1
|
Bainbridge S, Mappi T, Cleaveland S, Chubwa C, Davis A, Grant D, Kibona T, Bwatota S, Larsen F, Lyimo S, Mshana F, Percival A, Shirima G, Mtili B, Musyangi FJ, Tarimo R, Lankester F, Russell G. Field vaccination of locally-owned cattle against malignant catarrhal fever under environmentally challenging conditions in Tanzania. Vaccine 2024; 45:126587. [PMID: 39674010 DOI: 10.1016/j.vaccine.2024.126587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Malignant catarrhal fever (MCF), caused by alcelaphine herpesvirus-1 (AIHV-1) transmitted from wildebeest, is a lethal cattle disease with significant impacts on East African pastoralists. Development of a live attenuated MCF vaccine has prompted research into its use in communities at risk. This study reports results from the first utilisation of the MCF vaccine in locally-owned cattle under field conditions. The study involved a primary two-dose course vaccination of 1634 cattle, followed a year later, by boost vaccination of 385 of these cattle. It aimed to: (a) evaluate the antibody response to a two-dose AlHV-1 primary vaccination course, including initial response, antibody levels after one year, and clinical events post-vaccination; (b) assess how factors like age, reproductive status, body condition, and breed influence the initial response; and (c) compare antibody responses to single- and two-dose booster protocols one year after primary vaccination. Analyses were carried out using linear mixed-effects models and paired t-tests. Clinical incidents were reported in 11/1634 cattle vaccinated during the primary course and in 0/385 cattle during the boost regimens. The primary vaccination resulted in a 9-fold increase in comparison to pre-vaccination antibody levels and the response was consistent across animals of different ages, reproductive statuses and body conditions. While antibody levels declined 11 months after primary vaccination, they remained high, and a single-dose booster vaccination was sufficient to elicit a strong immune response, with only marginal increases after a second booster. The study provides evidence of high immunogenicity and low incidences of clinical events of the vaccine in cattle across individual host factors and immunologically vulnerable groups, under prevailing environmental conditions. It also indicates the utility of a single-dose booster regimen. These findings will support progress towards commercial production and larger-scale adoption which could generate important benefits for the livelihoods, and sustainability of pastoral livestock systems.
Collapse
Affiliation(s)
- Samuel Bainbridge
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tauta Mappi
- Nelson Mandela African Institution of Science and Technology, Tanzania
| | - Sarah Cleaveland
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Alicia Davis
- School of Social & Political Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Dawn Grant
- Moredun Research Institute, Pentlands Science Park, Midlothian, United Kingdom
| | - Tito Kibona
- Nelson Mandela African Institution of Science and Technology, Tanzania
| | - Shedrack Bwatota
- Nelson Mandela African Institution of Science and Technology, Tanzania
| | - Freja Larsen
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Samson Lyimo
- Nelson Mandela African Institution of Science and Technology, Tanzania
| | - Fadhili Mshana
- Nelson Mandela African Institution of Science and Technology, Tanzania
| | - Ann Percival
- Moredun Research Institute, Pentlands Science Park, Midlothian, United Kingdom
| | - Gabriel Shirima
- Nelson Mandela African Institution of Science and Technology, Tanzania
| | - Bakari Mtili
- Nelson Mandela African Institution of Science and Technology, Tanzania
| | | | - Rigobert Tarimo
- Nelson Mandela African Institution of Science and Technology, Tanzania
| | - Felix Lankester
- Paul G. Allen School for Global Health, Washington State University, Pullman, USA; Global Animal Health Tanzania, Arusha, Tanzania.
| | - George Russell
- Moredun Research Institute, Pentlands Science Park, Midlothian, United Kingdom
| |
Collapse
|
2
|
Rong E, Dry I, Dalziel RG, Tan WS. Bovine Transcription Factor POU Class 2 Homeobox 1 (POU2F1/Oct1) Protein Promotes BoHV-1 Replication in MDBK Cells. Viruses 2024; 16:1549. [PMID: 39459888 PMCID: PMC11512350 DOI: 10.3390/v16101549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Bovine herpesvirus type 1 (BoHV-1) causes severe diseases in bovine species and great economic burden to the cattle industry worldwide. Due to its complex life cycle, many host factors that affect BoHV-1 replication remain to be explored. To understand the possible roles that the Oct1 cellular protein could play in this process, we first created Oct1-deficient MDBK cells using CRISPR/Cas9-mediated genome editing. Upon infection, the absence of Oct1 in MDBK cells significantly impacted BoHV-1 replication, a phenotype rescued by over-expressing the wild-type Oct1 protein in the deficient cells. We further found that the expression of all three classes of temporal genes, including essential and non-essential viral genes, were significantly reduced in Oct1 knockout MDBK cells, following both high and low multiplicity of infection. In summary, our findings confirm that the bovine Oct1 protein acts as a pro-viral factor for BoHV-1 replication by promoting its viral gene transcription in MDBK cells.
Collapse
Affiliation(s)
| | | | | | - Wenfang Spring Tan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK (I.D.)
| |
Collapse
|
3
|
Gong M, Myster F, Azouz A, Sanchez Sanchez G, Li S, Charloteaux B, Yang B, Nichols J, Lefevre L, Javaux J, Leemans S, Nivelles O, van Campe W, Roels S, Mostin L, van den Berg T, Davison AJ, Gillet L, Connelley T, Vermijlen D, Goriely S, Vanderplasschen A, Dewals BG. Unraveling clonal CD8 T cell expansion and identification of essential factors in γ-herpesvirus-induced lymphomagenesis. Proc Natl Acad Sci U S A 2024; 121:e2404536121. [PMID: 39088396 PMCID: PMC11317613 DOI: 10.1073/pnas.2404536121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024] Open
Abstract
Alcelaphine gammaherpesvirus 1 (AlHV-1) asymptomatically persists in its natural host, the wildebeest. However, cross-species transmission to cattle results in the induction of an acute and lethal peripheral T cell lymphoma-like disease (PTCL), named malignant catarrhal fever (MCF). Our previous findings demonstrated an essential role for viral genome maintenance in infected CD8+ T lymphocytes but the exact mechanism(s) leading to lymphoproliferation and MCF remained unknown. To decipher how AlHV-1 dysregulates T lymphocytes, we first examined the global phenotypic changes in circulating CD8+ T cells after experimental infection of calves. T cell receptor repertoire together with transcriptomics and epigenomics analyses demonstrated an oligoclonal expansion of infected CD8+ T cells displaying effector and exhaustion gene signatures, including GZMA, GNLY, PD-1, and TOX2 expression. Then, among viral genes expressed in infected CD8+ T cells, we uncovered A10 that encodes a transmembrane signaling protein displaying multiple tyrosine residues, with predicted ITAM and SH3 motifs. Impaired A10 expression did not affect AlHV-1 replication in vitro but rendered AlHV-1 unable to induce MCF. Furthermore, A10 was phosphorylated in T lymphocytes in vitro and affected T cell signaling. Finally, while AlHV-1 mutants expressing mutated forms of A10 devoid of ITAM or SH3 motifs (or both) were able to induce MCF, a recombinant virus expressing a mutated form of A10 unable to phosphorylate its tyrosine residues resulted in the lack of MCF and protected against a wild-type virus challenge. Thus, we could characterize the nature of this γ-herpesvirus-induced PTCL-like disease and identify an essential mechanism explaining its development.
Collapse
Affiliation(s)
- Meijiao Gong
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Françoise Myster
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
| | - Guillem Sanchez Sanchez
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels1050, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| | - Shifang Li
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Benoit Charloteaux
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), GIGA-Genomics core facility, University of Liège, Liège4000, Belgium
| | - Bin Yang
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Jenna Nichols
- Medical Research Council (MRC)-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, MidlothianEH25 9RG, United Kingdom
| | - Justine Javaux
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Sylvain Leemans
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Olivier Nivelles
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Willem van Campe
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Stefan Roels
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Laurent Mostin
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Thierry van den Berg
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Andrew J. Davison
- Medical Research Council (MRC)-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Laurent Gillet
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, MidlothianEH25 9RG, United Kingdom
| | - David Vermijlen
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels1050, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
| | - Alain Vanderplasschen
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| | - Benjamin G. Dewals
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| |
Collapse
|
4
|
Tan WS, Rong E, Dry I, Lillico SG, Law A, Digard P, Whitelaw B, Dalziel RG. GARP and EARP are required for efficient BoHV-1 replication as identified by a genome wide CRISPR knockout screen. PLoS Pathog 2023; 19:e1011822. [PMID: 38055775 PMCID: PMC10727446 DOI: 10.1371/journal.ppat.1011822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
The advances in gene editing bring unprecedented opportunities in high throughput functional genomics to animal research. Here we describe a genome wide CRISPR knockout library, btCRISPRko.v1, targeting all protein coding genes in the cattle genome. Using it, we conducted genome wide screens during Bovine Herpes Virus type 1 (BoHV-1) replication and compiled a list of pro-viral and anti-viral candidates. These candidates might influence multiple aspects of BoHV-1 biology such as viral entry, genome replication and transcription, viral protein trafficking and virion maturation in the cytoplasm. Some of the most intriguing examples are VPS51, VPS52 and VPS53 that code for subunits of two membrane tethering complexes, the endosome-associated recycling protein (EARP) complex and the Golgi-associated retrograde protein (GARP) complex. These complexes mediate endosomal recycling and retrograde trafficking to the trans Golgi Network (TGN). Simultaneous loss of both complexes in MDBKs resulted in greatly reduced production of infectious BoHV-1 virions. We also found that viruses released by these deficient cells severely lack VP8, the most abundant tegument protein of BoHV-1 that are crucial for its virulence. In combination with previous reports, our data suggest vital roles GARP and EARP play during viral protein packaging and capsid re-envelopment in the cytoplasm. It also contributes to evidence that both the TGN and the recycling endosomes are recruited in this process, mediated by these complexes. The btCRISPRko.v1 library generated here has been controlled for quality and shown to be effective in host gene discovery. We hope it will facilitate efforts in the study of other pathogens and various aspects of cell biology in cattle.
Collapse
Affiliation(s)
- Wenfang S. Tan
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Enguang Rong
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Inga Dry
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Simon G. Lillico
- Division of Functional Genetics and Development, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Tropical Livestock Genetics and Health, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andy Law
- Division of Genetics and Genomics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Paul Digard
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Bruce Whitelaw
- Division of Functional Genetics and Development, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Tropical Livestock Genetics and Health, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Robert G. Dalziel
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
5
|
Gong M, Myster F, van Campe W, Roels S, Mostin L, van den Berg T, Vanderplasschen A, Dewals BG. Wildebeest-Derived Malignant Catarrhal Fever: A Bovine Peripheral T Cell Lymphoma Caused by Cross-Species Transmission of Alcelaphine Gammaherpesvirus 1. Viruses 2023; 15:v15020526. [PMID: 36851740 PMCID: PMC9968110 DOI: 10.3390/v15020526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Gammaherpesviruses (γHVs) include viruses that can induce lymphoproliferative diseases and tumors. These viruses can persist in the long term in the absence of any pathological manifestation in their natural host. Alcelaphine gammaherpesvirus 1 (AlHV-1) belongs to the genus Macavirus and asymptomatically infects its natural host, the wildebeest (Connochaetes spp.). However, when transmitted to several susceptible species belonging to the order Artiodactyla, AlHV-1 is responsible for the induction of a lethal lymphoproliferative disease, named wildebeest-derived malignant catarrhal fever (WD-MCF). Understanding the pathogenic mechanisms responsible for the induction of WD-MCF is important to better control the risks of transmission and disease development in susceptible species. The aim of this review is to synthesize the current knowledge on WD-MCF with a particular focus on the mechanisms by which AlHV-1 induces the disease. We discuss the potential mechanisms of pathogenesis from viral entry into the host to the maintenance of viral genomes in infected CD8+ T lymphocytes, and we present current hypotheses to explain how AlHV-1 infection induces a peripheral T cell lymphoma-like disease.
Collapse
Affiliation(s)
- Meijiao Gong
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Laboratory of Parasitology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Françoise Myster
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Willem van Campe
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Stefan Roels
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Laurent Mostin
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Thierry van den Berg
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Alain Vanderplasschen
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Benjamin G. Dewals
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Laboratory of Parasitology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
6
|
Cunha CW, Baker KN, O’Toole D, Cole E, Shringi S, Dewals BG, Vanderplasschen A, Li H. A Vaccine Targeting Ovine Herpesvirus 2 Glycoprotein B Protects against Sheep-Associated Malignant Catarrhal Fever. Vaccines (Basel) 2022; 10:vaccines10122156. [PMID: 36560568 PMCID: PMC9786699 DOI: 10.3390/vaccines10122156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Malignant catarrhal fever (MCF) is a complex and often fatal disease of ungulates. Effective vaccines are needed to avoid MCF outbreaks and mitigate losses. This study aimed to evaluate a sheep-associated MCF (SA-MCF) vaccine candidate targeting ovine herpesvirus 2 (OvHV-2) glycoprotein B (gB). Rabbits were used as a laboratory animal model to test the safety, immunogenicity, and protective efficacy of a chimeric virus consisting of a recombinant, non-pathogenic strain of alcelaphine herpesvirus-1 encoding OvHV-2 ORF8 to express gB (AlHV-1∆ORF73/OvHV-2-ORF8). Viral-vectored immunizations were performed by using the AlHV-1∆ORF73/OvHV-2-ORF8 chimera alone or as a DNA prime (OvHV-2-ORF8)-virus boost regimen. The viral vector was inoculated by intravenous or intramuscular routes and the DNA was delivered by intradermal shots using a gene gun. The vaccine candidates were deemed safe as no clinical signs were observed following any of the immunizations. Anti-OvHV-2 gB antibodies with neutralizing activity were induced by all immunogens. At three weeks post-final immunization, all animals were challenged intranasally with a lethal dose of OvHV-2. MCF protection rates ranging from 66.7% to 71.4% were observed in vaccinated rabbits, while all mock-vaccinated animals developed the disease. The significant protective efficacy obtained with the vaccine platforms tested in this study encourages further trials in relevant livestock species, such as cattle and bison.
Collapse
Affiliation(s)
- Cristina W. Cunha
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
- Correspondence: ; Tel.: +1-509-335-6072
| | - Katherine N. Baker
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164, USA
| | - Donal O’Toole
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82070, USA
| | - Emily Cole
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Smriti Shringi
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Benjamin G. Dewals
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Alain Vanderplasschen
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Hong Li
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164, USA
| |
Collapse
|
7
|
Analysis of immune responses to attenuated alcelaphine herpesvirus 1 formulated with and without adjuvant. Vaccine X 2021; 8:100090. [PMID: 33912826 PMCID: PMC8065228 DOI: 10.1016/j.jvacx.2021.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 11/24/2022] Open
Abstract
MCF vaccine was tested with and without adjuvant and containing inactivated virus. Adjuvant was required for optimal virus neutralising antibody responses. Storage of AlHV-1 with Emulsigen adjuvant significantly reduced virus viability. Vaccination with adjuvant-inactivated AlHV-1 did not reduce antibody responses.
The experimental vaccine for bovine malignant catarrhal fever consists of viable attenuated alcelaphine herpesvirus 1 (AlHV-1) derived by extensive culture passage, combined with an oil-in-water adjuvant, delivered intramuscularly. This immunisation strategy was over 80% effective in previous experimental and field trials and protection appeared to be associated with induction of virus-neutralising antibodies. Whether the vaccine virus is required to be viable at the point of immunisation and whether adjuvant is required to induce the appropriate immune responses remains unclear. To address these issues two studies were performed, firstly to analyse immune responses in the presence and absence of adjuvant and secondly, to investigate immune responses to vaccines containing adjuvant plus viable or inactivated AlHV-1. The first study showed that viable attenuated AlHV-1 in the absence of adjuvant induced virus-specific antibodies but the titres of virus-neutralising antibodies were significantly lower than those induced by vaccine containing viable virus and adjuvant, suggesting adjuvant was required for optimal responses. In contrast, the second study found that the vaccine containing inactivated (>99.9%) AlHV-1 induced similar levels of virus-neutralising antibody to the equivalent formulation containing viable AlHV-1. Together these studies suggest that the MCF vaccine acts as an antigen depot for induction of immune responses, requiring adjuvant and a suitable antigen source, which need not be viable virus. These observations may help in directing the development of alternative MCF vaccine formulations for distribution in the absence of an extensive cold chain.
Collapse
|
8
|
Kiffner C, Kioko J, Baylis J, Beckwith C, Brunner C, Burns C, Chavez‐Molina V, Cotton S, Glazik L, Loftis E, Moran M, O'Neill C, Theisinger O, Kissui B. Long-term persistence of wildlife populations in a pastoral area. Ecol Evol 2020; 10:10000-10016. [PMID: 33005359 PMCID: PMC7520174 DOI: 10.1002/ece3.6658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023] Open
Abstract
Facilitating coexistence between people and wildlife is a major conservation challenge in East Africa. Some conservation models aim to balance the needs of people and wildlife, but the effectiveness of these models is rarely assessed. Using a case-study approach, we assessed the ecological performance of a pastoral area in northern Tanzania (Manyara Ranch) and established a long-term wildlife population monitoring program (carried out intermittently from 2003 to 2008 and regularly from 2011 to 2019) embedded in a distance sampling framework. By comparing density estimates of the road transect-based long-term monitoring to estimates derived from systematically distributed transects, we found that the bias associated with nonrandom placement of transects was nonsignificant. Overall, cattle and sheep and goat reached the greatest densities and several wildlife species occurred at densities similar (zebra, wildebeest, waterbuck, Kirk's dik-dik) or possibly even greater (giraffe, eland, lesser kudu, Grant's gazelle, Thomson's gazelle) than in adjacent national parks in the same ecosystem. Generalized linear mixed models suggested that most wildlife species (8 out of 14) reached greatest densities during the dry season, that wildlife population densities either remained constant or increased over the 17-year period, and that herbivorous livestock species remained constant, while domestic dog population decreased over time. Cross-species correlations did not provide evidence for interference competition between grazing or mixed livestock species and wildlife species but indicate possible negative relationships between domestic dog and warthog populations. Overall, wildlife and livestock populations in Manyara Ranch appear to coexist over the 17-year span. Most likely, this is facilitated by existing connectivity to adjacent protected areas, effective anti-poaching efforts, spatio-temporal grazing restrictions, favorable environmental conditions of the ranch, and spatial heterogeneity of surface water and habitats. This long-term case study illustrates the potential of rangelands to simultaneously support wildlife conservation and human livelihood goals if livestock grazing is restricted in space, time, and numbers.
Collapse
Affiliation(s)
- Christian Kiffner
- Center for Wildlife Management StudiesThe School For Field StudiesKaratuTanzania
| | - John Kioko
- Center for Wildlife Management StudiesThe School For Field StudiesKaratuTanzania
| | - Jack Baylis
- Department of Environmental Studies and SciencesSanta Clara UniversitySanta ClaraCAUSA
| | | | - Craig Brunner
- Psychology DepartmentWhitman CollegeWalla WallaWAUSA
| | - Christine Burns
- Department of Environmental ScienceDickinson CollegeCarlislePAUSA
| | | | - Sara Cotton
- Neuroscience and Behavior DepartmentVassar CollegePoughkeepsieNYUSA
| | - Laura Glazik
- Department of Animal ScienceUniversity of Illinois, Urbana‐ChampaignChampaignILUSA
| | - Ellen Loftis
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVTUSA
| | - Megan Moran
- Biology DepartmentCollege of the Holy CrossWorcesterMAUSA
| | - Caitlin O'Neill
- Department of BiologySt. Mary's College of MarylandSt. Mary's CityMDUSA
| | - Ole Theisinger
- Center for Wildlife Management StudiesThe School For Field StudiesKaratuTanzania
| | - Bernard Kissui
- Center for Wildlife Management StudiesThe School For Field StudiesKaratuTanzania
| |
Collapse
|
9
|
Abstract
Introduction Malignant catarrhal fever (MCF) is a rare, under-explored lethal viral infection of cattle with gammaherpesvirus aetiological agents. Most often, the disease occurs on farms where cattle and sheep are kept together. However, other trigger mechanisms and environmental factors contribute. This study investigates the causation of MCF. Material and Methods An outbreak of MCF occurred in June - August 2017 in Kharchev village in Irkutsk Oblast, Russia. In this paper, we provide epidemiological (sanitary status of pastures, watering places, and premises) and weather data during the outbreak, and descriptions of the clinical signs and post-mortem changes in cattle. The virus was detected and isolated from pathological material samples and identified by molecular methods. Results Extreme weather conditions, mixed-herd cattle and sheep farming, and unsatisfactory feed quality contributed to the outbreak. A virus related to herpesvirus OvHV2 was isolated and typed (MCF/Irkutsk/2017). Phylogenetic analysis showed its close genetic relationship to isolates from cattle and sheep in Germany, USA, and the Netherlands. Conclusion Sporadic outbreaks of MCF caused by biotic and abiotic factors together are typical for the Russian Federation, and the Irkutsk outbreak epitomised this. Temperature anomalies caused pasture depletion, resulting in feed and water deficiency for grazing animals and dehydration and acidosis. Heat stress in animals ultimately led to the occurrence of MCF in the herd.
Collapse
|
10
|
Myster F, Gong MJ, Javaux J, Suárez NM, Wilkie GS, Connelley T, Vanderplasschen A, Davison AJ, Dewals BG. Alcelaphine herpesvirus 1 genes A7 and A8 regulate viral spread and are essential for malignant catarrhal fever. PLoS Pathog 2020; 16:e1008405. [PMID: 32176737 PMCID: PMC7098659 DOI: 10.1371/journal.ppat.1008405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/26/2020] [Accepted: 02/17/2020] [Indexed: 11/18/2022] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus that is carried asymptomatically by wildebeest. Upon cross-species transmission to other ruminants, including domestic cattle, AlHV-1 induces malignant catarrhal fever (MCF), which is a fatal lymphoproliferative disease resulting from proliferation and uncontrolled activation of latently infected CD8+ T cells. Two laboratory strains of AlHV-1 are used commonly in research: C500, which is pathogenic, and WC11, which has been attenuated by long-term maintenance in cell culture. The published genome sequence of a WC11 seed stock from a German laboratory revealed the deletion of two major regions. The sequence of a WC11 seed stock used in our laboratory also bears these deletions and, in addition, the duplication of an internal sequence in the terminal region. The larger of the two deletions has resulted in the absence of gene A7 and a large portion of gene A8. These genes are positional orthologs of the Epstein-Barr virus genes encoding envelope glycoproteins gp42 and gp350, respectively, which are involved in viral propagation and switching of cell tropism. To investigate the degree to which the absence of A7 and A8 participates in WC11 attenuation, recombinant viruses lacking these individual functions were generated in C500. Using bovine nasal turbinate and embryonic lung cell lines, increased cell-free viral propagation and impaired syncytia formation were observed in the absence of A7, whereas cell-free viral spread was inhibited in the absence of A8. Therefore, A7 appears to be involved in cell-to-cell viral spread, and A8 in viral cell-free propagation. Finally, infection of rabbits with either mutant did not induce the signs of MCF or the expansion of infected CD8+ T cells. These results demonstrate that A7 and A8 are both essential for regulating viral spread and suggest that AlHV-1 requires both genes to efficiently spread in vivo and reach CD8+ T lymphocytes and induce MCF. Gammaherpesvirus entry into immune cells can result in latent infection which is associated with viral persistence and severe lymphoproliferative diseases. Gammaherpesviruses enter target cells during primary infection via a complex machinery of envelope glycoproteins. Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus carried by wildebeests without causing any clinical sign but induces malignant catarrhal fever (MCF) upon transmission to several species of ruminants including cattle. MCF is a deadly lymphoproliferative disease developing after a prolonged incubation period. In the present study, we demonstrated that the genes A7 and A8 of AlHV-1 encode envelope glycoproteins that are orthologs of Epstein-Barr virus gp42 and gp350, which regulate cell tropism switch. Impairment of A7 or A8 expression in a pathogenic strain of AlHV-1 strongly altered viral propagation in vitro. We further showed using bovine respiratory cell lines in vitro that AlHV-1 uses A7 to mediate cell-to-cell spread whereas A8 is necessary for cell-free viral propagation. Then, infection of rabbits as an experimental model to induce MCF with recombinant viral strains demonstrated that both A7 and A8 are essential for the induction of MCF. Thus, this study highlights an essential role for gp42 and gp350 orthologs in the pathogenesis of a gammaherpesvirus-induced lymphoproliferative disease.
Collapse
Affiliation(s)
- Françoise Myster
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
| | - Mei-Jiao Gong
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
| | - Justine Javaux
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, United Kingdom
| | - Gavin S. Wilkie
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, United Kingdom
| | - Tim Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, United Kingdom
| | - Benjamin G. Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
11
|
Railey AF, Lankester F, Lembo T, Reeve R, Shirima G, Marsh TL. Enhancing livestock vaccination decision-making through rapid diagnostic testing. WORLD DEVELOPMENT PERSPECTIVES 2019; 16:100144. [PMID: 32201751 PMCID: PMC7067263 DOI: 10.1016/j.wdp.2019.100144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
•Compared to vaccination, the collective approach to diagnostic testing presents a low-fixed cost.•Existing household livestock-health behaviors increase the likelihood for uptake of preventative health practices.•Initial evidence to support household investments in livestock preventative health over therapeutic treatments.
Collapse
Affiliation(s)
- Ashley F. Railey
- Paul G. Allen School for Global Animal Health, Washington State University, USA
- Corresponding author.
| | - Felix Lankester
- Paul G. Allen School for Global Animal Health, Washington State University, USA
| | - Tiziana Lembo
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Richard Reeve
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Gabriel Shirima
- Paul G. Allen School for Global Animal Health, Washington State University, USA
- Nelson Mandela African Institution of Science and Technology, Tanzania
| | - Thomas L. Marsh
- Paul G. Allen School for Global Animal Health, Washington State University, USA
- School of Economic Sciences, Washington State University, USA
| |
Collapse
|
12
|
Lankester F, Lugelo A, Kazwala R, Keyyu J, Cleaveland S, Yoder J. Correction: The Economic Impact of Malignant Catarrhal Fever on Pastoralist Livelihoods. PLoS One 2019; 14:e0223347. [PMID: 31557267 PMCID: PMC6762141 DOI: 10.1371/journal.pone.0223347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
13
|
A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle. Vaccine 2019; 37:5946-5953. [PMID: 31473000 DOI: 10.1016/j.vaccine.2019.08.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 11/23/2022]
Abstract
Wildebeest-associated malignant catarrhal fever (WA-MCF), a fatal disease of cattle caused by alcelaphine herpesvirus 1 (AlHV-1), is one of the most important seasonal diseases of cattle in wildebeest endemic areas, with annual incidence reaching 10%. Here we report efficacy of over 80% for a vaccine based on the attenuated AlHV-1 C500 strain, in preventing fatal WA-MCF in cattle exposed to natural wildebeest challenge. The study was conducted at Kapiti Plains Ranch Ltd, south-east of Nairobi, Kenya. In 2016, 146 cattle were selected for a randomised placebo-controlled trial. Cattle were stratified according to breed and age and randomly assigned to groups given vaccine or culture medium mixed with Emulsigen®. Cattle received prime and boost inoculations one month apart and few adverse reactions (n = 4) were observed. Indirect ELISA demonstrated that all cattle in the vaccine group developed a serological response to AlHV-1. The study herd was grazed with wildebeest from one month after booster vaccination. Three cattle, two that received vaccine and one control, succumbed to conditions unrelated to WA-MCF before the study ended. Twenty-five cattle succumbed to WA-MCF; four of the remaining 71 cattle in the vaccine group (5.6%) and 21 of the remaining 72 control cattle (29.2%; χ2 = 13.6, df = 1, p < 0.001). All of the WA-MCF affected cattle were confirmed by PCR to be infected with AlHV-1 and in 23 cases exhibited histopathology typical of WA-MCF. Vaccine efficacy was determined to be 80.6% (95% CI 46.5-93.0%). Hence, the AlHV-1 C500 vaccine is a safe and potentially effective novel method for controlling WA-MCF in cattle. The implementation of this vaccine may have significant impacts on marginalised cattle keeping communities.
Collapse
|
14
|
Orono SA, Gitao GC, Mpatswenumugabo JP, Chepkwony M, Mutisya C, Okoth E, Bronsvoort BMDC, Russell GC, Nene V, Cook EAJ. Field validation of clinical and laboratory diagnosis of wildebeest associated malignant catarrhal fever in cattle. BMC Vet Res 2019; 15:69. [PMID: 30819152 PMCID: PMC6396541 DOI: 10.1186/s12917-019-1818-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
Background Wildebeest associated malignant catarrhal fever (WA-MCF) is a fatal disease of cattle. Outbreaks are seasonal and associated with close interaction between cattle and calving wildebeest. In Kenya, WA-MCF has a dramatic effect on cattle-keepers who lose up to 10% of their cattle herds per year. The objective of this study was to report the impact of WA-MCF on a commercial ranch and assess the performance of clinical diagnosis compared to laboratory diagnosis as a disease management tool. A retrospective study of WA-MCF in cattle was conducted from 2014 to 2016 at Kapiti Plains Ranch Ltd., Kenya. During this period, 325 animals showed clinical signs of WA-MCF and of these, 123 were opportunistically sampled. In addition, 51 clinically healthy animals were sampled. Nested polymerase chain reaction (PCR) and indirect enzyme linked immunosorbent assay (ELISA) were used to confirm clinically diagnosed cases of WA-MCF. A latent class model (LCM) was used to evaluate the diagnostic parameters of clinical diagnosis and the tests in the absence of a gold standard. Results By PCR, 94% (95% C.I. 89–97%) of clinically affected animals were positive to WA-MCF while 63% (95% C.I. 54–71%) were positive by indirect ELISA. The LCM demonstrated the indirect ELISA had poor sensitivity 63.3% (95% PCI 54.4–71.7%) and specificity 62.6% (95% PCI 39.2–84.9%) while the nested PCR performed better with sensitivity 96.1% (95% PCI 90.7–99.7%) and specificity 92.9% (95% PCI 76.1–99.8%). The sensitivity and specificity of clinical diagnosis were 99.1% (95% PCI 96.8–100.0%) and 71.5% (95% PCI 48.0–97.2%) respectively. Conclusions Clinical diagnosis was demonstrated to be an effective method to identify affected animals although animals may be incorrectly classified resulting in financial loss. The study revealed indirect ELISA as a poor test and nested PCR to be a more appropriate confirmatory test for diagnosing acute WA-MCF. However, the logistics of PCR make it unsuitable for field diagnosis of WA-MCF. The future of WA-MCF diagnosis should be aimed at development of penside techniques, which will allow for fast detection in the field. Electronic supplementary material The online version of this article (10.1186/s12917-019-1818-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheillah Ayiela Orono
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, P. O. Box, 29053, Kangemi, Kenya.,International Livestock Research Institute, Old Naivasha Road, P. O. Box 30709, Nairobi, Kenya
| | - George Chege Gitao
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, P. O. Box, 29053, Kangemi, Kenya
| | - Jean Pierre Mpatswenumugabo
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, P. O. Box, 29053, Kangemi, Kenya.,Department of Veterinary Medicine, University of Rwanda, P.O. Box: 210, Musanze, Rwanda
| | - Maurine Chepkwony
- International Livestock Research Institute, Old Naivasha Road, P. O. Box 30709, Nairobi, Kenya
| | - Christine Mutisya
- International Livestock Research Institute, Old Naivasha Road, P. O. Box 30709, Nairobi, Kenya
| | - Edward Okoth
- International Livestock Research Institute, Old Naivasha Road, P. O. Box 30709, Nairobi, Kenya
| | | | | | - Vishvanath Nene
- International Livestock Research Institute, Old Naivasha Road, P. O. Box 30709, Nairobi, Kenya
| | | |
Collapse
|
15
|
Pesavento PA, Cunha CW, Li H, Jackson K, O'Toole D. In Situ Hybridization for Localization of Ovine Herpesvirus 2, the Agent of Sheep-Associated Malignant Catarrhal Fever, in Formalin-Fixed Tissues. Vet Pathol 2018; 56:78-86. [PMID: 30222071 DOI: 10.1177/0300985818798085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A constraint on understanding the pathogenesis of malignant catarrhal fever (MCF) is the limited number of tools to localize infected cells. The amount of detectable virus, visualized in the past either by immunohistochemistry or in situ hybridization (ISH), has been modest in fixed or frozen tissues. This complicates our understanding of the widespread lymphoid proliferation, epithelial necrosis/apoptosis, and arteritis-phlebitis that characterize MCF. In this work, we developed a probe-based in situ hybridization assay targeting 2 ovine herpesvirus 2 (OvHV-2) genes, as well as their respective transcripts, in formalin-fixed tissues. Using this approach, OvHV-2 nucleic acids were detected in lymphocytes in MCF-affected animals following both natural infection (American bison and domestic cattle) and experimental infection (American bison, rabbits, and pigs). The probe did not cross-react with 4 closely related gammaherpesviruses that also cause MCF: alcelaphine herpesvirus 1, alcelaphine herpesvirus 2, caprine herpesvirus 2, and ibex-MCF virus (MCFV). No signal was detected in control tissues negative for OvHV-2. ISH will be of value in analyzing the natural progression of OvHV-2 infection in time-course studies following experimental infection and in addressing the pathogenesis of MCF.
Collapse
Affiliation(s)
- Patricia A Pesavento
- 1 Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Cristina W Cunha
- 2 Animal Disease Research Unit, USDA-Agricultural Research Service, Washington State University, Pullman, WA, USA
- 3 Paul G. Allen School for Global Animal Health, Allen Center, Washington State University, Pullman, WA, USA
| | - Hong Li
- 2 Animal Disease Research Unit, USDA-Agricultural Research Service, Washington State University, Pullman, WA, USA
- 4 Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Kenneth Jackson
- 1 Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Donal O'Toole
- 5 Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
16
|
Molecular Diagnosis of Felis catus Gammaherpesvirus 1 (FcaGHV1) Infection in Cats of Known Retrovirus Status with and without Lymphoma. Viruses 2018. [PMID: 29538321 PMCID: PMC5869521 DOI: 10.3390/v10030128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The pathogenicity of Felis catus gammaherpesvirus 1 (FcaGHV1), a common infection of domestic cats, is unknown. To explore an association between FcaGHV1 detection and feline lymphoma, a retrospective, cross-sectional, disease-association study was conducted. The infection status of all cats for feline immunodeficiency virus and feline leukaemia virus was determined. Neither a molecular diagnosis of FcaGHV1 nor whole-blood FcaGHV1 load was related to outcome in 122 lymphoma cases compared with 71 controls matched for age and sex. Molecular analysis of lymphoma-derived DNA paired with autologous uninvolved tissue did not suggest restriction of FcaGHV1 DNA to tumour tissue. FcaGHV1 DNA detection was associated with significantly shorter survival in lymphoma cases, an observation that could not be adequately explained by treatment differences. In addition, regressive feline leukaemia virus infection was identified as a risk factor for lymphoma. A history of fighting or roaming was identified as a novel epidemiological risk factor for FcaGHV1 detection, lending support to intercat aggression as a potential route of transmission. Studies investigating the cellular location and expression of FcaGHV1 are indicated to assist in ruling out a lymphomagenic role for this virus. Prospective investigation of FcaGHV1 DNA detection as a prognostic marker in feline lymphoma is warranted.
Collapse
|
17
|
Sorel O, Chen T, Myster F, Javaux J, Vanderplasschen A, Dewals BG. Macavirus latency-associated protein evades immune detection through regulation of protein synthesis in cis depending upon its glycin/glutamate-rich domain. PLoS Pathog 2017; 13:e1006691. [PMID: 29059246 PMCID: PMC5695634 DOI: 10.1371/journal.ppat.1006691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 11/02/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a γ-herpesvirus (γ-HV) belonging to the macavirus genus that persistently infects its natural host, the wildebeest, without inducing any clinical sign. However, cross-transmission to other ruminant species causes a deadly lymphoproliferative disease named malignant catarrhal fever (MCF). AlHV-1 ORF73 encodes the latency-associated nuclear antigen (LANA)-homolog protein (aLANA). Recently, aLANA has been shown to be essential for viral persistence in vivo and induction of MCF, suggesting that aLANA shares key properties of other γ-HV genome maintenance proteins. Here we have investigated the evasion of the immune response by aLANA. We found that a glycin/glutamate (GE)-rich repeat domain was sufficient to inhibit in cis the presentation of an epitope linked to aLANA. Although antigen presentation in absence of GE was dependent upon proteasomal degradation of aLANA, a lack of GE did not affect protein turnover. However, protein self-synthesis de novo was downregulated by aLANA GE, a mechanism directly associated with reduced antigen presentation in vitro. Importantly, codon-modification of aLANA GE resulted in increased antigen presentation in vitro and enhanced induction of antigen-specific CD8+ T cell responses in vivo, indicating that mRNA constraints in GE rather than peptidic sequence are responsible for cis-limitation of antigen presentation. Nonetheless, GE-mediated limitation of antigen presentation in cis of aLANA was dispensable during MCF as rabbits developed the disease after virus infection irrespective of the expression of full-length or GE-deficient aLANA. Altogether, we provide evidence that inhibition in cis of protein synthesis through GE is likely involved in long-term immune evasion of AlHV-1 latent persistence in the wildebeest natural host, but dispensable in MCF pathogenesis.
Collapse
Affiliation(s)
- Océane Sorel
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Ting Chen
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Françoise Myster
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Justine Javaux
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Benjamin G. Dewals
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
18
|
Discovery of herpesviruses in Canadian wildlife. Arch Virol 2016; 162:449-456. [DOI: 10.1007/s00705-016-3126-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/16/2016] [Indexed: 10/20/2022]
|
19
|
Lankester F, Lugelo A, Werling D, Mnyambwa N, Keyyu J, Kazwala R, Grant D, Smith S, Parameswaran N, Cleaveland S, Russell G, Haig D. The efficacy of alcelaphine herpesvirus-1 (AlHV-1) immunization with the adjuvants Emulsigen ® and the monomeric TLR5 ligand FliC in zebu cattle against AlHV-1 malignant catarrhal fever induced by experimental virus challenge. Vet Microbiol 2016; 195:144-153. [PMID: 27771060 PMCID: PMC5081063 DOI: 10.1016/j.vetmic.2016.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/01/2022]
Abstract
Vaccination induces a pharyngeal antibody response in shorthorn zebu cross (SZC). Direct challenge with the AlHV-1 virus is effective at inducing MCF in SZC. Attenuated AlHV–1 + Emulsigen® vaccine efficacy in SZC calculated to be 50%. Bacterial flagellin is not a good adjuvant as inclusion reduced antibody response. We provide evidence that non-fatal AlHV-1 infections occur in SZC.
Malignant catarrhal fever (MCF) is a fatal disease of cattle that, in East Africa, follows contact with wildebeest excreting alcelaphine herpesvirus 1 (AlHV-1). Recently an attenuated vaccine (atAlHV-1) was tested under experimental challenge on Friesian-Holstein (FH) cattle and gave a vaccine efficacy (VE) of approximately 90%. However testing under field conditions on an East African breed, the shorthorn zebu cross (SZC), gave a VE of 56% suggesting that FH and SZC cattle may respond differently to the vaccine. To investigate, a challenge trial was carried out using SZC. Additionally three adjuvant combinations were tested: (i) Emulsigen®, (ii) bacterial flagellin (FliC) and (iii) Emulsigen® + bacterial flagellin. We report 100% seroconversion in all immunized cattle. The group inoculated with atAlHV-1 + Emulsigen® had significantly higher antibody titres than groups inoculated with FliC, the smallest number of animals that became infected and the fewest fatalities, suggesting this was the most effective combination. A larger study is required to more accurately determine the protective effect of this regime in SZC. There was an apparent inhibition of the antibody response in cattle inoculated with atAlHV-1 + FliC, suggesting FliC might induce an immune suppressive mechanism. The VE in SZC (50–60%) was less than that in FH (80–90%). We speculate that this might be due to increased risk of disease in vaccinated SZC (suggesting that the vaccine may be less effective at stimulating an appropriate immune response in this breed) and/or increased survival in unvaccinated SZC (suggesting that these cattle may have a degree of prior immunity against infection with AlHV-1).
Collapse
Affiliation(s)
- Felix Lankester
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA; School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - Ahmed Lugelo
- Faculty of Veterinary Medicine, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Dirk Werling
- Royal Veterinary College, Department of Pathology and Pathogen Biology, London, UK
| | - Nicholas Mnyambwa
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - Julius Keyyu
- Tanzanian Wildlife Research Institute, Arusha, Tanzania
| | - Rudovick Kazwala
- Faculty of Veterinary Medicine, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Dawn Grant
- Moredun Research Institute, Midlothian, Edinburgh, UK
| | - Sarah Smith
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Nevi Parameswaran
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Sarah Cleaveland
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - David Haig
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.
| |
Collapse
|
20
|
Kiffner C, Nagar S, Kollmar C, Kioko J. Wildlife species richness and densities in wildlife corridors of Northern Tanzania. J Nat Conserv 2016. [DOI: 10.1016/j.jnc.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Kukielka EA, Jori F, Martínez-López B, Chenais E, Masembe C, Chavernac D, Ståhl K. Wild and Domestic Pig Interactions at the Wildlife-Livestock Interface of Murchison Falls National Park, Uganda, and the Potential Association with African Swine Fever Outbreaks. Front Vet Sci 2016; 3:31. [PMID: 27148545 PMCID: PMC4831202 DOI: 10.3389/fvets.2016.00031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/31/2016] [Indexed: 12/27/2022] Open
Abstract
Bushpigs (BPs) (Potamochoerus larvatus) and warthogs (WHs) (Phacochoerus africanus), which are widely distributed in Eastern Africa, are likely to cohabitate in the same environment with domestic pigs (DPs), facilitating the transmission of shared pathogens. However, potential interactions between BP, WH, and DP, and the resulting potential circulation of infectious diseases have rarely been investigated in Africa to date. In order to understand the dynamics of such interactions and the potential influence of human behavior and husbandry practices on them, individual interviews (n = 233) and participatory rural appraisals (n = 11) were carried out among Ugandan pig farmers at the edge of Murchison Falls National Park, northern Uganda. In addition, as an example of possible implications of wild and DP interactions, non-linear multivariate analysis (multiple correspondence analyses) was used to investigate the potential association between the aforementioned factors (interactions and human behavior and practices) and farmer reported African swine fever (ASF) outbreaks. No direct interactions between wild pigs (WPs) and DP were reported in our study area. However, indirect interactions were described by 83 (35.6%) of the participants and were identified to be more common at water sources during the dry season. Equally, eight (3.4%) farmers declared exposing their DP to raw hunting leftovers of WPs. The exploratory analysis performed suggested possible associations between the farmer reported ASF outbreaks and indirect interactions, free-range housing systems, dry season, and having a WH burrow less than 3 km from the household. Our study was useful to gather local knowledge and to identify knowledge gaps about potential interactions between wild and DP in this area. This information could be useful to facilitate the design of future observational studies to better understand the potential transmission of pathogens between wild and DPs.
Collapse
Affiliation(s)
- Esther A Kukielka
- Center for Animal Disease Modeling and Surveillance (CADMS), VM: Medicine & Epidemiology, University of California Davis , Davis, CA , USA
| | - Ferran Jori
- Integrated Animal Risk Management (AGIRs), CIRAD Campus International de Baillarguet, Montpellier, France; Department of Animal Science and Production, Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), VM: Medicine & Epidemiology, University of California Davis , Davis, CA , USA
| | - Erika Chenais
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Science (SLU), Uppsala, Sweden
| | - Charles Masembe
- Department of Biological Sciences, Makerere University , Kampala , Uganda
| | - David Chavernac
- Control of Exotic and Emerging Animal Diseases (CMAEE), CIRAD Campus International de Baillarguet , Montpellier , France
| | - Karl Ståhl
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Science (SLU), Uppsala, Sweden
| |
Collapse
|
22
|
Lankester F, Russell GC, Lugelo A, Ndabigaye A, Mnyambwa N, Keyyu J, Kazwala R, Grant D, Percival A, Deane D, Haig DM, Cleaveland S. A field vaccine trial in Tanzania demonstrates partial protection against malignant catarrhal fever in cattle. Vaccine 2015; 34:831-8. [PMID: 26706270 PMCID: PMC4742522 DOI: 10.1016/j.vaccine.2015.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 10/29/2022]
Abstract
Malignant catarrhal fever (MCF) is a fatal lymphoproliferative disease of cattle that, in East Africa, results from transmission of the causative virus, alcelaphine herpesvirus 1 (AlHV-1), from wildebeest. A vaccine field trial involving an attenuated AlHV-1 virus vaccine was performed over two wildebeest calving seasons on the Simanjiro Plain of northern Tanzania. Each of the two phases of the field trial consisted of groups of 50 vaccinated and unvaccinated cattle, which were subsequently exposed to AlHV-1 challenge by herding toward wildebeest. Vaccination resulted in the induction of virus-specific and virus-neutralizing antibodies. Some cattle in the unvaccinated groups also developed virus-specific antibody responses but only after the start of the challenge phase of the trial. PCR of DNA from blood samples detected AlHV-1 infection in both groups of cattle but the frequency of infection was significantly lower in the vaccinated groups. Some infected animals showed clinical signs suggestive of MCF but few animals went on to develop fatal MCF, with similar numbers in vaccinated and unvaccinated groups. This study demonstrated a baseline level of MCF-seropositivity among cattle in northern Tanzania of 1% and showed that AlHV-1 virus-neutralizing antibodies could be induced in Tanzanian zebu shorthorn cross cattle by our attenuated vaccine, a correlate of protection in previous experimental trials. The vaccine reduced infection rates by 56% in cattle exposed to wildebeest but protection from fatal MCF could not be determined due to the low number of fatal cases.
Collapse
Affiliation(s)
- F Lankester
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA; School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania.
| | - G C Russell
- Moredun Research Institute, Midlothian, Edinburgh, UK
| | - A Lugelo
- Faculty of Veterinary Medicine, Sokoine University of Agriculture, Morogoro, Tanzania
| | - A Ndabigaye
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania; Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania
| | - N Mnyambwa
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - J Keyyu
- Tanzanian Wildlife Research Institute, Arusha, Tanzania
| | - R Kazwala
- Faculty of Veterinary Medicine, Sokoine University of Agriculture, Morogoro, Tanzania
| | - D Grant
- Moredun Research Institute, Midlothian, Edinburgh, UK
| | - A Percival
- Moredun Research Institute, Midlothian, Edinburgh, UK
| | - D Deane
- Moredun Research Institute, Midlothian, Edinburgh, UK
| | - D M Haig
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - S Cleaveland
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK; School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| |
Collapse
|
23
|
Wambua L, Wambua PN, Ramogo AM, Mijele D, Otiende MY. Wildebeest-associated malignant catarrhal fever: perspectives for integrated control of a lymphoproliferative disease of cattle in sub-Saharan Africa. Arch Virol 2015; 161:1-10. [PMID: 26446889 PMCID: PMC4698299 DOI: 10.1007/s00705-015-2617-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Abstract
Wildebeest-associated malignant catarrhal fever (WA-MCF), an acute lymphoproliferative disease of cattle caused by alcelaphine herpesvirus 1 (AlHV-1), remains a significant constraint to cattle production in nomadic pastoralist systems in eastern and southern Africa. The transmission of WA-MCF is dependent on the presence of the wildlife reservoir, i.e. wildebeest, belonging to the species Connochaetes taurinus and Connochaetes gnou; hence, the distribution of WA-MCF is largely restricted to Kenya, Tanzania and the Republic of South Africa, where wildebeest are present. WA-MCF is analogous to sheep-associated MCF (SA-MCF) in many aspects, with the latter having sheep as its reservoir host and a more global distribution, mainly in developed countries with intensive livestock production systems. However, unlike SA-MCF, the geographic seclusion of WA-MCF may have contributed to an apparent neglect in research efforts aimed at increased biological understanding and control of the disease. This review aims to highlight the importance of WA-MCF and the need for intensified research towards measures for its integrated control. We discuss current knowledge on transmission and geographical distribution in eastern and southern Africa and the burden of WA-MCF in affected vulnerable pastoral communities in Africa. Recent findings towards vaccine development and pertinent knowledge gaps for future research efforts on WA-MCF are also considered. Finally, integrated control of WA-MCF based on a logical three-pronged framework is proposed, contextualizing vaccine development, next-generation diagnostics, and diversity studies targeted to the viral pathogen and cattle hosts.
Collapse
Affiliation(s)
- Lillian Wambua
- School of Biological Sciences, University of Nairobi, P.O Box 30197, 00100, Nairobi, Kenya. .,International Center for Insect Physiology and Ecology, P.O Box 30772, 00100, Nairobi, Kenya.
| | - Peninah Nduku Wambua
- School of Biological Sciences, University of Nairobi, P.O Box 30197, 00100, Nairobi, Kenya.,International Center for Insect Physiology and Ecology, P.O Box 30772, 00100, Nairobi, Kenya
| | - Allan Maurice Ramogo
- International Center for Insect Physiology and Ecology, P.O Box 30772, 00100, Nairobi, Kenya
| | - Domnic Mijele
- Kenya Wildlife Service, P.O Box 40241, 00100, Nairobi, Kenya
| | | |
Collapse
|