plant infection and that their gene clusters undergo enhanced rates of mutation, duplication and recombination in subtelomeric regions. The microevolutionary regimes leading to S. sclerotiorum secondary metabolite diversity have yet to be elucidated. Several potential phytotoxins documented in this study provide the basis for future functional analyses.
Collapse
Affiliation(s)
- Carolyn Graham-Taylor
- 0000 0004 0375 4078grid.1032.0Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, Western Australia Australia
| | - Lars G. Kamphuis
- 0000 0004 0375 4078grid.1032.0Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, Western Australia Australia
| | - Mark C. Derbyshire
- 0000 0004 0375 4078grid.1032.0Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, Western Australia Australia
| |
Collapse
|
40
|
Tralamazza SM, Rocha LO, Oggenfuss U, Corrêa B, Croll D. Complex Evolutionary Origins of Specialized Metabolite Gene Cluster Diversity among the Plant Pathogenic Fungi of the Fusarium graminearum Species Complex. Genome Biol Evol 2019; 11:3106-3122. [PMID: 31609418 PMCID: PMC6836718 DOI: 10.1093/gbe/evz225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Fungal genomes encode highly organized gene clusters that underlie the production of specialized (or secondary) metabolites. Gene clusters encode key functions to exploit plant hosts or environmental niches. Promiscuous exchange among species and frequent reconfigurations make gene clusters some of the most dynamic elements of fungal genomes. Despite evidence for high diversity in gene cluster content among closely related strains, the microevolutionary processes driving gene cluster gain, loss, and neofunctionalization are largely unknown. We analyzed the Fusarium graminearum species complex (FGSC) composed of plant pathogens producing potent mycotoxins and causing Fusarium head blight on cereals. We de novo assembled genomes of previously uncharacterized FGSC members (two strains of F. austroamericanum, F. cortaderiae, and F. meridionale). Our analyses of 8 species of the FGSC in addition to 15 other Fusarium species identified a pangenome of 54 gene clusters within FGSC. We found that multiple independent losses were a key factor generating extant cluster diversity within the FGSC and the Fusarium genus. We identified a modular gene cluster conserved among distantly related fungi, which was likely reconfigured to encode different functions. We also found strong evidence that a rare cluster in FGSC was gained through an ancient horizontal transfer between bacteria and fungi. Chromosomal rearrangements underlying cluster loss were often complex and were likely facilitated by an enrichment in specific transposable elements. Our findings identify important transitory stages in the birth and death process of specialized metabolism gene clusters among very closely related species.
Collapse
Affiliation(s)
- Sabina Moser Tralamazza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| | - Liliana Oliveira Rocha
- Food Engineering Faculty, Department of Food Science, University of Campinas, Av. Monteiro Lobato, Brazil
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| | - Benedito Corrêa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| |
Collapse
|
41
|
Reus E, Nielsen MR, Frandsen RJN. Metabolic and regulatory insights from the experimental horizontal gene transfer of the aurofusarin and bikaverin gene clusters to
Aspergillus nidulans. Mol Microbiol 2019; 112:1684-1700. [DOI: 10.1111/mmi.14376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Elise Reus
- Department of Biotechnology and Bioengineering Technical University of Denmark Kongens Lyngby Denmark
| | | | | |
Collapse
|
42
|
Bachleitner S, Sørensen JL, Gacek-Matthews A, Sulyok M, Studt L, Strauss J. Evidence of a Demethylase-Independent Role for the H3K4-Specific Histone Demethylases in Aspergillus nidulans and Fusarium graminearum Secondary Metabolism. Front Microbiol 2019; 10:1759. [PMID: 31456754 PMCID: PMC6700381 DOI: 10.3389/fmicb.2019.01759] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Fungi produce a plethora of secondary metabolites (SMs) involved in cellular protection, defense, and signaling. Like other metabolic processes, transcription of SM biosynthesis genes is tightly regulated to prevent an unnecessary use of resources. Genes involved in SM biosynthesis are usually physically linked, arranged in secondary metabolite gene clusters (SMGCs). Research over the last decades has shown that chromatin structure and posttranslational modifications (PTMs) of histones represent important layers of SMGC regulation. For instance, trimethylation of histone H3 lysine 4 (H3K4me3) is a PTM typically associated with promoter regions of actively transcribed genes. Previously, we have shown that the H3K4me3-specific, JmjC domain-containing histone demethylase KdmB functions not only in repression but also in activation of secondary metabolism in Aspergillus nidulans, suggesting that KdmB has additional functions apart from histone demethylation. In this study, we identified demethylase-independent functions of KdmB in transcriptional regulation of SM gene clusters. Furthermore, we show that this activating and demethylase-independent role of the H3K4 demethylase is also conserved in the phytopathogenic fungus Fusarium graminearum. Lack of FgKdm5 resulted in significant downregulation of five of seven analyzed SMs, whereby only one SMGC depends on a functional JmjC-domain. In A. nidulans strains deficient in H3K4 methylation, i.e., cclA∆, largely phenocopied kdmB∆, while this is not the case for most of the SMs analyzed in Fusarium spp. Notably, KdmB could not rescue the demethylase function in ∆fgkdm5 but restored all demethylase-independent phenotypes.
Collapse
Affiliation(s)
- Simone Bachleitner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Jens Laurids Sørensen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Agnieszka Gacek-Matthews
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Michael Sulyok
- Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| |
Collapse
|
43
|
Bis-naphthopyrone pigments protect filamentous ascomycetes from a wide range of predators. Nat Commun 2019; 10:3579. [PMID: 31395863 PMCID: PMC6687722 DOI: 10.1038/s41467-019-11377-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
It is thought that fungi protect themselves from predation by the production of compounds that are toxic to soil-dwelling animals. Here, we show that a nontoxic pigment, the bis-naphthopyrone aurofusarin, protects Fusarium fungi from a wide range of animal predators. We find that springtails (primitive hexapods), woodlice (crustaceans), and mealworms (insects) prefer feeding on fungi with disrupted aurofusarin synthesis, and mealworms and springtails are repelled by wheat flour amended with the fungal bis-naphthopyrones aurofusarin, viomellein, or xanthomegnin. Predation stimulates aurofusarin synthesis in several Fusarium species and viomellein synthesis in Aspergillus ochraceus. Aurofusarin displays low toxicity in mealworms, springtails, isopods, Drosophila, and insect cells, contradicting the common view that fungal defence metabolites are toxic. Our results indicate that bis-naphthopyrones are defence compounds that protect filamentous ascomycetes from predators through a mechanism that does not involve toxicity.
Collapse
|
44
|
Adpressa DA, Connolly LR, Konkel ZM, Neuhaus GF, Chang XL, Pierce BR, Smith KM, Freitag M, Loesgen S. A metabolomics-guided approach to discover Fusarium graminearum metabolites after removal of a repressive histone modification. Fungal Genet Biol 2019; 132:103256. [PMID: 31344458 DOI: 10.1016/j.fgb.2019.103256] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 11/30/2022]
Abstract
Many secondary metabolites are produced by biosynthetic gene clusters (BGCs) that are repressed during standard growth conditions, which complicates the discovery of novel bioactive compounds. In the genus Fusarium, many BGCs reside in chromatin enriched for trimethylated histone 3 lysine 27 (H3K27me3), a modification correlated with transcriptional gene silencing. Here we report on our progress in assigning metabolites to genes by using a strain lacking the H3K27 methyltransferase, Kmt6. To guide isolation efforts, we coupled genetics to multivariate analysis of liquid chromatography-mass spectrometry (LCMS) data from both wild type and kmt6, which allowed identification of compounds previously unknown from F. graminearum. We found low molecular weight, amino acid-derived metabolites (N-ethyl anthranilic acid, N-phenethylacetamide, N-acetyltryptamine). We identified one new compound, protofusarin, as derived from fusarin biosynthesis. Similarly, we isolated large amounts of fusaristatin A, gibepyrone A, and fusarpyrones A and B, simply by using the kmt6 mutant, instead of having to optimize growth media. To increase the abundance of metabolites underrepresented in wild type, we generated kmt6 fus1 double mutants and discovered tricinolone and tricinolonoic acid, two new sesquiterpenes belonging to the tricindiol class. Our approach allows rapid visualization and analyses of the genetically induced changes in metabolite production, and discovery of new molecules by a combination of chemical and genetic dereplication. Of 22 fungal metabolites identified here, 10 compounds had not been reported from F. graminearum before. We show that activating silent metabolic pathways by mutation of a repressive chromatin modification enzyme can result in the discovery of new chemistry even in a well-studied organism, and helps to connect new or known small molecules to the BGCs responsible for their production.
Collapse
Affiliation(s)
| | - Lanelle R Connolly
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Zachary M Konkel
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - George F Neuhaus
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Xiao L Chang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Brett R Pierce
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Kristina M Smith
- Department of Biology, Oregon State University - Cascades, Bend, OR, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
45
|
Nielsen MR, Sondergaard TE, Giese H, Sørensen JL. Advances in linking polyketides and non-ribosomal peptides to their biosynthetic gene clusters in Fusarium. Curr Genet 2019; 65:1263-1280. [DOI: 10.1007/s00294-019-00998-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/24/2022]
|
46
|
Shi-Kunne X, Jové RDP, Depotter JRL, Ebert MK, Seidl MF, Thomma BPHJ. In silico prediction and characterisation of secondary metabolite clusters in the plant pathogenic fungus Verticillium dahliae. FEMS Microbiol Lett 2019; 366:5475643. [PMID: 31004487 PMCID: PMC6502550 DOI: 10.1093/femsle/fnz081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/23/2019] [Indexed: 01/07/2023] Open
Abstract
Fungi are renowned producers of natural compounds, also known as secondary metabolites (SMs) that display a wide array of biological activities. Typically, the genes that are involved in the biosynthesis of SMs are located in close proximity to each other in so-called secondary metabolite clusters. Many plant-pathogenic fungi secrete SMs during infection in order to promote disease establishment, for instance as cytocoxic compounds. Verticillium dahliae is a notorious plant pathogen that can infect over 200 host plants worldwide. However, the SM repertoire of this vascular pathogen remains mostly uncharted. To unravel the potential of V. dahliae to produce SMs, we performed in silico predictions and in-depth analyses of its secondary metabolite clusters. Using distinctive traits of gene clusters and the conserved signatures of core genes 25 potential SM gene clusters were identified. Subsequently, phylogenetic and comparative genomics analyses were performed, revealing that two putative siderophores, ferricrocin and TAFC, DHN-melanin and fujikurin may belong to the SM repertoire of V. dahliae.
Collapse
Affiliation(s)
- Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Roger de Pedro Jové
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jasper R L Depotter
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands,Department of Crops and Agronomy, National Institute of Agricultural Botany, Huntingdon Road, CB3 0LE Cambridge, United Kingdom
| | - Malaika K Ebert
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands,Corresponding author: Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands. Tel: 0031-317-484536; Fax: 0031-317-483412; E-mail:
| |
Collapse
|
47
|
Dilks T, Halsey K, De Vos RP, Hammond-Kosack KE, Brown NA. Non-canonical fungal G-protein coupled receptors promote Fusarium head blight on wheat. PLoS Pathog 2019; 15:e1007666. [PMID: 30934025 PMCID: PMC6459559 DOI: 10.1371/journal.ppat.1007666] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/11/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Fusarium Head Blight (FHB) is the number one floral disease of cereals and poses a serious health hazard by contaminating grain with the harmful mycotoxin deoxynivalenol (DON). Fungi adapt to fluctuations in their environment, coordinating development and metabolism accordingly. G-protein coupled receptors (GPCRs) communicate changes in the environment to intracellular G-proteins that direct the appropriate biological response, suggesting that fungal GPCR signalling may be key to virulence. Here we describe the expansion of non-classical GPCRs in the FHB causing pathogen, Fusarium graminearum, and show that class X receptors are highly expressed during wheat infection. We identify class X receptors that are required for FHB disease on wheat, and show that the absence of a GPCR can cause an enhanced host response that restricts the progression of infection. Specific receptor sub-domains are required for virulence. These non-classical receptors physically interact with intracellular G-proteins and are therefore bona fide GPCRs. Disrupting a class X receptor is shown to dysregulate the transcriptional coordination of virulence traits during infection. This amounts to enhanced wheat defensive responses, including chitinase and plant cell wall biosynthesis, resulting in apoplastic and vascular occlusions that impede infection. Our results show that GPCR signalling is important to FHB disease establishment. Fusarium Head Blight (FHB) is the number one floral disease of cereals and poses a serious health hazard by contaminating grain with harmful mycotoxins. Fusarium graminearum adapts to the host plant environment, coordinating fungal development, metabolism and virulence. Here we show that non-classical G-protein coupled receptors (GPCRs) contribute to FHB disease on wheat, promoting symptomless infection through their regulation of fungal membrane, mycotoxin and secreted protein biosynthesis. Disruption of GPCR host sensing activated an enhanced wheat defensive response to infection. This amounts to increased chitinase and plant cell wall biosynthesis, resulting in apoplastic and vascular occlusions that impede the progression of symptomless infection. These non-classical receptors were confirmed to be bona fide G-protein interactors, and specific receptors domains were required for virulence. Our results show that GPCR signalling is important to FHB disease establishment. The discovery of fungal GPCRs and specific extracellular domains that influence sterol membrane and mycotoxin biosynthesis, while contributing to virulence, opens new avenues for biotechnology to minimise diseases in crop species.
Collapse
Affiliation(s)
- Tess Dilks
- Biointeractions and Crop Protection, Rothamsted Research, Hertfordshire, United Kingdom
| | - Kirstie Halsey
- Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| | - Rebecca P De Vos
- Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| | - Kim E Hammond-Kosack
- Biointeractions and Crop Protection, Rothamsted Research, Hertfordshire, United Kingdom
| | - Neil Andrew Brown
- Biointeractions and Crop Protection, Rothamsted Research, Hertfordshire, United Kingdom.,Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|
48
|
Tran PN, Yen MR, Chiang CY, Lin HC, Chen PY. Detecting and prioritizing biosynthetic gene clusters for bioactive compounds in bacteria and fungi. Appl Microbiol Biotechnol 2019; 103:3277-3287. [PMID: 30859257 PMCID: PMC6449301 DOI: 10.1007/s00253-019-09708-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 11/23/2022]
Abstract
Secondary metabolites (SM) produced by fungi and bacteria have long been of exceptional interest owing to their unique biomedical ramifications. The traditional discovery of new natural products that was mainly driven by bioactivity screening has now experienced a fresh new approach in the form of genome mining. Several bioinformatics tools have been continuously developed to detect potential biosynthetic gene clusters (BGCs) that are responsible for the production of SM. Although the principles underlying the computation of these tools have been discussed, the biological background is left underrated and ambiguous. In this review, we emphasize the biological hypotheses in BGC formation driven from the observations across genomes in bacteria and fungi, and provide a comprehensive list of updated algorithms/tools exclusively for BGC detection. Our review points to a direction that the biological hypotheses should be systematically incorporated into the BGC prediction and assist the prioritization of candidate BGC.
Collapse
Affiliation(s)
- Phuong Nguyen Tran
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan
| | - Chen-Yu Chiang
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan.
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan.
| |
Collapse
|
49
|
A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nat Commun 2019; 10:922. [PMID: 30804501 PMCID: PMC6389888 DOI: 10.1038/s41467-019-08726-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/17/2019] [Indexed: 01/07/2023] Open
Abstract
Fusarium graminearum is a destructive wheat pathogen. No fully resistant cultivars are available. Knowledge concerning the molecular weapons of F. graminearum to achieve infection remains limited. Here, we report that deletion of the putative secondary metabolite biosynthesis gene cluster fg3_54 compromises the pathogen’s ability to infect wheat through cell-to-cell penetration. Ectopic expression of fgm4, a pathway-specific bANK-like regulatory gene, activates the transcription of the fg3_54 cluster in vitro. We identify a linear, C- terminally reduced and d-amino acid residue-rich octapeptide, fusaoctaxin A, as the product of the two nonribosomal peptide synthetases encoded by fg3_54. Chemically-synthesized fusaoctaxin A restores cell-to-cell invasiveness in fg3_54-deleted F. graminearum, and enables colonization of wheat coleoptiles by two Fusarium strains that lack the fg3_54 homolog and are nonpathogenic to wheat. In conclusion, our results identify fusaoctaxin A as a virulence factor required for cell-to-cell invasion of wheat by F. graminearum. Fusarium graminearum is a fungal pathogen of wheat and other cereals. Here the authors identify a gene cluster in F. graminearum encoding the production of a non-ribosomal peptide that is required for infection of wheat through cell-to-cell penetration.
Collapse
|
50
|
Blum A, Benfield AH, Sørensen JL, Nielsen MR, Bachleitner S, Studt L, Beccari G, Covarelli L, Batley J, Gardiner DM. Regulation of a novel Fusarium cytokinin in Fusarium pseudograminearum. Fungal Biol 2019; 123:255-266. [PMID: 30798881 DOI: 10.1016/j.funbio.2018.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 11/07/2018] [Accepted: 12/25/2018] [Indexed: 01/11/2023]
Abstract
Fusarium pseudograminearum is an agronomically important fungus, which infects many crop plants, including wheat, where it causes Fusarium crown rot. Like many other fungi, the Fusarium genus produces a wide range of secondary metabolites of which only few have been characterized. Recently a novel gene cluster was discovered in F. pseudograminearum, which encodes production of cytokinin-like metabolites collectively named Fusarium cytokinins. They are structurally similar to plant cytokinins and can activate cytokinin signalling in vitro and in planta. Here, the regulation of Fusarium cytokinin production was analysed in vitro. This revealed that, similar to deoxynivalenol (DON) production in Fusariumgraminearum, cytokinin production can be induced in vitro by specific nitrogen sources in a pH-dependent manner. DON production was also induced in both F. graminearum and F. pseudograminearum in cytokinin-inducing conditions. In addition, microscopic analyses of wheat seedlings infected with a F. pseudograminearum cytokinin reporter strain showed that the fungus specifically induces its cytokinin production in hyphae, which are in close association with the plant, suggestive of a function of Fusarium cytokinins during infection.
Collapse
Affiliation(s)
- Ailisa Blum
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Brisbane, 4067, Australia; School of Agriculture and Food Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Aurélie H Benfield
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Brisbane, 4067, Australia
| | - Jens L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, DK-6700, Denmark
| | - Mikkel R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, DK-6700, Denmark
| | - Simone Bachleitner
- Department of Applied Genetic and Cell Biology-Tulln, BOKU University of Natural Resources and Life Sciences, Vienna, 3430, Austria
| | - Lena Studt
- Department of Applied Genetic and Cell Biology-Tulln, BOKU University of Natural Resources and Life Sciences, Vienna, 3430, Austria
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, 06121, Italy
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, 06121, Italy
| | - Jacqueline Batley
- School of Agriculture and Food Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Brisbane, 4067, Australia; Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, 06121, Italy.
| |
Collapse
|