1
|
Zhang W, Wang S, Liu Z, Qian P, Li Y, Wu J. Legumain-deficient macrophages regulate inflammation and lipid metabolism in adipose tissues to protect against diet-induced obesity. Mol Cell Endocrinol 2024; 592:112283. [PMID: 38815795 DOI: 10.1016/j.mce.2024.112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Adipose tissue macrophages (ATMs) are key players in the development of obesity and associated metabolic inflammation, which contributes to systemic metabolic dysfunction, and understanding the interaction between macrophages and adipocytes is crucial for developing novel macrophage-based strategies against obesity. Here, we found that Legumain (Lgmn), a well-known lysosomal cysteine protease, is expressed mainly in the ATMs of obese mice. To further define the potential role of Lgmn-expressing macrophages in the generation of an aberrant metabolic state, LgmnF/F; LysMCre mice, which do not express Lgmn in macrophages, were maintained on a high-fat diet (HFD), and metabolic parameters were assessed. Macrophage-specific Lgmn deficiency protects mice against HFD-induced obesity, diminishes the quantity of proinflammatory macrophages in obese adipose tissues, and alleviates hepatic steatosis and insulin resistance. By analysing the transcriptome and proteome of murine visceral white adipose tissue (vWAT) after HFD feeding, we determined that macrophage Lgmn deficiency causes changes in lipid metabolism and the inflammatory response. Furthermore, the reciprocity of macrophage-derived Lgmn with integrin α5β1 in adipocytes was tested via colocalization analyses. It is further demonstrated in macrophage and adipocyte coculture system that macrophage derived Lgmn bound to integrin α5β1 in adipocytes, therefore attenuating PKA activation, downregulating lipolysis-related proteins and eventually exacerbating obesity development. Overall, our study identified Lgmn as a previously unrecognized regulator involved in the interaction between ATMs and adipocytes contributing to diet-induced obesity and suggested that Lgmn is a potential target for treating metabolic disorders.
Collapse
Affiliation(s)
- Wanyu Zhang
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Shuowen Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhuo Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Ping Qian
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Yuanyuan Li
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Jianxin Wu
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Sahu S, Rao AR, Sahu TK, Pandey J, Varshney S, Kumar A, Gaikwad K. Predictive Role of Cluster Bean ( Cyamopsis tetragonoloba) Derived miRNAs in Human and Cattle Health. Genes (Basel) 2024; 15:448. [PMID: 38674383 PMCID: PMC11049822 DOI: 10.3390/genes15040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 04/28/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding conserved molecules with lengths varying between 18-25nt. Plants miRNAs are very stable, and probably they might have been transferred across kingdoms via food intake. Such miRNAs are also called exogenous miRNAs, which regulate the gene expression in host organisms. The miRNAs present in the cluster bean, a drought tolerant legume crop having high commercial value, might have also played a regulatory role for the genes involved in nutrients synthesis or disease pathways in animals including humans due to dietary intake of plant parts of cluster beans. However, the predictive role of miRNAs of cluster beans for gene-disease association across kingdoms such as cattle and humans are not yet fully explored. Thus, the aim of the present study is to (i) find out the cluster bean miRNAs (cb-miRs) functionally similar to miRNAs of cattle and humans and predict their target genes' involvement in the occurrence of complex diseases, and (ii) identify the role of cb-miRs that are functionally non-similar to the miRNAs of cattle and humans and predict their targeted genes' association with complex diseases in host systems. Here, we predicted a total of 33 and 15 functionally similar cb-miRs (fs-cb-miRs) to human and cattle miRNAs, respectively. Further, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the participation of targeted genes of fs-cb-miRs in 24 and 12 different pathways in humans and cattle, respectively. Few targeted genes in humans like LCP2, GABRA6, and MYH14 were predicted to be associated with disease pathways of Yesinia infection (hsa05135), neuroactive ligand-receptor interaction (hsa04080), and pathogenic Escherichia coli infection (hsa05130), respectively. However, targeted genes of fs-cb-miRs in humans like KLHL20, TNS1, and PAPD4 are associated with Alzheimer's, malignant tumor of the breast, and hepatitis C virus infection disease, respectively. Similarly, in cattle, targeted genes like ATG2B and DHRS11 of fs-cb-miRs participate in the pathways of Huntington disease and steroid biosynthesis, respectively. Additionally, the targeted genes like SURF4 and EDME2 of fs-cb-miRs are associated with mastitis and bovine osteoporosis, respectively. We also found a few cb-miRs that do not have functional similarity with human and cattle miRNAs but are found to target the genes in the host organisms and as well being associated with human and cattle diseases. Interestingly, a few genes such as NRM, PTPRE and SUZ12 were observed to be associated with Rheumatoid Arthritis, Asthma and Endometrial Stromal Sarcoma diseases, respectively, in humans and genes like SCNN1B associated with renal disease in cattle.
Collapse
Affiliation(s)
- Sarika Sahu
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Atmakuri Ramakrishna Rao
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
- Indian Council of Agricultural Research, New Delhi 110001, India
| | - Tanmaya Kumar Sahu
- Indian Grassland and Fodder Research Institute, ICAR, Jhansi 284003, India;
| | - Jaya Pandey
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
| | - Shivangi Varshney
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
| | - Archna Kumar
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Kishor Gaikwad
- National Institute for Plant Biotechnology, ICAR, New Delhi 110012, India;
| |
Collapse
|
3
|
Hassan M, Shahzadi S, Yasir M, Chun W, Kloczkowski A. Computational prognostic evaluation of Alzheimer's drugs from FDA-approved database through structural conformational dynamics and drug repositioning approaches. Sci Rep 2023; 13:18022. [PMID: 37865690 PMCID: PMC10590448 DOI: 10.1038/s41598-023-45347-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
Drug designing is high-priced and time taking process with low success rate. To overcome this obligation, computational drug repositioning technique is being promptly used to predict the possible therapeutic effects of FDA approved drugs against multiple diseases. In this computational study, protein modeling, shape-based screening, molecular docking, pharmacogenomics, and molecular dynamic simulation approaches have been utilized to retrieve the FDA approved drugs against AD. The predicted MADD protein structure was designed by homology modeling and characterized through different computational resources. Donepezil and galantamine were implanted as standard drugs and drugs were screened out based on structural similarities. Furthermore, these drugs were evaluated and based on binding energy (Kcal/mol) profiles against MADD through PyRx tool. Moreover, pharmacogenomics analysis showed good possible associations with AD mediated genes and confirmed through detail literature survey. The best 6 drug (darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar) further docked and analyzed their interaction behavior through hydrogen binding. Finally, MD simulation study were carried out on these drugs and evaluated their stability behavior by generating root mean square deviation and fluctuations (RMSD/F), radius of gyration (Rg) and soluble accessible surface area (SASA) graphs. Taken together, darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar displayed good lead like profile as compared with standard and can be used as possible therapeutic agent in the treatment of AD after in-vitro and in-vivo assessment.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA.
| |
Collapse
|
4
|
Zhang S, Zhang Q, Li X, Zhang R, Che H, Liu Z, Guo D, Yang F, Chen Y. Mutagenicity of PM 2.5 and Ethnic Susceptibility in Chengdu-Chongqing Economic Circle, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163022. [PMID: 36966844 DOI: 10.1016/j.scitotenv.2023.163022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
PM2.5 seriously endangers human health, and its mutagenicity is considered an important pathogenic mechanism. However, the mutagenicity of PM2.5 is mainly determined by traditional bioassays, which are limited in the large-scale identification of mutation sites. Single nucleoside polymorphisms (SNPs) can be used for the large-scale analysis of DNA mutation sites but have not yet been used on the mutagenicity of PM2.5. The Chengdu-Chongqing Economic Circle is one of China's four major economic circles and five major urban agglomerations, and the relationship between the mutagenicity of PM2.5 and ethnic susceptibility in this circle remains unclear. In this study, the representative samples are PM2.5 from Chengdu in summer (CDSUM), Chengdu in winter (CDWIN), Chongqing in summer (CQSUM) and Chongqing in winter (CQWIN) respectively. PM2.5 from CDWIN, CDSUM and CQSUM induce the highest levels of mutation in the regions of exon/5'Utr, upstream/splice site and downstream/3'Utr respectively. PM2.5 from CQWIN, CDWIN and CDSUM induce the highest ratio of missense, nonsense and synonymous mutation respectively. PM2.5 from CQWIN and CDWIN induce the highest transition and transversion mutations respectively. The ability of PM2.5 from the four groups to induce disruptive mutation effects is similar. For ethnic susceptibility, PM2.5 in this economic circle is more likely to induce DNA mutation in Chinese Dai from Xishuangbanna among Chinese ethnic groups. PM2.5 from CDSUM, CDWIN, CQSUM and CQWIN may particularly tend to induce Southern Han Chinese, Dai in Xishuangbanna, Dai in Xishuangbanna and Southern Han Chinese respectively. These findings may assist in the development of a new method for analyzing the mutagenicity of PM2.5. Moreover, this study not only promotes attention to ethnic susceptibility to PM2.5, but also introduces public protection policies for the susceptible population.
Collapse
Affiliation(s)
- Shumin Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Qin Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xiaomeng Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Ronghua Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hanxiong Che
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhenzhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Dongmei Guo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
5
|
Walakira A, Skubic C, Nadižar N, Rozman D, Režen T, Mraz M, Moškon M. Integrative computational modeling to unravel novel potential biomarkers in hepatocellular carcinoma. Comput Biol Med 2023; 159:106957. [PMID: 37116239 DOI: 10.1016/j.compbiomed.2023.106957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/17/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major health problem around the world. The management of this disease is complicated by the lack of noninvasive diagnostic tools and the few treatment options available. Better clinical outcomes can be achieved if HCC is detected early, but unfortunately, clinical signs appear when the disease is in its late stages. We aim to identify novel genes that can be targeted for the diagnosis and therapy of HCC. We performed a meta-analysis of transcriptomics data to identify differentially expressed genes and applied network analysis to identify hub genes. Fatty acid metabolism, complement and coagulation cascade, chemical carcinogenesis and retinol metabolism were identified as key pathways in HCC. Furthermore, we integrated transcriptomics data into a reference human genome-scale metabolic model to identify key reactions and subsystems relevant in HCC. We conclude that fatty acid activation, purine metabolism, vitamin D, and E metabolism are key processes in the development of HCC and therefore need to be further explored for the development of new therapies. We provide the first evidence that GABRP, HBG1 and DAK (TKFC) genes are important in HCC in humans and warrant further studies.
Collapse
Affiliation(s)
- Andrew Walakira
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Cene Skubic
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nejc Nadižar
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Mraz
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Moškon
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Sadegh S, Skelton J, Anastasi E, Maier A, Adamowicz K, Möller A, Kriege NM, Kronberg J, Haller T, Kacprowski T, Wipat A, Baumbach J, Blumenthal DB. Lacking mechanistic disease definitions and corresponding association data hamper progress in network medicine and beyond. Nat Commun 2023; 14:1662. [PMID: 36966134 PMCID: PMC10039912 DOI: 10.1038/s41467-023-37349-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
A long-term objective of network medicine is to replace our current, mainly phenotype-based disease definitions by subtypes of health conditions corresponding to distinct pathomechanisms. For this, molecular and health data are modeled as networks and are mined for pathomechanisms. However, many such studies rely on large-scale disease association data where diseases are annotated using the very phenotype-based disease definitions the network medicine field aims to overcome. This raises the question to which extent the biases mechanistically inadequate disease annotations introduce in disease association data distort the results of studies which use such data for pathomechanism mining. We address this question using global- and local-scale analyses of networks constructed from disease association data of various types. Our results indicate that large-scale disease association data should be used with care for pathomechanism mining and that analyses of such data should be accompanied by close-up analyses of molecular data for well-characterized patient cohorts.
Collapse
Affiliation(s)
- Sepideh Sadegh
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - James Skelton
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Elisa Anastasi
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Maier
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Klaudia Adamowicz
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Anna Möller
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nils M Kriege
- Faculty of Computer Science, University of Vienna, Vienna, Austria
- Research Network Data Science, University of Vienna, Vienna, Austria
| | - Jaanika Kronberg
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Toomas Haller
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Anil Wipat
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational Biomedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
7
|
Hamdany AK, Parewangi ML, Saleh S, Bakri S, Akil F, Abadi S, Seweng A. Comparison of plasminogen activator inhibitor-1 levels in chronic hepatitis B patients with hepatic cirrhosis and without hepatic cirrhosis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction: One of the hepatic cirrhosis manifestations is bleeding disorders. Among all the substance that plays a pivotal role in maintaining the balance between thrombosis and thrombolysis is PAI-1, synthesized by hepatocytes. The dynamics of increase and decrease of PAI-1 is a natural response to the ongoing hepatic cirrhosis, but may not be seen in non-hepatic cirrhosis. PAI-1 levels also depends on the stage of fibrosis. Several conditions may interfere with PAI-1 levels including age, body mass index, and gender
Objectives: This study aims to find out the comparison of PAI-1 levels in hepatitis B patients with hepatic cirrhosis and without hepatic cirrhosis and to compare it with every stage of hepatic cirrhosis.
Patients and Methods: This study is an observational analytical study with a cross-sectional approach conducted at Wahidin Sudirohusodo hospitals, Makassar. Subjects are chronic hepatitis B patients with and without hepatic cirrhosis which meet inclusion criteria. Serum PAI-1 levels were measured by using Bender MedSystems human plasminogen activator inhibitor-1 ELISA kit (BMS2033) and using the ELISA technique. Statistical analysis was performed using the Kolmogorov Smirnov normality test as well as the Mann-Whitney method. Statistical results are considered significant if the p-value <0.05.
Results: The research was conducted on 60 subjects who meet inclusion criteria, consisting of 33 men and 27 women. There were 16 patients with hepatic cirrhosis. Levels of PAI-1 in hepatic cirrhosis was significantly different which lower than non-hepatic cirrhosis patient (0.43 ng/mL Vs 1.11 ng/mL, p=0.024). By staging of hepatic fibrosis, stage F2 hepatic fibrosis had the highest levels of PAI-1, in contrast with end-stage hepatic fibrosis which had the lowest levels.
Conclusion: Levels of PAI-1 fluctuate through different stages of hepatic fibrosis. The significant difference in PAI-1 levels in hepatic cirrhosis and non-hepatic cirrhosis demonstrates a correlation between PAI-1 and hepatic cirrhosis
Keywords: Chronic hepatitis B, Hepatic cirrhosis, Plasminogen Activator Inhibitor-1
Collapse
|
8
|
Vrazas V, Moustafa S, Makridakis M, Karakasiliotis I, Vlahou A, Mavromara P, Katsani KR. A Proteomic Approach to Study the Biological Role of Hepatitis C Virus Protein Core+1/ARFP. Viruses 2022; 14:v14081694. [PMID: 36016316 PMCID: PMC9518822 DOI: 10.3390/v14081694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis C virus is the major cause of chronic liver diseases and the only cytoplasmic RNA virus known to be oncogenic in humans. The viral genome gives rise to ten mature proteins and to additional proteins, which are the products of alternative translation initiation mechanisms. A protein-known as ARFP (alternative reading frame protein) or Core+1 protein-is synthesized by an open reading frame overlapping the HCV Core coding region in the (+1) frame of genotype 1a. Almost 20 years after its discovery, we still know little of the biological role of the ARFP/Core+1 protein. Here, our differential proteomic analysis of stable hepatoma cell lines expressing the Core+1/Long isoform of HCV-1a relates the expression of the Core+1/Long isoform with the progression of the pathology of HCV liver disease to cancer.
Collapse
Affiliation(s)
- Vasileios Vrazas
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (V.V.); (P.M.)
| | - Savvina Moustafa
- Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, Hippokration General Hospital of Athens, 11527 Athens, Greece;
| | - Manousos Makridakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (A.V.); (M.M.)
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Antonia Vlahou
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (A.V.); (M.M.)
| | - Penelope Mavromara
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (V.V.); (P.M.)
| | - Katerina R. Katsani
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (V.V.); (P.M.)
- Correspondence:
| |
Collapse
|
9
|
Kanmani P, Kim H. Probiotics counteract the expression of hepatic profibrotic genes via the attenuation of TGF-β/SMAD signaling and autophagy in hepatic stellate cells. PLoS One 2022; 17:e0262767. [PMID: 35051234 PMCID: PMC8775563 DOI: 10.1371/journal.pone.0262767] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Hepatic fibrosis is caused by the increased accumulation and improper degradation of extracellular matrix (ECM) proteins in the liver. Hepatic stellate cells (HSCs) activation is a key process in initiating hepatic fibrosis and can be ameliorated by the administration of probiotic strains. This study hypothesized that LAB strains (Lactiplantibacillus plantarum, Lactobacillus brevis, and Weissella cibaria) might attenuate pro-fibrogenic cytokine TGF-β mediated HSCs activation and induce collagen deposition, expression of other fibrogenic/inflammatory markers, autophagy, and apoptotic processes in vitro. Few studies have evaluated the probiotic effects against fibrogenesis in vitro. In this study, TGF-β exposure increased collagen deposition in LX-2 cells, but this increase was diminished when the cells were pretreated with LAB strains before TGF-β stimulation. TGF-β not only increased collagen deposition, but it also significantly upregulated the mRNA levels of Col1A1, alpha-smooth muscle actin (α-SMA), matrix metalloproteinases-2 (MMP-2), IL-6, CXCL-8, CCL2, and IL-1β in LX-2 cells. Pretreatment of the cells with LAB strains counteracted the TGF-β-induced pro-fibrogenic and inflammatory markers by modulating SMAD-dependent and SMAD-independent TGF-β signaling. In addition, LX-2 cells exposed to TGF-β induced the autophagic and apoptotic associated proteins that were also positively regulated by the LAB strains. These findings suggest that LAB can attenuate TGF-β signaling that is associated with liver fibrogenesis.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Korean Medicine, Dongguk University, Goyang, Republic of Korea
- Department of Medicine, University of Illinois, Chicago, Illinois, United States of America
| | - Hojun Kim
- Department of Korean Medicine, Dongguk University, Goyang, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Long Y, Niu Y, Liang K, Du Y. Mechanical communication in fibrosis progression. Trends Cell Biol 2021; 32:70-90. [PMID: 34810063 DOI: 10.1016/j.tcb.2021.10.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
Mechanical hallmarks of fibrotic microenvironments are both outcomes and causes of fibrosis progression. Understanding how cells sense and transmit mechanical cues in the interplay with extracellular matrix (ECM) and hemodynamic forces is a significant challenge. Recent advances highlight the evolvement of intracellular mechanotransduction pathways responding to ECM remodeling and abnormal hemodynamics (i.e., low and disturbed shear stress, pathological stretch, and increased pressure), which are prevalent biomechanical characteristics of fibrosis in multiple organs (e.g., liver, lung, and heart). Here, we envisage the mechanical communication in cell-ECM, cell-hemodynamics and cell-ECM-cell crosstalk (namely paratensile signaling) during fibrosis expansion. We also provide a comprehensive overview of in vitro and in silico engineering systems for disease modeling that will aid the identification and prediction of mechano-based therapeutic targets to ameliorate fibrosis progression.
Collapse
Affiliation(s)
- Yi Long
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing, 100084, China
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Martin MD, Huard DJ, Guerrero-Ferreira RC, Desai IM, Barlow BM, Lieberman RL. Molecular architecture and modifications of full-length myocilin. Exp Eye Res 2021; 211:108729. [DOI: 10.1016/j.exer.2021.108729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 01/06/2023]
|
12
|
Patterson-Orazem AC, Qerqez AN, Azouz LR, Ma MT, Hill SE, Ku Y, Schildmeyer LA, Maynard JA, Lieberman RL. Recombinant antibodies recognize conformation-dependent epitopes of the leucine zipper of misfolding-prone myocilin. J Biol Chem 2021; 297:101067. [PMID: 34384785 PMCID: PMC8408531 DOI: 10.1016/j.jbc.2021.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022] Open
Abstract
Recombinant antibodies with well-characterized epitopes and known conformational specificities are critical reagents to support robust interpretation and reproducibility of immunoassays across biomedical research. For myocilin, a protein prone to misfolding that is associated with glaucoma and an emerging player in other human diseases, currently available antibodies are unable to differentiate among the numerous disease-associated protein states. This fundamentally constrains efforts to understand the connection between myocilin structure, function, and disease. To address this concern, we used protein engineering methods to develop new recombinant antibodies that detect the N-terminal leucine zipper structural domain of myocilin and that are cross-reactive for human and mouse myocilin. After harvesting spleens from immunized mice and in vitro library panning, we identified two antibodies, 2A4 and 1G12. 2A4 specifically recognizes a folded epitope while 1G12 recognizes a range of conformations. We matured antibody 2A4 for improved biophysical properties, resulting in variant 2H2. In a human IgG1 format, 2A4, 1G12, and 2H2 immunoprecipitate full-length folded myocilin present in the spent media of human trabecular meshwork (TM) cells, and 2H2 can visualize myocilin in fixed human TM cells using fluorescence microscopy. These new antibodies should find broad application in glaucoma and other research across multiple species platforms.
Collapse
Affiliation(s)
| | - Ahlam N Qerqez
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Laura R Azouz
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yemo Ku
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lisa A Schildmeyer
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
13
|
Odongo R, Demiroglu-Zergeroglu A, Çakır T. A systems pharmacology approach based on oncogenic signalling pathways to determine the mechanisms of action of natural products in breast cancer from transcriptome data. BMC Complement Med Ther 2021; 21:181. [PMID: 34193143 PMCID: PMC8244196 DOI: 10.1186/s12906-021-03340-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Narrow spectrum of action through limited molecular targets and unforeseen drug-related toxicities have been the main reasons for drug failures at the phase I clinical trials in complex diseases. Most plant-derived compounds with medicinal values possess poly-pharmacologic properties with overall good tolerability, and, thus, are appropriate in the management of complex diseases, especially cancers. However, methodological limitations impede attempts to catalogue targeted processes and infer systemic mechanisms of action. While most of the current understanding of these compounds is based on reductive methods, it is increasingly becoming clear that holistic techniques, leveraging current improvements in omic data collection and bioinformatics methods, are better suited for elucidating their systemic effects. Thus, we developed and implemented an integrative systems biology pipeline to study these compounds and reveal their mechanism of actions on breast cancer cell lines. METHODS Transcriptome data from compound-treated breast cancer cell lines, representing triple negative (TN), luminal A (ER+) and HER2+ tumour types, were mapped on human protein interactome to construct targeted subnetworks. The subnetworks were analysed for enriched oncogenic signalling pathways. Pathway redundancy was reduced by constructing pathway-pathway interaction networks, and the sets of overlapping genes were subsequently used to infer pathway crosstalk. The resulting filtered pathways were mapped on oncogenesis processes to evaluate their anti-carcinogenic effectiveness, and thus putative mechanisms of action. RESULTS The signalling pathways regulated by Actein, Withaferin A, Indole-3-Carbinol and Compound Kushen, which are extensively researched compounds, were shown to be projected on a set of oncogenesis processes at the transcriptomic level in different breast cancer subtypes. The enrichment of well-known tumour driving genes indicate that these compounds indirectly dysregulate cancer driving pathways in the subnetworks. CONCLUSION The proposed framework infers the mechanisms of action of potential drug candidates from their enriched protein interaction subnetworks and oncogenic signalling pathways. It also provides a systematic approach for evaluating such compounds in polygenic complex diseases. In addition, the plant-based compounds used here show poly-pharmacologic mechanism of action by targeting subnetworks enriched with cancer driving genes. This network perspective supports the need for a systemic drug-target evaluation for lead compounds prior to efficacy experiments.
Collapse
Affiliation(s)
- Regan Odongo
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | | | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
14
|
Zhang W, Lin Y. The Mechanism of Asparagine Endopeptidase in the Progression of Malignant Tumors: A Review. Cells 2021; 10:cells10051153. [PMID: 34068767 PMCID: PMC8151911 DOI: 10.3390/cells10051153] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Asparagine endopeptidase (AEP), also called legumain, is currently the only known cysteine protease that specifically cleaves peptide bonds in asparaginyl residue in the mammalian genome. Since 2003, AEP has been reported to be widely expressed in a variety of carcinomas and is considered a potential therapeutic target. In the following years, researchers intensively investigated the substrates of AEP and the mechanism of AEP in partial tumors. With the identification of substrate proteins such as P53, integrin αvβ3, MMP-2, and MMP-9, the biochemical mechanism of AEP in carcinomas is also more precise. This review will clarify the probable mechanisms of AEP in the progression of breast carcinoma, glioblastoma, gastric carcinoma, and epithelial ovarian carcinoma. This review will also discuss the feasibility of targeted therapy with AEP inhibitor (AEPI) in these carcinomas.
Collapse
|
15
|
Lazareva O, Baumbach J, List M, Blumenthal DB. On the limits of active module identification. Brief Bioinform 2021; 22:6189770. [PMID: 33782690 DOI: 10.1093/bib/bbab066] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
In network and systems medicine, active module identification methods (AMIMs) are widely used for discovering candidate molecular disease mechanisms. To this end, AMIMs combine network analysis algorithms with molecular profiling data, most commonly, by projecting gene expression data onto generic protein-protein interaction (PPI) networks. Although active module identification has led to various novel insights into complex diseases, there is increasing awareness in the field that the combination of gene expression data and PPI network is problematic because up-to-date PPI networks have a very small diameter and are subject to both technical and literature bias. In this paper, we report the results of an extensive study where we analyzed for the first time whether widely used AMIMs really benefit from using PPI networks. Our results clearly show that, except for the recently proposed AMIM DOMINO, the tested AMIMs do not produce biologically more meaningful candidate disease modules on widely used PPI networks than on random networks with the same node degrees. AMIMs hence mainly learn from the node degrees and mostly fail to exploit the biological knowledge encoded in the edges of the PPI networks. This has far-reaching consequences for the field of active module identification. In particular, we suggest that novel algorithms are needed which overcome the degree bias of most existing AMIMs and/or work with customized, context-specific networks instead of generic PPI networks.
Collapse
Affiliation(s)
- Olga Lazareva
- Chair of Experimental Bioinformatics, Technical University of Munich, Freising, Germany
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, Technical University of Munich, Freising, Germany.,Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany.,Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Markus List
- Chair of Experimental Bioinformatics, Technical University of Munich, Freising, Germany
| | - David B Blumenthal
- Chair of Experimental Bioinformatics, Technical University of Munich, Freising, Germany
| |
Collapse
|
16
|
Schyman P, Xu Z, Desai V, Wallqvist A. TOXPANEL: A Gene-Set Analysis Tool to Assess Liver and Kidney Injuries. Front Pharmacol 2021; 12:601511. [PMID: 33633572 PMCID: PMC7900624 DOI: 10.3389/fphar.2021.601511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/08/2021] [Indexed: 11/30/2022] Open
Abstract
Gene-set analysis is commonly used to identify trends in gene expression when cells, tissues, organs, or organisms are subjected to conditions that differ from those within the normal physiological range. However, tools for gene-set analysis to assess liver and kidney injury responses are less common. Furthermore, most websites for gene-set analysis lack the option for users to customize their gene-set database. Here, we present the ToxPanel website, which allows users to perform gene-set analysis to assess liver and kidney injuries using activation scores based on gene-expression fold-change values. The results are graphically presented to assess constituent injury phenotypes (histopathology), with interactive result tables that identify the main contributing genes to a given signal. In addition, ToxPanel offers the flexibility to analyze any set of custom genes based on gene fold-change values. ToxPanel is publically available online at https://toxpanel.bhsai.org. ToxPanel allows users to access our previously developed liver and kidney injury gene sets, which we have shown in previous work to yield robust results that correlate with the degree of injury. Users can also test and validate their customized gene sets using the ToxPanel website.
Collapse
Affiliation(s)
- Patric Schyman
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Zhen Xu
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Valmik Desai
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Anders Wallqvist
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
17
|
Hill T, Rooney J, Abedini J, El-Masri H, Wood CE, Corton JC. Gene Expression Thresholds Derived From Short-term Exposures Identify Rat Liver Tumorigens. Toxicol Sci 2020; 177:41-59. [PMID: 32603419 DOI: 10.1093/toxsci/kfaa102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Traditional methods for cancer risk assessment are resource-intensive, retrospective, and not feasible for the vast majority of environmental chemicals. In this study, we investigated whether quantitative genomic data from short-term studies may be used to set protective thresholds for potential tumorigenic effects. We hypothesized that gene expression biomarkers measuring activation of the key early events in established pathways for rodent liver cancer exhibit cross-chemical thresholds for tumorigenesis predictive for liver cancer risk. We defined biomarker thresholds for 6 major liver cancer pathways using training sets of chemicals with short-term genomic data (3-29 days of exposure) from the TG-GATES (n = 77 chemicals) and DrugMatrix (n = 86 chemicals) databases and then tested these thresholds within and between datasets. The 6 pathway biomarkers represented genotoxicity, cytotoxicity, and activation of xenobiotic, steroid, and lipid receptors (aryl hydrocarbon receptor, constitutive activated receptor, estrogen receptor, and peroxisome proliferator-activated receptor α). Thresholds were calculated as the maximum values derived from exposures without detectable liver tumor outcomes. We identified clear response values that were consistent across training and test sets. Thresholds derived from the TG-GATES training set were highly predictive (97%) in a test set of independent chemicals, whereas thresholds derived from the DrugMatrix study were 96%-97% predictive for the TG-GATES study. Threshold values derived from an abridged gene list (2/biomarker) also exhibited high predictive accuracy (91%-94%). These findings support the idea that early genomic changes can be used to establish threshold estimates or "molecular tipping points" that are predictive of later-life health outcomes.
Collapse
Affiliation(s)
- Thomas Hill
- Center for Computational Toxicology and Exposure.,Oak Ridge Institute for Science and Education (ORISE), NHEERL, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - John Rooney
- Center for Computational Toxicology and Exposure.,Oak Ridge Institute for Science and Education (ORISE), NHEERL, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711.,Integrated Laboratory Systems, Morrisville, North Carolina
| | - Jaleh Abedini
- Center for Computational Toxicology and Exposure.,Integrated Laboratory Systems, Morrisville, NC
| | | | | | | |
Collapse
|
18
|
Elucidating Potential Profibrotic Mechanisms of Emerging Biomarkers for Early Prognosis of Hepatic Fibrosis. Int J Mol Sci 2020; 21:ijms21134737. [PMID: 32635162 PMCID: PMC7369895 DOI: 10.3390/ijms21134737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis has been associated with a series of pathophysiological processes causing excessive accumulation of extracellular matrix proteins. Several cellular processes and molecular mechanisms have been implicated in the diseased liver that augments fibrogenesis, fibrogenic cytokines and associated liver complications. Liver biopsy remains an essential diagnostic tool for histological evaluation of hepatic fibrosis to establish a prognosis. In addition to being invasive, this methodology presents with several limitations including poor cost-effectiveness, prolonged hospitalizations, and risks of peritoneal bleeding, while the clinical use of this method does not reveal underlying pathogenic mechanisms. Several alternate noninvasive diagnostic strategies have been developed, to determine the extent of hepatic fibrosis, including the use of direct and indirect biomarkers. Immediate diagnosis of hepatic fibrosis by noninvasive means would be more palatable than a biopsy and could assist clinicians in taking early interventions timely, avoiding fatal complications, and improving prognosis. Therefore, we sought to review some common biomarkers of liver fibrosis along with some emerging candidates, including the oxidative stress-mediated biomarkers, epigenetic and genetic markers, exosomes, and miRNAs that needs further evaluation and would have better sensitivity and specificity. We also aim to elucidate the potential role of cardiotonic steroids (CTS) and evaluate the pro-inflammatory and profibrotic effects of CTS in exacerbating hepatic fibrosis. By understanding the underlying pathogenic processes, the efficacy of these biomarkers could allow for early diagnosis and treatment of hepatic fibrosis in chronic liver diseases, once validated.
Collapse
|
19
|
Schyman P, Printz RL, AbdulHameed MDM, Estes SK, Shiota C, Shiota M, Wallqvist A. A toxicogenomic approach to assess kidney injury induced by mercuric chloride in rats. Toxicology 2020; 442:152530. [PMID: 32599119 DOI: 10.1016/j.tox.2020.152530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Kidney injury caused by disease, trauma, environmental exposures, or drugs may result in decreased renal function, chronic kidney disease, or acute kidney failure. Diagnosis of kidney injury using serum creatinine levels, a common clinical test, only identifies renal dysfunction after the kidneys have undergone severe damage. Other indicators sensitive to kidney injury, such as the level of urine kidney injury molecule-1 (KIM-1), lack the ability to differentiate between injury phenotypes. To address early detection as well as detailed categorization of kidney-injury phenotypes in preclinical animal or cellular studies, we previously identified eight sets (modules) of co-expressed genes uniquely associated with kidney histopathology. Here, we used mercuric chloride (HgCl2)-a model nephrotoxicant-to chemically induce kidney injuries as monitored by KIM-1 levels in Sprague Dawley rats at two doses (0.25 or 0.50 mg/kg) and two exposure lengths (10 or 34 h). We collected whole transcriptome RNA-seq data derived from five animals at each dose and time point to perform a toxicogenomics analysis. Consistent with documented injury phenotypes for HgCl2 toxicity, our kidney-injury-module approach identified the onset of necrosis and dilation as early as 10 h after a dose of 0.50 mg/kg that produced only mild injury as judged by urinary KIM-1 excretion. The results of these animal studies highlight the potential of the kidney-injury-module approach to provide a sensitive and histopathology-specific readout of renal toxicity.
Collapse
Affiliation(s)
- Patric Schyman
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA.
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mohamed Diwan M AbdulHameed
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Anders Wallqvist
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA
| |
Collapse
|
20
|
Stalidzans E, Zanin M, Tieri P, Castiglione F, Polster A, Scheiner S, Pahle J, Stres B, List M, Baumbach J, Lautizi M, Van Steen K, Schmidt HH. Mechanistic Modeling and Multiscale Applications for Precision Medicine: Theory and Practice. NETWORK AND SYSTEMS MEDICINE 2020. [DOI: 10.1089/nsm.2020.0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Egils Stalidzans
- Computational Systems Biology Group, University of Latvia, Riga, Latvia
- Latvian Biomedical Reasearch and Study Centre, Riga, Latvia
| | - Massimiliano Zanin
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
| | - Paolo Tieri
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | - Filippo Castiglione
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | | | - Stefan Scheiner
- Institute for Mechanics of Materials and Structures, Vienna University of Technology, Vienna, Austria
| | - Jürgen Pahle
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Blaž Stres
- Department of Animal Science, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Markus List
- Big Data in BioMedicine Research Group, Chair of Experimental Bioinformatics, TUM School of Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Weihenstephan, Technical University of Munich, Freising, Germany
| | - Manuela Lautizi
- Computational Systems Medicine Research Group, Chair of Experimental Bioinformatics, TUM School of Weihenstephan, Technical University of Munich, Freising, Germany
| | - Kristel Van Steen
- BIO-Systems Genetics, GIGA-R, University of Liège, Liège, Belgium
- BIO3—Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Harald H.H.W. Schmidt
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
21
|
Ricard-Blum S, Miele AE. Omic approaches to decipher the molecular mechanisms of fibrosis, and design new anti-fibrotic strategies. Semin Cell Dev Biol 2020; 101:161-169. [DOI: 10.1016/j.semcdb.2019.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
|
22
|
Li N, Liu C, Ma G, Tseng Y, Pan D, Chen J, Li F, Zeng X, Luo T, Chen S. Asparaginyl endopeptidase may promote liver sinusoidal endothelial cell angiogenesis via PI3K/Akt pathway. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2020; 111:214-222. [PMID: 30507245 DOI: 10.17235/reed.2018.5709/2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS pathological angiogenesis plays an important role in the progression of chronic liver diseases. Asparaginyl endopeptidase (AEP) participates in tumor angiogenesis and was recently shown to be associated with liver fibrosis. This study aimed to explore the effect of AEP on liver sinusoidal endothelial cell (LSECs) angiogenesis and determine the underlying mechanism. METHODS cultured LSECs were infected with lentiviruses in order to suppress AEP expression (AEP-KD1, AEP-KD2). The effect of AEP on LSECs proliferation, apoptosis and migration were subsequently determined by a CCK8 assay, flow cytometry and wound-healing and Transwell assays, respectively, in AEP knocked-down and control LSECs. The expression of the endothelial cell surface markers CD31, CD34 and von Willebrand factor (vWF) were detected by immunofluorescence assay and western blot. The angiogenic factors, vascular endothelial growth factor receptor 2 (VEGFR2) and interleukin 8 (IL 8) were detected by real-time PCR and western blot. The effect of AEP on vessel tube formation by LSECs was examined by Matrigel™ tube-formation assay. Phosphoinositide 3-kinase (PI3K)/Akt expression and phosphorylation were detected by western blot. RESULTS AEP was effectively knocked down by lentivirus infection in LSECs. Down-regulation of AEP expression significantly decreased proliferation and migration and increased apoptosis of LSECs. Moreover, expression levels of the endothelial cell surface markers CD31, CD34 and vWF, as well as angiogenic factors VEGFR2 and IL 8, were also reduced after AEP was knocked-down. The vessel tube formation abilities of AEP-KD1 and AEP-KD2 LSECs were significantly inhibited compared with LSECs without AEP knocked-down. Down-regulation of AEP also inhibited the phosphorylation of PI3K and Akt. CONCLUSION AEP promotes LSECs angiogenesis in vitro, possibly via the PI3K/Akt pathway. AEP may therefore be a potential therapeutic target for preventing the progression of liver fibrosis.
Collapse
Affiliation(s)
- Na Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Chu Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan Ubiversity, China
| | - Guifen Ma
- Department of Radiotherapy, Zhongshan Hospital, Fudan University, China
| | - Yujen Tseng
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Duyi Pan
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Jie Chen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Feng Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Xiaoqing Zeng
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Tiancheng Luo
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Shiyao Chen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| |
Collapse
|
23
|
Liu X, Rosenthal SB, Meshgin N, Baglieri J, Musallam SG, Diggle K, Lam K, Wu R, Pan SQ, Chen Y, Dorko K, Presnell S, Benner C, Hosseini M, Tsukamoto H, Brenner D, Kisseleva T. Primary Alcohol-Activated Human and Mouse Hepatic Stellate Cells Share Similarities in Gene-Expression Profiles. Hepatol Commun 2020; 4:606-626. [PMID: 32258954 PMCID: PMC7109347 DOI: 10.1002/hep4.1483] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/15/2019] [Indexed: 01/18/2023] Open
Abstract
Alcoholic liver disease (ALD) is a leading cause of cirrhosis in the United States, which is characterized by extensive deposition of extracellular matrix proteins and formation of a fibrous scar. Hepatic stellate cells (HSCs) are the major source of collagen type 1 producing myofibroblasts in ALD fibrosis. However, the mechanism of alcohol-induced activation of human and mouse HSCs is not fully understood. We compared the gene-expression profiles of primary cultured human HSCs (hHSCs) isolated from patients with ALD (n = 3) or without underlying liver disease (n = 4) using RNA-sequencing analysis. Furthermore, the gene-expression profile of ALD hHSCs was compared with that of alcohol-activated mHSCs (isolated from intragastric alcohol-fed mice) or CCl4-activated mouse HSCs (mHSCs). Comparative transcriptome analysis revealed that ALD hHSCs, in addition to alcohol-activated and CCl4-activated mHSCs, share the expression of common HSC activation (Col1a1 [collagen type I alpha 1 chain], Acta1 [actin alpha 1, skeletal muscle], PAI1 [plasminogen activator inhibitor-1], TIMP1 [tissue inhibitor of metalloproteinase 1], and LOXL2 [lysyl oxidase homolog 2]), indicating that a common mechanism underlies the activation of human and mouse HSCs. Furthermore, alcohol-activated mHSCs most closely recapitulate the gene-expression profile of ALD hHSCs. We identified the genes that are similarly and uniquely up-regulated in primary cultured alcohol-activated hHSCs and freshly isolated mHSCs, which include CSF1R (macrophage colony-stimulating factor 1 receptor), PLEK (pleckstrin), LAPTM5 (lysosmal-associated transmembrane protein 5), CD74 (class I transactivator, the invariant chain), CD53, MMP9 (matrix metallopeptidase 9), CD14, CTSS (cathepsin S), TYROBP (TYRO protein tyrosine kinase-binding protein), and ITGB2 (integrin beta-2), and other genes (compared with CCl4-activated mHSCs). Conclusion: We identified genes in alcohol-activated mHSCs from intragastric alcohol-fed mice that are largely consistent with the gene-expression profile of primary cultured hHSCs from patients with ALD. These genes are unique to alcohol-induced HSC activation in two species, and therefore may become targets or readout for antifibrotic therapy in experimental models of ALD.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Surgery University of California, San Diego La Jolla CA.,Department of Medicine University of California, San Diego La Jolla CA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics University of California, San Diego La Jolla CA
| | - Nairika Meshgin
- Department of Surgery University of California, San Diego La Jolla CA.,Department of Medicine University of California, San Diego La Jolla CA
| | - Jacopo Baglieri
- Department of Surgery University of California, San Diego La Jolla CA.,Department of Medicine University of California, San Diego La Jolla CA
| | - Sami G Musallam
- Department of Surgery University of California, San Diego La Jolla CA
| | - Karin Diggle
- Department of Medicine University of California, San Diego La Jolla CA
| | - Kevin Lam
- Department of Medicine University of California, San Diego La Jolla CA
| | - Raymond Wu
- Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA.,Department of Pathology Keck School of Medicine of the University of Southern California Los Angeles CA
| | - Stephanie Q Pan
- Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA.,Department of Pathology Keck School of Medicine of the University of Southern California Los Angeles CA
| | - Yibu Chen
- Bioinformatics Services Keck School of Medicine of the University of Southern California Los Angeles CA
| | | | | | - Chris Benner
- Department of Medicine University of California, San Diego La Jolla CA
| | - Mojgan Hosseini
- Department of Pathology University of California, San Diego La Jolla CA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA.,Department of Pathology Keck School of Medicine of the University of Southern California Los Angeles CA.,Department of Veterans Affairs Great Los Angeles Healthcare System Los Angeles CA
| | - David Brenner
- Department of Medicine University of California, San Diego La Jolla CA.,Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA
| | - Tatiana Kisseleva
- Department of Surgery University of California, San Diego La Jolla CA.,Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA
| |
Collapse
|
24
|
Schyman P, Printz RL, Estes SK, O'Brien TP, Shiota M, Wallqvist A. Assessing Chemical-Induced Liver Injury In Vivo From In Vitro Gene Expression Data in the Rat: The Case of Thioacetamide Toxicity. Front Genet 2019; 10:1233. [PMID: 31850077 PMCID: PMC6901980 DOI: 10.3389/fgene.2019.01233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
Consumers are exposed to thousands of chemicals with potentially adverse health effects. However, these chemicals will never be tested for toxicity because of the immense resources needed for animal-based (in vivo) toxicological studies. Today, there are no viable in vitro alternatives to these types of animal studies. To develop an in vitro approach, we investigated whether we could predict in vivo organ injuries in rats with the use of RNA-seq data acquired from tissues early in the development of toxicant-induced injury, by comparing gene expression data from RNA isolated from these rat tissues with those obtained from in vitro exposure of primary liver and kidney cells. We collected RNA-seq data from the liver and kidney tissues of Sprague-Dawley rats 8 or 24 h after exposing them to vehicle (control), low (25 mg/kg), or high (100 mg/kg) doses of thioacetamide, a known liver toxicant that promotes fibrosis; we used these doses and exposure times to cause only mild toxicant-induced injury. For the in vitro study, we treated two cell types from Sprague-Dawley rats, primary hepatocytes (vehicle; low, 0.025 mM; or high, 0.125 mM dose), and renal tube epithelial cells (vehicle; low, 0.125 mM; or high, 0.500 mM) dose) with the thioacetamide metabolite, thioacetamide-S-oxide, selecting in vitro doses and exposure times to recreate the early-stage toxicant-induced injury model that we achieved in vivo. RNA-seq data were collected 9 or 24 h after application of vehicle or thioacetamide-S-oxide. We found that our modular approach for the analysis of gene expression data derived from in vivo RNA-seq strongly correlated (R2 > 0.6) with the in vitro results at two different dose levels of thioacetamide/thioacetamide-S-oxide after 24 h of exposure. The top-ranked liver injury modules in vitro correctly identified the ensuing development of liver fibrosis.
Collapse
Affiliation(s)
- Patric Schyman
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), Bethesda, MD, United States
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Tracy P O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Anders Wallqvist
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
25
|
Abedini JA, Handa S, Edwards S, Chorley B, El-Masri H. Identification of differentially expressed genes and networks related to hepatic lipid dysfunction. Toxicol Appl Pharmacol 2019; 382:114757. [DOI: 10.1016/j.taap.2019.114757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
|
26
|
Wood kraft pulp supplementation alters the rumen fermentation characteristics and epithelial transcriptomes in Holstein cattle during the high-grain diet challenge. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Lunde NN, Bosnjak T, Solberg R, Johansen HT. Mammalian legumain – A lysosomal cysteine protease with extracellular functions? Biochimie 2019; 166:77-83. [DOI: 10.1016/j.biochi.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022]
|
28
|
AbdulHameed MDM, Pannala VR, Wallqvist A. Mining Public Toxicogenomic Data Reveals Insights and Challenges in Delineating Liver Steatosis Adverse Outcome Pathways. Front Genet 2019; 10:1007. [PMID: 31681434 PMCID: PMC6813744 DOI: 10.3389/fgene.2019.01007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Exposure to chemicals contributes to the development and progression of fatty liver, or steatosis, a process characterized by abnormal accumulation of lipids within liver cells. However, lack of knowledge on how chemicals cause steatosis has prevented any large-scale assessment of the 80,000+ chemicals in current use. To address this gap, we mined a large, publicly available toxicogenomic dataset associated with 18 known steatogenic chemicals to assess responses across assays (in vitro and in vivo) and species (i.e., rats and humans). We identified genes that were differentially expressed (DEGs) in rat in vivo, rat in vitro, and human in vitro studies in which rats or in vitro primary cell lines were exposed to the chemicals at different doses and durations. Using these DEGs, we performed pathway enrichment analysis, analyzed the molecular initiating events (MIEs) of the steatosis adverse outcome pathway (AOP), and predicted metabolite changes using metabolic network analysis. Genes indicative of oxidative stress were among the DEGs most frequently observed in the rat in vivo studies. Nox4, a pro-fibrotic gene, was down-regulated across these chemical exposure conditions. We identified eight genes (Cyp1a1, Egr1, Ccnb1, Gdf15, Cdk1, Pdk4, Ccna2, and Ns5atp9) and one pathway (retinol metabolism), associated with steatogenic chemicals and whose response was conserved across the three in vitro and in vivo systems. Similarly, we found the predicted metabolite changes, such as increases of saturated and unsaturated fatty acids, conserved across the three systems. Analysis of the target genes associated with the MIEs of the current steatosis AOP did not provide a clear association between these 18 chemicals and the MIEs, underlining the multi-factorial nature of this disease. Notably, our overall analysis implicated mitochondrial toxicity as an important and overlooked MIE for chemical-induced steatosis. The integrated toxicogenomics approach to identify genes, pathways, and metabolites based on known steatogenic chemicals, provide an important mean to assess development of AOPs and gauging the relevance of new testing strategies.
Collapse
Affiliation(s)
- Mohamed Diwan M AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Venkat R Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
29
|
Shimada K, Mitchison TJ. Unsupervised identification of disease states from high-dimensional physiological and histopathological profiles. Mol Syst Biol 2019; 15:e8636. [PMID: 30782979 PMCID: PMC6380462 DOI: 10.15252/msb.20188636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 01/22/2023] Open
Abstract
The liver and kidney in mammals play central roles in protecting the organism from xenobiotics and are at high risk of xenobiotic-induced injury. Xenobiotic-induced tissue injury has been extensively studied from both classical histopathological and biochemical perspectives. Here, we introduce a machine-learning approach to analyze toxicological response. Unsupervised characterization of physiological and histological changes in a large toxicogenomic dataset revealed nine discrete toxin-induced disease states, some of which correspond to known pathology, but others were novel. Analysis of dynamics revealed transitions between disease states at constant toxin exposure, mostly toward decreased pathology, implying induction of tolerance. Tolerance correlated with induction of known xenobiotic defense genes and decrease of novel ferroptosis sensitivity biomarkers, suggesting ferroptosis as a druggable driver of tissue pathophysiology. Lastly, mechanism of body weight decrease, a known primary marker for xenobiotic toxicity, was investigated. Combined analysis of food consumption, body weight, and molecular biomarkers indicated that organ injury promotes cachexia by whole-body signaling through Gdf15 and Igf1, suggesting strategies for therapeutic intervention that may be broadly relevant to human disease.
Collapse
Affiliation(s)
- Kenichi Shimada
- Laboratory of Systems Pharmacology and Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Timothy J Mitchison
- Laboratory of Systems Pharmacology and Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Souza T, Trairatphisan P, Piñero J, Furlong LI, Saez-Rodriguez J, Kleinjans J, Jennen D. Embracing the Dark Side: Computational Approaches to Unveil the Functionality of Genes Lacking Biological Annotation in Drug-Induced Liver Injury. Front Genet 2018; 9:527. [PMID: 30515189 PMCID: PMC6255978 DOI: 10.3389/fgene.2018.00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/19/2018] [Indexed: 12/03/2022] Open
Abstract
In toxicogenomics, functional annotation is an important step to gain additional insights into genes with aberrant expression that drive pathophysiological mechanisms. Nevertheless, there exists a gap on annotation of these genes which often hampers the interpretation of results and limits their applicability in translational medicine. In this study, we evaluated the coverage of functional annotations of differentially expressed genes (DEGs) induced by 10 selected compounds from the TG-GATEs database identified as high- or no-risk in causing drug-induced liver injury (most-DILI or no-DILI, respectively) using in vitro human data. Functional roles of DEGs not present in the most common biological annotation databases – termed “dark genes” – were unveiled via literature mining and via the identification of shared regulatory transcription factors or signaling pathways. Our results demonstrated that there were approximately 13% of dark genes induced by these compounds in vitro and we were able to obtain additional relevant information for up to 76% of those. Using interactome data from several sources, we have uncovered genes such as LRBA, and WDR26 as highly connected in the protein network that play roles in drug response. Genes such as MALAT1, H19, and MIR29C – whose links to hepatotoxicity have been confirmed – were identified as markers for the most-DILI group and appeared as top hits across all literature-based mining methods. Furthermore, we investigated the potential impact of dark genes on liver toxicity by identifying their rat orthologs in combination with their correlation to drug-induced liver pathologies observed in vivo following chemical exposure. We identified a set of important regulatory transcription factors of dark genes for all most-DILI compounds including E2F1 and JUND with supporting evidences in literature and we found Magee1 correlated with chemically induced bile duct hyperplasia and adverse responses at 29 days in rats in vivo. In conclusion, in this study we show the potential role of these poorly annotated genes in mechanisms underlying hepatotoxicity and offer a number of computational approaches that may help to minimize current gaps in gene annotation and highlight their values as potential biomarkers in toxicological studies.
Collapse
Affiliation(s)
- Terezinha Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Panuwat Trairatphisan
- Joint Research Center for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Janet Piñero
- Integrative Biomedical Informatics Group, Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura I Furlong
- Integrative Biomedical Informatics Group, Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - Julio Saez-Rodriguez
- Joint Research Center for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Cambridge, United Kingdom
| | - Jos Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Danyel Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
31
|
Barel G, Herwig R. Network and Pathway Analysis of Toxicogenomics Data. Front Genet 2018; 9:484. [PMID: 30405693 PMCID: PMC6204403 DOI: 10.3389/fgene.2018.00484] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Toxicogenomics is the study of the molecular effects of chemical, biological and physical agents in biological systems, with the aim of elucidating toxicological mechanisms, building predictive models and improving diagnostics. The vast majority of toxicogenomics data has been generated at the transcriptome level, including RNA-seq and microarrays, and large quantities of drug-treatment data have been made publicly available through databases and repositories. Besides the identification of differentially expressed genes (DEGs) from case-control studies or drug treatment time series studies, bioinformatics methods have emerged that infer gene expression data at the molecular network and pathway level in order to reveal mechanistic information. In this work we describe different resources and tools that have been developed by us and others that relate gene expression measurements with known pathway information such as over-representation and gene set enrichment analyses. Furthermore, we highlight approaches that integrate gene expression data with molecular interaction networks in order to derive network modules related to drug toxicity. We describe the two main parts of the approach, i.e., the construction of a suitable molecular interaction network as well as the conduction of network propagation of the experimental data through the interaction network. In all cases we apply methods and tools to publicly available rat in vivo data on anthracyclines, an important class of anti-cancer drugs that are known to induce severe cardiotoxicity in patients. We report the results and functional implications achieved for four anthracyclines (doxorubicin, epirubicin, idarubicin, and daunorubicin) and compare the information content inherent in the different computational approaches.
Collapse
Affiliation(s)
| | - Ralf Herwig
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
32
|
Alexander-Dann B, Pruteanu LL, Oerton E, Sharma N, Berindan-Neagoe I, Módos D, Bender A. Developments in toxicogenomics: understanding and predicting compound-induced toxicity from gene expression data. Mol Omics 2018; 14:218-236. [PMID: 29917034 PMCID: PMC6080592 DOI: 10.1039/c8mo00042e] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
The toxicogenomics field aims to understand and predict toxicity by using 'omics' data in order to study systems-level responses to compound treatments. In recent years there has been a rapid increase in publicly available toxicological and 'omics' data, particularly gene expression data, and a corresponding development of methods for its analysis. In this review, we summarize recent progress relating to the analysis of RNA-Seq and microarray data, review relevant databases, and highlight recent applications of toxicogenomics data for understanding and predicting compound toxicity. These include the analysis of differentially expressed genes and their enrichment, signature matching, methods based on interaction networks, and the analysis of co-expression networks. In the future, these state-of-the-art methods will likely be combined with new technologies, such as whole human body models, to produce a comprehensive systems-level understanding of toxicity that reduces the necessity of in vivo toxicity assessment in animal models.
Collapse
Affiliation(s)
- Benjamin Alexander-Dann
- University of Cambridge
, Centre for Molecular Informatics
, Department of Chemistry
,
Lensfield Road
, Cambridge CB2 1EW
, UK
.
;
| | - Lavinia Lorena Pruteanu
- University of Cambridge
, Centre for Molecular Informatics
, Department of Chemistry
,
Lensfield Road
, Cambridge CB2 1EW
, UK
.
;
- Babeş-Bolyai University
, Institute for Doctoral Studies
,
1 Kogălniceanu Street
, Cluj-Napoca 400084
, Romania
- University of Medicine and Pharmacy “Iuliu Haţieganu”
, MedFuture Research Centre for Advanced Medicine
,
23 Marinescu Street/4-6 Pasteur Street
, Cluj-Napoca 400337
, Romania
| | - Erin Oerton
- University of Cambridge
, Centre for Molecular Informatics
, Department of Chemistry
,
Lensfield Road
, Cambridge CB2 1EW
, UK
.
;
| | - Nitin Sharma
- University of Cambridge
, Centre for Molecular Informatics
, Department of Chemistry
,
Lensfield Road
, Cambridge CB2 1EW
, UK
.
;
| | - Ioana Berindan-Neagoe
- University of Medicine and Pharmacy “Iuliu Haţieganu”
, MedFuture Research Centre for Advanced Medicine
,
23 Marinescu Street/4-6 Pasteur Street
, Cluj-Napoca 400337
, Romania
- University of Medicine and Pharmacy “Iuliu Haţieganu”
, Research Center for Functional Genomics
, Biomedicine and Translational Medicine
,
23 Marinescu Street
, Cluj-Napoca 400337
, Romania
- The Oncology Institute “Prof. Dr Ion Chiricuţă”
, Department of Functional Genomics and Experimental Pathology
,
34-36 Republicii Street
, Cluj-Napoca 400015
, Romania
| | - Dezső Módos
- University of Cambridge
, Centre for Molecular Informatics
, Department of Chemistry
,
Lensfield Road
, Cambridge CB2 1EW
, UK
.
;
| | - Andreas Bender
- University of Cambridge
, Centre for Molecular Informatics
, Department of Chemistry
,
Lensfield Road
, Cambridge CB2 1EW
, UK
.
;
| |
Collapse
|
33
|
Monocytes with Oncogenic Mutation JAK2 V617F as a Tool for Studies of the Pathogenic Mechanisms of Myelofibrosis. Bull Exp Biol Med 2018; 164:569-575. [PMID: 29504105 DOI: 10.1007/s10517-018-4033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 10/17/2022]
Abstract
We analyzed previously generated stable monocyte-derived cell line carrying mutation JAK2 V617F. Evaluation of the expression of pro- and antifibrotic factors revealed changes in the production of MMPs and their inhibitors, growth factors, galectin-3, and pentraxin 3 in cells carrying mutation JAK2 in comparison with control non-modified cells.
Collapse
|
34
|
McDyre BC, AbdulHameed MDM, Permenter MG, Dennis WE, Baer CE, Koontz JM, Boyle MH, Wallqvist A, Lewis JA, Ippolito DL. Comparative Proteomic Analysis of Liver Steatosis and Fibrosis after Oral Hepatotoxicant Administration in Sprague-Dawley Rats. Toxicol Pathol 2018; 46:202-223. [PMID: 29378501 DOI: 10.1177/0192623317747549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The past decade has seen an increase in the development and clinical use of biomarkers associated with histological features of liver disease. Here, we conduct a comparative histological and global proteomics analysis to identify coregulated modules of proteins in the progression of hepatic steatosis or fibrosis. We orally administered the reference chemicals bromobenzene (BB) or 4,4'-methylenedianiline (4,4'-MDA) to male Sprague-Dawley rats for either 1 single administration or 5 consecutive daily doses. Livers were preserved for histopathology and global proteomics assessment. Analysis of liver sections confirmed a dose- and time-dependent increase in frequency and severity of histopathological features indicative of lipid accumulation after BB or fibrosis after 4,4'-MDA. BB administration resulted in a dose-dependent increase in the frequency and severity of inflammation and vacuolation. 4,4'-MDA administration resulted in a dose-dependent increase in the frequency and severity of periportal collagen accumulation and inflammation. Pathway analysis identified a time-dependent enrichment of biological processes associated with steatogenic or fibrogenic initiating events, cellular functions, and toxicological states. Differentially expressed protein modules were consistent with the observed histology, placing physiologically linked protein networks into context of the disease process. This study demonstrates the potential for protein modules to provide mechanistic links between initiating events and histopathological outcomes.
Collapse
Affiliation(s)
- B Claire McDyre
- 1 Oak Ridge Institute for Science and Education (ORISE), Frederick, Maryland, USA
| | - Mohamed Diwan M AbdulHameed
- 2 Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA
| | | | - William E Dennis
- 4 U.S. Army Center for Environmental Health Research (USACEHR), Fort Detrick, Maryland, USA
| | | | - Jason M Koontz
- 4 U.S. Army Center for Environmental Health Research (USACEHR), Fort Detrick, Maryland, USA
| | | | - Anders Wallqvist
- 2 Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA
| | - John A Lewis
- 4 U.S. Army Center for Environmental Health Research (USACEHR), Fort Detrick, Maryland, USA
| | - Danielle L Ippolito
- 4 U.S. Army Center for Environmental Health Research (USACEHR), Fort Detrick, Maryland, USA
| |
Collapse
|
35
|
Giraudi PJ, Gambaro SE, Ornelas Arroyo S, Chackelevicius CM, Giuricin M, Silvestri M, Macor D, Crocé LS, Bonazza D, Soardo G, de Manzini N, Zanconati F, Tiribelli C, Palmisano S, Rosso N. A simple in silico strategy identifies candidate biomarkers for the diagnosis of liver fibrosis in morbidly obese subjects. Liver Int 2018. [PMID: 28650518 DOI: 10.1111/liv.13505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disorder, tightly associated with obesity. The histological spectrum of the disease ranges from simple steatosis to steatohepatitis, with different stages of fibrosis, and fibrosis stage is the most significant predictor of mortality in NAFLD. Liver biopsy continues to be the gold standard for its diagnosis and reliable non-invasive diagnostic tools are unavailable. We investigated the accuracy of candidate proteins, identified by an in silico approach, as biomarkers for diagnosis of fibrosis. METHODS Seventy-one morbidly obese (MO) subjects with biopsy-proven NAFLD were enrolled, and the cohort was subdivided according to minimal (F0/F1) or moderate (F2/F3) fibrosis. The plasmatic level of CD44 antigen (CD44), secreted protein acidic and rich in cysteine (SPARC), epidermal growth factor receptor (EGFR) and insulin-like growth factor 2 (IGF2) were determined by ELISA. Significant associations between plasmatic levels and histological fibrosis were determined by correlation analysis and the diagnostic accuracy by the area under receiver operating characteristic curves (AUROC). RESULTS Eighty-two percentage of the subjects had F0/F1 and 18% with F2/F3 fibrosis. Plasmatic levels of IGF2, EGFR and their ratio (EGFR/IGF2) were associated with liver fibrosis, correlating inversely for IGF2 (P < .006) and directly (P < .018; P < .0001) for EGFR and EGFR/IGF2 respectively. The IGF2 marker had the best diagnostic accuracy for moderate fibrosis (AUROC 0.83), followed by EGFR/IGF2 ratio (AUROC 0.79) and EGFR (AUROC 0.71). CONCLUSIONS Our study supports the potential utility of IGF2 and EGFR as non-invasive diagnostic biomarkers for liver fibrosis in morbidly obese subjects.
Collapse
Affiliation(s)
- Pablo J Giraudi
- Fondazione Italiana Fegato, Centro Studi Fegato, Trieste, Italy
| | | | | | | | - Michela Giuricin
- Chirurgia Generale, Ospedale di Cattinara, Università degli Studi di Trieste, Trieste, Italy
| | - Marta Silvestri
- Chirurgia Generale, Ospedale di Cattinara, Università degli Studi di Trieste, Trieste, Italy.,Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste, Italy
| | - Daniele Macor
- Clinica Patologie del Fegato, Dip. Medicina Ospedale Cattinara, Università degli Studi di Trieste, Trieste, Italy
| | - Lory S Crocé
- Clinica Patologie del Fegato, Dip. Medicina Ospedale Cattinara, Università degli Studi di Trieste, Trieste, Italy
| | - Deborah Bonazza
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste, Italy.,School of Anatomic Pathology, University of Udine and Trieste, Trieste, Italy
| | - Giorgio Soardo
- Dipartimento di Scienze Mediche Sperimentali e Cliniche, Azienda Ospedaliero Universitaria Santa Maria della Misericordia di Udine, Trieste, Italy
| | - Nicolò de Manzini
- Chirurgia Generale, Ospedale di Cattinara, Università degli Studi di Trieste, Trieste, Italy.,Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste, Italy
| | - Fabrizio Zanconati
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste, Italy.,School of Anatomic Pathology, University of Udine and Trieste, Trieste, Italy
| | | | - Silvia Palmisano
- Chirurgia Generale, Ospedale di Cattinara, Università degli Studi di Trieste, Trieste, Italy.,Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste, Italy
| | - Natalia Rosso
- Fondazione Italiana Fegato, Centro Studi Fegato, Trieste, Italy
| |
Collapse
|
36
|
Accelerating Adverse Outcome Pathway Development Using Publicly Available Data Sources. Curr Environ Health Rep 2016; 3:53-63. [PMID: 26809562 DOI: 10.1007/s40572-016-0079-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The adverse outcome pathway (AOP) concept links molecular perturbations with organism and population-level outcomes to support high-throughput toxicity (HTT) testing. International efforts are underway to define AOPs and store the information supporting these AOPs in a central knowledge base; however, this process is currently labor-intensive and time-consuming. Publicly available data sources provide a wealth of information that could be used to define computationally predicted AOPs (cpAOPs), which could serve as a basis for creating expert-derived AOPs in a much more efficient way. Computational tools for mining large datasets provide the means for extracting and organizing the information captured in these public data sources. Using cpAOPs as a starting point for expert-derived AOPs should accelerate AOP development. Coupling this with tools to coordinate and facilitate the expert development efforts will increase the number and quality of AOPs produced, which should play a key role in advancing the adoption of HTT testing, thereby reducing the use of animals in toxicity testing and greatly increasing the number of chemicals that can be tested.
Collapse
|
37
|
AbdulHameed MDM, Ippolito DL, Stallings JD, Wallqvist A. Mining kidney toxicogenomic data by using gene co-expression modules. BMC Genomics 2016; 17:790. [PMID: 27724849 PMCID: PMC5057266 DOI: 10.1186/s12864-016-3143-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 09/29/2016] [Indexed: 12/15/2022] Open
Abstract
Background Acute kidney injury (AKI) caused by drug and toxicant ingestion is a serious clinical condition associated with high mortality rates. We currently lack detailed knowledge of the underlying molecular mechanisms and biological networks associated with AKI. In this study, we carried out gene co-expression analyses using DrugMatrix—a large toxicogenomics database with gene expression data from rats exposed to diverse chemicals—and identified gene modules associated with kidney injury to probe the molecular-level details of this disease. Results We generated a comprehensive set of gene co-expression modules by using the Iterative Signature Algorithm and found distinct clusters of modules that shared genes and were associated with similar chemical exposure conditions. We identified two module clusters that showed specificity for kidney injury in that they 1) were activated by chemical exposures causing kidney injury, 2) were not activated by other chemical exposures, and 3) contained known AKI-relevant genes such as Havcr1, Clu, and Tff3. We used the genes in these AKI-relevant module clusters to develop a signature of 30 genes that could assess the potential of a chemical to cause kidney injury well before injury actually occurs. We integrated AKI-relevant module cluster genes with protein-protein interaction networks and identified the involvement of immunoproteasomes in AKI. To identify biological networks and processes linked to Havcr1, we determined genes within the modules that frequently co-express with Havcr1, including Cd44, Plk2, Mdm2, Hnmt, Macrod1, and Gtpbp4. We verified this procedure by showing that randomized data did not identify Havcr1 co-expression genes and that excluding up to 10 % of the data caused only minimal degradation of the gene set. Finally, by using an external dataset from a rat kidney ischemic study, we showed that the frequently co-expressed genes of Havcr1 behaved similarly in a model of non-chemically induced kidney injury. Conclusions Our study demonstrated that co-expression modules and co-expressed genes contain rich information for generating novel biomarker hypotheses and constructing mechanism-based molecular networks associated with kidney injury. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3143-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed Diwan M AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, MD, 21702, USA
| | - Danielle L Ippolito
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
| | - Jonathan D Stallings
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, MD, 21702, USA.
| |
Collapse
|
38
|
AbdulHameed MDM, Ippolito DL, Wallqvist A. Predicting Rat and Human Pregnane X Receptor Activators Using Bayesian Classification Models. Chem Res Toxicol 2016; 29:1729-1740. [DOI: 10.1021/acs.chemrestox.6b00227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohamed Diwan M. AbdulHameed
- Department
of Defense Biotechnology High Performance Computing Software Applications
Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702, United States
| | - Danielle L. Ippolito
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort
Detrick, Maryland 21702, United States
| | - Anders Wallqvist
- Department
of Defense Biotechnology High Performance Computing Software Applications
Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702, United States
| |
Collapse
|
39
|
Liu L, Tsompana M, Wang Y, Wu D, Zhu L, Zhu R. Connection Map for Compounds (CMC): A Server for Combinatorial Drug Toxicity and Efficacy Analysis. J Chem Inf Model 2016; 56:1615-21. [PMID: 27508329 DOI: 10.1021/acs.jcim.6b00397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Drug discovery and development is a costly and time-consuming process with a high risk for failure resulting primarily from a drug's associated clinical safety and efficacy potential. Identifying and eliminating inapt candidate drugs as early as possible is an effective way for reducing unnecessary costs, but limited analytical tools are currently available for this purpose. Recent growth in the area of toxicogenomics and pharmacogenomics has provided with a vast amount of drug expression microarray data. Web servers such as CMap and LTMap have used this information to evaluate drug toxicity and mechanisms of action independently; however, their wider applicability has been limited by the lack of a combinatorial drug-safety type of analysis. Using available genome-wide drug transcriptional expression profiles, we developed the first web server for combinatorial evaluation of toxicity and efficacy of candidate drugs named "Connection Map for Compounds" (CMC). Using CMC, researchers can initially compare their query drug gene signatures with prebuilt gene profiles generated from two large-scale toxicogenomics databases, and subsequently perform a drug efficacy analysis for identification of known mechanisms of drug action or generation of new predictions. CMC provides a novel approach for drug repositioning and early evaluation in drug discovery with its unique combination of toxicity and efficacy analyses, expansibility of data and algorithms, and customization of reference gene profiles. CMC can be freely accessed at http://cadd.tongji.edu.cn/webserver/CMCbp.jsp .
Collapse
Affiliation(s)
- Lei Liu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University , Shanghai 200092, People's Repubic of China
| | - Maria Tsompana
- Center of Excellence in Bioinformatics and Life Sciences, the State University of New York at Buffalo , Buffalo, New York 14203, United States
| | - Yong Wang
- Basic Medical College, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Dingfeng Wu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University , Shanghai 200092, People's Repubic of China
| | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Department of Pediatrics, The State University of New York at Buffalo , Buffalo, New York 14260, United States.,Genome, Environment, and Microbiome Community of Excellence, The State University of New York at Buffalo , Buffalo, New York 14214, United States.,Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai 200032, People's Republic of China
| | - Ruixin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University , Shanghai 200092, People's Repubic of China
| |
Collapse
|
40
|
Ashley SL, Xia M, Murray S, O’Dwyer DN, Grant E, White ES, Flaherty KR, Martinez FJ, Moore BB. Six-SOMAmer Index Relating to Immune, Protease and Angiogenic Functions Predicts Progression in IPF. PLoS One 2016; 11:e0159878. [PMID: 27490795 PMCID: PMC4973878 DOI: 10.1371/journal.pone.0159878] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Biomarkers in easily accessible compartments like peripheral blood that can predict disease progression in idiopathic pulmonary fibrosis (IPF) would be clinically useful regarding clinical trial participation or treatment decisions for patients. In this study, we used unbiased proteomics to identify relevant disease progression biomarkers in IPF. METHODS Plasma from IPF patients was measured using an 1129 analyte slow off-rate modified aptamer (SOMAmer) array, and patient outcomes were followed over the next 80 weeks. Receiver operating characteristic (ROC) curves evaluated sensitivity and specificity for levels of each biomarker and estimated area under the curve (AUC) when prognostic biomarker thresholds were used to predict disease progression. Both logistic and Cox regression models advised biomarker selection for a composite disease progression index; index biomarkers were weighted via expected progression-free days lost during follow-up with a biomarker on the unfavorable side of the threshold. RESULTS A six-analyte index, scaled 0 to 11, composed of markers of immune function, proteolysis and angiogenesis [high levels of ficolin-2 (FCN2), cathepsin-S (Cath-S), legumain (LGMN) and soluble vascular endothelial growth factor receptor 2 (VEGFsR2), but low levels of inducible T cell costimulator (ICOS) or trypsin 3 (TRY3)] predicted better progression-free survival in IPF with a ROC AUC of 0.91. An index score ≥ 3 (group ≥ 2) was strongly associated with IPF progression after adjustment for age, gender, smoking status, immunomodulation, forced vital capacity % predicted and diffusing capacity for carbon monoxide % predicted (HR 16.8, 95% CI 2.2-126.7, P = 0.006). CONCLUSION This index, derived from the largest proteomic analysis of IPF plasma samples to date, could be useful for clinical decision making in IPF, and the identified analytes suggest biological processes that may promote disease progression.
Collapse
Affiliation(s)
- Shanna L. Ashley
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - Meng Xia
- Biostatistics Department, University of Michigan School of Public Health, Ann Arbor, MI, United States of America
| | - Susan Murray
- Biostatistics Department, University of Michigan School of Public Health, Ann Arbor, MI, United States of America
| | - David N. O’Dwyer
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Ethan Grant
- MedImmune, Gaithersburg, MD, United States of America
| | - Eric S. White
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Kevin R. Flaherty
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Fernando J. Martinez
- Department of Internal Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Bethany B. Moore
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
41
|
Te JA, AbdulHameed MDM, Wallqvist A. Systems toxicology of chemically induced liver and kidney injuries: histopathology-associated gene co-expression modules. J Appl Toxicol 2016; 36:1137-49. [PMID: 26725466 PMCID: PMC5064727 DOI: 10.1002/jat.3278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 11/11/2022]
Abstract
Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk that may be difficult to assess because of a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identified co-expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATEs) - a toxicogenomics database containing organ-specific gene expression data matched to dose- and time-dependent chemical exposures and adverse histopathology assessments in Sprague-Dawley rats. We proposed a protocol for selecting gene modules associated with chemical-induced injuries that classify 11 liver and eight kidney histopathology endpoints based on dose-dependent activation of the identified modules. We showed that the activation of the modules for a particular chemical exposure condition, i.e., chemical-time-dose combination, correlated with the severity of histopathological damage in a dose-dependent manner. Furthermore, the modules could distinguish different types of injuries caused by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jerez A Te
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA
| | - Mohamed Diwan M AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA
| |
Collapse
|
42
|
Pasta L, Pasta F. PAI-1 4G-4G and MTHFR 677TT in non-hepatitis C virus/hepatitis B virus-related liver cirrhosis. World J Hepatol 2015; 7:2920-2926. [PMID: 26689658 PMCID: PMC4678379 DOI: 10.4254/wjh.v7.i29.2920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/04/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the different roles of thrombophilia in patients with and without viral etiology. The thrombophilic genetic factors (THRGFs), PAI-1 4G-4G, MTHFR 677TT, V Leiden 506Q and prothrombin 20210A, were studied as risk factors in 1079 patients with liver cirrhosis (LC), enrolled from January 2000 to January 2014.
METHODS: All Caucasian LC patients consecutively observed in a fourteen-year period were included; the presence of portal vein thrombosis (PVT) and Budd Chiari syndrome (BCS) was registered. The differences between the proportions of each THRGF with regard to the presence or absence of viral etiology and the frequencies of the THRGF genotypes with those predicted in a population by the Hardy-Weinberg equilibrium were registered.
RESULTS: Four hundred and seventeen/one thousand and seventy-six patients (38.6%) showed thrombophilia: 217 PAI-1 4G-4G, 176 MTHFR C677TT, 71 V Leiden factor and 41 prothrombin G20210 A, 84 with more than 1 THRGF; 350 presented with no viral liver cirrhosis (NVLC) and 729 with, called viral liver cirrhosis (VLC), of whom 56 patients were hepatitis C virus + hepatitis B virus. PAI-1 4G-4G, MTHFR C677TT, the presence of at least one TRHGF and the presence of > 1 THRGF, were statistically more frequent in patients with NVLC vs patients with VLC: All χ2 > 3.85 and P < 0.05. Patients with PVT and/or BCS with at least one TRHGF were 189/352 (53.7%). The Hardy-Weinberg of PAI-1 and MTHFR 677 genotypes deviated from that expected from a population in equilibrium in patients with NVLC (respectively χ2 = 39.3; P < 0.000 and χ2 = 27.94; P < 0.05), whereas the equilibrium was respected in VLC.
CONCLUSION: MTHFR 677TT was nearly twofold and PAI-1 4G-4G more than threefold more frequently found in NVLC vs patients with VLC; the Hardy-Weinberg equilibrium of these two polymorphisms confirms this data in NVLC. We suggest that PAI-1 4G-4G and MTHFR 677TT could be considered as factors of fibrosis and thrombosis mechanisms, increasing the inflammation response, and causing the hepatic fibrosis and augmented intrahepatic vascular resistance typical of LC. PAI-1 4G-4G and MTHFR 677TT screening of LC patients could be useful, mainly in those with NVLC, to identify patients in which new drug therapies based on the attenuation of the hepatic stellate cells activation or other mechanisms could be more easily evaluated.
Collapse
|
43
|
Chen L, Yang J, Huang T, Kong X, Lu L, Cai YD. Mining for novel tumor suppressor genes using a shortest path approach. J Biomol Struct Dyn 2015. [PMID: 26209080 DOI: 10.1080/07391102.2015.1042915] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer, being among the most serious diseases, causes many deaths every year. Many investigators have devoted themselves to designing effective treatments for this disease. Cancer always involves abnormal cell growth with the potential to invade or spread to other parts of the body. In contrast, tumor suppressor genes (TSGs) act as guardians to prevent a disordered cell cycle and genomic instability in normal cells. Studies on TSGs can assist in the design of effective treatments against cancer. In this study, we propose a computational method to discover potential TSGs. Based on the known TSGs, a number of candidate genes were selected by applying the shortest path approach in a weighted graph that was constructed using protein-protein interaction network. The analysis of selected genes shows that some of them are new TSGs recently reported in the literature, while others may be novel TSGs.
Collapse
Affiliation(s)
- Lei Chen
- a College of Life Science , Shanghai University , Shanghai 200444 , P.R. China.,b College of Information Engineering , Shanghai Maritime University , Shanghai 201306 , P.R. China
| | - Jing Yang
- c The Key Laboratory of Stem Cell Biology , Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) , Shanghai 200025 , P.R. China
| | - Tao Huang
- c The Key Laboratory of Stem Cell Biology , Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) , Shanghai 200025 , P.R. China
| | - Xiangyin Kong
- c The Key Laboratory of Stem Cell Biology , Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) , Shanghai 200025 , P.R. China
| | - Lin Lu
- d Department of Radiology , Columbia University Medical Center , New York , NY 10032 , USA
| | - Yu-Dong Cai
- a College of Life Science , Shanghai University , Shanghai 200444 , P.R. China
| |
Collapse
|
44
|
Mining for Candidate Genes Related to Pancreatic Cancer Using Protein-Protein Interactions and a Shortest Path Approach. BIOMED RESEARCH INTERNATIONAL 2015; 2015:623121. [PMID: 26613085 PMCID: PMC4647023 DOI: 10.1155/2015/623121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly malignant tumor derived from pancreas tissue and is one of the leading causes of death from cancer. Its molecular mechanism has been partially revealed by validating its oncogenes and tumor suppressor genes; however, the available data remain insufficient for medical workers to design effective treatments. Large-scale identification of PC-related genes can promote studies on PC. In this study, we propose a computational method for mining new candidate PC-related genes. A large network was constructed using protein-protein interaction information, and a shortest path approach was applied to mine new candidate genes based on validated PC-related genes. In addition, a permutation test was adopted to further select key candidate genes. Finally, for all discovered candidate genes, the likelihood that the genes are novel PC-related genes is discussed based on their currently known functions.
Collapse
|
45
|
Ippolito DL, AbdulHameed MDM, Tawa GJ, Baer CE, Permenter MG, McDyre BC, Dennis WE, Boyle MH, Hobbs CA, Streicker MA, Snowden BS, Lewis JA, Wallqvist A, Stallings JD. Gene Expression Patterns Associated With Histopathology in Toxic Liver Fibrosis. Toxicol Sci 2015; 149:67-88. [DOI: 10.1093/toxsci/kfv214] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
46
|
Thrombophilic genetic factors PAI-1 4G-4G and MTHFR 677TT as risk factors of alcohol, cryptogenic liver cirrhosis and portal vein thrombosis, in a Caucasian population. Gene 2015; 568:85-8. [DOI: 10.1016/j.gene.2015.05.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
|
47
|
Madejczyk MS, Baer CE, Dennis WE, Minarchick VC, Leonard SS, Jackson DA, Stallings JD, Lewis JA. Temporal changes in rat liver gene expression after acute cadmium and chromium exposure. PLoS One 2015; 10:e0127327. [PMID: 25993096 PMCID: PMC4437902 DOI: 10.1371/journal.pone.0127327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/13/2015] [Indexed: 11/18/2022] Open
Abstract
U.S. Service Members and civilians are at risk of exposure to a variety of environmental health hazards throughout their normal duty activities and in industrial occupations. Metals are widely used in large quantities in a number of industrial processes and are a common environmental toxicant, which increases the possibility of being exposed at toxic levels. While metal toxicity has been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify candidate biomarkers, rats were exposed via a single intraperitoneal injection to three concentrations of CdCl2 and Na2Cr2O7, with livers harvested at 1, 3, or 7 days after exposure. Cd and Cr accumulated in the liver at 1 day post exposure. Cd levels remained elevated over the length of the experiment, while Cr levels declined. Metal exposures induced ROS, including hydroxyl radical (•OH), resulting in DNA strand breaks and lipid peroxidation. Interestingly, ROS and cellular damage appeared to increase with time post-exposure in both metals, despite declines in Cr levels. Differentially expressed genes were identified via microarray analysis. Both metals perturbed gene expression in pathways related to oxidative stress, metabolism, DNA damage, cell cycle, and inflammatory response. This work provides insight into the temporal effects and mechanistic pathways involved in acute metal intoxication, leading to the identification of candidate biomarkers.
Collapse
Affiliation(s)
- Michael S. Madejczyk
- ORISE Postdoctoral Fellow at the US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | | | - William E. Dennis
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Valerie C. Minarchick
- National Institute for Occupational Safety and Health, Morgantown, WV, United States of America
| | - Stephen S. Leonard
- National Institute for Occupational Safety and Health, Morgantown, WV, United States of America
| | - David A. Jackson
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Jonathan D. Stallings
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - John A. Lewis
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- * E-mail:
| |
Collapse
|
48
|
Effects of valproic acid and dexamethasone administration on early bio-markers and gene expression profile in acute kidney ischemia-reperfusion injury in the rat. PLoS One 2015; 10:e0126622. [PMID: 25970334 PMCID: PMC4430309 DOI: 10.1371/journal.pone.0126622] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/05/2015] [Indexed: 12/11/2022] Open
Abstract
Renal ischemia-reperfusion (IR) causes acute kidney injury (AKI) with high mortality and morbidity. The objective of this investigation was to ameliorate kidney IR injury and identify novel biomarkers for kidney injury and repair. Under general anesthesia, left renal ischemia was induced in Wister rats by occluding renal artery for 45 minutes, followed by reperfusion and right nephrectomy. Thirty minutes prior to ischemia, rats (n = 8/group) received Valproic Acid (150 mg/kg; VPA), Dexamethasone (3 mg/kg; Dex) or Vehicle (saline) intraperitoneally. Animals were sacrificed at 3, 24 or 120 h post-IR. Plasma creatinine (mg/dL) at 24 h was reduced (P<0.05) in VPA (2.7±1.8) and Dex (2.3±1.2) compared to Vehicle (3.8±0.5) group. At 3 h, urine albumin (mg/mL) was higher in Vehicle (1.47±0.10), VPA (0.84±0.62) and Dex (1.04±0.73) compared to naïve (uninjured/untreated control) (0.14±0.26) group. At 24 h post-IR urine lipocalin-2 (μg/mL) was higher (P<0.05) in VPA, Dex and Vehicle groups (9.61–11.36) compared to naïve group (0.67±0.29); also, kidney injury molecule-1 (KIM-1; ng/mL) was higher (P<0.05) in VPA, Dex and Vehicle groups (13.7–18.7) compared to naïve group (1.7±1.9). Histopathology demonstrated reduced (P<0.05) ischemic injury in the renal cortex in VPA (Grade 1.6±1.5) compared to Vehicle (Grade 2.9±1.1). Inflammatory cytokines IL1β and IL6 were downregulated and anti-apoptotic molecule BCL2 was upregulated in VPA group. Furthermore, kidney DNA microarray demonstrated reduced injury, stress, and apoptosis related gene expression in the VPA administered rats. VPA appears to ameliorate kidney IR injury via reduced inflammatory cytokine, apoptosis/stress related gene expression, and improved regeneration. KIM-1, lipocalin-2 and albumin appear to be promising early urine biomarkers for the diagnosis of AKI.
Collapse
|
49
|
Asimakopoulou A, Weiskirchen R. Lipocalin 2 in the pathogenesis of fatty liver disease and nonalcoholic steatohepatitis. ACTA ACUST UNITED AC 2015. [DOI: 10.2217/clp.14.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|