1
|
Allegretta RA, Rovelli K, Balconi M. The Role of Emotion Regulation and Awareness in Psychosocial Stress: An EEG-Psychometric Correlational Study. Healthcare (Basel) 2024; 12:1491. [PMID: 39120194 PMCID: PMC11312088 DOI: 10.3390/healthcare12151491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND In stressful situations, to overcome unpleasant emotions, individuals try to manage stress through emotion regulation strategies such as cognitive reappraisal, interoception, and mindfulness. METHOD 26 healthy adults underwent a modified version of the Trier Social Stress Test (named the Social Stress Test, SST) while their electrophysiological (EEG) activity was monitored. Participants also completed self-report questionnaires prior to this, including the Five-Facet Mindfulness Questionnaire (FFMQ), Multidimensional Assessment of Interoceptive Awareness (MAIA), Emotional Regulation of Others and Self (EROS), and the Interpersonal Reactivity Index (IRI). Three brain regions of interest (ROIs) were considered in the EEG data processing: frontal, temporo-central, and parieto-occipital. Correlational analyses were performed between psychometric scales and EEG band power spectral values for each ROI. RESULTS The results showed positive correlations between interoceptive awareness, mindfulness, and high-frequency EEG bands (beta, alpha, gamma) over frontal ROI, indicating enhanced cognitive processing and emotional regulation. Conversely, emotion regulation and empathy measures correlated positively with low-frequency EEG bands (delta, theta), associated with improved social cognition and top-down regulatory processes. CONCLUSIONS These findings suggest that EEG correlations of the stress response are connected to emotion regulation mechanisms, emphasizing the importance of body state awareness in managing stress and emotions for overall well-being and quality of life.
Collapse
Affiliation(s)
- Roberta A. Allegretta
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (K.R.); (M.B.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Katia Rovelli
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (K.R.); (M.B.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (K.R.); (M.B.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| |
Collapse
|
2
|
Karami Z, Yazdanfar SA, Kashefpour M, Khosrowabadi R. Brain waves and landscape settings: emotional responses to attractiveness. Exp Brain Res 2024; 242:1291-1300. [PMID: 38548893 DOI: 10.1007/s00221-024-06812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/20/2024] [Indexed: 05/23/2024]
Abstract
Neuro-architecture is a specific branch of architecture that studies how the physical environment can change our mental processes and influence our behaviors. One of the main purposes of this field is to use changes in brain activities as a measure to quantify attractiveness of the landscapes. In this study, we investigated how changes in elements of attractiveness influence ones' emotional perception and present the related pattern of changes in brain activities. Therefore, we implied five elements of attractiveness including mystery, visual openness, landscape or greenness, walkability, and social interaction using the Delphi method. Then, we made changes in each element separately to make the landscape more attractive and assessed their effects on a group of young adults. We used the self-assessment manikin questionnaire to measure the participants' emotional perception while the participants' brain activities were recorded using a 32-channel EEG while exposed to the landscape images. The results showed that changes in attractive elements of the landscape could significantly improve ones' emotional perception of the landscape. In addition, these changes are perceived by changing the oscillatory pattern of brain activities. We hope these findings could shed a light to use of neural markers in measurement of place attractiveness.
Collapse
Affiliation(s)
- Zahra Karami
- School of Architecture and Environmental Design, Iran University of Science and Technology, Tehran, Iran
| | - Seyed-Abbas Yazdanfar
- School of Architecture and Environmental Design, Iran University of Science and Technology, Tehran, Iran
| | - Maryam Kashefpour
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Evin Sq., Tehran, 19839-63113, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Evin Sq., Tehran, 19839-63113, Iran.
| |
Collapse
|
3
|
Zouaoui I, Zellag M, Hernout J, Dumais A, Potvin S, Lavoie ME. Alpha and theta oscillations during the cognitive reappraisal of aversive pictures: A spatio-temporal qEEG investigation. Int J Psychophysiol 2023; 192:13-25. [PMID: 37490956 DOI: 10.1016/j.ijpsycho.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
CONTEXT Emotion regulation is a set of processes responsible for controlling, evaluating and adjusting reactions to achieve a goal. Results derived from magnetic resonance imaging agreed on the involvement of frontal and limbic structures in this process. Findings using cognition and physiology interactions are still scarce but suggest a role of alpha rhythm in emotional induction and for theta in regulation. OBJECTIVES AND HYPOTHESES Our goal was to investigate alpha and theta rhythm during the reappraisal of aversive stimuli. We hypothesized that an implication of alpha rhythm in emotional induction only and an increase in prefrontal theta rhythm positively correlated with successful regulation. METHOD Twenty-four healthy participants were recorded with 64 EEG electrodes while asked to watch or reappraise negative pictures passively. Theta and alpha rhythms were compared across maintain, decrease and increase regulation conditions, and a source localization estimated the generators. RESULTS Theta activity was consistently higher in the upregulation than in the maintenance condition (p = .04) for the entire control period, but mainly at the beginning of regulation (1-3 s) for low-theta and later (5-7 s) for high-theta. Moreover, our results confirm that a low-theta generator correlated with mainly the middle frontal gyrus and the anterior dorsal cingulate cortex during upregulation. Theta was sensitive to emotion upregulation, whereas the alpha oscillation was non-sensitive to emotion induction and regulation. CONCLUSION Theta rhythm was involved explicitly in emotion upregulation processes that occur at a definite time during reappraisal, whereas the alpha rhythm was not altered by emotion induction and regulation.
Collapse
Affiliation(s)
- Inès Zouaoui
- Laboratoire de Psychophysiologie Cognitive et Sociale, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Canada; Département de Psychiatrie et Addictologie, Université de Montréal, Canada.
| | - Meryem Zellag
- Laboratoire de Psychophysiologie Cognitive et Sociale, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Canada; Département de Psychiatrie et Addictologie, Université de Montréal, Canada
| | - Julien Hernout
- Laboratoire de Psychophysiologie Cognitive et Sociale, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Canada; Département de Psychiatrie et Addictologie, Université de Montréal, Canada
| | - Alexandre Dumais
- Laboratoire de Psychophysiologie Cognitive et Sociale, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Canada; Département de Psychiatrie et Addictologie, Université de Montréal, Canada
| | - Stéphane Potvin
- Laboratoire de Psychophysiologie Cognitive et Sociale, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Canada; Département de Psychiatrie et Addictologie, Université de Montréal, Canada
| | - Marc E Lavoie
- Laboratoire de Psychophysiologie Cognitive et Sociale, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Canada; Département de Psychiatrie et Addictologie, Université de Montréal, Canada.
| |
Collapse
|
4
|
Rahman M, Karwowski W, Sapkota N, Ismail L, Alhujailli A, Sumano RF, Hancock PA. Isometric Arm Forces Exerted by Females at Different Levels of Physical Comfort and Their EEG Signatures. Brain Sci 2023; 13:1027. [PMID: 37508959 PMCID: PMC10377375 DOI: 10.3390/brainsci13071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
A variety of subjective measures have traditionally been used to assess the perception of physical exertion at work and related body responses. However, the current understanding of physical comfort experienced at work is very limited. The main objective of this study was first to investigate the magnitude of isometric arm forces exerted by females at different levels of physical comfort measured on a new comfort scale and, second, to assess their corresponding neural signatures expressed in terms of power spectral density (PSD). The study assessed PSDs of four major electroencephalography (EEG) frequency bands, focusing on the brain regions controlling motor and perceptual processing. The results showed statistically significant differences in exerted arm forces and the rate of perceived exertion at the various levels of comfort. Significant differences in power spectrum density at different physical comfort levels were found for the beta EEG band. Such knowledge can be useful in incorporating female users' force requirements in the design of consumer products, including tablets, laptops, and other hand-held information technology devices, as well as various industrial processes and work systems.
Collapse
Affiliation(s)
- Mahjabeen Rahman
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Nabin Sapkota
- Department of Engineering Technology, Northwestern State University of Louisiana, Natchitoches, LA 71497, USA
| | - Lina Ismail
- Department of Industrial and Management Engineering, Arab Academy for Science, Technology, and Maritime Transport, Alexandria 2913, Egypt
| | - Ashraf Alhujailli
- Department of Management Science, Yanbu Industrial College, Yanbu 46452, Saudi Arabia
| | - Raul Fernandez Sumano
- Industrial Engineering Technology, Dunwoody College of Technology, Minneapolis, MN 55403, USA
| | - P A Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
5
|
Ng HYH, Wu CW, Huang FY, Huang CM, Hsu CF, Chao YP, Jung TP, Chuang CH. Enhanced electroencephalography effective connectivity in frontal low-gamma band correlates of emotional regulation after mindfulness training. J Neurosci Res 2023; 101:901-915. [PMID: 36717762 DOI: 10.1002/jnr.25168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/08/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023]
Abstract
Practicing mindfulness, focusing attention on the internal and external experiences occurring in the present moment with open and nonjudgement stance, can lead to the development of emotional regulation skills. Yet, the effective connectivity of brain regions during mindfulness has been largely unexplored. Studies have shown that mindfulness practice promotes functional connectivity in practitioners, potentially due to improved emotional regulation abilities and increased connectivity in the lateral prefrontal areas. To examine the changes in effective connectivity due to mindfulness training, we analyzed electroencephalogram (EEG) signals taken before and after mindfulness training, focusing on training-related effective connectivity changes in the frontal area. The mindfulness training group participated in an 8-week mindfulness-based stress reduction (MBSR) program. The control group did not take part. Regardless of the specific mindfulness practice used, low-gamma band effective connectivity increased globally after the mindfulness training. High-beta band effective connectivity increased globally only during Breathing. Moreover, relatively higher outgoing effective connectivity strength was seen during Resting and Breathing and Body-scan. By analyzing the changes in outgoing and incoming connectivity edges, both F7 and F8 exhibited strong parietal connectivity during Resting and Breathing. Multiple regression analysis revealed that the changes in effective connectivity of the right lateral prefrontal area predicted mindfulness and emotional regulation abilities. These results partially support the theory that the lateral prefrontal areas have top-down modulatory control, as these areas have high outflow effective connectivity, implying that mindfulness training cultivates better emotional regulation.
Collapse
Affiliation(s)
- Hei-Yin Hydra Ng
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan.,Department of Educational Psychology and Counseling, College of Education, National Tsing Hua University, Hsinchu, Taiwan
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
| | - Feng-Ying Huang
- Department of Education, National Taipei University of Education, Taipei, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Fen Hsu
- Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Child Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tzyy-Ping Jung
- Institute for Neural Computation and Institute of Engineering in Medicine, University of California, San Diego, California, La Jolla, USA
| | - Chun-Hsiang Chuang
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Information Systems and Applications, College of Electrical Engineering and Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Mishra S, Srinivasan N, Tiwary US. Cardiac-Brain Dynamics Depend on Context Familiarity and Their Interaction Predicts Experience of Emotional Arousal. Brain Sci 2022; 12:702. [PMID: 35741588 PMCID: PMC9220998 DOI: 10.3390/brainsci12060702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Our brain continuously interacts with the body as we engage with the world. Although we are mostly unaware of internal bodily processes, such as our heartbeats, they may be influenced by and in turn influence our perception and emotional feelings. Although there is a recent focus on understanding cardiac interoceptive activity and interaction with brain activity during emotion processing, the investigation of cardiac-brain interactions with more ecologically valid naturalistic emotional stimuli is still very limited. We also do not understand how an essential aspect of emotions, such as context familiarity, influences affective feelings and is linked to statistical interaction between cardiac and brain activity. Hence, to answer these questions, we designed an exploratory study by recording ECG and EEG signals for the emotional events while participants were watching emotional movie clips. Participants also rated their familiarity with the stimulus on the familiarity scale. Linear mixed effect modelling was performed in which the ECG power and familiarity were considered as predictors of EEG power. We focused on three brain regions, including prefrontal (PF), frontocentral (FC) and parietooccipital (PO). The analyses showed that the interaction between the power of cardiac activity in the mid-frequency range and the power in specific EEG bands is dependent on familiarity, such that the interaction is stronger with high familiarity. In addition, the results indicate that arousal is predicted by cardiac-brain interaction, which also depends on familiarity. The results support emotional theories that emphasize context dependency and interoception. Multimodal studies with more realistic stimuli would further enable us to understand and predict different aspects of emotional experience.
Collapse
Affiliation(s)
- Sudhakar Mishra
- Indian Institute of Information Technology Allahabad, Prayagraj 211012, India;
| | | | - Uma Shanker Tiwary
- Indian Institute of Information Technology Allahabad, Prayagraj 211012, India;
| |
Collapse
|
7
|
Merino E, Raya-Salom D, Teruel-Martí V, Adell A, Cervera-Ferri A, Martínez-Ricós J. Effects of Acute Stress on the Oscillatory Activity of the Hippocampus-Amygdala-Prefrontal Cortex Network. Neuroscience 2021; 476:72-89. [PMID: 34543675 DOI: 10.1016/j.neuroscience.2021.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023]
Abstract
Displaying a stress response to threatening stimuli is essential for survival. These reactions must be adjusted to be adaptive. Otherwise, even mental illnesses may develop. Describing the physiological stress response may contribute to distinguishing the abnormal responses that accompany the pathology, which may help to improve the development of both diagnoses and treatments. Recent advances have elucidated many of the processes and structures involved in stress response management; however, there is still much to unravel regarding this phenomenon. The main aim of the present research is to characterize the response of three brain areas deeply involved in the stress response (i.e., to an acute stressful experience). Specifically, the electrophysiological activity of the infralimbic division of the medial prefrontal cortex (IL), the basolateral nucleus of the amygdala (BLA), and the dorsal hippocampus (dHPC) was recorded after the infusion of 0.5 µl of corticosterone-releasing factor into the dorsal raphe nucleus (DRN), a procedure which has been validated as a paradigm to cause acute stress. This procedure induced a delayed reduction in slow waves in the three structures, and an increase in faster oscillations, such as those in theta, beta, and gamma bands. The mutual information at low theta frequencies between the BLA and the IL increased, and the delta and slow wave mutual information decreased. The low theta-mid gamma phase-amplitude coupling increased within BLA, as well as between BLA and IL. This electrical pattern may facilitate the activation of these structures, in response to the stressor, and memory consolidation.
Collapse
Affiliation(s)
- Esteban Merino
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain
| | - Danae Raya-Salom
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain
| | - Vicent Teruel-Martí
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain
| | - Albert Adell
- Institute of Biomedicine and Biotechnology of Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander 39011, Spain; Biomedical Research Networking Centre for Mental Health (CIBERSAM), Santander, Spain
| | - Ana Cervera-Ferri
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain.
| | - Joana Martínez-Ricós
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain.
| |
Collapse
|
8
|
Wang RWY, Ke TM, Chuang SW, Liu IN. Sex differences in high-level appreciation of automobile design-evoked gamma broadband synchronization. Sci Rep 2020; 10:9797. [PMID: 32555214 PMCID: PMC7299957 DOI: 10.1038/s41598-020-66515-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/18/2020] [Indexed: 01/25/2023] Open
Abstract
The present study was conducted to provide neuroimaging correlates for neurodesign of automobile for marketing aesthetics, using event-related spectral perturbations (ERSPs) and participant reports. Thirty men and women aged 22-27 years were presented with various 3-dimensional automobile modelling shapes (rectangular, streamlined, and round), which were cross-matched with various interior colour tones (pure hue/vivid, light, and dark tones) in the experimental conditions, i.e., rectangular exterior with a vivid tone interior. The stimuli pairs were to be rated by participants to facilitate our understanding of the emotional dimensions of automotive design qualities. Significant differences were observed in the high gamma band of 80-100 Hz in the left temporal area between the two sexes. Men elicited a stronger high gamma band signals for dark colour tone interiors and rectangular or round automobile modelling designs because of the meaningful and comprehensible signals associated with the mechanisms of working memory. In contrast, women had fewer reactions than men, and elicited higher beta-band dynamics in the anterior cingulate cortex for rectangular automobile modelling design, and higher gamma-band dynamics for light colour tone interiors, which might relate to their higher self-awareness of positive emotional reward.
Collapse
Affiliation(s)
- Regina W Y Wang
- Design Perceptual Awareness Lab (D:pal), National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan.
- Department of Design, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Tsai-Miau Ke
- Design Perceptual Awareness Lab (D:pal), National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
- Department of Design, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Shang-Wen Chuang
- Design Perceptual Awareness Lab (D:pal), National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
- Taiwan Building Technology Center, National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
| | - I-Ning Liu
- Design Perceptual Awareness Lab (D:pal), National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
- Department of Design, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
9
|
Abbasi NI, Bose R, Bezerianos A, Thakor NV, Dragomir A. EEG-Based Classification of Olfactory Response to Pleasant Stimuli. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5160-5163. [PMID: 31947020 DOI: 10.1109/embc.2019.8857673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Olfactory perception involves complex processing distributed along several cortical and sub-cortical regions in the brain. Although several studies have shown that the power spectra of the electroencephalography (EEG) contain information that can be used to differentiate between pleasant and unpleasant stimuli, there are still no studies which investigate whether EEG can be used to differentiate between the neural responses to olfactory stimuli of different levels of pleasantness. For this purpose, in the present study, local brain information within established frequency bands (θ, α and γ) has been used to devise discriminative features in a classification approach. A comparative study of four widely used classifiers is presented and SVM gives the best performance (accuracy = 75.71%). The results reveal that is it possible to objectively discriminate using EEG spectral features between fine levels of perceived pleasantness using the SVM-based classifier within a cross-validation procedure.
Collapse
|
10
|
Working Memory Training Improves Emotion Regulation Ability. Sci Rep 2018; 8:15012. [PMID: 30301906 PMCID: PMC6177433 DOI: 10.1038/s41598-018-31495-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/20/2018] [Indexed: 12/04/2022] Open
Abstract
Emotion regulation deficits are associated with various emotional disorders. Therefore, studies have attempted to improve emotion regulation ability to prevent psychopathological symptoms. Studies have revealed that working memory training—specifically attention control—can promote emotion regulation. In the present study, participants completed a running memory task in a 20-day training period. The participants’ pre- and post-test data on attention network functions and late positive potential (LPP) were assessed and analyzed. Compared with the control group, the training group’s orientation function improved markedly. In addition, LPP in relation to emotion regulation decreased during the 20-day training period. These results suggest that working memory training can improve emotion regulation ability, and the orientation function in the attention network may also contribute to this improvement.
Collapse
|
11
|
Lee YI, Choi Y, Jeong J. Character drawing style in cartoons on empathy induction: an eye-tracking and EEG study. PeerJ 2017; 5:e3988. [PMID: 29152415 PMCID: PMC5687150 DOI: 10.7717/peerj.3988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/13/2017] [Indexed: 01/10/2023] Open
Abstract
In its most basic form, empathy refers to the ability to understand another person’s feelings and emotions, representing an essential component of human social interaction. Owing to an increase in the use of mass media, which is used to distribute high levels of empathy-inducing content, media plays a key role in individual and social empathy induction. We investigated empathy induction in cartoons using eye movement, EEG and behavioral measures to explore whether empathy factors correlate with character drawing styles. Two different types of empathy-inducing cartoons that consisted of three stages and had the same story plot were used. One had an iconic style, while the other was realistic style. Fifty participants were divided into two groups corresponding to the individual cartoon drawing styles and were presented with only one type of drawing style. We found that there were no significant differences of empathy factors between iconic and realistic style. However, the Induced Empathy Score (IES) had a close relationship with subsequent attentional processing (total fixation length for gaze duration). Furthermore, iconic style suppressed the fronto-central area more than realistic style in the gamma power band. These results suggest that iconic cartoons have the advantage of abstraction during empathy induction, because the iconic cartoons induced the same level of empathy as realistic cartoons while using the same story plot (top-down process), even though lesser time and effort were required by the cartoon artist to draw them. This also means that the top-down process (story plot) is more important than the bottom-up process (drawing style) in empathy induction when viewing cartoons
Collapse
Affiliation(s)
- Yong-Il Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yeojeong Choi
- HE Design Lab, LG Electronics, Seoul, Republic of Korea
| | - Jaeseung Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
12
|
Liu YC, Chang CC, Yang YHS, Liang C. Spontaneous analogising caused by text stimuli in design thinking: differences between higher- and lower-creativity groups. Cogn Neurodyn 2017; 12:55-71. [PMID: 29435087 DOI: 10.1007/s11571-017-9454-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/21/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022] Open
Abstract
Understanding the cognitive processes used in creative practices is essential to design research. In this study, electroencephalography was applied to investigate the brain activations of visual designers when they responded to various types of word stimuli during design thinking. Thirty visual designers were recruited, with the top third and bottom third of the participants divided into high-creativity (HC) and low-creativity (LC) groups. The word stimuli used in this study were two short poems, adjectives with similar meanings, and adjectives with opposing meanings. The derived results are outlined as follows: (1) the brain activations of the designers increased in the frontal and right temporal regions and decreased in the right prefrontal region; (2) the negative association between the right temporal and middle frontal regions was notable; (3) the differences in activations caused by distinct word stimuli varied between HC and LC designers; (4) the spectral power in the middle frontal region of HC designers was lower than that of LC designers during the short love poem task; (5) the spectral power in the bilateral temporal regions of HC designers was higher than that of LC designers during the short autumn poem task; (6) the spectral power in the frontoparietal region of HC designers was lower than that of LC designers during the similar concept task; and (7) the spectral power in the frontoparietal and left frontotemporal regions of HC designers was higher than that of LC designers during the opposing concept task.
Collapse
Affiliation(s)
- Yu-Cheng Liu
- 1Department of Bio-Industry Communication and Development, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan
| | - Chi-Cheng Chang
- 2Department of Technology Application and Human Resource Development, National Taiwan Normal University, Taipei, Taiwan
| | | | - Chaoyun Liang
- 1Department of Bio-Industry Communication and Development, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan
| |
Collapse
|
13
|
McFarland DJ, Parvaz MA, Sarnacki WA, Goldstein RZ, Wolpaw JR. Prediction of subjective ratings of emotional pictures by EEG features. J Neural Eng 2017; 14:016009. [PMID: 27934776 PMCID: PMC5476954 DOI: 10.1088/1741-2552/14/1/016009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Emotion dysregulation is an important aspect of many psychiatric disorders. Brain-computer interface (BCI) technology could be a powerful new approach to facilitating therapeutic self-regulation of emotions. One possible BCI method would be to provide stimulus-specific feedback based on subject-specific electroencephalographic (EEG) responses to emotion-eliciting stimuli. APPROACH To assess the feasibility of this approach, we studied the relationships between emotional valence/arousal and three EEG features: amplitude of alpha activity over frontal cortex; amplitude of theta activity over frontal midline cortex; and the late positive potential over central and posterior mid-line areas. For each feature, we evaluated its ability to predict emotional valence/arousal on both an individual and a group basis. Twenty healthy participants (9 men, 11 women; ages 22-68) rated each of 192 pictures from the IAPS collection in terms of valence and arousal twice (96 pictures on each of 4 d over 2 weeks). EEG was collected simultaneously and used to develop models based on canonical correlation to predict subject-specific single-trial ratings. Separate models were evaluated for the three EEG features: frontal alpha activity; frontal midline theta; and the late positive potential. In each case, these features were used to simultaneously predict both the normed ratings and the subject-specific ratings. MAIN RESULTS Models using each of the three EEG features with data from individual subjects were generally successful at predicting subjective ratings on training data, but generalization to test data was less successful. Sparse models performed better than models without regularization. SIGNIFICANCE The results suggest that the frontal midline theta is a better candidate than frontal alpha activity or the late positive potential for use in a BCI-based paradigm designed to modify emotional reactions.
Collapse
Affiliation(s)
- Dennis J. McFarland
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Muhammad A. Parvaz
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574
| | - William A. Sarnacki
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Rita Z. Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574
| | - Jonathan R. Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| |
Collapse
|
14
|
Abstract
Over the past 15 years, the emotion regulation perspective has been widely integrated into theoretical and applied contexts in clinical psychology and beyond. Recent refinements to behavioral, subjective, psychophysiological and neuroimaging methods allow emotion regulation to be captured and assessed in the laboratory with greater precision. Technological advances enabling investigators to leverage information from multiple modalities are increasingly accessible, and as such, will further efforts to generate testable hypotheses about specific mechanisms implicated in emotion regulation and difficulties therein. In combination with theory-driven design, progressively sophisticated methods for laboratory assessment have potential to further emotion regulation as both a valid scientific construct and a useful paradigm for human emotion and behavior that has applicability to both clinical and non-clinical contexts.
Collapse
|