1
|
Casper J, Schenk SH, Parhizkar E, Detampel P, Dehshahri A, Huwyler J. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. J Control Release 2023; 362:667-691. [PMID: 37666302 DOI: 10.1016/j.jconrel.2023.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Polyethlyenimine (PEI) was introduced 1995 as a cationic polymer for nucleic acid delivery. PEI and its derivatives are extensively used in basic research and as reference formulations in the field of polymer-based gene delivery. Despite its widespread use, the number of clinical applications to date is limited. Thus, this review aims to consolidate the past applications of PEI in DNA delivery, elucidate the obstacles that hinder its transition to clinical use, and highlight potential prospects for novel iterations of PEI derivatives. The present review article is divided into three sections. The first section examines the mechanism of action employed by PEI, examining fundamental aspects of cellular delivery including uptake mechanisms, release from endosomes, and transport into the cell nucleus, along with potential strategies for enhancing these delivery phases. Moreover, an in-depth analysis is conducted concerning the mechanism underlying cellular toxicity, accompanied with approaches to overcome this major challenge. The second part is devoted to the in vivo performance of PEI and its application in various therapeutic indications. While systemic administration has proven to be challenging, alternative localized delivery routes hold promise, such as treatment of solid tumors, application as a vaccine, or serving as a therapeutic agent for pulmonary delivery. In the last section, the outcome of completed and ongoing clinical trials is summarized. Finally, an expert opinion is provided on the potential of PEI and its future applications. PEI-based formulations for nucleic acid delivery have a promising potential, it will be an important task for the years to come to introduce innovations that address PEI-associated shortcomings by introducing well-designed PEI formulations in combination with an appropriate route of administration.
Collapse
Affiliation(s)
- Jens Casper
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Elahehnaz Parhizkar
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pascal Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
2
|
Casteleyn C, Robin N, Bakker J. Topographical Anatomy of the Rhesus Monkey (Macaca mulatta)—Part II: Pelvic Limb. Vet Sci 2023; 10:vetsci10030172. [PMID: 36977211 PMCID: PMC10051720 DOI: 10.3390/vetsci10030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The rhesus monkey (Macaca mulatta) is a widely used model in biomedical research because its anatomy and physiology bear many similarities to those of humans. Extensive knowledge of the anatomy of this nonhuman primate species is not only required for the correct interpretation of obtained research data but also valuable for the welfare of captive individuals housed in, e.g., zoos. As anatomical publications on the rhesus monkey are hardly available, outdated and provide only line drawings or black-and-white photographs, the anatomy of the rhesus monkey was readdressed in this study. The various anatomical structures are described in relation to each other topographically per hindlimb region. The hip region, the upper limb, the knee, the lower limb and the foot are described from various perspectives. The structures that are visible in the different layers, from the superficial to the deepest layer, were photographed. Although the anatomy of the hindlimbs of rhesus monkeys and humans are remarkably similar, various subtle dissimilarities have been observed. Consequently, an open-access publication that focuses on the anatomy of the rhesus monkey would be highly valued by both biomedical researchers and veterinarians.
Collapse
Affiliation(s)
- Christophe Casteleyn
- Department of Morphology, Medical Imaging, Orthopedics, Physiotherapy and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Comparative Perinatal Development, Department of Veterinary Medicine, Faculty of Pharmaceutical, Biomedical and Veterinary Medicine, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Correspondence: ; Tel.: +32-92647301
| | - Nina Robin
- Department of Morphology, Medical Imaging, Orthopedics, Physiotherapy and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Jaco Bakker
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg, 161, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
3
|
Pre-existing antibodies directed against a tetramerizing domain enhance the immune response against artificially stabilized soluble tetrameric influenza neuraminidase. NPJ Vaccines 2022; 7:11. [PMID: 35087067 PMCID: PMC8795415 DOI: 10.1038/s41541-022-00435-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
Abstract
The neuraminidase (NA) is an abundant antigen at the surface of influenza virions. Recent studies have highlighted the immune-protective potential of NA against influenza and defined anti-NA antibodies as an independent correlate of protection. Even though NA head domain changes at a slightly slower pace than hemagglutinin (HA), NA is still subject to antigenic drift, and therefore an NA-based influenza vaccine antigen may have to be updated regularly and thus repeatedly administered. NA is a tetrameric type II membrane protein, which readily dissociates into dimers and monomers when expressed in a soluble form. By using a tetramerizing zipper, such as the tetrabrachion (TB) from Staphylothermus marinus, it is possible to stabilize soluble NA in its active tetrameric conformation, an imperative for the optimal induction of protective NA inhibitory antibodies. The impact of repetitive immunizations with TB-stabilized antigens on the immunogenicity of soluble TB-stabilized NA is unknown. We demonstrate that TB is immunogenic in mice. Interestingly, preexisting anti-TB antibodies enhance the anti-NA antibody response induced by immunization with TB-stabilized NA. This immune-enhancing effect was transferable by serum and operated independently of activating Fcγ receptors. We also demonstrate that priming with TB-stabilized NA antigens, enhances the NA inhibitory antibody responses against a heterosubtypic TB-stabilized NA. These findings have implications for the clinical development of oligomeric vaccine antigens that are stabilized by a heterologous oligomerizing domain.
Collapse
|
4
|
Kanduc D. Lack of Molecular Mimicry between Nonhuman Primates and Infectious Pathogens: The Possible Genetic Bases. Glob Med Genet 2021; 8:32-37. [PMID: 33748822 PMCID: PMC7964256 DOI: 10.1055/s-0041-1724106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recently, it was found that proteomes from poliovirus, measles virus, dengue virus, and severe acute respiratory syndrome-related Coronavirus 2 (SARS-CoV-2) have high molecular mimicry at the heptapeptide level with the human proteome, while heptapeptide commonality is minimal or absent with proteomes from nonhuman primates, that is, gorilla, chimpanzee, and rhesus macaque. To acquire more data on the issue, analyses here have been expanded to Ebola virus,
Francisella tularensis
, human immunodeficiency virus-1 (HIV-1),
Toxoplasma gondii
, Variola virus, and
Yersinia pestis
. Results confirm that heptapeptide overlap is high between pathogens and
Homo sapiens
, but not between pathogens and primates. Data are discussed in light of the possible genetic bases that differently model primate phenomes, thus possibly underlying the zero/low level of molecular mimicry between infectious agents and primates. Notably, this study might help address preclinical vaccine tests that currently utilize primates as animal models, since autoimmune cross-reactions and the consequent adverse events cannot occur
in absentia
of shared sequences.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
5
|
Sinigaglia A, Peta E, Riccetti S, Barzon L. New avenues for therapeutic discovery against West Nile virus. Expert Opin Drug Discov 2020; 15:333-348. [DOI: 10.1080/17460441.2020.1714586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Elektra Peta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Abstract
West Nile virus (WNV) is a widely spread human pathogenic arthropod-borne virus. It can lead to severe, sometimes fatal, neurological disease. Over the last two decades, several vaccine candidates for the protection of humans from WNV have been developed. Some technologies were transferred into clinical testing, but these approaches have not yet led to a licensed product. This review summarizes the current status of a human WNV vaccine and discusses reasons for the lack of clinically advanced product candidates. It also discusses the problem of immunological cross-reactivity between flaviviruses and how it can be addressed during vaccine development.
Collapse
Affiliation(s)
- Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Immunology , Leipzig , Germany
| |
Collapse
|
7
|
Role of NS1 and TLR3 in Pathogenesis and Immunity of WNV. Viruses 2019; 11:v11070603. [PMID: 31277274 PMCID: PMC6669597 DOI: 10.3390/v11070603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/24/2022] Open
Abstract
West Nile Virus (WNV) is a mosquito-transmitted flavivirus which causes encephalitis especially in elderly and immunocompromised individuals. Previous studies have suggested the protective role of the Toll-like receptor 3 (TLR3) pathway against WNV entry into the brain, while the WNV non-structural protein 1 (NS1) interferes with the TLR3 signaling pathway, besides being a component of viral genome replication machinery. In this study, we investigated whether immunization with NS1 could protect against WNV neuroinvasion in the context of TLR3 deficiency. We immunized mice with either an intact or deleted TLR3 system (TLR3KO) with WNV envelope glycoprotein (gE) protein, NS1, or a combination of gE and NS1. Immunization with gE or gE/NS1, but not with NS1 alone, induced WNV neutralizing antibodies and protected against WNV brain invasion and inflammation. The presence of intact TLR3 signaling had no apparent effect on WNV brain invasion. However, mock-immunized TLR3KO mice had higher inflammatory cell invasion upon WNV brain infection than NS1-immunized TLR3KO mice and wild type mice. Thus, immunization against NS1 may reduce brain inflammation in a context of TLR3 signaling deficiency.
Collapse
|
8
|
Barban V, Mantel N, De Montfort A, Pagnon A, Pradezynski F, Lang J, Boudet F. Improvement of the Dengue Virus (DENV) Nonhuman Primate Model via a Reverse Translational Approach Based on Dengue Vaccine Clinical Efficacy Data against DENV-2 and -4. J Virol 2018; 92:e00440-18. [PMID: 29593041 PMCID: PMC5974474 DOI: 10.1128/jvi.00440-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Recent data obtained with the live-attenuated tetravalent dengue CYD-TDV vaccine showed higher protective efficacy against dengue virus type 4 (DENV-4) than against DENV-2. In contrast, results from previous studies in nonhuman primates predicted comparable high levels of protection against each serotype. Maximum viral loads achieved in macaques by subcutaneous inoculation of DENV are generally much lower than those observed in naturally dengue virus-infected humans. This may contribute to an overestimation of vaccine efficacy. Using more-stringent DENV infection conditions consisting of the intravenous inoculation of 107 50% cell culture infectious doses (CCID50) in CYD-TDV-vaccinated macaques, complete protection (i.e., undetectable viral RNA) was achieved in all 6 monkeys challenged with DENV-4 and in 6/18 of those challenged with DENV-2, including transiently positive animals. All other infected macaques (12/18) developed sustained DENV-2 RNAemia (defined as detection of viral RNA in serum samples) although 1 to 3 log10 units below the levels achieved in control animals. Similar results were obtained with macaques immunized with either CYD-TDV or monovalent (MV) CYD-2. This suggests that partial protection against DENV-2 was mediated mainly by CYD-2 and not by the other CYDs. Postchallenge induction of strong anamnestic responses, suggesting efficient vaccine priming, likely contributed to the reduction of DENV-2 RNAemia. Finally, an inverse correlation between DENV RNA titers postchallenge and vaccine-induced homotypic neutralizing antibody titers prechallenge was found, emphasizing the key role of these antibodies in controlling DENV infection. Collectively, these data show better agreement with reported data on CYD-TDV clinical vaccine efficacy against DENV-2 and DENV-4. Despite inherent limitations of the nonhuman primate model, these results reinforce its value in assessing the efficacy of dengue vaccines.IMPORTANCE The nonhuman primate (NHP) model is the most widely recognized tool for assessing the protective activity of dengue vaccine candidates, based on the prevention of postinfection DENV viremia. However, its use has been questioned after the recent CYD vaccine phase III trials, in which moderate protective efficacy against DENV-2 was reported, despite full protection against DENV-2 viremia previously being demonstrated in CYD-vaccinated monkeys. Using a reverse translational approach, we show here that the NHP model can be improved to achieve DENV-2 protection levels that show better agreement with clinical efficacy. With this new model, we demonstrate that the injection of the CYD-2 component of the vaccine, in either a monovalent or a tetravalent formulation, is able to reduce DENV-2 viremia in all immunized animals, and we provide clear statistical evidence that DENV-2-neutralizing antibodies are able to reduce viremia in a dose-dependent manner.
Collapse
Affiliation(s)
- Veronique Barban
- Research and Development Department, Sanofi Pasteur, Marcy L'Etoile, France
| | - Nathalie Mantel
- Research and Development Department, Sanofi Pasteur, Marcy L'Etoile, France
| | | | - Anke Pagnon
- Research and Development Department, Sanofi Pasteur, Marcy L'Etoile, France
| | | | - Jean Lang
- Research and Development Department, Sanofi Pasteur, Marcy L'Etoile, France
| | - Florence Boudet
- Research and Development Department, Sanofi Pasteur, Marcy L'Etoile, France
| |
Collapse
|
9
|
Abstract
Humans have a close phylogenetic relationship with nonhuman primates (NHPs) and share many physiological parallels, such as highly similar immune systems, with them. Importantly, NHPs can be infected with many human or related simian viruses. In many cases, viruses replicate in the same cell types as in humans, and infections are often associated with the same pathologies. In addition, many reagents that are used to study the human immune response cross-react with NHP molecules. As such, NHPs are often used as models to study viral vaccine efficacy and antiviral therapeutic safety and efficacy and to understand aspects of viral pathogenesis. With several emerging viral infections becoming epidemic, NHPs are proving to be a very beneficial benchmark for investigating human viral infections.
Collapse
Affiliation(s)
- Jacob D Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
| | - Scott W Wong
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
10
|
Altenburg AF, Magnusson SE, Bosman F, Stertman L, de Vries RD, Rimmelzwaan GF. Protein and modified vaccinia virus Ankara-based influenza virus nucleoprotein vaccines are differentially immunogenic in BALB/c mice. Clin Exp Immunol 2017; 190:19-28. [PMID: 28665497 DOI: 10.1111/cei.13004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
Because of the high variability of seasonal influenza viruses and the eminent threat of influenza viruses with pandemic potential, there is great interest in the development of vaccines that induce broadly protective immunity. Most probably, broadly protective influenza vaccines are based on conserved proteins, such as nucleoprotein (NP). NP is a vaccine target of interest as it has been shown to induce cross-reactive antibody and T cell responses. Here we tested and compared various NP-based vaccine preparations for their capacity to induce humoral and cellular immune responses to influenza virus NP. The immunogenicity of protein-based vaccine preparations with Matrix-M™ adjuvant as well as recombinant viral vaccine vector modified Vaccinia virus Ankara (MVA) expressing the influenza virus NP gene, with or without modifications that aim at optimization of CD8+ T cell responses, was addressed in BALB/c mice. Addition of Matrix-M™ adjuvant to NP wild-type protein-based vaccines significantly improved T cell responses. Furthermore, recombinant MVA expressing the influenza virus NP induced strong antibody and CD8+ T cell responses, which could not be improved further by modifications of NP to increase antigen processing and presentation.
Collapse
Affiliation(s)
- A F Altenburg
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, the Netherlands
| | | | - F Bosman
- AmatsiQ-Biologicals, Ghent, Belgium
| | | | - R D de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - G F Rimmelzwaan
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
11
|
Liu SA, Haque M, Stanfield B, Andrews FM, Roy AA, Kousoulas KG. A recombinant fusion protein consisting of West Nile virus envelope domain III fused in-frame with equine CD40 ligand induces antiviral immune responses in horses. Vet Microbiol 2017; 198:51-58. [PMID: 28062007 DOI: 10.1016/j.vetmic.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 11/17/2022]
Abstract
West Nile Virus (WNV) is endemic in the US and causes severe neurologic disease in horses since its introduction in 1999. There is no effective pharmaceutical treatment for WNV infection rendering vaccination as the only approach to prevention and control of disease. The purpose of this study was to evaluate a recombinant vaccine containing domain III (DIII) of the WNV envelope glycoprotein with and without a natural adjuvant equine (CD40L) in producing virus neutralizing antibodies in horses. Serum IgG1 concentration in the groups of horses vaccinated with the DIII-CD40L+TiterMax and DIII-CD40L proteins were significantly increased (p<0.05) after the second booster vaccination compared to other groups. Serum IgG4 and IgG7, IgG3 and IgG5 concentrations were not significantly increased among all groups. Western blot results showed that animals immunized with the DIII-CD40L protein (with or without TiterMax) exhibited the highest specific anti-DIII antibody activities after vaccinations. Moreover, animals immunized with the DIII-CD40L protein (with or without TiterMax) exhibited significantly stronger neutralization activity (p<0.05) compared to other groups starting at week eight. The DIII-CD40L protein (with or without TiterMax) stimulated more CD8+T cells, but not CD4+T cells in equine PMBCs. The results demonstrated that vaccination with recombinant WNV E DIII-CD40L protein induced superior humoral and cellular immune response in healthy horses that may be protective against WNV-associated disease in infected animals. CD40L could be utilized as a non-toxic, alternative adjuvant to boost the immunogenicity of subunit vaccines in horses.
Collapse
Affiliation(s)
- Shiliang A Liu
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Muzammel Haque
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Brent Stanfield
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Frank M Andrews
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Alma A Roy
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
12
|
Barzon L, Trevisan M, Sinigaglia A, Lavezzo E, Palù G. Zika virus: from pathogenesis to disease control. FEMS Microbiol Lett 2016; 363:fnw202. [PMID: 27549304 DOI: 10.1093/femsle/fnw202] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 12/21/2022] Open
Abstract
Zika virus is a mosquito-borne flavivirus discovered in Uganda in 1947. The virus has emerged in recent years and spread in the Pacific Area and the Americas, where it has caused large human outbreaks. The factors involved in the virus's emergence are still unknown, but probably include its introduction in naïve environments characterised by the presence of high densities of competent Aedes spp. mosquitoes and susceptible human hosts in urban areas. Unique features of Zika virus infection are sexual and transplacental transmission and associated neurological morbidities, i.e. Guillain-Barré syndrome and fetal microcephaly. Diagnosis relies on the detection of viral nucleic acids in biological samples, while detection of a specific antibody response may be inconclusive because of the broad cross-reactivity of antibodies among flaviviruses. Experimental studies have clarified some mechanisms of Zika virus pathogenesis and have identified potential targets for antiviral drugs. In animal models, the virus can infect and efficiently replicate in the placenta and in the brain, and induce fetal demise or neural damage, recapitulating human diseases. These animal models have been used to evaluate candidate vaccines and promising results have been obtained.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
13
|
't Hart BA, Bogers WM, Haanstra KG, Verreck FA, Kocken CH. The translational value of non-human primates in preclinical research on infection and immunopathology. Eur J Pharmacol 2015; 759:69-83. [PMID: 25814254 DOI: 10.1016/j.ejphar.2015.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/09/2015] [Accepted: 03/12/2015] [Indexed: 01/01/2023]
Abstract
The immune system plays a central role in the defense against environmental threats - such as infection with viruses, parasites or bacteria - but can also be a cause of disease, such as in the case of allergic or autoimmune disorders. In the past decades the impressive development of biotechnology has provided scientists with biological tools for the development of highly selective treatments for the different types of disorders. However, despite some clear successes the translation of scientific discoveries into effective treatments has remained challenging. The often-disappointing predictive validity of the preclinical animal models that are used in the selection of the most promising vaccine or drug candidates is the Achilles heel in the therapy development process. This publication summarizes the relevance and usage of non-human primates as pre-clinical model in infectious and autoimmune diseases, in particular for biologicals, which due to their high species-specificity are inactive in lower species.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands; University of Groningen, University Medical Center, Department Neuroscience, Groningen, The Netherlands.
| | - Willy M Bogers
- Department Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | - Krista G Haanstra
- Department Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | - Frank A Verreck
- Department Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | - Clemens H Kocken
- Department Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| |
Collapse
|