1
|
Lv K, Xie Y, Yu Q, Zhang N, Zheng Q, Wu J, Zhang J, Li J, Zhao H, Xu W. Amur Grape VaMYB4a-VaERF054-Like Module Regulates Cold Tolerance Through a Regulatory Feedback Loop. PLANT, CELL & ENVIRONMENT 2025; 48:1130-1148. [PMID: 39412230 DOI: 10.1111/pce.15196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 01/04/2025]
Abstract
Cold stress can limit the growth and development of grapevines, which can ultimately reduce productivity. However, the mechanisms by which grapevines respond to cold stress are not yet fully understood. Here, we characterized an APETALA2/ethylene response factor (AP2/ERF) which was shown to be a target gene of our previously identified VaMYB4a from Amur grape. We further investigated the molecular interactions between VaMYB4a and VaERF054-like transcription factors in grapes and their role in cold stress tolerance. Our results demonstrated that VaMYB4a directly binds to and activates the VaERF054-like gene promoter, leading to its enhanced expression. Moreover, we also explored the influence of ethylene precursors and inhibitors on VaERF054-like expression and grape cold tolerance. Our findings indicate that VaERF054-like contribute to cold tolerance in grapes through modulation of the ethylene pathway and the CBF signal pathway. Overexpression of VaERF054-like in Vitis vinifera 'Chardonnay' calli and transgenic grape lines resulted in increased freezing stress tolerance, confirming its role in the cold stress response. We further confirmed the interaction between VaMYB4a and VaERF054-like in vivo and in vitro. The co-transformation of VaMYB4a and VaERF054-like in grape calli demonstrates a synergistic interaction, enhancing the cold tolerance through a regulatory feedback mechanism. Our finding provides new insights into grape cold tolerance mechanisms, potentially contributing to the development of cold-resistant grape varieties.
Collapse
Affiliation(s)
- Kai Lv
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Yaping Xie
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Qinhan Yu
- School of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Ningbo Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan, China
| | - Qiaoling Zheng
- School of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Jieping Wu
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Junxia Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Junduo Li
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Huixian Zhao
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Weirong Xu
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
- School of Life Science, Ningxia University, Yinchuan, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan, China
| |
Collapse
|
2
|
Carlomagno A, Bonghi C, Montanaro G, Ferrandino A, Rasori A, Nuzzo V, Novello V. The Role of Naphthaleneacetic Acid and 1-Methylcyclopropene in Preventing Preharvest Berry Dropping in Vitis vinifera L. PLANTS (BASEL, SWITZERLAND) 2025; 14:280. [PMID: 39861632 PMCID: PMC11768357 DOI: 10.3390/plants14020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Fruit dropping represents a concern in many fruit species, including Vitis vinifera L. This research investigated the role of two plant growth regulators (PGRs), naphthaleneacetic acid (NAA) and 1-methylcyclopropene (1-MCP), in mitigating preharvest berry dropping (PHBD) through affecting ethylene (ET) and auxin (AUX) metabolism and interactions, key hormones involved in abscission. The experiment was carried out on cv. Dolcetto, with PGR treatments applied at 43, 53, and 90 days after anthesis (DAA) for NAA and at 56 DAA for 1-MCP. Berry dropping incidence, yield parameters, and transcript levels of genes related to ET and AUX pathways were analyzed, including VIT_212s0059g01380, VIT_211s0016g02380, VIT_207s0005g00820, VIT_216s0013g00980, VIT_203s0091g00310, and VIT_207s0104g00800. Both NAA and 1-MCP significantly reduced PHBD, with NAA achieving a 92% reduction and 1-MCP an 82% reduction compared to control vines. Transcript analysis revealed differential gene expression patterns, indicating that NAA affects the ET biosynthesis pathway, while 1-MCP interferes with ET receptor signaling. The results suggest that both PGRs effectively reduced berry dropping, providing a basis for integrated crop management strategies to mitigate PHBD in grapevine cultivars susceptible to this physiological disorder.
Collapse
Affiliation(s)
- Antonio Carlomagno
- Department of Agricultural, Forest, Food, and Environmental Sciences, Università degli Studi della Basilicata, 85100 Potenza, Italy; (G.M.); (V.N.)
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, 35020 Legnaro, Italy; (C.B.); (A.R.)
| | - Giuseppe Montanaro
- Department of Agricultural, Forest, Food, and Environmental Sciences, Università degli Studi della Basilicata, 85100 Potenza, Italy; (G.M.); (V.N.)
| | - Alessandra Ferrandino
- Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, 10095 Grugliasco, Italy; (A.F.); (V.N.)
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, 35020 Legnaro, Italy; (C.B.); (A.R.)
| | - Vitale Nuzzo
- Department of Agricultural, Forest, Food, and Environmental Sciences, Università degli Studi della Basilicata, 85100 Potenza, Italy; (G.M.); (V.N.)
| | - Vittorino Novello
- Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, 10095 Grugliasco, Italy; (A.F.); (V.N.)
| |
Collapse
|
3
|
Zarrouk O, Pinto C, Alarcón MV, Flores-Roco A, Santos L, David TS, Amancio S, Lopes CM, Carvalho LC. Canopy Architecture and Sun Exposure Influence Berry Cluster-Water Relations in the Grapevine Variety Muscat of Alexandria. PLANTS (BASEL, SWITZERLAND) 2024; 13:1500. [PMID: 38891309 PMCID: PMC11174960 DOI: 10.3390/plants13111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Climate-change-related increases in the frequency and intensity of heatwaves affect viticulture, leading to losses in yield and grape quality. We assessed whether canopy-architecture manipulation mitigates the effects of summer stress in a Mediterranean vineyard. The Vitis vinifera L variety Muscat of Alexandria plants were monitored during 2019-2020. Two canopy shoot-positioning treatments were applied: vertical shoot positioning (VSP) and modulated shoot positioning (MSP). In MSP, the west-side upper foliage was released to promote partial shoot leaning, shading the clusters. Clusters were sampled at pea size (PS), veraison (VER), and full maturation (FM). Measurements included rachis anatomy and hydraulic conductance (Kh) and aquaporins (AQP) and stress-related genes expression in cluster tissues. The results show significant seasonal and interannual differences in Kh and vascular anatomy. At VER, the Kh of the rachis and rachis+pedicel and the xylem diameter decreased but were unaffected by treatments. The phloem-xylem ratio was either increased (2019) or reduced (2020) in MSP compared to VSP. Most AQPs were down-regulated at FM in pedicels and up-regulated at VER in pulp. A potential maturation shift in MSP was observed and confirmed by the up-regulation of several stress-related genes in all tissues. The study pinpoints the role of canopy architecture in berry-water relations and stress response during ripening.
Collapse
Affiliation(s)
- Olfa Zarrouk
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal (S.A.); (C.M.L.)
- IRTA—Institute of Agrifood Research and Technology, Torre Marimon, 08140 Barcelona, Spain
| | - Clara Pinto
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, I.P. Avenida da República, Quinta do Marquês, 2780-159 Oeiras, Portugal; (C.P.); (T.S.D.)
- CEF—Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Victoria Alarcón
- Area of Agronomy of Woody and Horticultural Crops, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), 06187 Badajoz, Spain; (M.V.A.); (A.F.-R.)
| | - Alicia Flores-Roco
- Area of Agronomy of Woody and Horticultural Crops, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), 06187 Badajoz, Spain; (M.V.A.); (A.F.-R.)
| | - Leonardo Santos
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal (S.A.); (C.M.L.)
| | - Teresa S. David
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, I.P. Avenida da República, Quinta do Marquês, 2780-159 Oeiras, Portugal; (C.P.); (T.S.D.)
- CEF—Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Sara Amancio
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal (S.A.); (C.M.L.)
| | - Carlos M. Lopes
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal (S.A.); (C.M.L.)
| | - Luisa C. Carvalho
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal (S.A.); (C.M.L.)
| |
Collapse
|
4
|
Li J, Chen Y, Zhou G, Li M. Phytohormones and candidate genes synergistically regulate fruitlet abscission in Areca catechu L. BMC PLANT BIOLOGY 2023; 23:537. [PMID: 37919647 PMCID: PMC10623784 DOI: 10.1186/s12870-023-04562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The fruit population of most plants is under the control of a process named "physiological drop" to selectively abort some developing fruitlets. However, frequent fruitlet abscission severely restricts the yield of Areca catechu. To reveal the physiological and molecular variations in this process, we detected the variation of phytohormone levels in abscised and non-abscised fruitlets in A. catechu. RESULTS The levels of gibberellin acid, jasmonic acid, salicylic acid, abscisic acid and zeatin were elevated, while the indole-3-acetic acid and indole-3-carboxaldehyde levels were declined in the "about-to-abscise" part (AB) of abscission zone (AZ) compared to the "non-abscised" part (CK). Then the differentially expressed genes (DEGs) between AB and CK were screened based on transcriptome data. DEGs involved in phytohormone synthesis, response and transportation were identified as key genes. Genes related to cell wall biosynthesis, degradation, loosening and modification, and critical processes during fruit abscission were identified as role players. In addition, genes encoding transcription factors, such as NAC, ERF, WRKY, MADS and Zinc Finger proteins, showed differentially expressed patterns between AB and CK, were also identified as candidates. CONCLUSIONS These results unraveled a phytohormone signaling cross talk and key genes involved in the fruitlet abscission process in A. catechu. This study not only provides a theoretical basis for fruitlet abscission in A. catechu, but also identified many candidate genes or potential molecular markers for further breeding of fruit trees.
Collapse
Affiliation(s)
- Jia Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, Hainan, China
| | - Yunche Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, Hainan, China
| | - Guangzhen Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Meng Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, P. R. China.
| |
Collapse
|
5
|
D'Incà E, Foresti C, Orduña L, Amato A, Vandelle E, Santiago A, Botton A, Cazzaniga S, Bertini E, Pezzotti M, Giovannoni J, Vrebalov J, Matus JT, Tornielli GB, Zenoni S. The transcription factor VviNAC60 regulates senescence- and ripening-related processes in grapevine. PLANT PHYSIOLOGY 2023:kiad050. [PMID: 36718552 DOI: 10.1093/plphys/kiad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/03/2022] [Accepted: 12/11/2022] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis vinifera L.) is one of the most widely cultivated fruit crops because the winemaking industry has huge economic relevance worldwide. Uncovering the molecular mechanisms controlling the developmental progression of plant organs will prove essential for maintaining high-quality grapes, expressly in the context of climate change, which impairs the ripening process. Through a deep inspection of transcriptomic data, we identified VviNAC60, a member of the NAC transcription factor family, as a putative regulator of grapevine organ maturation. We explored VviNAC60 binding landscapes through DNA affinity purification followed by sequencing and compared bound genes with transcriptomics datasets from grapevine plants stably and transiently overexpressing VviNAC60 to define a set of high-confidence targets. Among these, we identified key molecular markers associated with organ senescence and fruit ripening. Physiological, metabolic, and promoter activation analyses showed that VviNAC60 induces chlorophyll degradation and anthocyanin accumulation through the up-regulation of STAY-GREEN PROTEIN 1 (VviSGR1) and VviMYBA1, respectively, with the latter being up-regulated through a VviNAC60-VviNAC03 regulatory complex. Despite sharing a closer phylogenetic relationship with senescence-related homologues to the NAC transcription factor AtNAP, VviNAC60 complemented the non-ripening(nor) mutant phenotype in tomato (Solanum lycopersicum), suggesting a dual role as an orchestrator of both ripening- and senescence-related processes. Our data support VviNAC60 as a regulator of processes initiated in the grapevine vegetative- to mature-phase organ transition and therefore as a potential target for enhancing the environmental resilience of grapevine by fine-tuning the duration of the vegetative phase.
Collapse
Affiliation(s)
- Erica D'Incà
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Chiara Foresti
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Alessandra Amato
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Alessandro Botton
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Italy
| | - Stefano Cazzaniga
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Edoardo Bertini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - James Giovannoni
- USDA-ARS Robert W. Holley Center and Boyce Thompson Institute for Plant Research, Tower Road, Cornell Campus, Ithaca, NY 14853, USA
| | - Julia Vrebalov
- USDA-ARS Robert W. Holley Center and Boyce Thompson Institute for Plant Research, Tower Road, Cornell Campus, Ithaca, NY 14853, USA
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | | | - Sara Zenoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| |
Collapse
|
6
|
Zinelabidine LH, Torres-Pérez R, Grimplet J, Baroja E, Ibáñez S, Carbonell-Bejerano P, Martínez-Zapater JM, Ibáñez J, Tello J. Genetic variation and association analyses identify genes linked to fruit set-related traits in grapevine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110875. [PMID: 33775372 DOI: 10.1016/j.plantsci.2021.110875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Grapevine is one of the most valuable fruit crops in the world. Adverse environmental conditions reduce fruit quality and crop yield, so understanding the genetic and molecular mechanisms determining crop yield components is essential to optimize grape production. The analysis of a diverse collection of grapevine cultivars allowed us to evaluate the relationship between fruit set-related components of yield, including the incidence of reproductive disorders such as coulure and millerandage. The collection displayed a great phenotypic variation that we surveyed in a genetics association study using 15,309 single nucleotide polymorphisms (SNPs) detected in the sequence of 289 candidate genes scattered across the 19 grapevine linkage groups. After correcting statistical models for population structure and linkage disequilibrium effects, 164 SNPs from 34 of these genes were found to associate with fruit set-related traits, supporting a complex polygenic determinism. Many of them were found in the sequence of different putative MADS-box transcription factors, a gene family related with plant reproductive development control. In addition, we observed an additive effect of some of the associated SNPs on the phenotype, suggesting that advantageous alleles from different loci could be pyramided to generate superior cultivars with optimized fruit production.
Collapse
Affiliation(s)
- Lalla Hasna Zinelabidine
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain; Laboratory of Biotechnology and Valorisation of Plant Genetic Resources, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, Beni Mellal, 23000, Morocco
| | - Rafael Torres-Pérez
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain; Servicio de Bioinformática para Genómica y Proteómica (BioinfoGP), Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Jérôme Grimplet
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain; Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, 50059, Spain; Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, 50059, Spain
| | - Elisa Baroja
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain
| | - Sergio Ibáñez
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain; Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tuebingen, Germany
| | | | - Javier Ibáñez
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain
| | - Javier Tello
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain.
| |
Collapse
|
7
|
Fatima M, Ma X, Zhou P, Zaynab M, Ming R. Auxin regulated metabolic changes underlying sepal retention and development after pollination in spinach. BMC PLANT BIOLOGY 2021; 21:166. [PMID: 33823793 PMCID: PMC8022616 DOI: 10.1186/s12870-021-02944-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/29/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Pollination accelerate sepal development that enhances plant fitness by protecting seeds in female spinach. This response requires pollination signals that result in the remodeling within the sepal cells for retention and development, but the regulatory mechanism for this response is still unclear. To investigate the early pollination-induced metabolic changes in sepal, we utilize the high-throughput RNA-seq approach. RESULTS Spinach variety 'Cornel 9' was used for differentially expressed gene analysis followed by experiments of auxin analog and auxin inhibitor treatments. We first compared the candidate transcripts expressed differentially at different time points (12H, 48H, and 96H) after pollination and detected significant difference in Trp-dependent auxin biosynthesis and auxin modulation and transduction process. Furthermore, several auxin regulatory pathways i.e. cell division, cell wall expansion, and biogenesis were activated from pollination to early developmental symptoms in sepals following pollination. To further confirm the role auxin genes play in the sepal development, auxin analog (2, 4-D; IAA) and auxin transport inhibitor (NPA) with different concentrations gradient were sprayed to the spinach unpollinated and pollinated flowers, respectively. NPA treatment resulted in auxin transport weakening that led to inhibition of sepal development at concentration 0.1 and 1 mM after pollination. 2, 4-D and IAA treatment to unpollinated flowers resulted in sepal development at lower concentration but wilting at higher concentration. CONCLUSION We hypothesized that sepal retention and development might have associated with auxin homeostasis that regulates the sepal size by modulating associated pathways. These findings advanced the understanding of this unusual phenomenon of sepal growth instead of abscission after pollination in spinach.
Collapse
Affiliation(s)
- Mahpara Fatima
- College of Agriculture, FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xiaokai Ma
- College of Agriculture, FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Ping Zhou
- College of Agriculture, FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Madiha Zaynab
- College of Agriculture, FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
8
|
Costantini L, Moreno-Sanz P, Nwafor CC, Lorenzi S, Marrano A, Cristofolini F, Gottardini E, Raimondi S, Ruffa P, Gribaudo I, Schneider A, Grando MS. Somatic variants for seed and fruit set in grapevine. BMC PLANT BIOLOGY 2021; 21:135. [PMID: 33711928 PMCID: PMC7955655 DOI: 10.1186/s12870-021-02865-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Grapevine reproductive development has direct implications on yield. It also impacts on berry and wine quality by affecting traits like seedlessness, berry and bunch size, cluster compactness and berry skin to pulp ratio. Seasonal fluctuations in yield, fruit composition and wine attributes, which are largely driven by climatic factors, are major challenges for worldwide table grape and wine industry. Accordingly, a better understanding of reproductive processes such as gamete development, fertilization, seed and fruit set is of paramount relevance for managing yield and quality. With the aim of providing new insights into this field, we searched for clones with contrasting seed content in two germplasm collections. RESULTS We identified eight variant pairs that seemingly differ only in seed-related characteristics while showing identical genotype when tested with the GrapeReSeq_Illumina_20K_SNP_chip and several microsatellites. We performed multi-year observations on seed and fruit set deriving from different pollination treatments, with special emphasis on the pair composed by Sangiovese and its seedless variant locally named Corinto Nero. The pollen of Corinto Nero failed to germinate in vitro and gave poor berry set when used to pollinate other varieties. Most berries from both open- and cross-pollinated Corinto Nero inflorescences did not contain seeds. The genetic analysis of seedlings derived from occasional Corinto Nero normal seeds revealed that the few Corinto Nero functional gametes are mostly unreduced. Moreover, three genotypes, including Sangiovese and Corinto Nero, were unexpectedly found to develop fruits without pollen contribution and occasionally showed normal-like seeds. Five missense single nucleotide polymorphisms were identified between Corinto Nero and Sangiovese from transcriptomic data. CONCLUSIONS Our observations allowed us to attribute a seedlessness type to some variants for which it was not documented in the literature. Interestingly, the VvAGL11 mutation responsible for Sultanina stenospermocarpy was also discovered in a seedless mutant of Gouais Blanc. We suggest that Corinto Nero parthenocarpy is driven by pollen and/or embryo sac defects, and both events likely arise from meiotic anomalies. The single nucleotide polymorphisms identified between Sangiovese and Corinto Nero are suitable for testing as traceability markers for propagated material and as functional candidates for the seedless phenotype.
Collapse
Affiliation(s)
- Laura Costantini
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy.
| | - Paula Moreno-Sanz
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Chinedu Charles Nwafor
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Silvia Lorenzi
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Annarita Marrano
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Fabiana Cristofolini
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Elena Gottardini
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Stefano Raimondi
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Paola Ruffa
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Anna Schneider
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Maria Stella Grando
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010, San Michele all'Adige, Italy
| |
Collapse
|
9
|
Griesser M, Savoi S, Supapvanich S, Dobrev P, Vankova R, Forneck A. Phytohormone profiles are strongly altered during induction and symptom development of the physiological ripening disorder berry shrivel in grapevine. PLANT MOLECULAR BIOLOGY 2020; 103:141-157. [PMID: 32072393 PMCID: PMC7170833 DOI: 10.1007/s11103-020-00980-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/13/2020] [Indexed: 05/08/2023]
Abstract
The process of grape berry ripening follows three phases with distinct metabolic processes and complex regulations via phytohormones. The physiological ripening disorder berry shrivel (BS) is characterized by reduced sugar accumulation, low anthocyanin contents, and high acidity in affected berries. The processes leading to BS induction are unknown, but recent transcriptional data on reduced expression of switch genes hint towards a disturbed ripening onset. Herein we investigated the phytohormone composition throughout grape berry ripening in healthy and BS berries in Vitis vinifera L. cultivar Blauer Zweigelt. Thereby we hypothesize that phytohormones are key players for BS induction and suppress the expression of switch genes at veraison. The presented metabolomics and RNAseq data describe two distinct phytohormone profiles in BS berries, differing between pre- and post-veraison with a clear ethylene precursor (aminocyclopropane-1-carboxylic acid, ACC) peak before veraison. Exogenous application of ACC led to BS symptoms, while ethephone application led to berry abscission. During post-veraison, we observed high ABA-glucose ester (ABA-GE) and low indole-3-acetate aspartate (IAA-Asp) and isopentenyladenine (iP) contents in BS berries and the transcriptional induction of several phytohormone pathways. The presented descriptive data provide valuable knowledge to further decipher the role of phytohormones in BS induction and BS symptom development.
Collapse
Affiliation(s)
- Michaela Griesser
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, Tulln, 3430, Vienna, Austria.
| | - Stefania Savoi
- AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, 2 Place Pierre Viala, 34060, Montpellier, France
| | - Suriyan Supapvanich
- Department of Agricultural Education, Faculty of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, 1 Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand
| | - Petre Dobrev
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Radomira Vankova
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Astrid Forneck
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, Tulln, 3430, Vienna, Austria
| |
Collapse
|
10
|
Grimplet J, Tello J, Laguna N, Ibáñez J. Differences in Flower Transcriptome between Grapevine Clones Are Related to Their Cluster Compactness, Fruitfulness, and Berry Size. FRONTIERS IN PLANT SCIENCE 2017; 8:632. [PMID: 28496449 PMCID: PMC5406470 DOI: 10.3389/fpls.2017.00632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/07/2017] [Indexed: 05/21/2023]
Abstract
Grapevine cluster compactness has a clear impact on fruit quality and health status, as clusters with greater compactness are more susceptible to pests and diseases and ripen more asynchronously. Different parameters related to inflorescence and cluster architecture (length, width, branching, etc.), fruitfulness (number of berries, number of seeds) and berry size (length, width) contribute to the final level of compactness. From a collection of 501 clones of cultivar Garnacha Tinta, two compact and two loose clones with stable differences for cluster compactness-related traits were selected and phenotyped. Key organs and developmental stages were selected for sampling and transcriptomic analyses. Comparison of global gene expression patterns in flowers at the end of bloom allowed identification of potential gene networks with a role in determining the final berry number, berry size and ultimately cluster compactness. A large portion of the differentially expressed genes were found in networks related to cell division (carbohydrates uptake, cell wall metabolism, cell cycle, nucleic acids metabolism, cell division, DNA repair). Their greater expression level in flowers of compact clones indicated that the number of berries and the berry size at ripening appear related to the rate of cell replication in flowers during the early growth stages after pollination. In addition, fluctuations in auxin and gibberellin signaling and transport related gene expression support that they play a central role in fruit set and impact berry number and size. Other hormones, such as ethylene and jasmonate may differentially regulate indirect effects, such as defense mechanisms activation or polyphenols production. This is the first transcriptomic based analysis focused on the discovery of the underlying gene networks involved in grapevine traits of grapevine cluster compactness, berry number and berry size.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja)Logroño, Spain
| | | | | | | |
Collapse
|
11
|
Vondras AM, Gouthu S, Schmidt JA, Petersen AR, Deluc LG. The contribution of flowering time and seed content to uneven ripening initiation among fruits within Vitis vinifera L. cv. Pinot noir clusters. PLANTA 2016; 243:1191-202. [PMID: 26874729 DOI: 10.1007/s00425-016-2474-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/25/2016] [Indexed: 05/24/2023]
Abstract
Ripening initiation-associated hormonal changes and sugar accumulation for individual fruits differed by seed content and did not depend heavily on flowering time or duration from anthesis to clusters' onset of ripening. For Vitis vinifera, the ripening initiation of individual fruits in a cluster occurs unevenly. This developmental period is called véraison. Why individual fruits initiate ripening at different times is not well studied, though differences in seed content and unequal developmental durations that arise from asynchronous flowering within a cluster have been proposed. This study examined how much both variables contribute to individual fruits' ripening progress by mid-véraison, when half of berries in a cluster have initiated ripening, and whether either or both factors affect the timing of characteristic, ripening-initiation associated changes in abscisic acid and auxin before, at, and after véraison. Overall, developmental duration and flowering time did not sufficiently explain how far berries had progressed into the ripening stage because fruits did not require a fixed amount of time to initiate ripening. Fruits from early and late flowers but of similar seed content were able to initiate ripening at the same time despite differences in chronological age. This suggests either an early developmental enhancement occurred for late-initiated fruits or that flowering time is an inappropriate "day zero". Ultimately, only seed content was linked to the timing and magnitude of ripening-related hormone changes, supporting that seeds have a comparatively larger influence than flowering time on the ripening initiation of individual berries. More specifically, if the fraction of berry weight occupied by seed was high, then the initiation of ripening for that berry and its associated hormone changes were delayed relative to berries with less seed weight versus total berry weight.
Collapse
Affiliation(s)
- Amanda M Vondras
- Department of Horticulture, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Satyanarayana Gouthu
- Department of Horticulture, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Joseph A Schmidt
- Department of Horticulture, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Anna-Rose Petersen
- Department of Horticulture, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Laurent G Deluc
- Department of Horticulture, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
12
|
Zhang K, Han YT, Zhao FL, Hu Y, Gao YR, Ma YF, Zheng Y, Wang YJ, Wen YQ. Genome-wide Identification and Expression Analysis of the CDPK Gene Family in Grape, Vitis spp. BMC PLANT BIOLOGY 2015; 15:164. [PMID: 26122404 PMCID: PMC4485369 DOI: 10.1186/s12870-015-0552-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/15/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Calcium-dependent protein kinases (CDPKs) play vital roles in plant growth and development, biotic and abiotic stress responses, and hormone signaling. Little is known about the CDPK gene family in grapevine. RESULTS In this study, we performed a genome-wide analysis of the 12X grape genome (Vitis vinifera) and identified nineteen CDPK genes. Comparison of the structures of grape CDPK genes allowed us to examine their functional conservation and differentiation. Segmentally duplicated grape CDPK genes showed high structural conservation and contributed to gene family expansion. Additional comparisons between grape and Arabidopsis thaliana demonstrated that several grape CDPK genes occured in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grapevine and Arabidopsis. Phylogenetic analysis divided the grape CDPK genes into four groups. Furthermore, we examined the expression of the corresponding nineteen homologous CDPK genes in the Chinese wild grape (Vitis pseudoreticulata) under various conditions, including biotic stress, abiotic stress, and hormone treatments. The expression profiles derived from reverse transcription and quantitative PCR suggested that a large number of VpCDPKs responded to various stimuli on the transcriptional level, indicating their versatile roles in the responses to biotic and abiotic stresses. Moreover, we examined the subcellular localization of VpCDPKs by transiently expressing six VpCDPK-GFP fusion proteins in Arabidopsis mesophyll protoplasts; this revealed high variability consistent with potential functional differences. CONCLUSIONS Taken as a whole, our data provide significant insights into the evolution and function of grape CDPKs and a framework for future investigation of grape CDPK genes.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yong-Tao Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Feng-Li Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yu-Rong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yan-Fei Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - Yue-Jin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|