1
|
Chen W, Zhou T, Liu Y, Luo L, Ye Y, Wei L, Chen J, Bian Z. Genetically engineered bacteria expressing IL-34 alleviate DSS-induced experimental colitis by promoting tight junction protein expression in intestinal mucosal epithelial cells. Mol Immunol 2025; 178:64-75. [PMID: 39864284 DOI: 10.1016/j.molimm.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND The intestinal mucosa of ulcerative colitis patients expresses high levels of interleukin 34, and mice lacking IL-34 have more severe DSS-induced experimental colitis. There are no studies on the effects of directly upregulating intestinal IL-34 on experimental colitis in mice. METHODS The bacteria EcN/CSF-1 and EcN/IL-34, which express CSF-1 and IL-34, respectively, were genetically engineered from Escherichia coli Nissle 1917 (EcN). Colitis mice received daily gavage of sterile PBS buffer, empty plasmid E. coli (EcN/WT), EcN/CSF-1, or EcN/IL-34. Each group of mice was assessed for body mass, clinical signs, DAI, intestinal mucosal permeability, pathological, and immunohistological changes. In vitro, NCM460 cells were treated with CSF-1 or IL-34 recombinant proteins in the presence of signaling pathway inhibitors to evaluate tight junction protein expression. Additionally, intestinal mucosal epithelial cells isolated from active UC patients were analyzed for IL-34 and tight junction protein levels. RESULTS DSS-induced colitis mice are protected by EcN/IL-34 gavage. Pathological results showed that EcN/IL-34 group colonic histological injury was significantly improved and tight junction protein ZO-1 and Occludin expression increased. In NCM460 cells, IL-34 also increased tight junction protein expression. More importantly, expression of IL-34 was positively correlated with the level of tight junction protein expression in epithelial cells of UC patients. CONCLUSION EcN/IL-34 can directly act on damaged intestinal mucosa, up-regulate IL-34 expression, and promote tight junction protein expression in intestinal mucosal epithelial cells to alleviate experimental colitis in mice. IL-34 may be a potential therapeutic target for ulcerative colitis, and genetically engineered bacteria carrying the cytokine may offer new ideas for treating UC.
Collapse
Affiliation(s)
- Weijie Chen
- Medical School, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Tongtong Zhou
- Medical School, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Yicun Liu
- Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu Province 226006, China.
| | - Leilei Luo
- Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu Province 226006, China.
| | - Yujing Ye
- Medical School, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Lixian Wei
- Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu Province 226006, China.
| | - Jian Chen
- Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu Province 226006, China.
| | - Zhaolian Bian
- Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu Province 226006, China.
| |
Collapse
|
2
|
Wiens KR, Wasti N, Ulloa OO, Klegeris A. Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules 2024; 29:5525. [PMID: 39683685 DOI: 10.3390/molecules29235525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Microglia, the brain immune cells, support neurons by producing several established neurotrophic molecules including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Modern analytical techniques have identified numerous phenotypic states of microglia, each associated with the secretion of a diverse set of substances, which likely include not only canonical neurotrophic factors but also other less-studied molecules that can interact with neurons and provide trophic support. In this review, we consider the following eight such candidate cytokines: oncostatin M (OSM), leukemia inhibitory factor (LIF), activin A, colony-stimulating factor (CSF)-1, interleukin (IL)-34, growth/differentiation factor (GDF)-15, fibroblast growth factor (FGF)-2, and insulin-like growth factor (IGF)-2. The available literature provides sufficient evidence demonstrating murine cells produce these cytokines and that they exhibit neurotrophic activity in at least one neuronal model. Several distinct types of neurotrophic activity are identified that only partially overlap among the cytokines considered, reflecting either their distinct intrinsic properties or lack of comprehensive studies covering the full spectrum of neurotrophic effects. The scarcity of human-specific studies is another significant knowledge gap revealed by this review. Further studies on these potential microglia-derived neurotrophic factors are warranted since they may be used as targeted treatments for diverse neurological disorders.
Collapse
Affiliation(s)
- Kennedy R Wiens
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Naved Wasti
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Omar Orlando Ulloa
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
3
|
Tomassetti C, Insinga G, Gimigliano F, Morrione A, Giordano A, Giurisato E. Insights into CSF-1R Expression in the Tumor Microenvironment. Biomedicines 2024; 12:2381. [PMID: 39457693 PMCID: PMC11504891 DOI: 10.3390/biomedicines12102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The colony-stimulating factor 1 receptor (CSF-1R) plays a pivotal role in orchestrating cellular interactions within the tumor microenvironment (TME). Although the CSF-1R has been extensively studied in myeloid cells, the expression of this receptor and its emerging role in other cell types in the TME need to be further analyzed. This review explores the multifaceted functions of the CSF-1R across various TME cellular populations, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), cancer-associated fibroblasts (CAFs), endothelial cells (ECs), and cancer stem cells (CSCs). The activation of the CSF-1R by its ligands, colony-stimulating factor 1 (CSF-1) and Interleukin-34 (IL-34), regulates TAM polarization towards an immunosuppressive M2 phenotype, promoting tumor progression and immune evasion. Similarly, CSF-1R signaling influences MDSCs to exert immunosuppressive functions, hindering anti-tumor immunity. In DCs, the CSF-1R alters antigen-presenting capabilities, compromising immune surveillance against cancer cells. CSF-1R expression in CAFs and ECs regulates immune modulation, angiogenesis, and immune cell trafficking within the TME, fostering a pro-tumorigenic milieu. Notably, the CSF-1R in CSCs contributes to tumor aggressiveness and therapeutic resistance through interactions with TAMs and the modulation of stemness features. Understanding the diverse roles of the CSF-1R in the TME underscores its potential as a therapeutic target for cancer treatment, aiming at disrupting pro-tumorigenic cellular crosstalk and enhancing anti-tumor immune responses.
Collapse
Affiliation(s)
- Caterina Tomassetti
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Gaia Insinga
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
4
|
Profaci CP, Harvey SS, Bajc K, Zhang TZ, Jeffrey DA, Zhang AZ, Nemec KM, Davtyan H, O'Brien CA, McKinsey GL, Longworth A, McMullen TP, Capocchi JK, Gonzalez JG, Lawson DA, Arnold TD, Davalos D, Blurton-Jones M, Dabertrand F, Bennett FC, Daneman R. Microglia are not necessary for maintenance of blood-brain barrier properties in health, but PLX5622 alters brain endothelial cholesterol metabolism. Neuron 2024; 112:2910-2921.e7. [PMID: 39142282 PMCID: PMC11446403 DOI: 10.1016/j.neuron.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/03/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
Microglia, the resident immune cells of the central nervous system, are intimately involved in the brain's most basic processes, from pruning neural synapses during development to preventing excessive neuronal activity throughout life. Studies have reported both helpful and harmful roles for microglia at the blood-brain barrier (BBB) in the context of disease. However, less is known about microglia-endothelial cell interactions in the healthy brain. To investigate the role of microglia at a healthy BBB, we used the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 to deplete microglia and analyzed the BBB ultrastructure, permeability, and transcriptome. Interestingly, we found that, despite their direct contact with endothelial cells, microglia are not necessary for the maintenance of BBB structure, function, or gene expression in the healthy brain. However, we found that PLX5622 treatment alters brain endothelial cholesterol metabolism. This effect was independent from microglial depletion, suggesting that PLX5622 has off-target effects on brain vasculature.
Collapse
Affiliation(s)
- Caterina P Profaci
- Department of Pharmacology, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA, USA.
| | - Sean S Harvey
- Department of Pharmacology, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Kaja Bajc
- Department of Pharmacology, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Tony Z Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Danielle A Jeffrey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Z Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Kelsey M Nemec
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel L McKinsey
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Longworth
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Timothy P McMullen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Joia K Capocchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Jessica G Gonzalez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Devon A Lawson
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitrios Davalos
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Fabrice Dabertrand
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard Daneman
- Department of Pharmacology, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA, USA
| |
Collapse
|
5
|
Piccioni G, Maisto N, d'Ettorre A, Strimpakos G, Nisticò R, Triaca V, Mango D. Switch to phagocytic microglia by CSFR1 inhibition drives amyloid-beta clearance from glutamatergic terminals rescuing LTP in acute hippocampal slices. Transl Psychiatry 2024; 14:338. [PMID: 39179543 PMCID: PMC11344079 DOI: 10.1038/s41398-024-03019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024] Open
Abstract
Microglia, traditionally regarded as innate immune cells in the brain, drive neuroinflammation and synaptic dysfunctions in the early phases of Alzheimer disease (AD), acting upstream to Aβ accumulation. Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its levels are significantly increased in neurodegenerative diseases, possibly contributing to the chronic inflammatory microglial response. On the other hand, CSF-1R inhibitors confer neuroprotection in preclinical models of neurodegenerative diseases. Here, we determined the effects of the CSF-1R inhibitor PLX3397 on the Aβ-mediated synaptic alterations in ex vivo hippocampal slices. Electrophysiological findings show that PLX3397 rescues LTP impairment and neurotransmission changes induced by Aβ. In addition, using confocal imaging experiments, we demonstrate that PLX3397 stimulates a microglial transition toward a phagocytic phenotype, which in turn promotes the clearance of Aβ from glutamatergic terminals. We believe that the selective pruning of Aβ-loaded synaptic terminals might contribute to the restoration of LTP and excitatory transmission alterations observed upon acute PLX3397 treatment. This result is in accordance with the mechanism proposed for CSF1R inhibitors, that is to eliminate responsive microglia and replace it with newly generated, homeostatic microglia, capable of promoting brain repair. Overall, our findings identify a connection between the rapid microglia adjustments and the early synaptic alterations observed in AD, possibly highlighting a novel disease-modifying target.
Collapse
Affiliation(s)
- Gaia Piccioni
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Nunzia Maisto
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Asia d'Ettorre
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy
| | - Robert Nisticò
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy.
| | - Dalila Mango
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
6
|
Stevenson M, Algarzae NK, Moussa C. Tyrosine kinases: multifaceted receptors at the intersection of several neurodegenerative disease-associated processes. FRONTIERS IN DEMENTIA 2024; 3:1458038. [PMID: 39221072 PMCID: PMC11361951 DOI: 10.3389/frdem.2024.1458038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Tyrosine kinases (TKs) are catalytic enzymes activated by auto-phosphorylation that function by phosphorylating tyrosine residues on downstream substrates. Tyrosine kinase inhibitors (TKIs) have been heavily exploited as cancer therapeutics, primarily due to their role in autophagy, blood vessel remodeling and inflammation. This suggests tyrosine kinase inhibition as an appealing therapeutic target for exploiting convergent mechanisms across several neurodegenerative disease (NDD) pathologies. The overlapping mechanisms of action between neurodegeneration and cancer suggest that TKIs may play a pivotal role in attenuating neurodegenerative processes, including degradation of misfolded or toxic proteins, reduction of inflammation and prevention of fibrotic events of blood vessels in the brain. In this review, we will discuss the distinct roles that select TKs have been shown to play in various disease-associated processes, as well as identify TKs that have been explored as targets for therapeutic intervention and associated pharmacological agents being investigated as treatments for NDDs.
Collapse
Affiliation(s)
- Max Stevenson
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Norah K. Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Charbel Moussa
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
7
|
Verreycken J, Baeten P, Broux B. Regulatory T cell therapy for multiple sclerosis: Breaching (blood-brain) barriers. Hum Vaccin Immunother 2022; 18:2153534. [PMID: 36576251 PMCID: PMC9891682 DOI: 10.1080/21645515.2022.2153534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder causing demyelination and neurodegeneration in the central nervous system. MS is characterized by disturbed motor performance and cognitive impairment. Current MS treatments delay disease progression and reduce relapse rates with general immunomodulation, yet curative therapies are still lacking. Regulatory T cells (Tregs) are able to suppress autoreactive immune cells, which drive MS pathology. However, Tregs are functionally impaired in people with MS. Interestingly, Tregs were recently reported to also have regenerative capacity. Therefore, experts agree that Treg cell therapy has the potential to ameliorate the disease. However, to perform their local anti-inflammatory and regenerative functions in the brain, they must first migrate across the blood-brain barrier (BBB). This review summarizes the reported results concerning the migration of Tregs across the BBB and the influence of Tregs on migration of other immune subsets. Finally, their therapeutic potential is discussed in the context of MS.
Collapse
Affiliation(s)
- Janne Verreycken
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Paulien Baeten
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium,CONTACT Bieke Broux Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Martelarenlaan 42, Hasselt 3500, Belgium
| |
Collapse
|
8
|
Lee S, Karns R, Shin S. Mechanism of paracrine communications between hepatic progenitor cells and endothelial cells. Cell Signal 2022; 100:110458. [PMID: 36055565 PMCID: PMC9971365 DOI: 10.1016/j.cellsig.2022.110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
Abstract
Hepatic progenitor cells (HPCs) are facultative tissue-specific stem cells lining reactive ductules, which are ubiquitously observed in chronic liver diseases and cancer. Although previous research mainly focused on their contribution to liver regeneration, it turned out that in vivo differentiation of HPCs into hepatocytes only occurs after extreme injury. While recent correlative evidence implies the association of HPCs with disease progression, their exact role in pathogenesis remains largely unknown. Our previous research demonstrated that HPCs expressing angiogenic paracrine factors accumulate in the peritumoral area and are positively correlated with the extent of intratumoral cell proliferation and angiogenesis in the livers of patients with liver cancer. Given the crucial roles of angiogenesis in liver disease progression and carcinogenesis, we aimed to test the hypothesis that HPCs secrete paracrine factors to communicate with endothelial cells, to determine molecular mechanisms mediating HPCs-endothelial interactions, and to understand how the paracrine function of HPCs is regulated. HPCs promoted viability and tubulogenesis of human umbilical vein endothelial cells (HUVECs) and upregulated genes known to be involved in angiogenesis, endothelial cell function, and disease progression in a paracrine manner. The paracrine function of HPCs as well as expression of colony stimulating factor 1 (CSF1) were inhibited upon differentiation of HPCs toward hepatocytes. Inhibition of CSF1 receptor partly suppressed the paracrine effects of HPCs on HUVECs. Taken together, our study indicates that inhibition of the paracrine function of HPCs through modulation of their differentiation status and inhibition of CSF1 signaling is a promising strategy for inhibition of angiogenesis during pathological progression.
Collapse
Affiliation(s)
- Sanghoon Lee
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Soona Shin
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Rosa-Fernandes L, Bedrat A, dos Santos MLB, Pinto A, Lucena E, Silva TP, Melo RC, Palmisano G, Cardoso CA, Barbosa RH. Global RNAseq of ocular cells reveals gene dysregulation in both asymptomatic and with Congenital Zika Syndrome infants exposed prenatally to Zika virus. Exp Cell Res 2022; 414:113086. [DOI: 10.1016/j.yexcr.2022.113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022]
|
10
|
Hu B, Duan S, Wang Z, Li X, Zhou Y, Zhang X, Zhang YW, Xu H, Zheng H. Insights Into the Role of CSF1R in the Central Nervous System and Neurological Disorders. Front Aging Neurosci 2021; 13:789834. [PMID: 34867307 PMCID: PMC8634759 DOI: 10.3389/fnagi.2021.789834] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023] Open
Abstract
The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.
Collapse
Affiliation(s)
- Banglian Hu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Shengshun Duan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Ziwei Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yuhang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China.,Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Chhetri G. Emerging roles of IL-34 in neurodegenerative and neurological infectious disease. Int J Neurosci 2021; 133:660-671. [PMID: 34347576 DOI: 10.1080/00207454.2021.1963962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurological infections are often devastating in their clinical presentation. Although significant advances have made in neuroimaging techniques and molecular tools for diagnosis, as well as in anti-infective therapy, these diseases always difficult to diagnose and treat. Neuroparasitic infections and virus infections lead to neurological infections. In the nervous system, various cytokines and chemokines act as neuroinflammatory agents, neuromodulators, regulate neurodevelopment, and synaptic transmission. Among the most important cytokines, interleukins (ILs) are a large group of immunomodulatory proteins that elicit a wide variety of responses in cells and tissues. These ILs are involved in pro and anti-inflammatory effects, systemic inflammation, immune system modulation and play crucial roles in fighting cancer, infectious disease, and neurological disorders. Interleukin-34 (IL-34) identified by screening a comprehensive human protein library containing ∼3400 secreted and extracellular domain proteins in a human monocyte viability assay. Recent evidence has disclosed the crucial roles of IL-34 in the proliferation and differentiation of mononuclear phagocyte lineage cells, osteoclastogenesis, and inflammation. Additionally, IL-34 plays an important role in development, homeostasis, and disease. Dysregulation in IL-34 function can lead to various inflammatory and infectious diseases (e.g. Inflammatory bowel disease, liver fibrosis, Systemic Lupus erythematosus, rheumatoid arthritis), neurological disorders (e.g. Alzheimer disease) and neurological infectious disease (e.g. West Nile virus disease). In this review, we explore the biological role of IL-34 in addition to various impairments caused by dysregulation in IL-34 and discuss their potential links that may lead to important therapeutic and/or preventive strategies for these disorders.
Collapse
Affiliation(s)
- Gaurav Chhetri
- School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P.R. China
| |
Collapse
|
12
|
Zhang L, Zhang Y, Pan J. Immunopathogenic mechanisms of rheumatoid arthritis and the use of anti-inflammatory drugs. Intractable Rare Dis Res 2021; 10:154-164. [PMID: 34466337 PMCID: PMC8397820 DOI: 10.5582/irdr.2021.01022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/05/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease characterized by synovitis and symmetrical joint destruction. RA has become one of the key diseases endangering human health, but its etiology is not clear. Therefore, identifying the immunopathogenic mechanisms of RA and developing therapeutic drugs to treat autoimmune diseases have always been difficult. This article mainly reviews the immunopathogenic mechanism of RA and advances in the study of anti-inflammatory drugs in order to provide a reference for the treatment of RA and drug development in the future.
Collapse
Affiliation(s)
- Ling Zhang
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Ji'nan, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| | - Yihang Zhang
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Ji'nan, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| | - Jihong Pan
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Ji'nan, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
- Address correspondence to:Pan Jihong, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University, # 6699 Qingdao Road, Ji'nan 250117, China. E-mail:
| |
Collapse
|
13
|
Sun H, Hu H, Liu C, Sun N, Duan C. Methods used for the measurement of blood-brain barrier integrity. Metab Brain Dis 2021; 36:723-735. [PMID: 33635479 DOI: 10.1007/s11011-021-00694-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
The blood-brain barrier (BBB) comprises the interface between blood, brain and cerebrospinal fluid. Its primary function, which is mainly carried out by tight junctions, is to stabilize the tightly controlled microenvironment of the brain. To study the development and maintenance of the BBB, as well as various roles their intrinsic mechanisms that play in neurological disorders, suitable measurements are required to demonstrate integrity and functional changes at the interfaces between the blood and brain tissue. Markers and plasma proteins with different molecular weight (MW) are used to measure the permeability of BBB. In addition, the expression changes of tight-junction proteins form the basic structure of BBB, and imaging modalities are available to study the disruption of BBB. In the present review, above mentioned methods are depicted in details, together with the pros and cons as well as the differences between these methods, which maybe benefit research studies focused on the detection of BBB breakdown.
Collapse
Affiliation(s)
- Huixin Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huiling Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chuanjie Liu
- Weihai City Key Laboratory of Autoimmunity, Weihai Central Hospital, Weihai, 264400, Shandong Province, China
| | - Nannan Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Chaohui Duan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
14
|
Decreased Levels of Serum IL-34 Associated with Cognitive Impairment in Vascular Dementia. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6793860. [PMID: 34095310 PMCID: PMC8163526 DOI: 10.1155/2021/6793860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/04/2022]
Abstract
Objective Interleukin- (IL-) 34 is a new type of cytokine with neuroprotective effects discovered in recent years. However, the relationship between IL-34 and vascular dementia (VaD) has not yet been elucidated. The purpose of this study is to determine whether IL-34 is involved in cognitive impairment of VaD. Methods From January 2017 to December 2020, 84 VaD patients and 60 healthy controls who attended Qingpu Branch of Zhongshan Hospital were prospectively included in the study. Once included in the study, demographic features of all research subjects are collected. They include age, gender, education, white blood cells (WBC), neutrophil, lymphocyte, systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), triglycerides (TG), and total cholesterol (TC). Meanwhile, the Montreal Cognitive Assessment (MoCA) scale was used to assess the cognitive function of participants. The serum IL-34 level was determined by enzyme-linked immunosorbent assay (ELISA). Results There was no significant difference between the demographic features of VaD patients and healthy controls (p > 0.05). However, the serum IL-34 levels of VaD patients and healthy controls are 27.6 ± 3.9 pg/ml and 41.8 ± 6.0 pg/ml, respectively, and there is a significant statistical difference between them (p < 0.001). The results of bivariate correlation analysis showed that serum IL-34 levels were significantly positively correlated with MoCA scores (r = 0.371, p = 0.023). Further regression analysis showed that IL-34 was still correlated with MoCA after adjusting for demographic features (β = 0.276, p = 0038). Conclusions Serum IL-34 levels in VaD patients were significantly reduced, which may be an independent predictor of cognitive impairment in VaD patients.
Collapse
|
15
|
Lv X, Hu Y, Wang L, Zhang D, Wang H, Dai Y, Cui X, Zheng G. DDIT4 mediates the proliferation-promotive effect of IL-34 in human monocytic leukemia cells. BLOOD SCIENCE 2021; 3:48-56. [PMID: 35402828 PMCID: PMC8975083 DOI: 10.1097/bs9.0000000000000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 11/26/2022] Open
Abstract
Interleukin 34 (IL-34) is a cytokine that shares the receptor with colony-stimulating factor 1 (CSF-1). IL-34 is involved in a broad range of pathologic processes including cancer. We previously demonstrated that IL-34 promoted the proliferation and colony formation of human acute monocytic leukemia (AMoL) cells. However, the mechanism has not been elucidated. Here, by analyzing the gene profiles of Molm13 and THP1 cells overexpressing IL-34 (Molm13-IL-34 and THP1-IL-34), upregulation of the DNA damage-inducible transcript 4 (DDIT4) was detected in both series. Knockdown of DDIT4 effectively inhibited the proliferation, promoted apoptosis and colony formation in Molm13-IL-34 and THP1-IL-34 cells. Our results suggest that DDIT4 mediates the proliferation-promotive effect of IL-34 whereas does not mediate the promotive effect of IL-34 on colony formation in AMoL cells.
Collapse
|
16
|
Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. J Leukoc Biol 2021; 110:771-796. [PMID: 33600012 DOI: 10.1002/jlb.3ru1120-773r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although IL-34 and CSF-1 share actions as key mediators of monocytes/macrophages survival and differentiation, they also display differences that should be identified to better define their respective roles in health and diseases. IL-34 displays low sequence homology with CSF-1 but has a similar general structure and they both bind to a common receptor CSF-1R, although binding and subsequent intracellular signaling shows differences. CSF-1R expression has been until now mainly described at a steady state in monocytes/macrophages and myeloid dendritic cells, as well as in some cancers. IL-34 has also 2 other receptors, protein-tyrosine phosphatase zeta (PTPζ) and CD138 (Syndecan-1), expressed in some epithelium, cells of the central nervous system (CNS), as well as in numerous cancers. While most, if not all, of CSF-1 actions are mediated through monocyte/macrophages, IL-34 has also other potential actions through PTPζ and CD138. Additionally, IL-34 and CSF-1 are produced by different cells in different tissues. This review describes and discusses similarities and differences between IL-34 and CSF-1 at steady state and in pathological situations and identifies possible ways to target IL-34, CSF-1, and its receptors.
Collapse
Affiliation(s)
- Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
17
|
Delaney C, Farrell M, Doherty CP, Brennan K, O’Keeffe E, Greene C, Byrne K, Kelly E, Birmingham N, Hickey P, Cronin S, Savvides SN, Doyle SL, Campbell M. Attenuated CSF-1R signalling drives cerebrovascular pathology. EMBO Mol Med 2021; 13:e12889. [PMID: 33350588 PMCID: PMC7863388 DOI: 10.15252/emmm.202012889] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Cerebrovascular pathologies occur in up to 80% of cases of Alzheimer's disease; however, the underlying mechanisms that lead to perivascular pathology and accompanying blood-brain barrier (BBB) disruption are still not fully understood. We have identified previously unreported mutations in colony stimulating factor-1 receptor (CSF-1R) in an ultra-rare autosomal dominant condition termed adult-onset leucoencephalopathy with axonal spheroids and pigmented glia (ALSP). Cerebrovascular pathologies such as cerebral amyloid angiopathy (CAA) and perivascular p-Tau were some of the primary neuropathological features of this condition. We have identified two families with different dominant acting alleles with variants located in the kinase region of the CSF-1R gene, which confer a lack of kinase activity and signalling. The protein product of this gene acts as the receptor for 2 cognate ligands, namely colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). Here, we show that depletion in CSF-1R signalling induces BBB disruption and decreases the phagocytic capacity of peripheral macrophages but not microglia. CSF-1R signalling appears to be critical for macrophage and microglial activation, and macrophage localisation to amyloid appears reduced following the induction of Csf-1r heterozygosity in macrophages. Finally, we show that endothelial/microglial crosstalk and concomitant attenuation of CSF-1R signalling causes re-modelling of BBB-associated tight junctions and suggest that regulating BBB integrity and systemic macrophage recruitment to the brain may be therapeutically relevant in ALSP and other Alzheimer's-like dementias.
Collapse
Affiliation(s)
- Conor Delaney
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
| | - Michael Farrell
- Department of NeuropathologyBeaumont HospitalDublin 9Ireland
| | - Colin P Doherty
- Department of NeurologyHealth Care CentreSt James's HospitalDublin 8Ireland
- Academic Unit of NeurologyBiomedical Sciences InstituteTrinity College DublinDublin 2Ireland
- FutureNeuro SFI Research CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Kiva Brennan
- Trinity College Institute of NeuroscienceTrinity College Dublin 2Dublin 2Ireland
| | - Eoin O’Keeffe
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
| | - Chris Greene
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
| | - Kieva Byrne
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
| | - Eoin Kelly
- Department of NeurologyHealth Care CentreSt James's HospitalDublin 8Ireland
| | | | | | - Simon Cronin
- Department of MedicineUniversity College CorkCorkIreland
| | - Savvas N Savvides
- Unit for Structural BiologyDepartment of Biochemistry and MicrobiologyGhent UniversityGhentBelgium
- VIB‐UGent Center for Inflammation ResearchGhentBelgium
| | - Sarah L Doyle
- Trinity College Institute of NeuroscienceTrinity College Dublin 2Dublin 2Ireland
| | - Matthew Campbell
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
- FutureNeuro SFI Research CentreRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
18
|
Muñoz-Garcia J, Cochonneau D, Télétchéa S, Moranton E, Lanoe D, Brion R, Lézot F, Heymann MF, Heymann D. The twin cytokines interleukin-34 and CSF-1: masterful conductors of macrophage homeostasis. Theranostics 2021; 11:1568-1593. [PMID: 33408768 PMCID: PMC7778581 DOI: 10.7150/thno.50683] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Macrophages are specialized cells that control tissue homeostasis. They include non-resident and tissue-resident macrophage populations which are characterized by the expression of particular cell surface markers and the secretion of molecules with a wide range of biological functions. The differentiation and polarization of macrophages relies on specific growth factors and their receptors. Macrophage-colony stimulating factor (CSF-1) and interleukine-34 (IL-34), also known as "twin" cytokines, are part of this regluatory landscape. CSF-1 and IL-34 share a common receptor, the macrophage-colony stimulating factor receptor (CSF-1R), which is activated in a similar way by both factors and turns on identical signaling pathways. However, there is some discrete differential activation leading to specific activities. In this review, we disscuss recent progress in understanding of the role of the twin cytokines in macrophage differentiation, from their interaction with CSF-1R and the activation of signaling pathways, to their implication in macrophage polarization of non-resident and tissue-resident macrophages. A special focus on IL-34, its involvement in pathophsyiological contexts, and its potential as a theranostic target for macrophage therapy will be proposed.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- SATT Ouest Valorisation, Nantes, France
| | - Denis Cochonneau
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | | | - Emilie Moranton
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Didier Lanoe
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Régis Brion
- Université de Nantes, INSERM, U1238, Nantes, France
| | | | | | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Shen HY, Zhou Y, Zhou QJ, Li MY, Chen J. Mudskipper interleukin-34 modulates the functions of monocytes/macrophages via the colony-stimulating factor-1 receptor 1. Zool Res 2020; 41:123-137. [PMID: 32150792 PMCID: PMC7109011 DOI: 10.24272/j.issn.2095-8137.2020.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interleukin-34 (IL-34) is a novel cytokine that plays an important role in innate immunity and inflammatory processes by binding to the colony-stimulating factor-1 receptor (CSF-1R). However, information on the function of IL-34 in fish remains limited. In the present study, we identified an IL-34 homolog from mudskippers (Boleophthalmus pectinirostris). In silico analysis showed that the mudskipper IL-34 (BpIL-34) was similar to other known IL-34 variants in sequence and structure and was most closely related to an orange-spotted grouper (Epinephelus coioides) homolog. BpIL-34 transcripts were constitutively expressed in various tissues, with the highest level of expression found in the brain. Edwardsiella tarda infection significantly up-regulated the mRNA expression of BpIL-34 in the mudskipper tissues. The recombinant mature BpIL-34 peptide (rBpIL-34) was purified and used to produce anti-rBpIL-34 IgG. Western blot analysis combined with PNGase F digestion revealed that native BpIL-34 in monocytes/macrophages (MOs/MФs) was N-glycosylated. In vitro, rBpIL-34 treatment enhanced the phagocytotic and bactericidal activity of mudskipper MOs/MФs, as well as the mRNA expression of pro-inflammatory cytokines like tumor necrosis factor α (BpTNF-α) and BpIL-1β in these cells. Furthermore, the knockdown of mudskipper CSF-1R1 (BpCSF-1R1), but not mudskipper BpCSF-1R2, significantly inhibited the rBpIL-34-mediated enhanced effect on MO/MФ function. In conclusion, our results indicate that mudskipper BpIL-34 modulates the functions of MOs/MФs via BpCSF-1R1.
Collapse
Affiliation(s)
- Hai-Yu Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Qian-Jin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China. E-mail: .,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Ming-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315832, China E-mail: jchen1975@ 163.com
| |
Collapse
|
20
|
Lee PW, Selhorst A, Lampe SG, Liu Y, Yang Y, Lovett-Racke AE. Neuron-Specific Vitamin D Signaling Attenuates Microglia Activation and CNS Autoimmunity. Front Neurol 2020; 11:19. [PMID: 32082243 PMCID: PMC7005247 DOI: 10.3389/fneur.2020.00019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/08/2020] [Indexed: 01/08/2023] Open
Abstract
Low vitamin D during childhood is associated with an increased risk of developing multiple sclerosis (MS) as an adult. Given that vitamin D has anti-inflammatory properties, it has been postulated that the relationship between MS and low vitamin D is due to immune dysregulation. Since the vitamin D receptor (VDR) is expressed in many cell types, this study investigated an alternative hypothesis-neuron-specific VDR signaling induces anti-inflammatory molecules that protect the central nervous system from autoimmunity. Using media from neurons treated with calcitriol, the active form of vitamin D3, LPS-activated microglia had a reduction in pro-inflammatory molecules, and a reciprocal induction of anti-inflammatory molecules. Since IL-34 is critical to the homeostasis of microglia, and was previously shown to be induced in endothelial cells by vitamin D, we investigated IL-34 as the potential anti-inflammatory molecule induced in neurons by vitamin D. Treatment of LPS-activated microglia with IL-34 reduced pro-inflammatory cytokine production and enhanced the expression of anti-inflammatory transcripts. However, neutralizing IL-34 in vitamin D neuronal conditioned media only impacted IL-6 and not the broader anti-inflammatory phenotype of microglia. To mimic low vitamin D in children, we used a neuron-specific inducible mouse model in which VDR was partially deleted in juvenile mice. Partial deletion of VDR in neurons during early life resulted in exacerbated CNS autoimmunity in adult mice. Overall, the study illustrated that vitamin D signaling in neurons promotes an anti-inflammatory state in microglia, and low vitamin D in early life may enhance CNS autoimmunity.
Collapse
Affiliation(s)
- Priscilla W. Lee
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Amanda Selhorst
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sara Gombash Lampe
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Yue Liu
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Yuhong Yang
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Amy E. Lovett-Racke
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
21
|
Abdel-Dayem MA, Shaker ME, Gameil NM. Impact of interferon β-1b, interferon β-1a and fingolimod therapies on serum interleukins-22, 32α and 34 concentrations in patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 2019; 337:577062. [PMID: 31521828 DOI: 10.1016/j.jneuroim.2019.577062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
Abstract
Interleukins (ILs)-22, 32α and 34 were monitored in the sera of relapsing-remitting multiple sclerosis (RRMS) patients at different time intervals with or without interferon β-1b, interferon β-1a and fingolimod treatments. The results showed that sera of untreated RRMS patients were statistically higher in concentration of IL-22 (P < .001), but not IL-32α and IL-34, than those of healthy individuals. Interestingly, interferon β-1b, interferon β-1a and fingolimod treatments led to a significant decrease of serum concentrations of ILs-22 and 32α, but not 34, at 6 and 12 months of treatment, compared to their initial concentrations before initiating therapy. The correlation analysis revealed that the changes of serum IL-22 (r = 0.814) and, to a lesser extent, IL-32α (r = 0.381) concentrations were positively correlated with those of expanded disability status score. In conclusion, serum IL-22 concentration may be a potential marker for MS disease severity and efficacy of treatment.
Collapse
Affiliation(s)
- Marwa A Abdel-Dayem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Mohamed E Shaker
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology, Faculty of Pharmacy, Jouf University, Sakaka 2014, Saudi Arabia.
| | - Nariman M Gameil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
22
|
Interleukin-34: A New Player in the Sepsis Arena. Crit Care Med 2019; 46:1032-1033. [PMID: 29762412 DOI: 10.1097/ccm.0000000000003113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Ge Y, Huang M, Yao YM. Immunomodulation of Interleukin-34 and its Potential Significance as a Disease Biomarker and Therapeutic Target. Int J Biol Sci 2019; 15:1835-1845. [PMID: 31523186 PMCID: PMC6743287 DOI: 10.7150/ijbs.35070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-34 is a cytokine discovered a few years ago and identified as the second colony-stimulating factor (CSF)-1 receptor (CSF-1R) ligand. Although CSF-1 and IL-34 share the same receptor through which they trigger similar effects, IL-34 also binds to receptors protein-tyrosine phosphatase (PTP)-ζ and syndecan-1. Thus, IL-34 is involved in several signaling pathways and participates in a wide array of biological actions. This review analyzes current studies on the role of IL-34 under physiological and pathological conditions, and explores its potential significance as a disease biomarker and therapeutic target. In physiological conditions, IL-34 expression is restricted to the microglia and Langerhans cells, with a fundamental role in cellular differentiation, adhesion and migration, proliferation, metabolism, and survival. It is released in response to inflammatory stimuli, such as pathogen-associated molecular patterns or pro-inflammatory cytokines, with effects over various immune cells, including monocytes, macrophages, and regulatory T cells that shape the immune microenvironment. Over the past decade, accumulating evidence has suggested a potent immune regulation of IL-34 in pathological states such as autoimmune diseases, cancer, transplant rejection, neurologic diseases, infections, and inflammatory diseases. Importantly, IL-34 may hold great promise for acting as a biomarker for monitoring disease severity and progression, and may serve as a new therapeutic target for the treatment of several diseases in clinical settings.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yong-Ming Yao
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China.,Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.,State Key Laboratory of Kidney Disease, the Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| |
Collapse
|
24
|
Thorsdottir S, Henriques-Normark B, Iovino F. The Role of Microglia in Bacterial Meningitis: Inflammatory Response, Experimental Models and New Neuroprotective Therapeutic Strategies. Front Microbiol 2019; 10:576. [PMID: 30967852 PMCID: PMC6442515 DOI: 10.3389/fmicb.2019.00576] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
Microglia have a pivotal role in the pathophysiology of bacterial meningitis. The goal of this review is to provide an overview on how microglia respond to bacterial pathogens targeting the brain, how the interplay between microglia and bacteria can be studied experimentally, and possible ways to use gained knowledge to identify novel preventive and therapeutic strategies. We discuss the dual role of microglia in disease development, the beneficial functions crucial for bacterial clearing, and the destructive properties through triggering neuroinflammation, characterized by cytokine and chemokine release which leads to leukocyte trafficking through the brain vascular endothelium and breakdown of the blood-brain barrier integrity. Due to intrinsic complexity of microglia and up until recently lack of specific markers, the study of microglial response to bacterial pathogens is challenging. New experimental models and techniques open up possibilities to accelerate progress in the field. We review existing models and discuss possibilities and limitations. Finally, we summarize recent findings where bacterial virulence factors are identified to be important for the microglial response, and how manipulation of evoked responses could be used for therapeutic or preventive purposes. Among promising approaches are: modulations of microglia phenotype switching toward anti-inflammatory and phagocytic functions, the use of non-bacterolytic antimicrobials, preventing release of bacterial components into the neural milieu and consequential amplification of immune activation, and protection of the blood-brain barrier integrity.
Collapse
Affiliation(s)
- Sigrun Thorsdottir
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| | - Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Ge Y, Huang M, Zhu XM, Yao YM. Biological functions and clinical implications of interleukin-34 in inflammatory diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:39-63. [PMID: 31997772 DOI: 10.1016/bs.apcsb.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-34 is a recently discovered cytokine and ligand of the colony-stimulating factor (CSF)-1 receptor. Although CSF-1 and IL-34 share similar biological properties, their expression patterns and downstream signaling pathways are distinct. IL-34 can influence differentiation and has functions in multiple cell types (e.g., dendritic cells, monocytes, macrophages). In the pathological conditions, IL-34 is induced by pro-inflammatory stimuli (e.g., cytokines, pathogen-associated molecular patterns, and infection). Current evidence shows that IL-34 is a critical player in inflammatory response and is involved in the pathogenesis of inflammatory autoimmune dysfunction. Therefore, IL-34 may be a promising clinical biomarker and therapeutic target for treating inflammatory related disorders. In this article, we review the advances in biological functions of IL-34 and our understanding of its role in the development of inflammatory diseases as well as therapeutic applications.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiao-Mei Zhu
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
26
|
Hoye ML, Archambault AS, Gordon TM, Oetjen LK, Cain MD, Klein RS, Crosby SD, Kim BS, Miller TM, Wu GF. MicroRNA signature of central nervous system-infiltrating dendritic cells in an animal model of multiple sclerosis. Immunology 2018; 155:112-122. [PMID: 29749614 PMCID: PMC6099169 DOI: 10.1111/imm.12934] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/28/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022] Open
Abstract
Innate immune cells are integral to the pathogenesis of several diseases of the central nervous system (CNS), including multiple sclerosis (MS). Dendritic cells (DCs) are potent CD11c+ antigen-presenting cells that are critical regulators of adaptive immune responses, particularly in autoimmune diseases such as MS. The regulation of DC function in both the periphery and CNS compartment has not been fully elucidated. One limitation to studying the role of CD11c+ DCs in the CNS is that microglia can upregulate CD11c during inflammation, making it challenging to distinguish bone marrow-derived DCs (BMDCs) from microglia. Selective expression of microRNAs (miRNAs) has been shown to distinguish populations of innate cells and regulate their function within the CNS during neuro-inflammation. Using the experimental autoimmune encephalomyelitis (EAE) murine model of MS, we characterized the expression of miRNAs in CD11c+ cells using a non-biased murine array. Several miRNAs, including miR-31, were enriched in CD11c+ cells within the CNS during EAE, but not LysM+ microglia. Moreover, to distinguish CD11c+ DCs from microglia that upregulate CD11c, we generated bone marrow chimeras and found that miR-31 expression was specific to BMDCs. Interestingly, miR-31-binding sites were enriched in mRNAs downregulated in BMDCs that migrated into the CNS, and a subset was confirmed to be regulated by miR-31. Finally, miR-31 was elevated in DCs migrating through an in vitro blood-brain barrier. Our findings suggest miRNAs, including miR-31, may regulate entry of DCs into the CNS during EAE, and could potentially represent therapeutic targets for CNS autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Mariah L. Hoye
- Department of NeurologyWashington University School of MedicineSt LouisMOUSA
| | | | - Taylor M. Gordon
- Department of NeurologyWashington University School of MedicineSt LouisMOUSA
| | - Landon K. Oetjen
- Department of MedicineWashington University School of MedicineSt LouisMOUSA
| | - Matthew D. Cain
- Department of MedicineWashington University School of MedicineSt LouisMOUSA
| | - Robyn S. Klein
- Department of MedicineWashington University School of MedicineSt LouisMOUSA
- The Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMOUSA
| | - Seth D. Crosby
- Genome Technology Access CenterWashington University School of MedicineSt LouisMOUSA
| | - Brian S. Kim
- Department of MedicineWashington University School of MedicineSt LouisMOUSA
- Department of Immunology & PathologyWashington University School of MedicineSt LouisMOUSA
- Center for the Study of ItchWashington University School of MedicineSt LouisMOUSA
| | - Timothy M. Miller
- Department of NeurologyWashington University School of MedicineSt LouisMOUSA
- The Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMOUSA
| | - Gregory F. Wu
- Department of NeurologyWashington University School of MedicineSt LouisMOUSA
- The Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMOUSA
- Department of Immunology & PathologyWashington University School of MedicineSt LouisMOUSA
| |
Collapse
|
27
|
Baghdadi M, Umeyama Y, Hama N, Kobayashi T, Han N, Wada H, Seino KI. Interleukin-34, a comprehensive review. J Leukoc Biol 2018; 104:931-951. [PMID: 30066957 DOI: 10.1002/jlb.mr1117-457r] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/28/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
IL-34 is a novel cytokine that was identified in 2008 in a comprehensive proteomic analysis as a tissue-specific ligand of CSF-1 receptor (CSF-1R). IL-34 exists in all vertebrates including fish, amphibians, birds, and mammals, showing high conservation among species. Structurally, IL-34 belongs to the short-chain helical hematopoietic cytokine family but shows no apparent consensus structural domains, motifs, or sequence homology with other cytokines. IL-34 is synthesized as a secreted homodimeric glycoprotein that binds to the extracellular domains of CSF-1R and receptor-type protein-tyrosine phosphatase-zeta (PTP-ζ) in addition to the chondroitin sulfate chains of syndecan-1. These interactions result in activating several signaling pathways that regulate major cellular functions, including proliferation, differentiation, survival, metabolism, and cytokine/chemokine expression in addition to cellular adhesion and migration. In the steady state, IL-34 contributes to the development and maintenance of specific myeloid cell subsets in a tissue-specific manner: Langerhans cells in the skin and microglia in the brain. In pathological conditions, changes in IL-34 expression-increased or decreased-are involved in disease pathogenesis and correlate with progression, severity, and chronicity. One decade after its discovery, IL-34 has been introduced as a newcomer to the big family of interleukins with specific physiological functions, critical pathological roles, and promising clinical applications in disease diagnosis and treatment. In this review, we celebrate the 10th anniversary of IL-34 discovery, introducing its biological characteristics, and discussing the importance of IL-34 signaling network in health and disease.
Collapse
Affiliation(s)
- Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yui Umeyama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Hama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Takuto Kobayashi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Nanumi Han
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
28
|
Lin X, Meng G, Liu X, Yu T, Bai C, Fei X, Deng S, Zhao J, Ren S, Zhang J, Wu Z, Wang S, Zhang J, Zhang L. The Differentially Expressed Genes of Human Sporadic Cerebral Cavernous Malformations. World Neurosurg 2018; 113:e247-e270. [DOI: 10.1016/j.wneu.2018.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
29
|
Kumari A, Silakari O, Singh RK. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed Pharmacother 2018; 103:662-679. [PMID: 29679908 DOI: 10.1016/j.biopha.2018.04.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/25/2022] Open
Abstract
Colony stimulating factor-1 (CSF-1) is one of the most common proinflammatory cytokine responsible for various inflammatory disorders. It has a remarkable role in the development and progression of osteoarthritis, cancer and other autoimmune disease conditions. The CSF-1 acts by binding to the receptor, called colony stimulating factor-1 receptor (CSF-1R) also known as c-FMS resulting in the cascade of signalling pathway causing cell proliferation and differentiation. Interleukin-34 (IL-34), recently identified as another ligand for CSF-IR, is a cytokine protein. Both, CSF-1 and IL-34, although two distinct cytokines, follow the similar signalling pathway on binding to the same receptor, CSF-1R. Like CSF-1, IL-34 promotes the differentiation and survival of monocyte, macrophages and osteoclasts. This CSF-1R/c-FMS is over expressed in many cancers and on tumour associated macrophages, consequently, have been exploited as a drug target for promising treatment for cancer and inflammatory diseases. Some CSF-1R/c-FMS inhibitors such as ABT-869, Imatinib, AG013736, JNJ-40346527, PLX3397, DCC-3014 and Ki20227 have been successfully used in these disease conditions. Many c-FMS inhibitors have been the candidates of clinical trials, but suffer from some side effects like cardiotoxicity, vomiting, swollen eyes, diarrhoea, etc. If selectivity of cFMS inhibition is achieved successfully, side effects can be overruled and this approach may become a novel therapy for treatment of various therapeutic interventions. Thus, successful targeting of c-FMS may result in multifunctional therapy. With this background of information, the present review focuses on the recent developments in the area of CSF-1R/c-FMS inhibitors with emphasis on crystal structure, mechanism of action and various therapeutic implications in which c-FMS plays a pivotal role. The review on structure activity relationship of various compounds acting as the inhibitors of c-FMS which gives the selection criteria for the development of novel molecules is also being presented.
Collapse
Affiliation(s)
- Archana Kumari
- Rayat-Bahra Institute of Pharmacy, Dist. Hoshiarpur, 146104, Punjab, India
| | - Om Silakari
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India.
| |
Collapse
|
30
|
Baghdadi M, Endo H, Tanaka Y, Wada H, Seino KI. Interleukin 34, from pathogenesis to clinical applications. Cytokine 2017; 99:139-147. [PMID: 28886491 DOI: 10.1016/j.cyto.2017.08.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023]
Abstract
Interleukin-34 (IL-34) is a hematopoietic cytokine that was described for the first time in 2008 as a second ligand of CSF1R in addition to M-CSF. IL-34 and M-CSF share no sequence homology, but have similar functions, affecting the biology of myeloid cell lineage. In contrast to M-CSF, IL-34 shows unique signaling and expression patterns. Physiologically, IL-34 expression is restricted to epidermis and CNS, acting as a regulator of Langerhans cells and microglia, respectively. However, IL-34 expression can be induced and regulated by NF-κB under pathological conditions. Importantly, growing evidence indicates a correlation between IL-34 and disease severity, chronicity and progression. In addition to its promising roles as a novel diagnostic and prognostic biomarker of disease, IL-34 may also serve as a powerful target for therapeutic intervention. Here, we review the current knowledge regarding the emerging roles of IL-34 in disease, and focus on the clinical applications of IL-34 in medicine.
Collapse
Affiliation(s)
- Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Japan.
| | - Hiraku Endo
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Japan
| | - Yoshino Tanaka
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Japan.
| |
Collapse
|
31
|
Martinez G, Majster M, Bjurshammar N, Johannsen A, Figueredo C, Boström E. Salivary Colony Stimulating Factor-1 and Interleukin-34 in Periodontal Disease. J Periodontol 2017; 88:e140-e149. [DOI: 10.1902/jop.2017.170081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- G.L. Martinez
- Department of Dental Medicine, Division of Periodontology, Karolinska Institute, Huddinge, Sweden
- Department of Periodontology, Faculty of Odontology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - M. Majster
- Department of Dental Medicine, Division of Periodontology, Karolinska Institute, Huddinge, Sweden
| | - N. Bjurshammar
- Department of Dental Medicine, Division of Periodontology, Karolinska Institute, Huddinge, Sweden
| | - A. Johannsen
- Department of Dental Medicine, Division of Periodontology, Karolinska Institute, Huddinge, Sweden
| | - C.M. Figueredo
- Department of Periodontology, Faculty of Odontology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - E.A. Boström
- Department of Dental Medicine, Division of Periodontology, Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
32
|
Guillonneau C, Bézie S, Anegon I. Immunoregulatory properties of the cytokine IL-34. Cell Mol Life Sci 2017; 74:2569-2586. [PMID: 28258292 PMCID: PMC11107603 DOI: 10.1007/s00018-017-2482-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/10/2017] [Accepted: 01/30/2017] [Indexed: 12/21/2022]
Abstract
Interleukin-34 is a cytokine with only partially understood functions, described for the first time in 2008. Although IL-34 shares very little homology with CSF-1 (CSF1, M-CSF), they share a common receptor CSF-1R (CSF-1R) and IL-34 has also two distinct receptors (PTP-ζ) and CD138 (syndecan-1). To make the situation more complex, IL-34 has also been shown as pairing with CSF-1 to form a heterodimer. Until now, studies have demonstrated that this cytokine is released by some tissues that differ to those where CSF-1 is expressed and is involved in the differentiation and survival of macrophages, monocytes, and dendritic cells in response to inflammation. The involvement of IL-34 has been shown in areas as diverse as neuronal protection, autoimmune diseases, infection, cancer, and transplantation. Our recent work has demonstrated a new and possible therapeutic role for IL-34 as a Foxp3+ Treg-secreted cytokine mediator of transplant tolerance. In this review, we recapitulate most recent findings on IL-34 and its controversial effects on immune responses and address its immunoregulatory properties and the potential of targeting this cytokine in human.
Collapse
Affiliation(s)
- Carole Guillonneau
- INSERM UMR1064, Center for Research in Transplantation and Immunology-ITUN, Université de Nantes, 30 Bd. Jean Monnet, 44093, Nantes Cedex 01, France.
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.
| | - Séverine Bézie
- INSERM UMR1064, Center for Research in Transplantation and Immunology-ITUN, Université de Nantes, 30 Bd. Jean Monnet, 44093, Nantes Cedex 01, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Ignacio Anegon
- INSERM UMR1064, Center for Research in Transplantation and Immunology-ITUN, Université de Nantes, 30 Bd. Jean Monnet, 44093, Nantes Cedex 01, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
33
|
Abstract
Cytokines provide cells with the ability to communicate with one another and orchestrate complex multicellular behaviour. There is an emerging understanding of the role that cytokines play in normal homeostatic tissue function and how dysregulation of these cytokine networks is associated with pathological conditions. The central nervous system (CNS), where few blood-borne immune cells circulate, seems to be particularly vulnerable to dysregulated cytokine networks. In degenerative diseases, such as proteopathies, CNS-resident cells are the predominant producers of pro-inflammatory cytokines. By contrast, in classical neuroinflammatory diseases, such as multiple sclerosis and encephalitides, pro-inflammatory cytokines are mainly produced by tissue-invading leukocytes. Whereas the effect of dysregulated cytokine networks in proteopathies is controversial, cytokines delivered to the CNS by invading immune cells are in general detrimental to the tissue. Here, we summarize recent observations on the impact of dysregulated cytokine networks in neuroinflammation.
Collapse
|
34
|
Zhou RP, Wu XS, Xie YY, Dai BB, Hu W, Ge JF, Chen FH. Functions of interleukin-34 and its emerging association with rheumatoid arthritis. Immunology 2016; 149:362-373. [PMID: 27550090 DOI: 10.1111/imm.12660] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic, synovial inflammation affecting multiple joints, finally leading to extra-articular lesions for which limited effective treatment options are currently available. Interleukin-34 (IL-34), recently discovered as the second colony-stimulating factor-1 receptor (CSF-1R) ligand, is a newly discovered cytokine. Accumulating evidence has disclosed crucial roles of IL-34 in the proliferation and differentiation of mononuclear phagocyte lineage cells, osteoclastogenesis and inflammation. Recently, IL-34 was detected at high levels in patients with active RA and in experimental models of inflammatory arthritis. Blockade of functional IL-34 with a specific monoclonal antibody can reduce the severity of inflammatory arthritis, suggesting that targeting IL-34 or its receptors may constitute a novel therapeutic strategy for autoimmune diseases such as RA. Here, we have comprehensively discussed the structure and biological functions of IL-34, and reviewed recent advances in our understanding of the emerging role of IL-34 in the development of RA as well as its potential utility as a therapeutic target.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiao-Shan Wu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Ya-Ya Xie
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Bei-Bei Dai
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Wei Hu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jin-Fang Ge
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Fei-Hu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China. , .,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China. ,
| |
Collapse
|
35
|
Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 2016; 100:481-9. [PMID: 27354413 DOI: 10.1189/jlb.3ru0316-144r] [Citation(s) in RCA: 355] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved.
Collapse
Affiliation(s)
- Irina Ushach
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| | - Albert Zlotnik
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| |
Collapse
|
36
|
Chitu V, Gokhan Ş, Nandi S, Mehler MF, Stanley ER. Emerging Roles for CSF-1 Receptor and its Ligands in the Nervous System. Trends Neurosci 2016; 39:378-393. [PMID: 27083478 DOI: 10.1016/j.tins.2016.03.005] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
The colony-stimulating factor-1 receptor (CSF-1R) kinase regulates tissue macrophage homeostasis, osteoclastogenesis, and Paneth cell development. However, recent studies in mice have revealed that CSF-1R signaling directly controls the development and maintenance of microglia, and cell autonomously regulates neuronal differentiation and survival. While the CSF-1R-cognate ligands, CSF-1 and interleukin-34 (IL-34) compete for binding to the CSF-1R, they are expressed in a largely non-overlapping manner by mature neurons. The recent identification of a dominantly inherited, adult-onset, progressive dementia associated with inactivating mutations in the CSF-1R highlights the importance of CSF-1R signaling in the brain. We review the roles of the CSF-1R and its ligands in microglial and neural development and function, and their relevance to our understanding of neurodegenerative disease.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Şölen Gokhan
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sayan Nandi
- Departments of Neuroscience and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
37
|
Xing C, Lo EH. Help-me signaling: Non-cell autonomous mechanisms of neuroprotection and neurorecovery. Prog Neurobiol 2016; 152:181-199. [PMID: 27079786 DOI: 10.1016/j.pneurobio.2016.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Self-preservation is required for life. At the cellular level, this fundamental principle is expressed in the form of molecular mechanisms for preconditioning and tolerance. When the cell is threatened, internal cascades of survival signaling become triggered to protect against cell death and defend against future insults. Recently, however, emerging findings suggest that this principle of self-preservation may involve not only intracellular signals; the release of extracellular signals may provide a way to recruit adjacent cells into an amplified protective program. In the central nervous system where multiple cell types co-exist, this mechanism would allow threatened neurons to "ask for help" from glial and vascular compartments. In this review, we describe this new concept of help-me signaling, wherein damaged or diseased neurons release signals that may shift glial and vascular cells into potentially beneficial phenotypes, and help remodel the neurovascular unit. Understanding and dissecting these non-cell autonomous mechanisms of self-preservation in the CNS may lead to novel opportunities for neuroprotection and neurorecovery.
Collapse
Affiliation(s)
- Changhong Xing
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Eng H Lo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
38
|
Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD. Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front Neurosci 2015; 9:385. [PMID: 26578854 PMCID: PMC4624851 DOI: 10.3389/fnins.2015.00385] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/05/2015] [Indexed: 11/18/2022] Open
Abstract
In recent years there has been a resurgence of interest in brain barriers and various roles their intrinsic mechanisms may play in neurological disorders. Such studies require suitable models and markers to demonstrate integrity and functional changes at the interfaces between blood, brain, and cerebrospinal fluid. Studies of brain barrier mechanisms and measurements of plasma volume using dyes have a long-standing history, dating back to the late nineteenth-century. Their use in blood-brain barrier studies continues in spite of their known serious limitations in in vivo applications. These were well known when first introduced, but seem to have been forgotten since. Understanding these limitations is important because Evans blue is still the most commonly used marker of brain barrier integrity and those using it seem oblivious to problems arising from its in vivo application. The introduction of HRP in the mid twentieth-century was an important advance because its reaction product can be visualized at the electron microscopical level, but it also has limitations. Advantages and disadvantages of these markers will be discussed together with a critical evaluation of alternative approaches. There is no single marker suitable for all purposes. A combination of different sized, visualizable dextrans and radiolabeled molecules currently seems to be the most appropriate approach for qualitative and quantitative assessment of barrier integrity.
Collapse
Affiliation(s)
- Norman R Saunders
- Laboratory of Developmental Neurobiology and Neurotrauma, Department of Pharmacology and Therapeutics, University of Melbourne Parkville, VIC, Australia
| | - Katarzyna M Dziegielewska
- Laboratory of Developmental Neurobiology and Neurotrauma, Department of Pharmacology and Therapeutics, University of Melbourne Parkville, VIC, Australia
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, University of Copenhagen Copenhagen, Denmark
| | - Mark D Habgood
- Laboratory of Developmental Neurobiology and Neurotrauma, Department of Pharmacology and Therapeutics, University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
39
|
Role of Microglial Activation in the Pathophysiology of Bacterial Meningitis. Mol Neurobiol 2015; 53:1770-1781. [DOI: 10.1007/s12035-015-9107-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/20/2015] [Indexed: 12/18/2022]
|