1
|
Bhattacharyya S, Tobacman JK. SARS-CoV-2 spike protein-ACE2 interaction increases carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK. Signal Transduct Target Ther 2024; 9:39. [PMID: 38355690 PMCID: PMC10866996 DOI: 10.1038/s41392-024-01741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Immunostaining in lungs of patients who died with COVID-19 infection showed increased intensity and distribution of chondroitin sulfate and decline in N-acetylgalactostamine-4-sulfatase (Arylsulfatase B; ARSB). To explain these findings, human small airway epithelial cells were exposed to the SARS-CoV-2 spike protein receptor binding domain (SPRBD) and transcriptional mechanisms were investigated. Phospho-p38 MAPK and phospho-SMAD3 increased following exposure to the SPRBD, and their inhibition suppressed the promoter activation of the carbohydrate sulfotransferases CHST15 and CHST11, which contributed to chondroitin sulfate biosynthesis. Decline in ARSB was mediated by phospho-38 MAPK-induced N-terminal Rb phosphorylation and an associated increase in Rb-E2F1 binding and decline in E2F1 binding to the ARSB promoter. The increases in chondroitin sulfotransferases were inhibited when treated with phospho-p38-MAPK inhibitors, SMAD3 (SIS3) inhibitors, as well as antihistamine desloratadine and antibiotic monensin. In the mouse model of carrageenan-induced systemic inflammation, increases in phospho-p38 MAPK and expression of CHST15 and CHST11 and declines in DNA-E2F binding and ARSB expression occurred in the lung, similar to the observed effects in this SPRBD model of COVID-19 infection. Since accumulation of chondroitin sulfates is associated with fibrotic lung conditions and diffuse alveolar damage, increased attention to p38-MAPK inhibition may be beneficial in ameliorating Covid-19 infections.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joanne K Tobacman
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Nakamura M, Shiga A, Iimori A, Matsuzaki T. Efficient endocytosis of the human lactoferrin N-lobe enhances its antiproliferative activity against human cancer cells. Biol Pharm Bull 2023. [PMID: 37088555 DOI: 10.1248/bpb.b23-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Human lactoferrin (hLF) is a glycosylated globular iron-binding protein with high functional versatility that elicits anticancer, neuroprotective, and anti-inflammatory effects. Some of the diverse functions of hLF are induced after its internalization into various cells via cell surface endocytosis receptors, such as proteoglycans, which contain glycosaminoglycan (GAG) chains. We have previously demonstrated that an hLF derivative comprising the N-terminal half of hLF (referred to as the N-lobe) is internalized by intestinal enterocyte Caco-2 cells. However, the relationship between the intracellular uptake of the N-lobe and its pharmacological activity remains poorly understood. Here, we report that the N-lobe is efficiently internalized by lung cancer cells via endocytic pathways, suppressing their proliferation. Moreover, the N-lobe showed higher intracellular uptake than hLF. We found that the N-lobe was internalized into the human lung cancer cell lines PC-14 and PC-3 via clathrin- and/or caveolae-mediated endocytosis. Intracellular uptake of the N-lobe was inhibited when an equimolar concentration of chondroitin sulfate (CS)-E, a GAG subtype involved in malignant transformation and tumor metastasis, was added. The inhibitory effect of the N-lobe on PC-14 cell proliferation decreased with the addition of CS-E in a dose-dependent manner, suggesting that the CS-recognizing sequence on the N-lobe is necessary for its internalization or that the CS proteoglycan on cancer cells acts as an endocytosis receptor. These results suggest that the efficient endocytic uptake of the N-lobe is important for its antiproliferation effects on lung cancer cell lines. Thus, the N-lobe presents a promising drug candidate for cancer treatment.
Collapse
Affiliation(s)
- Masao Nakamura
- Department of Peptidomics, Sasaki Institute, Sasaki Foundation
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Akira Shiga
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Ami Iimori
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Takumi Matsuzaki
- School of Bioscience and Biotechnology, Tokyo University of Technology
| |
Collapse
|
3
|
Nadanaka S, Tamura JI, Kitagawa H. Chondroitin Sulfates Control Invasiveness of the Basal-Like Breast Cancer Cell Line MDA-MB-231 Through ROR1. Front Oncol 2022; 12:914838. [PMID: 35712490 PMCID: PMC9194504 DOI: 10.3389/fonc.2022.914838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Extracellular and cell surface chondroitin sulfates (CSs) regulate cancer cell properties, including proliferation and invasion. Thus, it is necessary to understand the mechanisms underlying their roles in cancer. Although we have shown that CS has an inherent ability to enhance the invasive activity of the human triple-negative breast cancer cell line MDA-MB-231, its molecular mechanism remains elusive. Here, we focused on receptor tyrosine kinase-like orphan receptor 1 (ROR1) and dickkopf WNT signaling pathway inhibitor 1 (DKK1). MDA-MB-231 cells express high levels of ROR1; their invasive potential depends on ROR1 signaling. Although accumulating evidence has demonstrated that ROR1 is associated with aggressive breast-cancer phenotypes, the whole picture of its biological function remains poorly understood. In this study, we examined whether CS controls ROR1 function. Surface plasmon resonance analysis indicated that CSs were bound to ROR1 in the presence of WNT5A. The invasive activity of MDA-MB-231 cells enhanced by CSs was completely suppressed by ROR1 knockdown. In addition, knockdown of the CS biosynthetic enzymes CHST11 and CHST15 inhibited invasive activity, even in the presence of ROR1. These results suggest that CS is required to induce an ROR1-dependent, aggressive MDA-MB-231 phenotype. ROR1 signaling in MDA-MB-231 cells activated c-Jun N-terminal kinase (JNK), leading to increased invasive potential; moreover, exogenous CSs activated JNK. MDA-MB-231 cells express DKK1, a tumor suppressor factor that binds to CS, at high levels. Knockdown of DKK1 enhanced CS-stimulated tumor invasion activity of MDA-MB-231 cells, suggesting that DKK1 sequesters CS to block ROR1/JNK signaling. These results showed that CSs promotes cancer aggressiveness through the ROR1−JNK axis in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Satomi Nadanaka
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Jun-Ichi Tamura
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
4
|
Stancanelli E, Liu W, Wander R, Li J, Wang Z, Arnold K, Su G, Kanack A, Pham TQ, Pagadala V, Padmanabhan A, Xu Y, Liu J. Chemoenzymatic Synthesis of Homogeneous Heparan Sulfate and Chondroitin Sulfate Chimeras. ACS Chem Biol 2022; 17:1207-1214. [PMID: 35420777 DOI: 10.1021/acschembio.2c00146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) are two structurally distinct natural polysaccharides. Here, we report the synthesis of a library of seven structurally homogeneous HS and CS chimeric dodecasaccharides (12-mers). The synthesis was accomplished using six HS biosynthetic enzymes and four CS biosynthetic enzymes. The chimeras contain a CS domain on the reducing end and a HS domain on the nonreducing end. The synthesized chimeras display anticoagulant activity as measured by both in vitro and ex vivo experiments. Furthermore, the anticoagulant activity of H/C 12-mer 5 is reversible by protamine, a U.S. Food and Drug Administration-approved polypeptide to neutralize anticoagulant drug heparin. Our findings demonstrate the synthesis of unnatural HS-CS chimeric oligosaccharides using natural biosynthetic enzymes, offering a new class of glycan molecules for biological research.
Collapse
Affiliation(s)
- Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Rylee Wander
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Guowei Su
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Adam Kanack
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55904, United States
| | - Truong Quang Pham
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Vijayakanth Pagadala
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Anand Padmanabhan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55904, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Habuchi O. Functions of chondroitin/dermatan sulfate containing GalNAc4,6-disulfate. Glycobiology 2022; 32:664-678. [PMID: 35552694 DOI: 10.1093/glycob/cwac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) containing GalNAc4,6-disulfate (GalNAc4S6S) were initially discovered in marine animals. Following the discovery, these glycosaminoglycans have been found in various animals including human. In the biosynthesis of CS/DS containing GalNAc4S6S, three groups of sulfotransferases are involved; chondroitin 4-sulfotransferases (C4STs), dermatan 4-sulfotransferase-1 (D4ST-1) and GalNAc 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST). GalNAc4S-6ST and its products have been shown to play important roles in the abnormal pathological conditions such as central nervous system injury, cancer development, abnormal tissue fibrosis, development of osteoporosis, and infection with viruses or nematodes. CS/DS containing GalNAc4S6S has been shown to increase with the functional differentiation of mast cells, macrophages and neutrophils. Genetic approaches using knockout or knockdown of GalNAc4S-6ST, blocking of the epitopes containing GalNAc4S6S by specific antibodies and chemical technology that enabled the synthesis of oligosaccharides with defined sulfation patterns have been applied successfully to these investigations. These studies contributed significantly to the basic understanding of the functional roles of CS/DS containing GalNAc4S6S in various abnormal conditions, and appear to provide promising clues to the development of possible measures to treat them.
Collapse
Affiliation(s)
- Osami Habuchi
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi 480-1195, Japan.,Department of Chemistry, Aichi University of Education, Igayacho, Kariya, Aichi 448-8542, Japan
| |
Collapse
|
6
|
Watanabe I. Properties of Monoclonal Antibodies Recognizing Chondroitin Sulfate E. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2120.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Watanabe I. Properties of Monoclonal Antibodies Recognizing Chondroitin Sulfate E. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2120.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Langthasa J, Sarkar P, Narayanan S, Bhagat R, Vadaparty A, Bhat R. Extracellular matrix mediates moruloid-blastuloid morphodynamics in malignant ovarian spheroids. Life Sci Alliance 2021; 4:e202000942. [PMID: 34376568 PMCID: PMC8358442 DOI: 10.26508/lsa.202000942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer metastasizes into peritoneum through dissemination of transformed epithelia as multicellular spheroids. Harvested from the malignant ascites of patients, spheroids exhibit startling features of organization typical to homeostatic glandular tissues: lumen surrounded by smoothly contoured and adhered epithelia. Herein, we demonstrate that cells of specific ovarian cancer lines in suspension, aggregate into dysmorphic solid "moruloid" clusters that permit intercellular movement, cell penetration, and interspheroidal coalescence. Moruloid clusters subsequently mature into "blastuloid" spheroids with smooth contours, a temporally dynamic lumen and immotile cells. Blastuloid spheroids neither coalesce nor allow cell penetration. Ultrastructural examination reveals a basement membrane-like extracellular matrix coat on the surface of blastuloid, but not moruloid, spheroids. Quantitative proteomics reveals down-regulation in ECM protein Fibronectin-1 associated with the moruloid-blastuloid transition; immunocytochemistry also confirms the relocalization of basement membrane ECM proteins: collagen IV and laminin to the surface of blastuloid spheroids. Fibronectin depletion accelerates, and enzymatic basement membrane debridement impairs, lumen formation, respectively. The regulation by ECM dynamics of the morphogenesis of cancer spheroids potentially influences the progression of the disease.
Collapse
Affiliation(s)
- Jimpi Langthasa
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Purba Sarkar
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Shruthi Narayanan
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Rahul Bhagat
- Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | | | - Ramray Bhat
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
9
|
Valmiki S, Aid MA, Chaitou AR, Zahid M, Valmiki M, Fawzy P, Khan S. Extracellular Matrix: A Treasure Trove in Ovarian Cancer Dissemination and Chemotherapeutic Resistance. Cureus 2021; 13:e13864. [PMID: 33859913 PMCID: PMC8038904 DOI: 10.7759/cureus.13864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Late presentation and resistance to chemotherapeutic agents make a deadly combination for ovarian cancer patients. The treatment of these patients is thus challenging. This study explores the possible molecular mechanisms by which tumor cells interact with the extracellular matrix (ECM) constituents, forming metastatic implants and enhancing patients' sensitivity to drugs. For the literature review, PubMed was used as a database. The standard search was done using keywords "collagen, ovarian cancer, extracellular matrix, drug resistance" in different combinations, which finally yielded 32 studies meeting the inclusion/exclusion criteria. The studies included were published in the English language in the past seven years. After analyzing, we found all of them to be histopathological studies. Nine studies also used murine cell lines besides human cell lines and tissue samples from ovarian cancer patients. One study has a retrospective analysis done. Eight studies demonstrate the role of hypoxia and matrix remodeling enzymes in ovarian cancer dissemination. Genetics playing a crucial role in cancer metastasis is demonstrated in eight studies. Ten studies included shows receptors, enzymes, and spheroid organization in disease progression. Six studies address chemotherapeutic resistance. Intraperitoneal dissemination of ovarian cancer and the development of chemotherapeutic resistance depends on certain molecular interactions, and they can be targeted to improve patients' overall survival.
Collapse
Affiliation(s)
- Surbhi Valmiki
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohamed A Aid
- Intensive Care Unit, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Intensive Care Unit, King Fahad Military Medical Complex, Jeddah, SAU
| | - Ali R Chaitou
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Internal Medicine, Faculty of Medical Sciences, Lebanese University, Beirut, LBN
| | - Maria Zahid
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mrinaal Valmiki
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Peter Fawzy
- Neurological Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
10
|
Jyothsna KM, Sarkar P, Jha KK, A S LK, Raghunathan V, Bhat R. A biphasic response of polymerized Type 1 collagen architectures to dermatan sulfate. J Biomed Mater Res A 2021; 109:1646-1656. [PMID: 33687134 DOI: 10.1002/jbm.a.37160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
Collagen I, the most abundant extracellular matrix (ECM) protein in vertebrate tissues provides mechanical durability to tissue microenvironments and regulates cell function. Its fibrillogenesis in biological milieu is predominantly regulated by dermatan sulfate proteoglycans, proteins conjugated with iduronic acid-containing dermatan sulfate (DS) glycosaminoglycans (GAG). Although DS is known to regulate tissue function through its modulation of Coll I architecture, a precise understanding of the latter remains elusive. We investigated this problem by visualizing the fibrillar pattern of fixed Coll I gels polymerized in the presence of varying concentrations of DS using second harmonic generation microscopy. Measuring mean second harmonic generation signal (which estimates the ordering of the fibrils), and surface occupancy (which estimates the space occupied by fibrils) supported by confocal reflectance microscopy, our observations indicated that the effect on fibril pattern of DS is contextual upon the latter's concentrations: Lower levels of DS resulted in sparse disorganized fibrils; higher levels restore organization, with fibrils occupying greater space. An appropriate change in elasticity as a result of DS levels was also observed through atomic force microscopy. Examination of dye-based GAG staining and scanning electron microscopy suggested distinct constitutions of Coll I gels when polymerized with higher and lower levels of DS. We observed that adhesion of the invasive ovarian cancer cells SKOV3 decreased for lower DS levels but was partially restored at higher DS levels. Our study shows how the Coll I gel pattern-tuning of DS is of relevance for understanding its biomaterial applications and possibly, pathophysiological functions.
Collapse
Affiliation(s)
- Konkada Manattayil Jyothsna
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Purba Sarkar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Keshav Kumar Jha
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka, India.,Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Jena, Germany
| | - Lal Krishna A S
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Varun Raghunathan
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
11
|
Li J, Sparkenbaugh EM, Su G, Zhang F, Xu Y, Xia K, He P, Baytas S, Pechauer S, Padmanabhan A, Linhardt RJ, Pawlinski R, Liu J. Enzymatic Synthesis of Chondroitin Sulfate E to Attenuate Bacteria Lipopolysaccharide-Induced Organ Damage. ACS CENTRAL SCIENCE 2020; 6:1199-1207. [PMID: 32724854 PMCID: PMC7379384 DOI: 10.1021/acscentsci.0c00712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 05/09/2023]
Abstract
Chondroitin sulfate E (CS-E) is a sulfated polysaccharide that contains repeating disaccharides of 4,6-disulfated N-acetylgalactosamine and glucuronic acid residues. Here, we report the enzymatic synthesis of three homogeneous CS-E oligosaccharides, including CS-E heptasaccharide (CS-E 7-mer), CS-E tridecasaccharide (CS-E13-mer), and CS-E nonadecasaccharide (CS-E 19-mer). The anti-inflammatory effect of CS-E 19-mer was investigated in this study. CS-E 19-mer neutralizes the cytotoxic effect of histones in a cell-based assay and in mice. We also demonstrate that CS-E 19-mer treatment improves survival and protects against organ damage in a mouse model of endotoxemia induced by bacterial lipopolysaccharide (LPS). CS-E19-mer directly interacts with circulating histones in the plasma from LPS-challenged mice. CS-E 19-mer does not display anticoagulant activity nor react with heparin-induced thrombocytopenia antibodies isolated from patients. The successful synthesis of CS-E oligosaccharides provides structurally defined carbohydrates for advancing CS-E research and offers a potential therapeutic agent to treat life-threatening systemic inflammation.
Collapse
Affiliation(s)
- Jine Li
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Erica M. Sparkenbaugh
- UNC
Blood Research Center and Division of Hematology/Oncology, Department
of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Guowei Su
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Fuming Zhang
- Department
of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Yongmei Xu
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Ke Xia
- Department
of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Pen He
- Department
of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Sultan Baytas
- Department
of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Shannon Pechauer
- Versiti
Blood Research Institute & Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Anand Padmanabhan
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota, United States
| | - Robert J. Linhardt
- Department
of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Rafal Pawlinski
- UNC
Blood Research Center and Division of Hematology/Oncology, Department
of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
- (R.P.)
| | - Jian Liu
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States
- (J.L.)
| |
Collapse
|
12
|
van den Brand D, van Lith SAM, de Jong JM, Gorris MAJ, Palacio-Castañeda V, Couwenbergh ST, Goldman MRG, Ebisch I, Massuger LF, Leenders WPJ, Brock R, Verdurmen WPR. EpCAM-Binding DARPins for Targeted Photodynamic Therapy of Ovarian Cancer. Cancers (Basel) 2020; 12:E1762. [PMID: 32630661 PMCID: PMC7409335 DOI: 10.3390/cancers12071762] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy due to late detection associated with dissemination throughout the abdominal cavity. Targeted photodynamic therapy (tPDT) aimed at epithelial cell adhesion molecule (EpCAM), overexpressed in over 90% of ovarian cancer metastatic lesions, is a promising novel therapeutic modality. Here, we tested the specificity and activity of conjugates of EpCAM-directed designed ankyrin repeat proteins (DARPins) with the photosensitizer IRDye 700DX in in vitro and in vivo ovarian cancer models. EpCAM-binding DARPins (Ec1: Kd = 68 pM; Ac2: Kd = 130 nM) and a control DARPin were site-specifically functionalized with fluorophores or IRDye 700DX. Conjugation of anti-EpCAM DARPins with fluorophores maintained EpCAM-specific binding in cell lines and patient-derived ovarian cancer explants. Penetration of DARPin Ec1 into tumor spheroids was slower than that of Ac2, indicative of a binding site barrier effect for Ec1. DARPin-IRDye 700DX conjugates killed EpCAM-expressing cells in a highly specific and illumination-dependent fashion in 2D and 3D cultures. Furthermore, they effectively homed to EpCAM-expressing subcutaneous OV90 xenografts in mice. In conclusion, the high activity and specificity observed in preclinical ovarian cancer models, combined with a high specificity in patient material, warrant a further investigation of EpCAM-targeted PDT for ovarian cancer.
Collapse
Affiliation(s)
- Dirk van den Brand
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - Sanne A. M. van Lith
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - Jelske M. de Jong
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Stijn T. Couwenbergh
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Mark R. G. Goldman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Inge Ebisch
- Department of Obstetrics and Gynaecology, Canisius Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ Nijmegen, The Netherlands;
| | - Leon F. Massuger
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - William P. J. Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| |
Collapse
|
13
|
Bhattacharyya S, Feferman L, Han X, Xia K, Zhang F, Linhardt RJ, Tobacman JK. Increased CHST15 follows decline in arylsulfatase B (ARSB) and disinhibition of non-canonical WNT signaling: potential impact on epithelial and mesenchymal identity. Oncotarget 2020; 11:2327-2344. [PMID: 32595831 PMCID: PMC7299535 DOI: 10.18632/oncotarget.27634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Expression of CHST15 (carbohydrate sulfotransferase 15; chondroitin 4-sulfate-6-sulfotransferase; BRAG), the sulfotransferase enzyme that adds 6-sulfate to chondroitin 4-sulfate (C4S) to make chondroitin 4,6-disulfate (chondroitin sulfate E, CSE), was increased in malignant prostate epithelium obtained by laser capture microdissection and following arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) silencing in human prostate epithelial cells. Experiments in normal and malignant human prostate epithelial and stromal cells and tissues, in HepG2 cells, and in the ARSB-null mouse were performed to determine the pathway by which CHST15 expression is up-regulated when ARSB expression is reduced. Effects of Wnt-containing prostate stromal cell spent media and selective inhibitors of WNT, JNK, p38, SHP2, β-catenin, Rho, and Rac-1 signaling pathways were determined. Activation of WNT signaling followed declines in ARSB and Dickkopf WNT Signaling Pathway Inhibitor (DKK)3 and was required for increased CHST15 expression. The increase in expression of CHST15 followed activation of non-canonical WNT signaling and involved Wnt3A, Rac-1 GTPase, phospho-p38 MAPK, and nuclear DNA-bound GATA-3. Inhibition of JNK, Sp1, β-catenin nuclear translocation, or Rho kinase had no effect. Consistent with higher expression of CHST15 in prostate epithelium, disaccharide analysis showed higher levels of CSE and chondroitin 6-sulfate (C6S) disaccharides in prostate epithelial cells. In contrast, chondroitin 4-sulfate (C4S) disaccharides were greater in prostate stromal cells. CSE may contribute to increased C4S in malignant epithelium when GALNS (N-aceytylgalactosamine-6-sulfate sulfatase) is increased and ARSB is reduced. These effects increase chondroitin 4-sulfates and reduce chondroitin 6-sulfates, consistent with enhanced stromal characteristics and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| | - Leo Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Joanne K Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| |
Collapse
|
14
|
The Many Microenvironments of Ovarian Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1296:199-213. [PMID: 34185294 DOI: 10.1007/978-3-030-59038-3_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common and deadly subtype of ovarian cancer as it is commonly diagnosed after substantial metastasis has already occurred. The past two decades have been an active era in HGSOC research, with new information on the origin and genomic signature of the tumor cell. Additionally, studies have begun to characterize changes in the HGSOC microenvironment and examine the impact of these changes on tumor progression and response to therapies. While this knowledge may provide valuable insight into better prognosis and treatments for HGSOCs, its collection, synthesis, and application are complicated by the number of unique microenvironments in the disease-the initiating site (fallopian tube), first metastasis (ovary), distal metastases (peritoneum), and recurrent/platinum-resistant setting. Here, we review the state of our understanding of these diverse sites and highlight remaining questions.
Collapse
|
15
|
Peptide-mediated delivery of therapeutic mRNA in ovarian cancer. Eur J Pharm Biopharm 2019; 141:180-190. [PMID: 31103743 DOI: 10.1016/j.ejpb.2019.05.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy in the developed world. In spite of intensive research, the mortality has hardly decreased over the past twenty years. This necessitates the exploration of novel therapeutic modalities. Transient protein expression through delivery of mRNA is emerging as a highly promising option. In contrast to gene therapy there is no risk of integration into the genome. Here, we explore the expression of mRNA in models of ovarian cancer of increasing complexity. The cell-penetrating peptide (CPP) PepFect 14 (PF14) was used to formulate CPP-mRNA nanoparticles. Efficient expression of a reporter protein was achieved in two-dimensional tissue cultures and in three-dimensional cancer cell spheroids. PF14 nanoparticles greatly outperformed a lipid-based transfection agent in vivo, leading to expression in various cell types of tumor associated tissue. Protein expression was restricted to the peritoneal cavity. Messenger RNA expression across different cell types was confirmed in primary ovarian cancer explants. As ovarian cancer is confined to the peritoneal cavity in most cases, the results create the basis for applications in which the tumor microenvironment is transiently modified through protein expression.
Collapse
|
16
|
Kastana P, Choleva E, Poimenidi E, Karamanos N, Sugahara K, Papadimitriou E. Insight into the role of chondroitin sulfate E in angiogenesis. FEBS J 2019; 286:2921-2936. [DOI: 10.1111/febs.14830] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Pinelopi Kastana
- Laboratory of Molecular Pharmacology Department of Pharmacy University of Patras Greece
| | - Effrosyni Choleva
- Laboratory of Molecular Pharmacology Department of Pharmacy University of Patras Greece
| | - Evangelia Poimenidi
- Laboratory of Molecular Pharmacology Department of Pharmacy University of Patras Greece
| | - Nikos Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| | - Kazuyuki Sugahara
- Faculty of Pharmacy Department of Pathobiochemistry Meijo University Nagoya Japan
| | | |
Collapse
|
17
|
Pudełko A, Wisowski G, Olczyk K, Koźma EM. The dual role of the glycosaminoglycan chondroitin-6-sulfate in the development, progression and metastasis of cancer. FEBS J 2019; 286:1815-1837. [PMID: 30637950 PMCID: PMC6850286 DOI: 10.1111/febs.14748] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/14/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
Abstract
The remarkable structural heterogeneity of chondroitin sulfate (CS) and dermatan sulfate (DS) generates biological information that can be unique to each of these glycosaminoglycans (GAGs), and changes in their composition are translated into alterations in the binding profiles of these molecules. CS/DS can bind to various cytokines and growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillar glycoproteins of the extracellular matrix, thereby influencing both cell behavior and the biomechanical and biochemical properties of the matrix. In this review, we summarize the current knowledge concerning CS/DS metabolism in the human cancer stroma. The remodeling of the GAG profile in the tumor niche is manifested as a substantial increase in the CS content and a gradual decrease in the proportion between DS and CS. Furthermore, the composition of CS and DS is also affected, which results in a substantial increase in the 6‐O‐sulfated and/or unsulfated disaccharide content, which is concomitant with a decrease in the 4‐O‐sulfation level. Here, we discuss the possible impact of alterations in the CS/DS sulfation pattern on the binding capacity and specificity of these GAGs. Moreover, we propose potential consequences of the stromal accumulation of chondroitin‐6‐sulfate for the progression and metastasis of cancer.
Collapse
Affiliation(s)
- Adam Pudełko
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Wisowski
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Ewa Maria Koźma
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
18
|
Profant V, Johannessen C, Blanch EW, Bouř P, Baumruk V. Effects of sulfation and the environment on the structure of chondroitin sulfate studied via Raman optical activity. Phys Chem Chem Phys 2019; 21:7367-7377. [DOI: 10.1039/c9cp00472f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman optical activity reflects differences in the secondary structure of chondroitin caused by its sulfation.
Collapse
Affiliation(s)
- Václav Profant
- Institute of Physics
- Faculty of Mathematics and Physics
- Charles University
- 121 16 Prague 2
- Czech Republic
| | | | | | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 166 10 Prague 6
- Czech Republic
| | - Vladimír Baumruk
- Institute of Physics
- Faculty of Mathematics and Physics
- Charles University
- 121 16 Prague 2
- Czech Republic
| |
Collapse
|
19
|
Zhao RR, Ackers-Johnson M, Stenzig J, Chen C, Ding T, Zhou Y, Wang P, Ng SL, Li PY, Teo G, Rudd PM, Fawcett JW, Foo RS. Targeting Chondroitin Sulfate Glycosaminoglycans to Treat Cardiac Fibrosis in Pathological Remodeling. Circulation 2018; 137:2497-2513. [DOI: 10.1161/circulationaha.117.030353] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022]
Abstract
Background:
Heart failure is a leading cause of mortality and morbidity, and the search for novel therapeutic approaches continues. In the monogenic disease mucopolysaccharidosis VI, loss-of-function mutations in arylsulfatase B lead to myocardial accumulation of chondroitin sulfate (CS) glycosaminoglycans, manifesting as myriad cardiac symptoms. Here, we studied changes in myocardial CS in nonmucopolysaccharidosis failing hearts and assessed its generic role in pathological cardiac remodeling.
Methods:
Healthy and diseased human and rat left ventricles were subjected to histological and immunostaining methods to analyze glycosaminoglycan distribution. Glycosaminoglycans were extracted and analyzed for quantitative and compositional changes with Alcian blue assay and liquid chromatography–mass spectrometry. Expression changes in 20 CS-related genes were studied in 3 primary human cardiac cell types and THP-1–derived macrophages under each of 9 in vitro stimulatory conditions. In 2 rat models of pathological remodeling induced by transverse aortic constriction or isoprenaline infusion, recombinant human arylsulfatase B (rhASB), clinically used as enzyme replacement therapy in mucopolysaccharidosis VI, was administered intravenously for 7 or 5 weeks, respectively. Cardiac function, myocardial fibrosis, and inflammation were assessed by echocardiography and histology. CS-interacting molecules were assessed with surface plasmon resonance, and a mechanism of action was verified in vitro.
Results:
Failing human hearts displayed significant perivascular and interstitial CS accumulation, particularly in regions of intense fibrosis. Relative composition of CS disaccharides remained unchanged. Transforming growth factor–β induced CS upregulation in cardiac fibroblasts. CS accumulation was also observed in both the pressure-overload and the isoprenaline models of pathological remodeling in rats. Early treatment with rhASB in the transverse aortic constriction model and delayed treatment in the isoprenaline model proved rhASB to be effective at preventing cardiac deterioration and augmenting functional recovery. Functional improvement was accompanied by reduced myocardial inflammation and overall fibrosis. Tumor necrosis factor–α was identified as a direct binding partner of CS glycosaminoglycan chains, and rhASB reduced tumor necrosis factor–α—induced inflammatory gene activation in vitro in endothelial cells and macrophages.
Conclusions:
CS glycosaminoglycans accumulate during cardiac pathological remodeling and mediate myocardial inflammation and fibrosis. rhASB targets CS effectively as a novel therapeutic approach for the treatment of heart failure.
Collapse
Affiliation(s)
- Rong-Rong Zhao
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Matthew Ackers-Johnson
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Justus Stenzig
- Genome Institute of Singapore (J.S., S.L.N., R.S.Y.F.)
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.S.)
| | - Chen Chen
- Bioprocessing Technology Institute (C.C., G.T., P.M.R.), Agency for Science, Technology and Research
| | - Tao Ding
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Yue Zhou
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Peipei Wang
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Shi Ling Ng
- Genome Institute of Singapore (J.S., S.L.N., R.S.Y.F.)
| | - Peter Y. Li
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Gavin Teo
- Bioprocessing Technology Institute (C.C., G.T., P.M.R.), Agency for Science, Technology and Research
| | - Pauline M. Rudd
- Bioprocessing Technology Institute (C.C., G.T., P.M.R.), Agency for Science, Technology and Research
- Glycoscience Group, National Institute for Bioprocessing, Research and Training, Dublin, Ireland (P.M.R.)
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, United Kingdom (J.W.F.)
| | - Roger S.Y. Foo
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
- Genome Institute of Singapore (J.S., S.L.N., R.S.Y.F.)
| |
Collapse
|
20
|
Penetration in 3D tumor spheroids and explants: Adding a further dimension to the structure-activity relationship of cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1342-1349. [PMID: 29550289 DOI: 10.1016/j.bbamem.2018.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/23/2018] [Accepted: 03/08/2018] [Indexed: 12/30/2022]
Abstract
Drug delivery into tumors and metastases is a major challenge in the eradication of cancers such as epithelial ovarian carcinoma. Cationic cell-penetrating peptides (CPPs) are a promising group of delivery vehicles to mediate cellular entry of molecules that otherwise poorly enter cells. However, little is known about their penetration behavior in tissues. Here, we investigated penetration of cationic CPPs in 3D ovarian cancer spheroids and patient-derived 3D tumor explants. Penetration kinetics and distribution after long-term incubation were imaged by confocal microscopy. In addition, spheroids and tumor explants were dissociated and cell-associated fluorescence determined by flow cytometry. CPPs with high uptake activity showed enhanced sequestration in the periphery of the spheroid, whereas less active CPPs were able to penetrate deeper into the tissue. CPPs consisting of d-amino acids were advantageous over l-amino acid CPPs as they showed less but long lasting cellular uptake activity, which benefitted penetration and retention over time. In primary tumor cultures, in contrast to nonaarginine, the amphipathic CPP penetratin was strongly sequestered by cell debris and matrix components pointing towards arginine-rich CPPs as a preferred choice. Overall, the data show that testing in 3D models leads to a different choice of the preferred peptide in comparison to a standard 2D cell culture.
Collapse
|
21
|
Hoosen Y, Pradeep P, Kumar P, du Toit LC, Choonara YE, Pillay V. Nanotechnology and Glycosaminoglycans: Paving the Way Forward for Ovarian Cancer Intervention. Int J Mol Sci 2018; 19:E731. [PMID: 29510526 PMCID: PMC5877592 DOI: 10.3390/ijms19030731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer (OC) has gained a great deal of attention due to its aggressive proliferative capabilities, high death rates and poor treatment outcomes, rendering the disease the ultimate lethal gynaecological cancer. Nanotechnology provides a promising avenue to combat this malignancy by the niche fabrication of optimally-structured nanomedicines that ensure potent delivery of chemotherapeutics to OC, employing nanocarriers to act as "intelligent" drug delivery vehicles, functionalized with active targeting approaches for precision delivery of chemotherapeutics to overexpressed biomarkers on cancer cells. Recently, much focus has been implemented to optimize these active targeting mechanisms for treatment/diagnostic purposes employing nanocarriers. This two-part article aims to review the latest advances in active target-based OC interventions, where the impact of the newest antibody, aptamer and folate functionalization on OC detection and treatment is discussed in contrast to the limitations of this targeting mechanism. Furthermore, we discuss the latest advances in nanocarrier based drug delivery in OC, highlighting their commercial/clinical viability of these systems beyond the realms of research. Lastly, in the second section of this review, we comprehensively discussed a focus shift in OC targeting from the well-studied OC cells to the vastly neglected extracellular matrix and motivate the potential for glycosaminoglycans (GAGs) as a more focused extracellular molecular target.
Collapse
Affiliation(s)
- Yasar Hoosen
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Priyamvada Pradeep
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
22
|
Changes in the Extracellular Matrix Are Associated With the Development of Serous Tubal Intraepithelial Carcinoma Into High-Grade Serous Carcinoma. Int J Gynecol Cancer 2017; 27:1072-1081. [DOI: 10.1097/igc.0000000000000933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ObjectiveThe identification of a marker for early progression of preinvasive lesions into invasive pelvic high-grade serous carcinoma (HGSC) may provide novel handles for innovative screening and prevention strategies. The interplay between cancer cells and the extracellular matrix (ECM) is one of the main principles in cancer development and growth, but has been largely neglected in preinvasive lesions. This is the first study addressing the involvement of the ECM in the “step-by-step” transition of normal fallopian tube epithelium into preinvasive lesions, and eventually the progression of preinvasive lesions into invasive HGSC.MethodsThe expression of highly sulfated chondroitin sulfate (CS-E), a characteristic glycosaminoglycan of the cancer-associated ECM, was assessed by immunohistochemistry in a large cohort of precursor lesions of the full spectrum of HGSC development, including 97 serous tubal intraepithelial carcinomas (STICs), 27 serous tubal intraepithelial lesions, and 24 p53 signatures. In addition, the immunological reactivity in the microenvironment was evaluated.ResultsIncreased stromal expression of highly sulfated CS-E was observed in 3.7%, 57.7%, and 90.6% of serous tubal intraepithelial lesions, STICs, and invasive HGSCs, respectively (P < 0.001). No or limited expression was found in p53 signatures and normal tubal epithelium (compared with STIC, P < 0.001). A gradual increase in the amount of CS-E expression between STIC and paired HGSC was demonstrated. Intense stromal CS-E expression in STIC was significantly associated with an immune infiltrate (P < 0.001).ConclusionsOur study showed that increased stromal CS-E expression is related to the degree of the tubal epithelium abnormality. Specific alterations in the ECM (ie, CS-E expression) occur early in pelvic HGSC development and may represent a novel biomarker of early cancer progression, useful for the identification of novel clinical strategies.
Collapse
|
23
|
Ito Z, Takakura K, Suka M, Kanai T, Saito R, Fujioka S, Kajihara M, Yanagisawa H, Misawa T, Akiba T, Koido S, Ohkusa T. Prognostic impact of carbohydrate sulfotransferase 15 in patients with pancreatic ductal adenocarcinoma. Oncol Lett 2017; 13:4799-4805. [PMID: 28599481 PMCID: PMC5453115 DOI: 10.3892/ol.2017.6071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
Patients with pancreatic ductal adenocarcinoma (PDA) typically succumb to mortality early, even following surgical resection. Therefore, prognostic factors associated with early mortality are required to improve the survival of patients with PDA following surgical resection. Carbohydrate sulfotransferase 15 (CHST15) is responsible for the biosynthesis of sulfated chondroitin sulfate E (CS-E), which serves a pivotal function in cancer progression by cleaving CD44. CHST15 and CD44 expression in PDA tissue were assessed as a prognostic factor in patients with PDA following surgical resection. A total of 36 consecutive patients with PDA were enrolled following surgical resection between January 2008 and December 2014. The intensities of CHST15 and CD44 expression were analyzed by immunohistochemical staining. The recurrence period was significantly earlier in the strong CHST15 expression group compared with the negative-to-moderate CHST15 expression group. Overall survival (OS) was also significantly decreased in the strong CHST15 expression group compared with the negative-to-moderate CHST15 expression group. Multivariate analysis also indicated significant associations between CHST15 overexpression and disease-free survival (DFS) and OS. However, expression of CD44 in PDA tissue was not associated with DFS or OS. The present study has demonstrated for the first time that high CHST15 expression in PDA tissue may represent a potential predictive marker of DFS and OS in patients with PDA following surgical resection.
Collapse
Affiliation(s)
- Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Tomoya Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Ryota Saito
- Department of Surgery, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Shuichi Fujioka
- Department of Surgery, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Mikio Kajihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Takeyuki Misawa
- Department of Surgery, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Tadashi Akiba
- Department of Surgery, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan.,Institute of Clinical Medicine and Research, Jikei University School of Medicine, Kashiwa, Chiba 277-8564, Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan.,Institute of Clinical Medicine and Research, Jikei University School of Medicine, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
24
|
van der Steen SC, Raavé R, Langerak S, van Houdt L, van Duijnhoven SM, van Lith SA, Massuger LF, Daamen WF, Leenders WP, van Kuppevelt TH. Targeting the extracellular matrix of ovarian cancer using functionalized, drug loaded lyophilisomes. Eur J Pharm Biopharm 2017; 113:229-239. [DOI: 10.1016/j.ejpb.2016.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022]
|
25
|
Pradeep P, Choonara YE, Kumar P, Pillay V. "On-The-Spot" Arresting of Chondroitin Sulphate Proteoglycans: Implications for Ovarian Adenocarcinoma Recognition and Intervention. Int J Mol Sci 2016; 17:ijms17071136. [PMID: 27438831 PMCID: PMC4964509 DOI: 10.3390/ijms17071136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 01/11/2023] Open
Abstract
Ovarian Cancer (OC) is one of the leading causes of cancer-associated death among women. The underlying biochemical cause of OC proliferation is usually attributed to the over-expression of Chondroitin Sulphate Proteoglycans (CSPGs) wherein the CS-E subgroup plays a major role in tumor cell proliferation by over-expressing vascular endothelial growth factor (VEGF). We hereby hypothesize that by targeting the OC extracellular matrix using a CS-E-specific antibody, GD3G7, we could provide spatial delivery of crosslinkers and anti-VEGF agents to firstly induce in vivo crosslinking and complexation (arresting) of CS-E into a “biogel mass” for efficient and effective detection, detachment and reduction of tumorous tissue, and secondly inhibit angiogenesis in OC. It is further proposed that the antibody-assisted targeted delivery of CS-E crosslinkers can bind to highly anionic CS-E to form a polyelectrolyte complex to inhibit the formation of ovarian tumor spheroids that are responsible for spheroid-induced mesothelial clearance and progression of OC. The hypothesis also describes the potential in vivo “On-The-Spot” CSPG crosslinkers such as sodium trimetaphosphate (physical crosslinker), 1,12-diaminododecane (chemical crosslinker), poly(ethylene glycol) diglycidyl ether (synthetic polymer), and chitosan (natural polyelectrolyte-forming agent). In conclusion, this hypothesis proposes in vivo spatial crosslinking of CSPGs as a potential theranostic intervention strategy for OC—a first in the field of cancer research.
Collapse
Affiliation(s)
- Priyamvada Pradeep
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
26
|
Ryan E, Shen D, Wang X. Structural studies reveal an important role for the pleiotrophin C-terminus in mediating interactions with chondroitin sulfate. FEBS J 2016; 283:1488-503. [PMID: 26896299 DOI: 10.1111/febs.13686] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/30/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022]
Abstract
UNLABELLED Pleiotrophin (PTN) is a potent glycosaminoglycan-binding cytokine that is important in neural development, angiogenesis and tissue regeneration. Much of its activity is attributed to its interactions with the chondroitin sulfate (CS) proteoglycan, receptor type protein tyrosine phosphatase ζ (PTPRZ). However, there is little high resolution structural information on the interactions between PTN and CS, nor is it clear why the C-terminal tail of PTN is necessary for signaling through PTPRZ, even though it does not contribute to heparin binding. We determined the first structure of PTN and analyzed its interactions with CS. Our structure shows that PTN possesses large basic surfaces on both of its structured domains and also that residues in the hinge segment connecting the domains have significant contacts with the C-terminal domain. Our analysis of PTN-CS interactions showed that the C-terminal tail of PTN is essential for maintaining stable interactions with chondroitin sulfate A, the type of CS commonly found on PTPRZ. These results offer the first possible explanation of why truncated PTN missing the C-terminal tail is unable to signal through PTPRZ. NMR analysis of the interactions of PTN with CS revealed that the C-terminal domain and hinge of PTN make up the major CS-binding site in PTN, and that removal of the C-terminal tail weakened the affinity of the site for CSA but not for other high sulfation density CS. DATABASE Coordinates of the ensemble of ten PTN structures have been deposited in RCSB under accession number 2n6f. Chemical shifts assignments and structural constraints have been deposited in BMRB under accession number 25762.
Collapse
Affiliation(s)
- Eathen Ryan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Di Shen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
27
|
Inhibition of Cell Proliferation and Growth of Pancreatic Cancer by Silencing of Carbohydrate Sulfotransferase 15 In Vitro and in a Xenograft Model. PLoS One 2015; 10:e0142981. [PMID: 26642349 PMCID: PMC4671730 DOI: 10.1371/journal.pone.0142981] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 10/29/2015] [Indexed: 12/11/2022] Open
Abstract
Chondroitin sulfate E (CS-E), a highly sulfated glycosaminoglycan, is known to promote tumor invasion and metastasis. Because the presence of CS-E is detected in both tumor and stromal cells in pancreatic ductal adenocarcinoma (PDAC), multistage involvement of CS-E in the development of PDAC has been considered. However, its involvement in the early stage of PDAC progression is still not fully understood. In this study, to clarify the direct role of CS-E in tumor, but not stromal, cells of PDAC, we focused on carbohydrate sulfotransferase 15 (CHST15), a specific enzyme that biosynthesizes CS-E, and investigated the effects of the CHST15 siRNA on tumor cell proliferation in vitro and growth in vivo. CHST15 mRNA is highly expressed in the human pancreatic cancer cell lines PANC-1, MIA PaCa-2, Capan-1 and Capan-2. CHST15 siRNA significantly inhibited the expression of CHST15 mRNA in these four cells in vitro. Silencing of the CHST15 gene in the cells was associated with significant reduction of proliferation and up-regulation of the cell cycle inhibitor-related gene p21CIP1/WAF1. In a subcutaneous xenograft tumor model of PANC-1 in nude mice, a single intratumoral injection of CHST15 siRNA almost completely suppressed tumor growth. Reduced CHST15 protein signals associated with tumor necrosis were observed with the treatment with CHST15 siRNA. These results provide evidence of the direct action of CHST15 on the proliferation of pancreatic tumor cells partly through the p21CIP1/WAF1 pathway. Thus, CHST15-CS-E axis-mediated tumor cell proliferation could be a novel therapeutic target in the early stage of PDAC progression.
Collapse
|
28
|
Prognostic impact of chondroitin-4-sulfotransferase CHST11 in ovarian cancer. Tumour Biol 2015; 36:9023-30. [PMID: 26084610 DOI: 10.1007/s13277-015-3652-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022] Open
Abstract
Ovarian cancer (OvCa) accounts for the highest tumor-related mortality among gynecological malignancies, but the underlying mechanisms are poorly understood. Glycosaminoglycans are abundantly present in ovarian tumors, and there is rising evidence that chondroitin sulfate (CS) as well as diverse carbohydrate sulfotransferases (CHSTs), the enzymes involved in the sulfation process of these structures, plays an important role in metastatic spread of tumor cells. mRNA expression levels of CHST3/7/11/12/13/15 were compared between malignant (86 OvCas) and non-malignant tumors (6 borderline tumors and 3 cystadenomas). CHST11 and CHST15 were further chosen for Western blot analysis in a cohort of 216 OvCas. Protein expression levels were correlated with clinicopathologic prognostic parameters and survival data. A significantly higher mRNA expression of CHST11, CHST12, and CHST15 was measured in ovarian cancer samples in comparison to non-malignant ones, and the same trend was observed for CHST13. For CHST3 and CHST7, no significant differences were found between the two groups. At protein level, high CHST11 expression was independently associated with unfavorable progression-free survival (PFS; p = 0.027). A similar trend was observed for CHST15, showing a nearly significant correlation between high expression levels and shorter recurrence-free survival in patients without macroscopic residual tumor after surgery (p = 0.053). We conclude that CHSTs involved in the synthesis of CS-A and CS-E might influence ovarian cancer progression, and we suggest CHST11 as independent unfavorable prognostic factor in this entity.
Collapse
|