1
|
Gogia N, Ni L, Olmos V, Haidery F, Luttik K, Lim J. Exploring the Role of Posttranslational Modifications in Spinal and Bulbar Muscular Atrophy. Front Mol Neurosci 2022; 15:931301. [PMID: 35726299 PMCID: PMC9206542 DOI: 10.3389/fnmol.2022.931301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal and Bulbar Muscular Atrophy (SBMA) is an X-linked adult-onset progressive neuromuscular disease that affects the spinal and bulbar motor neurons and skeletal muscles. SBMA is caused by expansion of polymorphic CAG trinucleotide repeats in the Androgen Receptor (AR) gene, resulting in expanded glutamine tract in the AR protein. Polyglutamine (polyQ) expansion renders the mutant AR protein toxic, resulting in the formation of mutant protein aggregates and cell death. This classifies SBMA as one of the nine known polyQ diseases. Like other polyQ disorders, the expansion of the polyQ tract in the AR protein is the main genetic cause of the disease; however, multiple other mechanisms besides the polyQ tract expansion also contribute to the SBMA disease pathophysiology. Posttranslational modifications (PTMs), including phosphorylation, acetylation, methylation, ubiquitination, and SUMOylation are a category of mechanisms by which the functionality of AR has been found to be significantly modulated and can alter the neurotoxicity of SBMA. This review summarizes the different PTMs and their effects in regulating the AR function and discusses their pathogenic or protective roles in context of SBMA. This review also includes the therapeutic approaches that target the PTMs of AR in an effort to reduce the mutant AR-mediated toxicity in SBMA.
Collapse
Affiliation(s)
- Neha Gogia
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Victor Olmos
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Fatema Haidery
- Yale College, Yale University, New Haven, CT, United States
| | - Kimberly Luttik
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
2
|
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by a polyglutamine (polyQ) expansion in the androgen receptor (AR). Despite the fact that the monogenic cause of SBMA has been known for nearly 3 decades, there is no effective treatment for this disease, underscoring the complexity of the pathogenic mechanisms that lead to a loss of motor neurons and muscle in SBMA patients. In the current review, we provide an overview of the system-wide clinical features of SBMA, summarize the structure and function of the AR, discuss both gain-of-function and loss-of-function mechanisms of toxicity caused by polyQ-expanded AR, and describe the cell and animal models utilized in the study of SBMA. Additionally, we summarize previously conducted clinical trials which, despite being based on positive results from preclinical studies, proved to be largely ineffective in the treatment of SBMA; nonetheless, these studies provide important insights as researchers develop the next generation of therapies.
Collapse
Affiliation(s)
- Frederick J Arnold
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA
| | - Diane E Merry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA.
| |
Collapse
|
3
|
Wada Y, Ikemoto T, Morine Y, Imura S, Saito Y, Yamada S, Shimada M. The Differences in the Characteristics of Insulin-producing Cells Using Human Adipose-tissue Derived Mesenchymal Stem Cells from Subcutaneous and Visceral Tissues. Sci Rep 2019; 9:13204. [PMID: 31519950 PMCID: PMC6744430 DOI: 10.1038/s41598-019-49701-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to investigate the characteristics of insulin producing cells (IPCs) differentiated from adipose-tissue derived stem cells (ADSCs) isolated from human subcutaneous and visceral adipose tissues and identify ADSCs suitable for differentiation into efficient and functional IPCs. Subcutaneous and visceral adipose tissues collected from four (4) patients who underwent digestive surgeries at The Tokushima University (000035546) were included in this study. The insulin secretion of the generated IPCs was investigated using surface markers by: fluorescence activated cell sorting (FACS) analysis; cytokine release; proliferation ability of ADSCs; in vitro (glucose-stimulated insulin secretion: (GSIS) test/in vivo (transplantation into streptozotocin-induced diabetic nude mice). The less fat-related inflammatory cytokines secretions were observed (P < 0.05), and the proliferation ability was higher in the subcutaneous ADSCs (P < 0.05). Insulin expression and GISI were higher in the subcutaneous IPCs (P < 0.01 and P < 0.05, respectively). The hyperglycaemic state of all mice that received IPCs from subcutaneous fat tissue converted into normo-glycaemia in thirty (30) days post-transplantation (4/4,100%). Transplanted IPCs were stained using anti-insulin and anti-human leukocyte antigen antibodies. The IPCs generated from the ADSCs freshly isolated from the human fat tissue had sufficient insulin secreting ability in vitro and in vivo.
Collapse
Affiliation(s)
- Yuma Wada
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| | - Yuji Morine
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Satoru Imura
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yu Saito
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
4
|
Adipose tissue-derived mesenchymal stromal cells for clinical application: An efficient isolation approach. Curr Res Transl Med 2018; 67:20-27. [PMID: 30104160 DOI: 10.1016/j.retram.2018.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE OF THE STUDY Mesenchymal stromal cells (MSCs) are considered a promising tool for cell therapy approaches. The translation of research-based cell culture protocols into procedures that comply with Good Manufacturing Practice (GMP) is critical. The aim of this study was to design a new method for the expansion of MSCs from Adipose Tissue (AT-MSCs) in compliance with GMP, without enzymatic tissue digestion and without the use of animal proteins as source of growth factors. PATIENTS AND METHODS MSCs were expanded from 10 periumbilical biopsies. Our new isolation approach is based on: (1) disruption of AT with an automated, closed system; (2) use of GMP-grade medium without the addition of fetal bovine serum or platelet lysate; (3) use of human recombinant Trypsin. AT-MSCs cultured in α-MEM and minced by scalpel were used as control. RESULTS It was possible to expand MSCs from all the AT-samples for at least eight passages. MSCs displayed the typical spindle-shape morphology, a high viability, multilineage differentiation potential and high expression levels of the typical MSC-specific surface antigens and genes. Compared to standard method, MSCs obtained with the new method showed higher yield, up to passage 6, and higher purity in terms of percentage of CD34 and CD45 markers. All AT-MSCs exhibit in vitro immunosuppressive capacity and possess a normal karyotype. CONCLUSIONS Our data clearly demonstrate that our new approach permits to generate AT-MSCs fully compliant for therapeutic use and better at least in terms of quantity and purity than those obtained with the standard method.
Collapse
|
5
|
Cristofani R, Crippa V, Rusmini P, Cicardi ME, Meroni M, Licata NV, Sala G, Giorgetti E, Grunseich C, Galbiati M, Piccolella M, Messi E, Ferrarese C, Carra S, Poletti A. Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases. Autophagy 2018; 13:1280-1303. [PMID: 28402699 PMCID: PMC5584856 DOI: 10.1080/15548627.2017.1308985] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motoneuron diseases, like spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS), are associated with proteins that because of gene mutation or peculiar structures, acquire aberrant (misfolded) conformations toxic to cells. To prevent misfolded protein toxicity, cells activate a protein quality control (PQC) system composed of chaperones and degradative pathways (proteasome and autophagy). Inefficient activation of the PQC system results in misfolded protein accumulation that ultimately leads to neuronal cell death, while efficient macroautophagy/autophagy-mediated degradation of aggregating proteins is beneficial. The latter relies on an active retrograde transport, mediated by dynein and specific chaperones, such as the HSPB8-BAG3-HSPA8 complex. Here, using cellular models expressing aggregate-prone proteins involved in SBMA and ALS, we demonstrate that inhibition of dynein-mediated retrograde transport, which impairs the targeting to autophagy of misfolded species, does not increase their aggregation. Rather, dynein inhibition correlates with a reduced accumulation and an increased clearance of mutant ARpolyQ, SOD1, truncated TARDBP/TDP-43 and expanded polyGP C9ORF72 products. The enhanced misfolded protein clearance is mediated by the proteasome, rather than by autophagy and correlates with the upregulation of the HSPA8 cochaperone BAG1. In line, overexpression of BAG1 increases the proteasome-mediated clearance of these misfolded proteins. Our data suggest that when the misfolded proteins cannot be efficiently transported toward the perinuclear region of the cells, where they are either degraded by autophagy or stored into the aggresome, the cells activate a compensatory mechanism that relies on the induction of BAG1 to target the HSPA8-bound cargo to the proteasome in a dynein-independent manner.
Collapse
Affiliation(s)
- Riccardo Cristofani
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Valeria Crippa
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy.,b Center for Research in Neurodegenerative Diseases (CRND) , IRCCS "C. Mondino" Istituto Nazionale Neurologico , Pavia , Italy
| | - Paola Rusmini
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Maria Elena Cicardi
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Marco Meroni
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Nausicaa V Licata
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Gessica Sala
- c School of Medicine and Surgery, NeuroMI Milan Center for Neuroscience , University of Milano-Bicocca , Italy
| | - Elisa Giorgetti
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Christopher Grunseich
- d Neurogenetics Branch , National Institute of Neurological Disorders and Stroke, NIH , Bethesda , MD , USA
| | - Mariarita Galbiati
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Margherita Piccolella
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Elio Messi
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Carlo Ferrarese
- c School of Medicine and Surgery, NeuroMI Milan Center for Neuroscience , University of Milano-Bicocca , Italy
| | - Serena Carra
- e Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze , Università degli Studi di Modena e Reggio Emilia, Centro di Neuroscienze e Neurotecnologie , Modena , Italy
| | - Angelo Poletti
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy.,f Centro InterUniversitario sulle Malattie Neurodegenerative , Università degli Studi di Firenze , Roma Tor Vergata and Milano. Genova , Italy
| |
Collapse
|
6
|
Mesenchymal Stem Cells Loaded with p5, Derived from CDK5 Activator p35, Inhibit Calcium-Induced CDK5 Activation in Endothelial Cells. Stem Cells Int 2016; 2016:2165462. [PMID: 27651795 PMCID: PMC5019892 DOI: 10.1155/2016/2165462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/28/2016] [Accepted: 08/07/2016] [Indexed: 11/23/2022] Open
Abstract
The potential use of stem cells as therapeutics in disease has gained momentum over the last few years and recently phase-I clinical trials have shown favourable results in treatment of a small cohort of acute stroke patients. Similarly, they have been used in preclinical models drug-loaded for the effective treatment of solid tumours. Here we have characterized uptake and release of a novel p5-cyclin-dependent kinase 5 (CDK5) inhibitory peptide by mesenchymal stem cells and showed release levels capable of blocking aberrant cyclin-dependent kinase 5 (CDK5) signaling pathways, through phosphorylation of cyclin-dependent kinase 5 (CDK5) and p53. These pathways represent the major acute mechanism stimulating apoptosis after stroke and hence its modulation could benefit patient recovery. This work indicates a potential use for drug-loaded stem cells as delivery vehicles for stroke therapeutics and in addition as anticancer receptacles particularly, if a targeting and/or holding mechanism can be defined.
Collapse
|
7
|
Marfia G, Navone SE, Hadi LA, Paroni M, Berno V, Beretta M, Gualtierotti R, Ingegnoli F, Levi V, Miozzo M, Geginat J, Fassina L, Rampini P, Tremolada C, Riboni L, Campanella R. The Adipose Mesenchymal Stem Cell Secretome Inhibits Inflammatory Responses of Microglia: Evidence for an Involvement of Sphingosine-1-Phosphate Signalling. Stem Cells Dev 2016; 25:1095-107. [DOI: 10.1089/scd.2015.0268] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Loubna Abdel Hadi
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Moira Paroni
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi,” Milan, Italy
| | - Valeria Berno
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi,” Milan, Italy
| | - Matteo Beretta
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | | | - Vincenzo Levi
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Monica Miozzo
- Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi,” Milan, Italy
| | - Lorenzo Fassina
- Department of Health Sciences and Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Paolo Rampini
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Chen L, Diao Z, Xu Z, Zhou J, Wang W, Li J, Yan G, Sun H. The clinical application of preimplantation genetic diagnosis for the patient affected by congenital contractural arachnodactyly and spinal and bulbar muscular atrophy. J Assist Reprod Genet 2016; 33:1459-1466. [PMID: 27393415 DOI: 10.1007/s10815-016-0760-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/15/2016] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To investigate the usefulness of preimplantation genetic diagnosis (PGD) for the patient affected by congenital contractural arachnodactyly (CCA) and spinal and bulbar muscular atrophy (SBMA). METHODS Multiple displacement amplification (MDA) was performed for whole genome amplification (WGA) of biopsied trophectoderm (TE) cells. Direct mutation detection by sequencing and next-generation sequencing (NGS)-based single nucleotide polymorphism (SNP) haplotyping were used for CCA diagnosis. Direct sequencing of the PCR products and sex determination by amplification of sex-determining region Y (SRY) gene were used for SBMA diagnosis. After PGD, the unaffected blastocyst (B4) was transferred in the following frozen embryo transfer (FET). RESULTS In this PGD cycle, sixteen MII oocytes were inseminated by ICSI with testicular spermatozoa. Four blastocysts (B4, B5, B10, B13) were utilized for TE cell biopsy on day 5 after ICSI. After PGD, B4 was unaffected by CCA and SBMA. B5 was affected by CCA and carried SBMA. B10 was unaffected by CCA and carried SBMA. B13 was affected by CCA and unaffected by SBMA. B4 was the only unaffected blastocyst and transferred into the uterus for the subsequent FET cycle. The accuracy of PGD was confirmed by amniocentesis at 21 weeks of gestation. A healthy boy weighing 2850 g was born by cesarean section at the 38th week of gestation. CONCLUSIONS PGD is a valid screening tool for patienst affected of CCA and SBMA to prevent transmission of these genetic diseases from parents to children.
Collapse
Affiliation(s)
- Linjun Chen
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China
| | - Zhenyu Diao
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China
| | - Zhipeng Xu
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China
| | - Jianjun Zhou
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China
| | - Wanjun Wang
- Prenatal Diagnosis Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China
| | - Jie Li
- Prenatal Diagnosis Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China
| | - Guijun Yan
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China.
| | - Haixiang Sun
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
9
|
Pennuto M, Basso M. In Vitro and In Vivo Modeling of Spinal and Bulbar Muscular Atrophy. J Mol Neurosci 2015; 58:365-73. [PMID: 26614347 DOI: 10.1007/s12031-015-0677-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/01/2015] [Indexed: 12/31/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked neuromuscular disease characterized by late-onset, progressive degeneration of lower motor neurons and skeletal muscle atrophy. SBMA is caused by expansions of a CAG trinucleotide repeat in the gene encoding the androgen receptor (AR). One striking feature of SBMA is sex specificity: SBMA fully manifests only in males, whereas females show subclinical or mild disease manifestations even when homozygous for the mutation. Since the identification of the mutation responsible for SBMA in 1991, several cell and animal models have been developed to recapitulate the main features of disease in vitro and in vivo. In this review, we describe the most widely used cellular and animal models of SBMA, highlighting advantages and disadvantages in the use of these models to gain mechanistic and therapeutic insights into SBMA.
Collapse
Affiliation(s)
- Maria Pennuto
- Dulbecco Telethon Institute Lab of Neurodegenerative Diseases, Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
10
|
The Role of the Protein Quality Control System in SBMA. J Mol Neurosci 2015; 58:348-64. [PMID: 26572535 DOI: 10.1007/s12031-015-0675-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/01/2015] [Indexed: 12/13/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) or Kennedy's disease is an X-linked disease associated with the expansion of the CAG triplet repeat present in exon 1 of the androgen receptor (AR) gene. This results in the production of a mutant AR containing an elongated polyglutamine tract (polyQ) in its N-terminus. Interestingly, the ARpolyQ becomes toxic only after its activation by the natural androgenic ligands, possibly because of aberrant androgen-induced conformational changes of the ARpolyQ, which generate misfolded species. These misfolded ARpolyQ species must be cleared from motoneurons and muscle cells, and this process is mediated by the protein quality control (PQC) system. Experimental evidence suggested that failure of the PQC pathways occurs in disease, leading to ARpolyQ accumulation and toxicity in the target cells. In this review, we summarized the overall impact of mutant and misfolded ARpolyQ on the PQC system and described how molecular chaperones and the degradative pathways (ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and the unfolded protein response (UPR), which activates the endoplasmic reticulum-associated degradation (ERAD)) are differentially affected in SBMA. We also extensively and critically reviewed several molecular and pharmacological approaches proposed to restore a global intracellular activity of the PQC system. Collectively, these data suggest that the fine and delicate equilibrium existing among the different players of the PQC system could be restored in a therapeutic perspective by the synergic/additive activities of compounds designed to tackle sequential or alternative steps of the intracellular defense mechanisms triggered against proteotoxic misfolded species.
Collapse
|
11
|
Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy. Sci Rep 2015; 5:15174. [PMID: 26490709 PMCID: PMC4614888 DOI: 10.1038/srep15174] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/18/2015] [Indexed: 12/12/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is characterized by loss of motoneurons and sensory neurons, accompanied by atrophy of muscle cells. SBMA is due to an androgen receptor containing a polyglutamine tract (ARpolyQ) that misfolds and aggregates, thereby perturbing the protein quality control (PQC) system. Using SBMA AR113Q mice we analyzed proteotoxic stress-induced alterations of HSPB8-mediated PQC machinery promoting clearance of misfolded proteins by autophagy. In muscle of symptomatic AR113Q male mice, we found expression upregulation of Pax-7, myogenin, E2-ubiquitin ligase UBE2Q1 and acetylcholine receptor (AchR), but not of MyoD, and of two E3-ligases (MuRF-1 and Cullin3). TGFβ1 and PGC-1α were also robustly upregulated. We also found a dramatic perturbation of the autophagic response, with upregulation of most autophagic markers (Beclin-1, ATG10, p62/SQSTM1, LC3) and of the HSPB8-mediated PQC response. Both HSPB8 and its co-chaperone BAG3 were robustly upregulated together with other specific HSPB8 interactors (HSPB2 and HSPB3). Notably, the BAG3:BAG1 ratio increased in muscle suggesting preferential misfolded proteins routing to autophagy rather than to proteasome. Thus, mutant ARpolyQ induces a potent autophagic response in muscle cells. Alteration in HSPB8-based PQC machinery may represent muscle-specific biomarkers useful to assess SBMA progression in mice and patients in response to pharmacological treatments.
Collapse
|
12
|
Siska EK, Koliakos G, Petrakis S. Stem cell models of polyglutamine diseases and their use in cell-based therapies. Front Neurosci 2015; 9:247. [PMID: 26236184 PMCID: PMC4501170 DOI: 10.3389/fnins.2015.00247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
Polyglutamine diseases are fatal neurological disorders that affect the central nervous system. They are caused by mutations in disease genes that contain CAG trinucleotide expansions in their coding regions. These mutations are translated into expanded glutamine chains in pathological proteins. Mutant proteins induce cytotoxicity, form intranuclear aggregates and cause neuronal cell death in specific brain regions. At the moment there is no cure for these diseases and only symptomatic treatments are available. Here, we discuss novel therapeutic approaches that aim in neuronal cell replacement using induced pluripotent or adult stem cells. Additionally, we present the beneficial effect of genetically engineered mesenchymal stem cells and their use as disease models or RNAi/gene delivery vehicles. In combination with their paracrine and cell-trophic properties, such cells may prove useful for the development of novel therapies against polyglutamine diseases.
Collapse
Affiliation(s)
| | - George Koliakos
- Biohellenika Biotechnology Company Thessaloniki, Greece ; Laboratory of Biochemistry, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki Thessaloniki, Greece
| | | |
Collapse
|
13
|
Pennuto M, Greensmith L, Pradat PF, Sorarù G. 210th ENMC International Workshop: Research and clinical management of patients with spinal and bulbar muscular atrophy, 27-29 March, 2015, Naarden, The Netherlands. Neuromuscul Disord 2015. [PMID: 26206601 DOI: 10.1016/j.nmd.2015.06.462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maria Pennuto
- Dulbecco Telethon Institute Lab of Neurodegenerative Diseases, Centre for Integrative Biology, University of Trento, Italy.
| | - Linda Greensmith
- The Graham Watts Laboratories for Research into Motor Neuron Disease, UCL Institute of Neurology, London, UK
| | - Pierre-François Pradat
- Département des Maladies du Système Nerveux, AP-HP, Groupe hospitalier Pitié-Salpêtrière, F-75013 Paris, France; UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne Universités, 75013 Paris, France
| | - Gianni Sorarù
- Department of Neurosciences, University of Padova, Padova, Italy.
| | | |
Collapse
|