1
|
Xue CY, Liu YH, Yu Y, Liu Y, Zhou YL, Zhang XX. Ultrasensitive mass spectrometric quantitation of apurinic/apyrimidinic sites in genomic DNA of mammalian cell lines exposed to genotoxic reagents. Anal Chim Acta 2024; 1329:343238. [PMID: 39396301 DOI: 10.1016/j.aca.2024.343238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
The apurinic/apyrimidinic (AP) site is an important intermediate in the DNA base excision repair (BER) pathway, having the potential of being a biomarker for DNA damage. AP sites could lead to the stalling of polymerases, the misincorporation of bases and DNA strand breaks, which might affect physiological function of cells. However, the abundance of AP sites in genomic DNA is very low (less than 2 AP sites/106 nts), which requires a sensitive and accurate method to meet its detection requirements. Here, we described an ultrasensitive quantification method based on a hydrazine-s-triazine reagent (i-Pr2N) labeling for AP sites combining with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The limit of detection reached an ultralow level (40 amol), realizing the most sensitive MS-based quantification for the AP site. To guarantee the accuracy of the quantitative results, the labeling reaction was carried out directly on DNA strands instead of labeling after DNA enzymatic digestion to reduce artifacts that might be produced during the enzymatic process of DNA strands. And selective detection was realized by MS to avoid introducing the false-positive signals from other aldehyde species, which could also react with i-Pr2N. Genomic DNA samples from different mammalian cell lines were successfully analyzed using this method. There were 0.4-0.8 AP sites per 106 nucleotides, and the values would increase 16.1 and 2.75 times when cells were treated with genotoxic substances methyl methanesulfonate and 5-fluorouracil, respectively. This method has good potential in the analysis of a small number of cell samples and clinical samples, is expected to be useful for evaluating the damage level of DNA bases, the genotoxicity of compounds and the drug resistance of cancer cells, and provides a new tool for cell function research and clinical precise treatment.
Collapse
Affiliation(s)
- Chen-Yu Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing, 100191, China
| | - Ya-Hong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yue Yu
- Qilu Pharmaceutical Co., Ltd, Jinan, 250104, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Hu Y, Willner I. Oligo-Adenine Derived Secondary Nucleic Acid Frameworks: From Structural Characteristics to Applications. Angew Chem Int Ed Engl 2024; 63:e202412106. [PMID: 39183707 DOI: 10.1002/anie.202412106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oligo-adenine (polyA) is primarily known for its critical role in mRNA stability, translational status, and gene regulation. Beyond its biological functions, extensive research has unveiled the diverse applications of polyA. In response to environmental stimuli, single polyA strands undergo distinctive structural transitions into diverse secondary configurations, which are reversible upon the introduction of appropriate counter-triggers. In this review, we systematically summarize recent advances of noncanonical structures derived from polyA, including A-motif duplex, A-cyanuric acid triplex, A-coralyne-A duplex, and T ⋅ A-T triplex. The structural characteristics and mechanisms underlying these conformations under specific external stimuli are addressed, followed by examples of their applications in stimuli-responsive DNA hydrogels, supramolecular fibre assembly, molecular electronics and switches, biosensing and bioengineering, payloads encapsulation and release, and others. A detailed comparison of these polyA-derived noncanonical structures is provided, highlighting their distinctive features. Furthermore, by integrating their stimuli-responsiveness and conformational characteristics, advanced material development, such as pH-cascaded DNA hydrogels and supramolecular fibres exhibiting dynamic structural transitions adapting environmental cues, are introduced. An outlook for future developments is also discussed. These polyA derived, stimuli-responsive, noncanonical structures enrich the arsenal of DNA "toolbox", offering dynamic DNA frameworks for diverse future applications.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore, Republic of Singapore
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
3
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
4
|
Yasmin T, Azeroglu B, Yanez-Cuna FO, Jones S, Cai PY, Leach DRF. Isolation and purification of DNA double-strand break repair intermediates for understanding complex molecular mechanisms. PLoS One 2024; 19:e0308786. [PMID: 39392819 PMCID: PMC11469543 DOI: 10.1371/journal.pone.0308786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/31/2024] [Indexed: 10/13/2024] Open
Abstract
Branched DNA molecules are key intermediates in the molecular pathways of DNA replication, repair and recombination. Understanding their structural details, therefore, helps to envisage the mechanisms underlying these processes. While the configurations of DNA molecules can be effectively analysed in bulk using gel electrophoresis techniques, direct visualization provides a complementary single-molecule approach to investigating branched DNA structures. However, for microscopic examination, the sample needs to be free from impurities that could obscure the molecules of interest, and free from the bulk of unwanted non-specific DNA molecules that would otherwise dominate the field of view. Additionally, in the case of recombination intermediates, the length of the DNA molecules becomes an important factor to consider since the structures can be spread over a large distance on the chromosome in vivo. As a result, apart from sample purity, efficient isolation of large-sized DNA fragments without damaging their branched structures is crucial for further analysis. These factors are illustrated by the example of DNA double-strand break repair in the bacterium E. coli. In E. coli recombination intermediates may be spread over a distance of 40 kb which constitutes less than 1% of the 4.6 Mb genome. This study reveals ways to overcome some of the technical challenges that are associated with the isolation and purification of large and complex branched DNA structures using E. coli DNA double-strand break repair intermediates. High-molecular weight and branched DNA molecules do not run into agarose gels subjected to electrophoresis. However, they can be extracted from the wells of the gels if they are agarose embedded, by using β-agarase digestion, filtration, and concentration. Furthermore, a second round of gel electrophoresis followed by purification is recommended to enhance the purity of the specific DNA samples. These preliminary findings may prove to be pioneering for various single-molecule analyses of large and complex DNA molecules of DNA replication, repair and recombination.
Collapse
Affiliation(s)
- Tahirah Yasmin
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Benura Azeroglu
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Sally Jones
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Patrick Yizhi Cai
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - David R. F. Leach
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Zhuang J, Du X, Liu K, Hao J, Wang H, An R, Liang X. DNase II Can Efficiently Digest RNA and Needs to Be Redefined as a Nuclease. Cells 2024; 13:1525. [PMID: 39329709 PMCID: PMC11430429 DOI: 10.3390/cells13181525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
DNase II, identified in 1947 and named in 1953, is an acidic DNA endonuclease prevalent across organisms and crucial for normal growth. Despite its expression in nearly all human tissues, as well as its biological significance, DNase II's detailed functions and corresponding mechanisms remain unclear. Although many groups are trying to figure this out, progress is very limited. It is very hard to connect its indispensability with its DNA cleavage activity. In this study, we find that DNase II secreted to saliva can digest RNA in mildly acidic conditions, prompting us to hypothesize that salivary DNase II might digest RNA in the stomach. This finding is consistent with the interesting discovery reported in 1964 that RNA could inhibit DNase II's activity, which has been largely overlooked. This RNA digestion activity is further confirmed by using purified DNase II, showing activity to digest both DNA and RNA effectively. Here, we suggest redesignating DNase II as DNase II (RNase). The biological functions of DNase II are suggested to recycle intracellular RNA or digest external nucleic acids (both RNA and DNA) as nutrients. This discovery may untangle the mystery of DNase II and its significant biofunctions.
Collapse
Affiliation(s)
- Jingyun Zhuang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Xinmei Du
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Kehan Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Jing Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Haoyu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Ran An
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266404, China
| | - Xingguo Liang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266404, China
| |
Collapse
|
6
|
Currie J, Dahlberg JR, Lundberg E, Thunberg L, Eriksson J, Schweikart F, Nilsson GA, Örnskov E. Stability indicating ion-pair reversed-phase liquid chromatography method for modified mRNA. J Pharm Biomed Anal 2024; 245:116144. [PMID: 38636193 DOI: 10.1016/j.jpba.2024.116144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
Modified messenger RNA (mRNA) represents a rapidly emerging class of therapeutic drug product. Development of robust stability indicating methods for control of product quality are therefore critical to support successful pharmaceutical development. This paper presents an ion-pair reversed-phase liquid chromatography (IP-RPLC) method to characterise modified mRNA exposed to a wide set of stress-inducing conditions, relevant for pharmaceutical development of an mRNA drug product. The optimised method could be used for separation and analysis of large RNA, sized up to 1000 nucleotides. Column temperature, mobile phase flow rate and ion-pair selection were each studied and optimised. Baseline separations of the model RNA ladder sample were achieved using all examined ion-pairing agents. We established that the optimised method, using 100 mM Triethylamine, enabled the highest resolution separation for the largest fragments in the RNA ladder (750/1000 nucleotides), in addition to the highest overall resolution for the selected modified mRNA compound (eGFP mRNA, 996 nucleotides). The stability indicating power of the method was demonstrated by analysing the modified eGFP mRNA, upon direct exposure to heat, hydrolytic conditions and treatment with ribonucleases. Our results showed that the formed degradation products, which appeared as shorter RNA fragments in front of the main peak, could be well monitored, using the optimised method, and the relative stability of the mRNA under the various stressed conditions could be assessed.
Collapse
Affiliation(s)
- Jonathan Currie
- Innovation Strategies and External Liaison, Pharmaceutical Technology and Development, Operations & IT, AstraZeneca, Gothenburg, Sweden
| | - Jacob R Dahlberg
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ester Lundberg
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Thunberg
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonas Eriksson
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fritz Schweikart
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gunilla A Nilsson
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eivor Örnskov
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
7
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
8
|
Hu Y, Liu J, Ke Y, Wang B, Lim JYC, Dong Z, Long Y, Willner I. Oligo-Adenine and Cyanuric Acid Supramolecular DNA-Based Hydrogels Exhibiting Acid-Resistance and Physiological pH-Responsiveness. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29235-29247. [PMID: 38769743 DOI: 10.1021/acsami.4c03834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Expanding the functions and applications of DNA by integrating noncanonical bases and structures into biopolymers is a continuous scientific effort. An adenine-rich strand (A-strand) is introduced as functional scaffold revealing, in the presence of the low-molecular-weight cofactor cyanuric acid (CA, pKa 6.9), supramolecular hydrogel-forming efficacies demonstrating multiple pH-responsiveness. At pH 1.2, the A-strand transforms into a parallel A-motif duplex hydrogel cross-linked by AH+-H+A units due to the protonation of adenine (pKa 3.5). At pH 5.2, and in the presence of coadded CA, a helicene-like configuration is formed between adenine and protonated CA, generating a parallel A-CA triplex cross-linked hydrogel. At pH 8.0, the hydrogel undergoes transition into a liquid state by deprotonation of CA cofactor units and disassembly of A-CA triplex into its constituent components. Density functional theory calculations and molecular dynamics simulations, supporting the structural reconfigurations of A-strand in the presence of CA, are performed. The sequential pH-stimulated hydrogel states are rheometrically characterized. The hydrogel framework is loaded with fluorescein-labeled insulin, and the pH-stimulated release of insulin from the hydrogel across the pH barriers present in the gastrointestinal tract is demonstrated. The results provide principles for future application of the hydrogel for oral insulin administration for diabetes.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jia Liu
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Binju Wang
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yi Long
- Electronic Engineering Department, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Yu M, Tang X, Li Z, Wang W, Wang S, Li M, Yu Q, Xie S, Zuo X, Chen C. High-throughput DNA synthesis for data storage. Chem Soc Rev 2024; 53:4463-4489. [PMID: 38498347 DOI: 10.1039/d3cs00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
With the explosion of digital world, the dramatically increasing data volume is expected to reach 175 ZB (1 ZB = 1012 GB) in 2025. Storing such huge global data would consume tons of resources. Fortunately, it has been found that the deoxyribonucleic acid (DNA) molecule is the most compact and durable information storage medium in the world so far. Its high coding density and long-term preservation properties make itself one of the best data storage carriers for the future. High-throughput DNA synthesis is a key technology for "DNA data storage", which encodes binary data stream (0/1) into quaternary long DNA sequences consisting of four bases (A/G/C/T). In this review, the workflow of DNA data storage and the basic methods of artificial DNA synthesis technology are outlined first. Then, the technical characteristics of different synthesis methods and the state-of-the-art of representative commercial companies, with a primary focus on silicon chip microarray-based synthesis and novel enzymatic DNA synthesis are presented. Finally, the recent status of DNA storage and new opportunities for future development in the field of high-throughput, large-scale DNA synthesis technology are summarized.
Collapse
Affiliation(s)
- Meng Yu
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaohui Tang
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Zhenhua Li
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Weidong Wang
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Shaopeng Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Qiuliyang Yu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Sijia Xie
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Chang Chen
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
| |
Collapse
|
10
|
Beetham CM, Schuster CF, Kviatkovski I, Santiago M, Walker S, Gründling A. Histidine transport is essential for the growth of Staphylococcus aureus at low pH. PLoS Pathog 2024; 20:e1011927. [PMID: 38227607 PMCID: PMC10817146 DOI: 10.1371/journal.ppat.1011927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/26/2024] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen capable of causing many different human diseases. During colonization and infection, S. aureus will encounter a range of hostile environments, including acidic conditions such as those found on the skin and within macrophages. However, little is known about the mechanisms that S. aureus uses to detect and respond to low pH. Here, we employed a transposon sequencing approach to determine on a genome-wide level the genes required or detrimental for growth at low pH. We identified 31 genes that were essential for the growth of S. aureus at pH 4.5 and confirmed the importance of many of them through follow up experiments using mutant strains inactivated for individual genes. Most of the genes identified code for proteins with functions in cell wall assembly and maintenance. These data suggest that the cell wall has a more important role than previously appreciated in promoting bacterial survival when under acid stress. We also identified several novel processes previously not linked to the acid stress response in S. aureus. These include aerobic respiration and histidine transport, the latter by showing that one of the most important genes, SAUSA300_0846, codes for a previously uncharacterized histidine transporter. We further show that under acid stress, the expression of the histidine transporter gene is increased in WT S. aureus. In a S. aureus SAUSA300_0846 mutant strain expression of the histidine biosynthesis genes is induced under acid stress conditions allowing the bacteria to maintain cytosolic histidine levels. This strain is, however, unable to maintain its cytosolic pH to the same extent as a WT strain, revealing an important function specifically for histidine transport in the acid stress response of S. aureus.
Collapse
Affiliation(s)
- Catrin M. Beetham
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Christopher F. Schuster
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Igor Kviatkovski
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Marina Santiago
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Angelika Gründling
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Zhang Y, Yu Y, Zhou H, Zhao M, Pan X. A novel function by cathepsin D in degradation of nucleic acids. Biochem Biophys Res Commun 2023; 682:250-258. [PMID: 37826948 DOI: 10.1016/j.bbrc.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Cathepsin D (CTSD) is an aspartic endopeptidase, however, we found that it was also capable of enzymatic digestion of nucleic acids (NAs). The purpose of this study was to investigate the basic properties of CTSD enzymatic activity on NAs, and explore the degradation mechanism. The results showed that NAs were efficiently digested between pH 3.0 and 5.0, and the optimum pH was 3.5. CTSD exhibited optimum activity at the temperature of 50°C. The degradation rate was improved with an increased CTSD concentration, and NAs were digested to an enzyme concentration of 0.001%, at which point, NAs were no longer digested. Ca2+ and Mg2+ at low concentrations of 5 mM promoted the digestion remarkably. As the protein substrate for CTSD, both Hb and BSA had no effect on DNA degradation, even when the molar ratio of protein:DNA was 104:1. Kinetic parameters of Km and kcat/Km value were (42 ± 1) μM and (1.62 ± 0.1) × 10-2 s-1mM-1 respectively, using real-time quantitative PCR (RT-PCR). Specially, pepstatin A which is the specific aspartic protease inhibitor exhibited inhibitory effect on NA digestion by CTSD as well, suggesting that the catalytic active site of CTSD for NAs might be the same as protein. A brief degradation mechanism is discussed. The present study may change the cognition of CTSD specificity for substrate and contribute greatly to enzymology of CTSD.
Collapse
Affiliation(s)
- Yanfang Zhang
- School of Food Engineering, Ludong University, Yantai, Shandong, China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai, Shandong, China; Institute of Bionanotechnology, Ludong University, Yantai, Shandong, China.
| | - Yingying Yu
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Haoran Zhou
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Mingyue Zhao
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Xiaoming Pan
- School of Food Engineering, Ludong University, Yantai, Shandong, China.
| |
Collapse
|
12
|
Wang H, Zhao G, Zhang T, Li Y, Zhang G, Li Y. Comparative Study of DNA Barcode Integrity Evaluation Approaches in the Early-Stage Development of DNA-Compatible Chemical Transformation. ACS Pharmacol Transl Sci 2023; 6:1724-1733. [PMID: 37974618 PMCID: PMC10644510 DOI: 10.1021/acsptsci.3c00181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 11/19/2023]
Abstract
DNA-encoded libraries (DEL) have emerged as an important drug discovery technical platform for target-based compound library selection. The success rate of DEL depends on both the chemical diversity of combinatorial libraries and the accuracy of DNA barcoding. Therefore, it is critical that the chemistry applied to library construction should efficiently transform on a wide range of substrates while preserving the integrity of DNA tags. Although several analytical methods have been developed to measure DNA damage caused by DEL chemical reactions, efficient and cost-effective evaluation criteria for DNA damage detection are still demanding. Herein, we set standards for evaluating the DNA compatibility of chemistry development at the laboratory level. Based on four typical DNA damage models of three different DEL formats, we evaluated the detection capabilities of four analytical methods, including ultraperformance liquid chromatography (UPLC-MS), electrophoresis, quantitative polymerase chain reaction (qPCR), and Sanger sequencing. This work systematically revealed the scope and capability of different analytical methods in assessing DNA damages caused by chemical transformation. Based on the results, we recommended UPLC-MS and qPCR as efficient methods for DNA barcode integrity analysis in the early-stage development of DNA-compatible chemistry. Meanwhile, we identified that Sanger sequencing was unreliable to assess DNA damage in this application.
Collapse
Affiliation(s)
- Huicong Wang
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Guixian Zhao
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Tianyang Zhang
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Beijing
National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
13
|
Nandhini KP, Noki S, Brasil E, Albericio F, de la Torre BG. A safety-catch protecting group strategy compatible with Boc-chemistry for the synthesis of peptide nucleic acids (PNAs). Org Biomol Chem 2023; 21:8125-8135. [PMID: 37772422 DOI: 10.1039/d3ob01348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Peptide Nucleic Acids (PNAs) are an intriguing class of synthetic biomolecules with great potential in medicine. Although PNAs could be considered analogs of oligonucleotides, their synthesis is more like that of peptides. In both cases, a Solid-Phase Synthesis (SPS) approach is used. Herein, the advantage using Boc as a temporal protecting group has been demonstrated to be more favored than Fmoc. In this context, a new PNA SPS strategy has been developed based on a safety-catch protecting group scheme for the exocyclic nitrogen of the side-chain bases and the linker. Sulfinyl (sulfoxide)-containing moieties are fully stable to the trifluoroacetic acid (TFA) used to remove the Boc group, but they can be reduced to the corresponding sulfide derivatives, which are labile in the presence of TFA. The efficiency of this novel synthetic strategy has been demonstrated in the synthesis of the PNA pentamer H-PNA(TATCT)-βAla-OH.
Collapse
Affiliation(s)
- K P Nandhini
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.
| | - Sikabwe Noki
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.
| | - Edikarlos Brasil
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| |
Collapse
|
14
|
Kieu Doan TN, Croyle MA. Physical characteristics and stability profile of recombinant plasmid DNA within a film matrix. Eur J Pharm Biopharm 2023; 190:270-283. [PMID: 37567395 DOI: 10.1016/j.ejpb.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Plasmids are essential source material for production of biological drugs, vaccines and vectors for gene therapy. They are commonly formulated as frozen solutions. Considering the cost associated with maintenance of cold chain conditions during storage and transport, there is a significant need for alternative methods for stabilization of plasmids at ambient temperature. The objective of these studies was to identify a film-based formulation that preserved transfection efficiency of plasmids at 25 °C. A model plasmid, pAAVlacZ, was used for these studies. Transfection efficiency and agarose gel electrophoresis were utilized to assess bioactivity and changes in physical conformation of plasmid during storage. An amino acid, capable of sustaining a positive charge while supporting an alkaline environment within the film matrix, preserved transfection efficiency for 9 months at 25 °C. Addition of sugar and a plasticizer to the formulation preserved the plasmid in an amorphous state and improved handling properties of the film. The manner in which excipients were incorporated into bulk formulations and environmental humidity in which films were stored significantly impacted transfection efficiency of plasmid in the rehydrated solution. Taken together, these results suggest that plasmids can be stored for extended periods of time without refrigeration within a film matrix.
Collapse
Affiliation(s)
- Trang Nguyen Kieu Doan
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States
| | - Maria A Croyle
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States; John R. LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
15
|
Schwarz PM, Welzel M, Heider D, Freisleben B. RepairNatrix: a Snakemake workflow for processing DNA sequencing data for DNA storage. BIOINFORMATICS ADVANCES 2023; 3:vbad117. [PMID: 38496344 PMCID: PMC10941317 DOI: 10.1093/bioadv/vbad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 03/19/2024]
Abstract
Motivation There has been rapid progress in the development of error-correcting and constrained codes for DNA storage systems in recent years. However, improving the steps for processing raw sequencing data for DNA storage has a lot of untapped potential for further progress. In particular, constraints can be used as prior information to improve the processing of DNA sequencing data. Furthermore, a workflow tailored to DNA storage codes enables fair comparisons between different approaches while leading to reproducible results. Results We present RepairNatrix, a read-processing workflow for DNA storage. RepairNatrix supports preprocessing of raw sequencing data for DNA storage applications and can be used to flag and heuristically repair constraint-violating sequences to further increase the recoverability of encoded data in the presence of errors. Compared to a preprocessing strategy without repair functionality, RepairNatrix reduced the number of raw reads required for the successful, error-free decoding of the input files by a factor of 25-35 across different datasets. Availability and implementation RepairNatrix is available on Github: https://github.com/umr-ds/repairnatrix.
Collapse
Affiliation(s)
- Peter Michael Schwarz
- Department of Mathematics and Computer Science, University of Marburg, Marburg 35032, Germany
| | - Marius Welzel
- Department of Mathematics and Computer Science, University of Marburg, Marburg 35032, Germany
| | - Dominik Heider
- Department of Mathematics and Computer Science, University of Marburg, Marburg 35032, Germany
| | - Bernd Freisleben
- Department of Mathematics and Computer Science, University of Marburg, Marburg 35032, Germany
| |
Collapse
|
16
|
Steiert TA, Parra G, Gut M, Arnold N, Trotta JR, Tonda R, Moussy A, Gerber Z, Abuja P, Zatloukal K, Röcken C, Folseraas T, Grimsrud M, Vogel A, Goeppert B, Roessler S, Hinz S, Schafmayer C, Rosenstiel P, Deleuze JF, Gut I, Franke A, Forster M. A critical spotlight on the paradigms of FFPE-DNA sequencing. Nucleic Acids Res 2023; 51:7143-7162. [PMID: 37351572 PMCID: PMC10415133 DOI: 10.1093/nar/gkad519] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
In the late 19th century, formalin fixation with paraffin-embedding (FFPE) of tissues was developed as a fixation and conservation method and is still used to this day in routine clinical and pathological practice. The implementation of state-of-the-art nucleic acid sequencing technologies has sparked much interest for using historical FFPE samples stored in biobanks as they hold promise in extracting new information from these valuable samples. However, formalin fixation chemically modifies DNA, which potentially leads to incorrect sequences or misinterpretations in downstream processing and data analysis. Many publications have concentrated on one type of DNA damage, but few have addressed the complete spectrum of FFPE-DNA damage. Here, we review mitigation strategies in (I) pre-analytical sample quality control, (II) DNA repair treatments, (III) analytical sample preparation and (IV) bioinformatic analysis of FFPE-DNA. We then provide recommendations that are tested and illustrated with DNA from 13-year-old liver specimens, one FFPE preserved and one fresh frozen, applying target-enriched sequencing. Thus, we show how DNA damage can be compensated, even when using low quantities (50 ng) of fragmented FFPE-DNA (DNA integrity number 2.0) that cannot be amplified well (Q129 bp/Q41 bp = 5%). Finally, we provide a checklist called 'ERROR-FFPE-DNA' that summarises recommendations for the minimal information in publications required for assessing fitness-for-purpose and inter-study comparison when using FFPE samples.
Collapse
Affiliation(s)
- Tim A Steiert
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Genís Parra
- Center for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona 08028, Spain
| | - Marta Gut
- Center for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona 08028, Spain
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Jean-Rémi Trotta
- Center for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona 08028, Spain
| | - Raúl Tonda
- Center for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona 08028, Spain
| | - Alice Moussy
- Le Centre de référence, d’innovation, d’expertise et de transfert (CRefIX), PFMG 2025, Évry 91057, France
| | - Zuzana Gerber
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Évry 91057, France
| | - Peter M Abuja
- Diagnostic & Research Center for Molecular Biomedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz 8010, Austria
| | - Kurt Zatloukal
- Diagnostic & Research Center for Molecular Biomedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz 8010, Austria
| | - Christoph Röcken
- Department of Pathology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Trine Folseraas
- Norwegian PSC Research Center Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
| | - Marit M Grimsrud
- Norwegian PSC Research Center Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0372, Norway
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover 30625, Germany
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany
- Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, Ludwigsburg 71640, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Sebastian Hinz
- Department of General Surgery, University Medicine Rostock, Rostock 18057, Germany
| | - Clemens Schafmayer
- Department of General Surgery, University Medicine Rostock, Rostock 18057, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Jean-François Deleuze
- Le Centre de référence, d’innovation, d’expertise et de transfert (CRefIX), PFMG 2025, Évry 91057, France
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Évry 91057, France
| | - Ivo G Gut
- Center for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona 08028, Spain
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
17
|
Verardo D, Adelizzi B, Rodriguez-Pinzon DA, Moghaddam N, Thomée E, Loman T, Godron X, Horgan A. Multiplex enzymatic synthesis of DNA with single-base resolution. SCIENCE ADVANCES 2023; 9:eadi0263. [PMID: 37418522 PMCID: PMC10328407 DOI: 10.1126/sciadv.adi0263] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Enzymatic DNA synthesis (EDS) is a promising benchtop and user-friendly method of nucleic acid synthesis that, instead of solvents and phosphoramidites, uses mild aqueous conditions and enzymes. For applications such as protein engineering and spatial transcriptomics that require either oligo pools or arrays with high sequence diversity, the EDS method needs to be adapted and certain steps in the synthesis process spatially decoupled. Here, we have used a synthesis cycle comprising a first step of site-specific silicon microelectromechanical system inkjet dispensing of terminal deoxynucleotidyl transferase enzyme and 3' blocked nucleotide, and a second step of bulk slide washing to remove the 3' blocking group. By repeating the cycle on a substrate with an immobilized DNA primer, we show that microscale spatial control of nucleic acid sequence and length is possible, which, here, are assayed by hybridization and gel electrophoresis. This work is distinctive for enzymatically synthesizing DNA in a highly parallel manner with single base control.
Collapse
Affiliation(s)
| | | | | | | | | | - Tessa Loman
- DNA Script, 67 Avenue de Fontainebleau, 94270 Le Kremlin-Bicêtre, France
| | | | | |
Collapse
|
18
|
Smith JA, Nguyen BH, Carlson R, Bertram JG, Palluk S, Arlow DH, Strauss K. Spatially Selective Electrochemical Cleavage of a Polymerase-Nucleotide Conjugate. ACS Synth Biol 2023; 12:1716-1726. [PMID: 37192389 PMCID: PMC10278165 DOI: 10.1021/acssynbio.3c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Indexed: 05/18/2023]
Abstract
Novel enzymatic methods are poised to become the dominant processes for de novo synthesis of DNA, promising functional, economic, and environmental advantages over the longstanding approach of phosphoramidite synthesis. Before this can occur, however, enzymatic synthesis methods must be parallelized to enable production of multiple DNA sequences simultaneously. As a means to this parallelization, we report a polymerase-nucleotide conjugate that is cleaved using electrochemical oxidation on a microelectrode array. The developed conjugate maintains polymerase activity toward surface-bound substrates with single-base control and detaches from the surface at mild oxidative voltages, leaving an extendable oligonucleotide behind. Our approach readies the way for enzymatic DNA synthesis on the scale necessary for DNA-intensive applications such as DNA data storage or gene synthesis.
Collapse
Affiliation(s)
- Jake A. Smith
- Microsoft
Research, Redmond, Washington 98052, United States
- Paul
G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Bichlien H. Nguyen
- Microsoft
Research, Redmond, Washington 98052, United States
- Paul
G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Rob Carlson
- Microsoft
Research, Redmond, Washington 98052, United States
| | | | - Sebastian Palluk
- Ansa
Biotechnologies, Emeryville, California 94608, United States
| | - Daniel H. Arlow
- Ansa
Biotechnologies, Emeryville, California 94608, United States
| | - Karin Strauss
- Microsoft
Research, Redmond, Washington 98052, United States
- Paul
G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
19
|
Dagar S, Sarkar S, Rajamani S. Nonenzymatic Template-Directed Primer Extension Using 2'-3' Cyclic Nucleotides Under Wet-Dry Cycles. ORIGINS LIFE EVOL B 2023; 53:43-60. [PMID: 37243884 DOI: 10.1007/s11084-023-09636-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/15/2023] [Indexed: 05/29/2023]
Abstract
RNA World Hypothesis is centred around the idea of a period in the early history of life's origin, wherein nonenzymatic oligomerization and replication of RNA resulted in functional ribozymes. Previous studies in this endeavour have demonstrated template-directed primer extension using chemically modified nucleotides and primers. Nonetheless, similar studies that used non-activated nucleotides led to the formation of RNA only with abasic sites. In this study, we report template-directed primer extension with prebiotically relevant cyclic nucleotides, under dehydration-rehydration (DH-RH) cycles occurring at high temperature (90 °C) and alkaline conditions (pH 8). 2'-3' cyclic nucleoside monophosphates (cNMP) resulted in primer extension, while 3'-5' cNMP failed to do so. Intact extension of up to two nucleotide additions was observed with both canonical hydroxy-terminated (OH-primer) and activated amino-terminated (NH2-primer) primers. We demonstrate primer extension reactions using both purine and pyrimidine 2'-3' cNMPs, with higher product yield observed during cAMP additions. Further, the presence of lipid was observed to significantly enhance the extended product in cCMP reactions. In all, our study provides a proof-of-concept for nonenzymatic primer extension of RNA, using intrinsically activated prebiotically relevant cyclic nucleotides as monomers.
Collapse
Affiliation(s)
- Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
20
|
Hu Y, Ying JY. A Strong Acid-Induced DNA Hydrogel Based on pH-Reconfigurable A-Motif Duplex. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205909. [PMID: 36587983 DOI: 10.1002/smll.202205909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Under a pH value lower than the pKa of adenine (3.5), adenine-rich sequences (A-strand) form a unique parallel A-motif duplex due to the protonation of A-strand. At a pH above 3.5, deprotonation of adenines leads to the dissolution of A-motif duplex to A-strand single coil. This pH-reconfigurable A-motif duplex has been developed as a novel pH-responsive DNA hydrogel, termed A-hydrogel. The hydrogel state is achieved at pH 1.2 by the A-motif duplex bridging units, which are cross-linked by both reverse Hoogsteen interaction and electrostatic attraction. Hydrogel-to-solution transition is triggered by pH 4.3 due to the deprotonation-induced separation of A-motif duplex. The A-hydrogel system undergoes reversible hydrogel-solution transitions by subjecting the system to cyclic pH shifts between 1.2 and 4.3. An anti-inflammatory medicine, sulfasalazine (SSZ), which intercalates into A-motif duplex, is loaded into A-hydrogel. Its pH-controlled release from A-hydrogel is successfully demonstrated. The strong acid-induced A-hydrogel may fill the gap that other mild acid-responsive DNA hydrogels cannot do, such as protection of orally delivered drug in hostile stomach environment against strong acid (pH ~ 1.2) and digestive enzymes.
Collapse
Affiliation(s)
- Yuwei Hu
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore, 138669, Singapore
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore, 138669, Singapore
- NanoBio Lab, A*STAR Infectious Diseases Labs, A*STAR, 31 Biopolis Way, The Nanos, #09-01, Singapore, 138669, Singapore
| |
Collapse
|
21
|
DeCollibus DP, Searcy J, Tivesten A, Akhtar N, Lindenberg C, Abarrou N, Pradhan S, Fiandaca M, Franklin J, Govindan G, Liu HY, Royle D, Soo PL, Storch K. Considerations for the Terminal Sterilization of Oligonucleotide Drug Products. Nucleic Acid Ther 2023. [PMID: 36787481 DOI: 10.1089/nat.2022.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
A primary function of the parenteral drug product manufacturing process is to ensure sterility of the final product. The two most common methods for sterilizing parenteral drug products are terminal sterilization (TS), whereby the drug product is sterilized in the final container following filling and finish, and membrane sterilization, whereby the product stream is sterilized by membrane filtration and filled into presterilized containers in an aseptic processing environment. Although TS provides greater sterility assurance than membrane sterilization and aseptic processing, not all drug products are amenable to TS processes, which typically involve heat treatment or exposure to ionizing radiation. Oligonucleotides represent an emerging class of therapeutics with great potential for treating a broad range of indications, including previously undruggable targets. Owing to their size, structural complexity, and relative lack of governing regulations, several challenges in drug development are unique to oligonucleotides. This exceptionality justifies a focused assessment of traditional chemistry, manufacturing, and control strategies before their adoption. In this article, we review the current state of sterile oligonucleotide drug product processing, highlight the key aspects to consider when assessing options for product sterilization, and provide recommendations to aid in the successful evaluation and development of TS processes. We also explore current regulatory expectations and provide our interpretation as it pertains to oligonucleotide drug products.
Collapse
Affiliation(s)
| | - Justin Searcy
- Pharmaceutical Development, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Anna Tivesten
- CVRM CMC Projects, Pharmaceutical Sciences, AstraZeneca R&D, Gothenburg, Sweden
| | - Nadim Akhtar
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Christian Lindenberg
- Global Drug Development, Technical Research & Development, Novartis Pharma AG, Basel, Switzerland
| | - Nounja Abarrou
- Global Drug Development, Technical Research & Development, Novartis Pharma AG, Basel, Switzerland
| | - Sujana Pradhan
- GSK, Strategic External Development, Analytical Development, Collegeville, Pennsylvania, USA
| | - Maggie Fiandaca
- GSK, Strategic External Development, Analytical Development, Collegeville, Pennsylvania, USA
| | - Jenny Franklin
- CMC Regulatory Affairs, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Geetha Govindan
- Pharmaceutical Operations & Technology, Biogen, Cambridge, Massachusetts, USA
| | - Hung-Yi Liu
- Pharmaceutical Operations & Technology, Biogen, Cambridge, Massachusetts, USA
| | - David Royle
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Patrick Lim Soo
- Pharmaceutical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Andover, Massachusetts, USA
| | - Kirsten Storch
- Pharma Technical Development, Roche Diagnostics GmbH, Mannheim, Germany
| |
Collapse
|
22
|
Oude Blenke E, Örnskov E, Schöneich C, Nilsson GA, Volkin DB, Mastrobattista E, Almarsson Ö, Crommelin DJA. The Storage and In-Use Stability of mRNA Vaccines and Therapeutics: Not A Cold Case. J Pharm Sci 2023; 112:386-403. [PMID: 36351479 PMCID: PMC9637289 DOI: 10.1016/j.xphs.2022.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
The remarkable impact of mRNA vaccines on mitigating disease and improving public health has been amply demonstrated during the COVID-19 pandemic. Many new mRNA-based vaccine and therapeutic candidates are in development, yet the current reality of their stability limitations requires their frozen storage. Numerous challenges remain to improve formulated mRNA stability and enable refrigerator storage, and this review provides an update on developments to tackle this multi-faceted stability challenge. We describe the chemistry underlying mRNA degradation during storage and highlight how lipid nanoparticle (LNP) formulations are a double-edged sword: while LNPs protect mRNA against enzymatic degradation, interactions with and between LNP excipients introduce additional risks for mRNA degradation. We also discuss strategies to improve mRNA stability both as a drug substance (DS) and a drug product (DP) including the (1) design of the mRNA molecule (nucleotide selection, primary and secondary structures), (2) physical state of the mRNA-LNP complexes, (3) formulation composition and purity of the components, and (4) DS and DP manufacturing processes. Finally, we summarize analytical control strategies to monitor and assure the stability of mRNA-based candidates, and advocate for an integrated analytical and formulation development approach to further improve their storage, transport, and in-use stability profiles.
Collapse
Affiliation(s)
- Erik Oude Blenke
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden.
| | - Eivor Örnskov
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden.
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047 United States.
| | - Gunilla A Nilsson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden.
| | - David B Volkin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047 United States; Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047 United States.
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, the Netherlands.
| | - Örn Almarsson
- AfiRx LLC, Chestnut Hill, MA 02467 United States; Visiting Fellow, UNSW RNA Institute and the School of Chemistry, UNSW, Sydney, Australia.
| | - Daan J A Crommelin
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, the Netherlands.
| |
Collapse
|
23
|
Hoose A, Vellacott R, Storch M, Freemont PS, Ryadnov MG. DNA synthesis technologies to close the gene writing gap. Nat Rev Chem 2023; 7:144-161. [PMID: 36714378 PMCID: PMC9869848 DOI: 10.1038/s41570-022-00456-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/24/2023]
Abstract
Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry. However, the synthesis of >200 bp sequences remains unaffordable. To overcome these limitations and start writing DNA as effectively as it is read, alternative technologies have been developed including molecular assembly and cloning methods, template-independent enzymatic synthesis, microarray and rolling circle amplification techniques. Here, we review the progress in developing and commercializing these technologies, which are exemplified by innovations from leading companies. We discuss pros and cons of each technology, the need for oversight and regulatory policies for DNA synthesis as a whole and give an overview of DNA synthesis business models.
Collapse
Affiliation(s)
- Alex Hoose
- National Physical Laboratory, Teddington, Middlesex UK
| | | | - Marko Storch
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Paul S. Freemont
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
24
|
Krassnig SC, Mäser M, Probst NA, Werner J, Schlett C, Schumann N, von Scheven G, Mangerich A, Bürkle A. Comparative analysis of chlorambucil-induced DNA lesion formation and repair in a spectrum of different human cell systems. Toxicol Rep 2023; 10:171-189. [PMID: 36714466 PMCID: PMC9881385 DOI: 10.1016/j.toxrep.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Chlorambucil (CLB) belongs to the class of nitrogen mustards (NMs), which are highly reactive bifunctional alkylating agents and were the first chemotherapeutic agents developed. They form DNA interstrand crosslinks (ICLs), which cause a blockage of DNA strand separation, inhibiting essential processes in DNA metabolism like replication and transcription. In fast replicating cells, e.g., tumor cells, this can induce cell death. The upregulation of ICL repair is thought to be a key factor for the resistance of tumor cells to ICL-inducing cytostatic agents including NMs. To monitor induction and repair of CLB-induced ICLs, we adjusted the automated reversed fluorometric analysis of alkaline DNA unwinding assay (rFADU) for the detection of ICLs in adherent cells. For the detection of monoalkylated DNA bases we established an LC-MS/MS method. We performed a comparative analysis of adduct formation and removal in five human cell lines and in peripheral blood mononuclear cells (PBMCs) after treatment with CLB. Dose-dependent increases in adduct formation were observed, and suitable treatment concentrations were identified for each cell line, which were then used for monitoring the kinetics of adduct formation. We observed significant differences in the repair kinetics of the cell lines tested. For example, in A2780 cells, hTERT immortalized VH10 cells, and in PBMCs a time-dependent repair of the two main monoalkylated DNA-adducts was confirmed. Regarding ICLs, repair was observed in all cell systems except for PBMCs. In conclusion, LC-MS/MS analyses combined with the rFADU technique are powerful tools to study the molecular mechanisms of NM-induced DNA damage and repair. By applying these methods to a spectrum of human cell systems of different origin and transformation status, we obtained insight into the cell-type specific repair of different CLB-induced DNA lesions, which may help identify novel resistance mechanisms of tumors and define molecular targets for therapeutic interventions.
Collapse
Key Words
- BER, base excision repair
- CLB, chlorambucil
- Chlorambucil
- DNA repair kinetics
- ICL, interstrand crosslink
- Interstrand crosslink
- MS, mass spectrometry
- Mass spectrometry
- Monoalkylated DNA adducts
- NER, nucleotide excision repair
- NM, Nitrogen mustard
- Nitrogen mustard
- PBMCs, peripheral blood mononuclear cells
- PI, propidium iodide
- RPE-1, human retinal pigment epithelial
- SD, standard deviation
- VH10, human foreskin fibroblasts
- dG, 2'-deoxyguanosine
- hTERT, human telomerase reverse transcriptase
- rFADU, reverse fluorometric analysis of alkaline DNA unwinding
Collapse
Affiliation(s)
- Sarah Ceylan Krassnig
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Marina Mäser
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Nicola Anna Probst
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Jens Werner
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Charlotte Schlett
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Nina Schumann
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Gudrun von Scheven
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany
| | - Alexander Bürkle
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
25
|
Chung S, Sugimoto Y, Huang J, Zhang M. Iron Oxide Nanoparticles Decorated with Functional Peptides for a Targeted siRNA Delivery to Glioma Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:106-119. [PMID: 36442077 PMCID: PMC11495154 DOI: 10.1021/acsami.2c17802] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glioma is a deadly form of brain cancer, and the difficulty of treating glioma is exacerbated by the chemotherapeutic resistance developed in the tumor cells over the time of treatment. siRNA can be used to silence the gene responsible for the increased resistance, and sensitize the glioma cells to drugs. Here, iron oxide nanoparticles functionalized with peptides (NP-CTX-R10) were used to deliver siRNA to silence O6-methylguanine-DNA methyltransferase (MGMT) to sensitize tumor cells to alkylating drug, Temozolomide (TMZ). The NP-CTX-R10 could complex with siRNA through electrostatic interactions and was able to deliver the siRNA to different glioma cells. The targeting ligand chlorotoxin and cell penetrating peptide polyarginine (R10) enhanced the transfection capability of siRNA to a level comparable to commercially available Lipofectamine. The NP-siRNA was able to achieve up to 90% gene silencing. Glioma cells transfected with NP-siRNA targeting MGMT showed significantly elevated sensitivity to TMZ treatment. This nanoparticle formulation demonstrates the ability to protect siRNA from degradation and to efficiently deliver the siRNA to induce therapeutic gene knockdown.
Collapse
Affiliation(s)
- Seokhwan Chung
- Department of Materials Science and Engineering, University of Washington, Seattle, USA
| | - Yutaro Sugimoto
- Department of Materials Science and Engineering, University of Washington, Seattle, USA
| | - Jianxi Huang
- Department of Materials Science and Engineering, University of Washington, Seattle, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, USA
- Department of Radiology, University of Washington, Seattle, USA
- Department of Neurological Surgery, University of Washington, Seattle, USA
| |
Collapse
|
26
|
Kumari N, Siddhanta K, Panja S, Joshi V, Jogdeo C, Kapoor E, Khan R, Kollala SS, Kumar B, Sil D, Singh AB, Murry DJ, Oupický D. Oral Delivery of Nucleic Acid Therapies for Local and Systemic Action. Pharm Res 2023; 40:107-122. [PMID: 36271204 PMCID: PMC9589866 DOI: 10.1007/s11095-022-03415-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023]
Abstract
Nucleic acid (NA) therapy has gained importance over the past decade due to its high degree of selectivity and minimal toxic effects over conventional drugs. Currently, intravenous (IV) or intramuscular (IM) formulations constitute majority of the marketed formulations containing nucleic acids. However, oral administration is traditionally preferred due to ease of administration as well as higher patient compliance. To leverage the benefits of oral delivery for NA therapy, the NA of interest must be delivered to the target site avoiding all degrading and inhibiting factors during its transition through the gastrointestinal tract. The oral route presents myriad of challenges to NA delivery, making formulation development challenging. Researchers in the last few decades have formulated various delivery systems to overcome such challenges and several reviews summarize and discuss these strategies in detail. However, there is a need to differentiate between the approaches based on target so that in future, delivery strategies can be developed according to the goal of the study and for efficient delivery to the desired site. The goal of this review is to summarize the mechanisms for target specific delivery, list and discuss the formulation strategies used for oral delivery of NA therapies and delineate the similarities and differences between local and systemic targeting oral delivery systems and current challenges.
Collapse
Affiliation(s)
- Neha Kumari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Vineet Joshi
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chinmay Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Rubayat Khan
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Sai Sundeep Kollala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Diptesh Sil
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198-6849, USA.
| |
Collapse
|
27
|
Shi Y, An X, Zhang B, Pan X, Wu X, Xu J, Xiang W, Dong F, Wang X, Zheng Y. Hydrolysis, Photolysis, and Biotoxicity Assessment of a Novel Biopesticide, Guvermectin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16117-16125. [PMID: 36512618 DOI: 10.1021/acs.jafc.2c05988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Guvermectin is a biopesticide isolated from the secondary metabolites of Streptomyces sp. NEAU6, an endogenous actinomyces of a Chinese medicine named Paris polyphylla. However, the environmental degradation behavior and biotoxicity of guvermectin are still unclear, which may affect its rational application. Therefore, the degradation of guvermectin in water at different pH values (pH 4, pH 6, pH 7, and pH 9) and with or without light was investigated in the laboratory. The results showed that guvermectin could be degraded in pH 4 solution, and the presence of light irradiation enhanced the degradation process with a DT50 of 2.95 and 12 days for photolysis and hydrolysis, respectively. However, guvermectin was fairly stable in other conditions. Three products transformed from guvermectin degradation were identified by UPLC-QTOF/MS. Biotoxicity assessment was performed on Danio rerio and Daphnia magna Straus by ECOSAR prediction and in vivo biological tests. The test data showed that guvermectin and its transformation products exhibited low toxicities to D. rerio and D. magna Straus (LC50/EC50 > 100 mg a.i./L), and the transformation products had lower toxicity than their parent substance. The results provided a reference for elucidating the potential risk of guvermectin to nontarget organisms and promoting its rational use.
Collapse
Affiliation(s)
- Yuan Shi
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaokang An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Binbin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wensheng Xiang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiangjing Wang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
28
|
Klotz K, Radwan Y, Chakrabarti K. Dissecting Functional Biological Interactions Using Modular RNA Nanoparticles. Molecules 2022; 28:228. [PMID: 36615420 PMCID: PMC9821959 DOI: 10.3390/molecules28010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Nucleic acid nanoparticles (NANPs) are an exciting and innovative technology in the context of both basic and biomedical research. Made of DNA, RNA, or their chemical analogs, NANPs are programmed for carrying out specific functions within human cells. NANPs are at the forefront of preventing, detecting, and treating disease. Their nucleic acid composition lends them biocompatibility that provides their cargo with enhanced opportunity for coordinated delivery. Of course, the NANP system of targeting specific cells and tissues is not without its disadvantages. Accumulation of NANPs outside of the target tissue and the potential for off-target effects of NANP-mediated cargo delivery present challenges to research and medical professionals and these challenges must be effectively addressed to provide safe treatment to patients. Importantly, development of NANPs with regulated biological activities and immunorecognition becomes a promising route for developing versatile nucleic acid therapeutics. In a basic research context, NANPs can assist investigators in fine-tuning the structure-function relationship of final formulations and in this review, we explore the practical applications of NANPs in laboratory and clinical settings and discuss how we can use established nucleic acid research techniques to design effective NANPs.
Collapse
Affiliation(s)
- Kaitlin Klotz
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Yasmine Radwan
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| |
Collapse
|
29
|
Yin J, Gates KS, Wang Y. N-Methyl- N-nitrosourea Induced 3'-Glutathionylated DNA-Cleavage Products in Mammalian Cells. Anal Chem 2022; 94:15595-15603. [PMID: 36332130 PMCID: PMC9869666 DOI: 10.1021/acs.analchem.2c02003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apurinic/apyrimidinic (AP) sites, that is, abasic sites, are among the most frequently induced DNA lesions. Spontaneous or DNA glycosylase-mediated β-elimination of the 3'-phosphoryl group can lead to strand cleavages at AP sites to yield a highly reactive, electrophilic 3'-phospho-α,β-unsaturated aldehyde (3'-PUA) remnant. The latter can react with amine or thiol groups of biological small molecules, DNA, and proteins to yield various damaged 3'-end products. Considering its high intracellular concentration, glutathione (GSH) may conjugate with 3'-PUA to yield 3-glutathionyl-2,3-dideoxyribose (GS-ddR), which may constitute a significant, yet previously unrecognized endogenous lesion. Here, we developed a liquid chromatography tandem mass spectroscopy method, in combination with the use of a stable isotope-labeled internal standard, to quantify GS-ddR in genomic DNA of cultured human cells. Our results revealed the presence of GS-ddR in the DNA of untreated cells, and its level was augmented in cells upon exposure to an alkylating agent, N-methyl-N-nitrosourea (MNU). In addition, inhibition of AP endonuclease (APE1) led to an elevated level of GS-ddR in the DNA of MNU-treated cells. Together, we reported here, for the first time, the presence of appreciable levels of GS-ddR in cellular DNA, the induction of GS-ddR by a DNA alkylating agent, and the role of APE1 in modulating its level in human cells.
Collapse
Affiliation(s)
- Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
30
|
Lu C, Xu Y, Huang PJJ, Zandieh M, Wang Y, Zheng J, Liu J. Protection of DNA by metal ions at 95 °C: from lower critical solution temperature (LCST) behavior to coordination-driven self-assembly. NANOSCALE 2022; 14:14613-14622. [PMID: 36156621 DOI: 10.1039/d2nr03461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While polyvalent metal ions and heating can both degrade nucleic acids, we herein report that a combination of them leads to stabilization. After incubating 4 mM various metal ions and DNA oligonucleotides at 95 °C for 3 h at pH 6 or 8, metal ions were divided into four groups based on gel electrophoresis results. Mg2+ can stabilize DNA at pH 6 without forming stable nanoparticles at room temperature. Co2+, Cu2+, Cd2+, Mn2+ and Zn2+ all protected the DNA and formed nanoparticles, whereas the nanoparticles formed with Fe2+ and Ni2+ were so stable that they remained even in the presence of EDTA. At pH 8, Ce3+ and Pb2+ showed degraded DNA bands. For Mg2+, better protection was achieved with higher metal and DNA concentrations. By monitoring temperature-programmed fluorescence change, a sudden drop in fluorescence intensity attributable to the lower critical solution temperature (LCST) transition of DNA was found to be around 80 °C for Mg2+, while this transition temperature decreased with increasing Mn2+ concentration. The unexpected thermal stability of DNA enabled by metal ions is useful for extending the application of DNA at high temperatures, forming coordination-driven nanomaterials, and it might offer insights into the origin of life on the early Earth.
Collapse
Affiliation(s)
- Chang Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Yuancong Xu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Yihao Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
31
|
Wan J, Brož B, Liu Y, Huang SR, Marek A, Tureček F. Resolution of Identity in Gas-Phase Dissociations of Mono- and Diprotonated DNA Trinucleotide Codons by 15N-Labeling and Computational Structure Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1936-1950. [PMID: 36040435 DOI: 10.1021/jasms.2c00194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dissociations of DNA trinucleotide codons as gas-phase singly and doubly protonated ions were studied by tandem mass spectrometry using 15N-labeling to resolve identity in the nucleobase loss and backbone cleavages. The monocations showed different distributions of nucleobase loss from the 5'-, middle, and 3'-positions depending on the nucleobase, favoring cytosine over guanine, adenine, and thymine in an ensemble-averaged 62:27:11:<1 ratio. The distribution for the loss of the 5'-, middle, and 3'-nucleobase was 49:18:33, favoring the 5'-nucleobase, but also depending on its nature. The formation of sequence w2+ ions was unambiguously established for all codon mono- and dications. Structures of low-Gibbs-energy protomers and conformers of dAAA+, dGGG+, dCCC+, dTTT+, dACA+, and dATC+ were established by Born-Oppenheimer molecular dynamics and density functional theory calculations. Monocations containing guanine favored classical structures protonated at guanine N7. Structures containing adenine and cytosine produced classical nucleobase-protonated isomers as well as zwitterions in which two protonated bases were combined with a phosphate anion. Protonation at thymine was disfavored. Low threshold energies for nucleobase loss allowed extensive proton migration to occur prior to dissociation. Loss of the nucleobase from monocations was assisted by neighboring group participation in nucleophilic addition or proton abstraction, as well as allosteric proton migrations remote from the reaction center. The optimized structures of diprotonated isomers for dAAA2+ and dACA2+ revealed combinations of classical and zwitterionic structures. The threshold and transition-state energies for nucleobase-ion loss from dications were low, resulting in facile dissociations involving cytosine, guanine, and adenine.
Collapse
Affiliation(s)
- Jiahao Wan
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Břetislav Brož
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - Yue Liu
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Shu R Huang
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
32
|
Senthilvelan A, Shanmugasundaram M, Kore AR. Efficient and Improved Solution-Phase Synthesis of Modified RNA Dinucleotides: Versatile Synthons in Cap 1 mRNA Therapeutics. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annamalai Senthilvelan
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, Texas 78744-1832, United States
| | - Muthian Shanmugasundaram
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, Texas 78744-1832, United States
| | - Anilkumar R. Kore
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, Texas 78744-1832, United States
| |
Collapse
|
33
|
De Martino E, Medeot C, D'Amico L, Stanta G, Bonin S. Impact of standardization in tissue processing: the performance of different fixatives. N Biotechnol 2022; 71:30-36. [PMID: 35878783 DOI: 10.1016/j.nbt.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022]
Abstract
Most tissues in clinical practice are formalin-fixed and paraffin-embedded for histological as well as molecular analyses. The reproducibility and uniformity of molecular analyses is strictly dependent on the quality of the biomolecules, which is highly influenced by pre-analytical processes. In this study, the effect of different fixatives was compared, including formalin, Bouin's solution, RCL2® and TAG-1™ fixatives, by stringent application of ISO standards in mouse liver tissue processing, including formalin-free transport of tissues and tissue grossing in a refrigerated environment. The effect of fixatives was studied in terms of nucleic acid quality at the time of tissue processing and after one year of tissue storage at room temperature in the dark. Furthermore, a microcomputed tomography (CT) scan analysis was applied to investigate the paraffin embedding. The results show that the application of ISO standards in tissue processing allows analysis of 400 bases amplicons from RNA and 1000 bases from DNA, even in extracts from formalin-fixed and paraffin-embedded tissues. However, after one year storage at room temperature in the dark, a degradation of the nucleic acids was observed. Nevertheless, extracts can still be analyzed, but for metachronous tests it is highly recommended to repeat the quantitation of housekeeping genes in order to standardize the extent of nucleic acid degradation.
Collapse
Affiliation(s)
| | - Caterina Medeot
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Lorenzo D'Amico
- Department of Physics, University of Trieste, Trieste, Italy; Elettra-Sincrotrone Trieste S.C.p.A., Area Science Park, Trieste, Italy
| | - Giorgio Stanta
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Serena Bonin
- Department of Medical Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
34
|
The effectiveness of silver nanoparticles as a clean-up material for water polluted with bacteria DNA conveying antibiotics resistance genes: Effect of different molar concentrations and competing ions. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
DeSP: a systematic DNA storage error simulation pipeline. BMC Bioinformatics 2022; 23:185. [PMID: 35581548 PMCID: PMC9116035 DOI: 10.1186/s12859-022-04723-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022] Open
Abstract
Background Using DNA as a storage medium is appealing due to the information density and longevity of DNA, especially in the era of data explosion. A significant challenge in the DNA data storage area is to deal with the noises introduced in the channel and control the trade-off between the redundancy of error correction codes and the information storage density. As running DNA data storage experiments in vitro is still expensive and time-consuming, a simulation model is needed to systematically optimize the redundancy to combat the channel's particular noise structure. Results Here, we present DeSP, a systematic DNA storage error Simulation Pipeline, which simulates the errors generated from all DNA storage stages and systematically guides the optimization of encoding redundancy. It covers both the sequence lost and the within-sequence errors in the particular context of the data storage channel. With this model, we explained how errors are generated and passed through different stages to form final sequencing results, analyzed the influence of error rate and sampling depth to final error rates, and demonstrated how to systemically optimize redundancy design in silico with the simulation model. These error simulation results are consistent with the in vitro experiments. Conclusions DeSP implemented in Python is freely available on Github (https://github.com/WangLabTHU/DeSP). It is a flexible framework for systematic error simulation in DNA storage and can be adapted to a wide range of experiment pipelines. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04723-w.
Collapse
|
36
|
Nanfack CDV, Yang J, Yuan X, Sun J, Sun X, Ji J. 3, 4-Dihydroxy-l-phenylalanine Biopolymer Cellulose DNA Adhesive Card as an Enhanced Solid-Phase One-Step DNA Extraction Method from Foodborne Pathogens in Food Samples. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Tikunov AP, Tipton JD, Garrett TJ, Shinde SV, Kim HJ, Gerber DA, Herring LE, Graves LM, Macdonald JM. Green Chemistry Preservation and Extraction of Biospecimens for Multi-omic Analyses. Methods Mol Biol 2022; 2394:267-298. [PMID: 35094334 DOI: 10.1007/978-1-0716-1811-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The Environmental Protection Agency's definition of "Green Chemistry" is "the design of chemical products and processes that reduces or eliminates the use or generation of hazardous substances. Green chemistry applies across the life cycle of a chemical product, including its design, manufacture, use, and ultimate disposal." Conventional omic tissue extraction procedures use solvents that are toxic and carcinogenic, such as chloroform and methyl-tert-butyl ether for lipidomics, or caustic chaotropic solutions for genomics and transcriptomics, such as guanidine or urea. A common preservation solution for pathology is formaldehyde, which is a carcinogen. Use of acetonitrile as a universal biospecimen preservation and extraction solvent will reduce these hazardous wastes, because it is less toxic and more environmentally friendly than the conventional solvents used in biorepository and biospecimen research. A new extraction method never applied to multi-omic, system biology research, called cold-induced phase separation (CIPS), uses freezing point temperatures to induce a phase separation of acetonitrile-water mixtures. Also, the CO2 exposure during CIPS will acidify the water precipitating DNA out of aqueous phase. The resulting phase separation brings hydrophobic lipids to the top acetonitrile fraction that is easily decanted from the bottom aqueous fraction, especially when the water is frozen. This CIPS acetonitrile extract contains the lipidome (lipids), the bottom aqueous fraction is sampled to obtain the transcriptome (RNA) fraction, and the remaining water and pellet is extracted with 60% acetonitrile to isolate the metabolome (<1 kD polar molecules). Finally, steps 4 and 5 use a TRIzol™ liquid-liquid extraction SOP of the pellet to isolate the genome (DNA) and proteome (proteins). This chapter details the multi-omic sequential extraction SOP and potential problems associated with each of the 5 steps, with steps 2, 4, and 5 still requiring validation. The metabolomic and lipidomic extraction efficiencies using the CIPS SOP is compared to conventional solvent extraction SOPs and is analyzed by nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS), respectively. Acetonitrile biospecimen preservation combined with the CIPS multi-omic extraction SOP is green chemistry technology that will eliminate the generation of the hazardous substances associated with biospecimen processing and permits separation and safe disposal of acetonitrile avoiding environmental contamination.
Collapse
Affiliation(s)
- Andrey P Tikunov
- Departments of Biomedical Engineering, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jeremiah D Tipton
- Departments of Biomedical Engineering, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Sachi V Shinde
- Departments of Biomedical Engineering, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Hong Jin Kim
- Departments of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - David A Gerber
- Departments of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Laura E Herring
- Departments of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Lee M Graves
- Departments of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jeffrey M Macdonald
- Departments of Biomedical Engineering, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Sun J, Vogel J, Chen L, Schleper AL, Bergner T, Kuehne AJC, von Delius M. Carbodiimide-Driven Dimerization and Self-Assembly of Artificial, Ribose-Based Amphiphiles. Chemistry 2022; 28:e202104116. [PMID: 35038189 PMCID: PMC9303926 DOI: 10.1002/chem.202104116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 12/20/2022]
Abstract
The aqueous self-assembly of amphiphiles into aggregates such as micelles and vesicles has been widely investigated over the past decades with applications ranging from materials science to drug delivery. The combination of characteristic properties of nucleic acids and amphiphiles is of substantial interest to mimic biological self-organization and compartmentalization. Herein, we present ribose- and ribonucleotide-based amphiphiles and investigate their self-assembly as well as their fundamental reactivity. We found that various types of aggregates are formed, ranging in size from nanometers to micrometers and all amphiphiles exhibit aggregation-induced emission (AIE) in solution as well as in the solid state. We also observed that the addition of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) leads to rapid and selective dimerization of the amphiphiles into pyrophosphates, which decreases the critical aggregation concentration (CAC) by a factor of 25 when compared to the monomers. Since the propensity for amphiphile dimerization is correlated with their tendency to self-assemble, our results may be relevant for the formation of rudimentary compartments under prebiotic conditions.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Julian Vogel
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Lisa Chen
- Institute of Macromolecular and Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - A. Lennart Schleper
- Institute of Macromolecular and Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tim Bergner
- Central Facility for Electron MicroscopyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Alexander J. C. Kuehne
- Institute of Macromolecular and Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- DWI – Leibniz-Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Max von Delius
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
39
|
Solution Oligonucleotide APIs: Regulatory Considerations. Ther Innov Regul Sci 2022; 56:386-393. [PMID: 35133632 PMCID: PMC8964572 DOI: 10.1007/s43441-022-00384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
Manufacture of oligonucleotide active pharmaceutical ingredients (APIs) typically consists of solid-phase synthesis, deprotection and cleavage, purification and filtration, and isolation from aqueous solutions through lyophilization. In the first step of drug product manufacture, the API is dissolved in water again and excipients are added. While isolation of oligonucleotide APIs can be meaningful in many cases, there may be cases where keeping the API in solution provides benefit, and multiple technical aspects must be taken into account and balanced when determining the appropriate API form. A significant factor is whether an API in solution will contain additional components. While APIs in solution containing additional components (so-called formulated APIs) are well established for biological products, there are regulatory guidelines in place that represent hurdles for industry to using a formulated API approach for oligonucleotide drugs. The present communication outlines conditions where a formulated API approach can be chosen in compliance with existing guidelines. Relevant aspects pertaining to risk management, GMP standards, facility design, control strategies, and regulatory submission content are discussed. In addition, the authors propose that existing guidelines be modernized to enable the use of a formulated API approach for additional reasons than the ones described in the existing regulatory framework. The manuscript aims to promote a dialog with regulators in this field.
Collapse
|
40
|
Approaching Sites of Action of Temozolomide for Pharmacological and Clinical Studies in Glioblastoma. Biomedicines 2021; 10:biomedicines10010001. [PMID: 35052681 PMCID: PMC8772814 DOI: 10.3390/biomedicines10010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Temozolomide (TMZ), together with bulk resection and focal radiotherapy, is currently a standard of care for glioblastoma. Absorption, distribution, metabolism, and excretion (ADME) parameters, together with the mode of action of TMZ, make its biochemical and biological action difficult to understand. Accurate understanding of the mode of action of TMZ and the monitoring of TMZ at its anatomical, cellular, and molecular sites of action (SOAs) would greatly benefit precision medicine and the development of novel therapeutic approaches in combination with TMZ. In the present perspective article, we summarize the known ADME parameters and modes of action of TMZ, and we review the possible methodological options to monitor TMZ at its SOAs. We focus our descriptions of methodologies on mass spectrometry-based approaches, and all related considerations are taken into account regarding the avoidance of artifacts in mass spectrometric analysis during sampling, sample preparation, and the evaluation of results. Finally, we provide an overview of potential applications for precision medicine and drug development.
Collapse
|
41
|
Banal JL, Bathe M. Scalable Nucleic Acid Storage and Retrieval Using Barcoded Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49729-49736. [PMID: 34652142 DOI: 10.1021/acsami.1c14985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rapid advances in nucleic acid sequencing and synthesis technologies have spurred a major need to collect, store, and sequence the DNA and RNA from viral, bacterial, and mammalian sources and organisms. However, current approaches to storing nucleic acids rely on a low-temperature environment and require robotics for access, posing challenges for scalable and low-cost nucleic acid storage. Here, we present an alternative method for storing nucleic acids, termed Preservation and Access of Nucleic aciDs using barcOded micRocApsules (PANDORA). Nucleic acids spanning kilobases to gigabases and from different sources, including animals, bacteria, and viruses, are encapsulated into silica microcapsules to protect them from environmental denaturants at room temperature. Molecular barcodes attached to each microcapsule enable sample pooling and subsequent identification and retrieval using fluorescence-activated sorting. We demonstrate quantitative storage and rapid access to targeted nucleic acids from a pool emulating standard retrieval operations implemented in conventional storage systems, including recovery of 100,000-200,000 samples and Boolean logic selection using four unique barcodes. Quantitative polymerase chain reaction and short-read sequencing of the retrieved samples validated the sorting experiments and the integrity of the released nucleic acids. Our proposed approach offers a scalable long-term, room-temperature storage and retrieval of nucleic acids with high sample fidelity.
Collapse
Affiliation(s)
- James L Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142 United States
| |
Collapse
|
42
|
Encapsulation of Large-Size Plasmids in PLGA Nanoparticles for Gene Editing: Comparison of Three Different Synthesis Methods. NANOMATERIALS 2021; 11:nano11102723. [PMID: 34685164 PMCID: PMC8541650 DOI: 10.3390/nano11102723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The development of new gene-editing technologies has fostered the need for efficient and safe vectors capable of encapsulating large nucleic acids. In this work we evaluate the synthesis of large-size plasmid-loaded PLGA nanoparticles by double emulsion (considering batch ultrasound and microfluidics-assisted methodologies) and magnetic stirring-based nanoprecipitation synthesis methods. For this purpose, we characterized the nanoparticles and compared the results between the different synthesis processes in terms of encapsulation efficiency, morphology, particle size, polydispersity, zeta potential and structural integrity of loaded pDNA. Our results demonstrate particular sensibility of large pDNA for shear and mechanical stress degradation during double emulsion, the nanoprecipitation method being the only one that preserved plasmid integrity. However, plasmid-loaded PLGA nanoparticles synthesized by nanoprecipitation did not show cell expression in vitro, possibly due to the slow release profile observed in our experimental conditions. Strong electrostatic interactions between the large plasmid and the cationic PLGA used for this synthesis may underlie this release kinetics. Overall, none of the methods evaluated satisfied all the requirements for an efficient non-viral vector when applied to large-size plasmid encapsulation. Further optimization or alternative synthesis methods are thus in current need to adapt PLGA nanoparticles as delivery vectors for gene editing therapeutic technologies.
Collapse
|
43
|
Wang M, Tsukamoto M, Sergeyev VG, Zinchenko A. Metal Ions Sensing by Biodots Prepared from DNA, RNA, and Nucleotides. BIOSENSORS 2021; 11:333. [PMID: 34562923 PMCID: PMC8466223 DOI: 10.3390/bios11090333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 01/20/2023]
Abstract
Nucleic acids that exhibit a high affinity toward noble and transition metal ions have attracted growing attention in the fields of metal ion sensing, toxic metal ion removal, and the construction of functional metal nanostructures. In this study, fluorescent nanoparticles (biodots) were synthesized from DNA, RNA, and RNA nucleotides (AMP, GMP, UMP, and CMP) using a hydrothermal (HT) method, in order to study their metal ion sensing characteristics. The fluorescent properties of biodots differ markedly between those prepared from purine and pyrimidine nucleobases. All biodots demonstrate a high sensitivity to the presence of mercury cations (Hg2+), while biodots prepared from DNA, RNA, and guanosine monophosphate (GMP) are also sensitive to Ag+ and Cu2+ ions, but to a lesser extent. The obtained results show that biodots inherit the metal ion recognition properties of nucleobases, while the nucleobase composition of biodot precursors affects metal ion sensitivity and selectivity. A linear response of biodot fluorescence to Hg2+ concentration in solution was observed for AMP and GMP biodots in the range 0-250 μM, which can be used for the analytic detection of mercury ion concentration. A facile paper strip test was also developed that allows visual detection of mercury ions in solutions.
Collapse
Affiliation(s)
- Maofei Wang
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Masaki Tsukamoto
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Vladimir G. Sergeyev
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia;
| | - Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| |
Collapse
|
44
|
Bathrick AS, Norsworthy S, Plaza DT, McCormick MN, Slack D, Ramotowski RS. DNA recovery after sequential processing of latent fingerprints on copy paper. J Forensic Sci 2021; 67:149-160. [PMID: 34498754 PMCID: PMC9291209 DOI: 10.1111/1556-4029.14881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 12/01/2022]
Abstract
Forensic examiners must determine whether both latent fingerprint development and DNA profiling can be performed on the same area of an evidence item and, if only one is possible, which examination offers the best chance for identification. Latent fingerprints can be enhanced by targeting different components of fingerprint residues with sequential chemical treatments. This study investigated the effects of single-reagent and sequential latent fingerprint development processes on downstream DNA analysis to determine the point at which latent fingerprint development should be stopped to allow for DNA recovery. Latent fingerprints deposited on copy paper by one donor were developed using three sequential processes: 1,8-diazafluoren-9-one (DFO) → ninhydrin → physical developer (PD); 1,2-indanedione-zinc (IND-Zn) → ninhydrin → PD; and IND-Zn → ninhydrin → Oil Red O (ORO) → PD. Samples were examined after the addition of each chemical treatment. DNA was collected with cotton swabs, extracted, quantified, and amplified. DNA yields, peak heights, number of alleles obtained, and percentage of DNA profiles eligible for CODIS upload were examined. DNA profiles were obtained with varying degrees of success, depending on the number and type of treatments used for latent fingerprint development. The treatments that were found to be the least harmful to downstream DNA analysis were IND-Zn and IND-Zn/laser, and the most detrimental treatments were DFO, DFO/laser, and PD. In general, as the number of treatments increase, the opportunities for DNA loss or damage also increase, and it is preferable to use fewer treatments when developing latent fingerprints prior to downstream DNA processing.
Collapse
Affiliation(s)
| | - Sarah Norsworthy
- Forensic Technology Center of Excellence, RTI International, Research Triangle Park, NC, USA
| | | | - Mallory N McCormick
- Forensic Services Division, United States Secret Service, Washington, DC, USA
| | - Donia Slack
- Forensic Technology Center of Excellence, RTI International, Research Triangle Park, NC, USA
| | - Robert S Ramotowski
- Forensic Services Division, United States Secret Service, Washington, DC, USA
| |
Collapse
|
45
|
The Reactivity of Human and Equine Estrogen Quinones towards Purine Nucleosides. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Conjugated estrogen medicines, which are produced from the urine of pregnant mares for the purpose of menopausal hormone replacement therapy (HRT), contain the sulfate conjugates of estrone, equilin, and equilenin in varying proportions. The latter three steroid sex hormones are highly similar in molecular structure as they only differ in the degree of unsaturation of the sterane ring “B”: the cyclohexene ring in estrone (which is naturally present in both humans and horses) is replaced by more symmetrical cyclohexadiene and benzene rings in the horse-specific (“equine”) hormones equilin and equilenin, respectively. Though the structure of ring “B” has only moderate influence on the estrogenic activity desired in HRT, it might still significantly affect the reactivity in potential carcinogenic pathways. In the present theoretical study, we focus on the interaction of estrogen orthoquinones, formed upon metabolic oxidation of estrogens in breast cells with purine nucleosides. This multistep process results in a purine base loss in the DNA chain (depurination) and the formation of a “depurinating adduct” from the quinone and the base. The point mutations induced in this manner are suggested to manifest in breast cancer development in the long run. We examine six reactions between deoxyadenosine and deoxyguanosine as nucleosides and estrone-3,4-quinone, equilin-3,4-quinone, and equilenin-3,4-quinone as mutagens. We performed DFT calculations to determine the reaction mechanisms and establish a structure–reactivity relationship between the degree of unsaturation of ring “B” and the expected rate of DNA depurination. As quinones might be present in the cytosol in various protonated forms, we introduce the concept of “effective barriers” to account for the different reactivity and different concentrations of quinone derivatives. According to our results, both equine estrogens have the potential to facilitate depurination as the activation barrier of one of the elementary steps (the initial Michael addition in the case of equilenin and the rearomatization step in the case of equilin) significantly decreases compared to that of estrone. We conclude that the appearance of exogenous equine estrogen quinones due to HRT might increase the risk of depurination-induced breast cancer development compared to the exposure to endogenous estrone metabolites. Still, further studies are required to identify the rate-limiting step of depurination under intracellular conditions to reveal whether the decrease in the barriers affects the overall rate of carcinogenesis.
Collapse
|
46
|
Wang M, Tsukamoto M, Sergeyev VG, Zinchenko A. Fluorescent Nanoparticles Synthesized from DNA, RNA, and Nucleotides. NANOMATERIALS 2021; 11:nano11092265. [PMID: 34578581 PMCID: PMC8471148 DOI: 10.3390/nano11092265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Ubiquitous on Earth, DNA and other nucleic acids are being increasingly considered as promising biomass resources. Due to their unique chemical structure, which is different from that of more common carbohydrate biomass polymers, materials based on nucleic acids may exhibit new, attractive characteristics. In this study, fluorescent nanoparticles (biodots) were prepared by a hydrothermal (HT) method from various nucleic acids (DNA, RNA, nucleotides, and nucleosides) to establish the relationship between the structure of precursors and fluorescent properties of biodots and to optimize conditions for preparation of the most fluorescent product. HT treatment of nucleic acids results in decomposition of sugar moieties and depurination/depyrimidation of nucleobases, while their consequent condensation and polymerization gives fluorescent nanoparticles. Fluorescent properties of DNA and RNA biodots are drastically different from biodots synthesized from individual nucleotides. In particular, biodots synthesized from purine-containing nucleotides or nucleosides show up to 50-fold higher fluorescence compared to analogous pyrimidine-derived biodots. The polymeric nature of a precursor disfavors formation of a bright fluorescent product. The reported effect of the structure of the nucleic acid precursor on the fluorescence properties of biodots should help designing and synthesizing brighter fluorescent nanomaterials with broader specification for bioimaging, sensing, and other applications.
Collapse
Affiliation(s)
- Maofei Wang
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Masaki Tsukamoto
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Vladimir G. Sergeyev
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia;
| | - Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
- Correspondence: ; Tel.: +81-52-789-4771
| |
Collapse
|
47
|
Abstract
Click chemistry, proposed nearly 20 years ago, promised access to novel chemical space by empowering combinatorial library synthesis with a "few good reactions". These click reactions fulfilled key criteria (broad scope, quantitative yield, abundant starting material, mild reaction conditions, and high chemoselectivity), keeping the focus on molecules that would be easy to make, yet structurally diverse. This philosophy bears a striking resemblance to DNA-encoded library (DEL) technology, the now-dominant combinatorial chemistry paradigm. This review highlights the similarities between click and DEL reaction design and deployment in combinatorial library settings, providing a framework for the design of new DEL synthesis technologies to enable next-generation drug discovery.
Collapse
Affiliation(s)
- Patrick R Fitzgerald
- Skaggs Doctoral Program in the Chemical and Biological Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M Paegel
- Departments of Pharmaceutical Sciences, Chemistry, & Biomedical Engineering, University of California, Irvine, 101 Theory Suite 100, Irvine, California 92617, United States
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
48
|
Zhang K, Hodge J, Chatterjee A, Moon TS, Parker KM. Duplex Structure of Double-Stranded RNA Provides Stability against Hydrolysis Relative to Single-Stranded RNA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8045-8053. [PMID: 34033461 DOI: 10.1021/acs.est.1c01255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phosphodiester bonds in the backbones of double-stranded (ds)RNA and single-stranded (ss)RNA are known to undergo alkaline hydrolysis. Consequently, dsRNA agents used in emerging RNA interference (RNAi) products have been assumed to exhibit low chemical persistence in solutions. However, the impact of the duplex structure of dsRNA on alkaline hydrolysis has not yet been evaluated. In this study, we demonstrated that dsRNA undergoes orders-of-magnitude slower alkaline hydrolysis than ssRNA. Furthermore, we observed that dsRNA remains intact for multiple months at neutral pH, challenging the assumption that dsRNA is chemically unstable. In systems enabling both enzymatic degradation and alkaline hydrolysis of dsRNA, we found that increasing pH effectively attenuated enzymatic degradation without inducing alkaline hydrolysis that was observed for ssRNA. Overall, our findings demonstrated, for the first time, that key degradation pathways of dsRNA significantly differ from those of ssRNA. Consideration of the unique properties of dsRNA will enable greater control of dsRNA stability during the application of emerging RNAi technology and more accurate assessment of its fate in environmental and biological systems, as well as provide insights into broader application areas including dsRNA isolation, detection and inactivation of dsRNA viruses, and prebiotic molecular evolution.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Joseph Hodge
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Anamika Chatterjee
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
49
|
Single-use microfluidic device for purification and concentration of environmental DNA from river water. Talanta 2021; 226:122109. [PMID: 33676665 DOI: 10.1016/j.talanta.2021.122109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/29/2022]
Abstract
Purification and concentration of DNA is a critical step on DNA-based analysis, which should ensure efficient DNA isolation and effective removal of contaminants that may interfere with downstream DNA amplification. Complexity of samples, minute content of target analyte, or high DNA fragmentation greatly entangles the success of this step. To overcome this issue, we designed and fabricated a novel miniaturized disposable device for a highly efficient DNA purification. The microfluidic device showed binding efficiency and elution yield of 90.1% and 86.7%, respectively. Moreover, the effect of DNA fragmentation, a parameter that has not been previously addressed, showed a great impact in the recovery step. The microfluidic system integrated micropillars with chitosan being used as the solid-phase for a pH-dependent DNA capture and release. We have showed the potential of the device in the successful purification of environmental DNA (eDNA) from river water samples contaminated with Dreissena polymorpha, an invasive alien species responsible for unquestionable economic and environmental consequences in river water basins. Additionally, the device was also able to concentrate the DNA extract from highly diluted samples, showing promising results for the early detection of such invasive species, which may allow prompt measures for a more efficient control in affected areas. Suitability for integration with downstream DNA analysis was also demonstrated through qPCR analysis of the samples purified with the microfluidic device, allowing detection of the target species even if highly diluted.
Collapse
|
50
|
Arslan I, Akgul H, Kara M. Saporin, a Polynucleotide-Adenosine Nucleosidase, May Be an Efficacious Therapeutic Agent for SARS-CoV-2 Infection. SLAS DISCOVERY 2020; 26:330-335. [PMID: 33155515 PMCID: PMC8940857 DOI: 10.1177/2472555220970911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Saporin, a type I ribosome-inactivating protein from soapwort plant, is a potent protein synthesis inhibitor. Catalytically, saporin is a characteristic N-glycosidase, and it depurinates a specific adenine residue from a universally conserved loop of the major ribosomal RNA (rRNA) of eukaryotic cells. It is well-known that saporin induces apoptosis through different pathways, including ribotoxic stress response, cell signal transduction, genomic DNA fragmentation and RNA abasic lyase (RAlyase) activity, and NAD+ depletion by poly-(ADP)-ribose polymerase hyperactivation. Saporin's high enzymatic activity, high stability, and resistance to conjugation procedures make it a well-suited tool for immunotherapy approaches.In the present study, we focus on saporin-based targeted toxins that may be efficacious therapeutic agents for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our discussed points suggest that saporin may be a strategic molecule for therapeutic knockout treatments and a powerful candidate for novel drugs in the struggle against coronavirus 2019 (COVID-19).
Collapse
Affiliation(s)
- Idris Arslan
- Biomedical Engineeing, Bulent Ecevit University, Incivez, Zonguldak, Turkey
| | - Hafize Akgul
- Graduate School of Natural and Applied Sciences, Nanotechnology Engineeing, Bulent Ecevit University, Incivez, Zonguldak, Turkey
| | - Murat Kara
- Graduate School of Natural and Applied Sciences, Nanotechnology Engineeing, Bulent Ecevit University, Incivez, Zonguldak, Turkey
| |
Collapse
|