1
|
Chan AP, Choi Y, Rangan A, Zhang G, Podder A, Berens M, Sharma S, Pirrotte P, Byron S, Duggan D, Schork NJ. Interrogating the Human Diplome: Computational Methods, Emerging Applications, and Challenges. Methods Mol Biol 2023; 2590:1-30. [PMID: 36335489 DOI: 10.1007/978-1-0716-2819-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Human DNA sequencing protocols have revolutionized human biology, biomedical science, and clinical practice, but still have very important limitations. One limitation is that most protocols do not separate or assemble (i.e., "phase") the nucleotide content of each of the maternally and paternally derived chromosomal homologs making up the 22 autosomal pairs and the chromosomal pair making up the pseudo-autosomal region of the sex chromosomes. This has led to a dearth of studies and a consequent underappreciation of many phenomena of fundamental importance to basic and clinical genomic science. We discuss a few protocols for obtaining phase information as well as their limitations, including those that could be used in tumor phasing settings. We then describe a number of biological and clinical phenomena that require phase information. These include phenomena that require precise knowledge of the nucleotide sequence in a chromosomal segment from germline or somatic cells, such as DNA binding events, and insight into unique cis vs. trans-acting functionally impactful variant combinations-for example, variants implicated in a phenotype governed by compound heterozygosity. In addition, we also comment on the need for reliable and consensus-based diploid-context computational workflows for variant identification as well as the need for laboratory-based functional verification strategies for validating cis vs. trans effects of variant combinations. We also briefly describe available resources, example studies, as well as areas of further research, and ultimately argue that the science behind the study of human diploidy, referred to as "diplomics," which will be enabled by nucleotide-level resolution of phased genomes, is a logical next step in the analysis of human genome biology.
Collapse
Affiliation(s)
- Agnes P Chan
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Yongwook Choi
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Aditya Rangan
- Courant Institute of Mathematical Sciences at New York University, New York, NY, USA
| | - Guangfa Zhang
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Avijit Podder
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Michael Berens
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Sunil Sharma
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Patrick Pirrotte
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Sara Byron
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Dave Duggan
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Nicholas J Schork
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA.
- The City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
2
|
Gain of function of a metalloproteinase associated with multiple myeloma, bicuspid aortic valve, and Von Hippel-Lindau syndrome. Biochem J 2022; 479:1533-1542. [PMID: 35789254 PMCID: PMC10084813 DOI: 10.1042/bcj20220166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
A patient diagnosed with multiple myeloma, bicuspid aortic valve, and Von Hippel-Lindau syndrome underwent whole-exome sequencing seeking a unified genetic cause for these three pathologies. The patient possessed a single-point mutation of arginine to cysteine (R24C) in the N-terminal region(pro-domain) of matrix metalloproteinase 9 (MMP-9). The pro-domain interacts with the catalytic site of this enzyme rendering it inactive. MMP-9 has previously been associated with all three pathologies suffered by the patient. We hypothesized that the observed mutation in the pro-domain would influence the activity of this enzyme. We expressed recombinant versions of MMP-9 and an investigation of their biochemical properties revealed that MMP-9 R24C is a constitutively active zymogen. To our knowledge, this is the first example of a mutation that discloses catalytic activity in the pro-form in any of the 24 human MMPs.
Collapse
|
3
|
Peng Q, Bizon C, Gizer IR, Wilhelmsen KC, Ehlers CL. Genetic loci for alcohol-related life events and substance-induced affective symptoms: indexing the "dark side" of addiction. Transl Psychiatry 2019; 9:71. [PMID: 30718457 PMCID: PMC6362044 DOI: 10.1038/s41398-019-0397-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/17/2019] [Indexed: 12/24/2022] Open
Abstract
A limited number of genetic variants have been identified in traditional GWAS as risk or protective factors for alcohol use disorders (AUD) and related phenotypes. We herein report whole-genome association and rare-variant analyses on AUD traits in American Indians (AI) and European Americans (EA). We evaluated 742 AIs and 1711 EAs using low-coverage whole-genome sequencing. Phenotypes included: (1) a metric based on the occurrence of 36 alcohol-related life events that reflect AUD severity; (2) two alcohol-induced affective symptoms that accompany severe AUDs. We identified two new loci for alcohol-related life events with converging evidence from both cohorts: rare variants of K2P channel gene KCNK2, and rare missense and splice-site variants in pro-inflammatory mediator gene PDE4C. A NAF1-FSTL5 intergenic variant and an FSTL5 variant were respectively associated with alcohol-related life events in AI and EA. PRKG2 of serine/threonine protein kinase family, and rare variants in interleukin subunit gene EBI3 (IL-27B) were uniquely associated with alcohol-induced affective symptoms in AI. LncRNA LINC02347 on 12q24.32 was uniquely associated with alcohol-induced depression in EA. The top GWAS findings were primarily rare/low-frequency variants in AI, and common variants in EA. Adrenal gland was the most enriched in tissue-specific gene expression analysis for alcohol-related life events, and nucleus accumbens was the most enriched for alcohol-induced affective states in AI. Prefrontal cortex was the most enriched in EA for both traits. These studies suggest that whole-genome sequencing can identify novel, especially uncommon, variants associated with severe AUD phenotypes although the findings may be population specific.
Collapse
Affiliation(s)
- Qian Peng
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Chris Bizon
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, 27517, USA
| | - Ian R Gizer
- Department of Psychological Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Kirk C Wilhelmsen
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, 27517, USA
- Department of Genetics and Neurology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Pacheu-Grau D, Callegari S, Emperador S, Thompson K, Aich A, Topol SE, Spencer EG, McFarland R, Ruiz-Pesini E, Torkamani A, Taylor RW, Montoya J, Rehling P. Mutations of the mitochondrial carrier translocase channel subunit TIM22 cause early-onset mitochondrial myopathy. Hum Mol Genet 2018; 27:4135-4144. [PMID: 30452684 PMCID: PMC6240735 DOI: 10.1093/hmg/ddy305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 11/13/2022] Open
Abstract
Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondrial metabolite carriers and translocase subunits (TIM23, TIM17A/B and TIM22), into the inner mitochondrial membrane. Both types of substrates are essential for mitochondrial metabolic function and biogenesis. Here, we report on a subject, diagnosed at 1.5 years, with a neuromuscular presentation, comprising hypotonia, gastroesophageal reflux disease and persistently elevated serum and Cerebrospinal fluid lactate (CSF). Patient fibroblasts displayed reduced oxidative capacity and altered mitochondrial morphology. Using trans-mitochondrial cybrid cell lines, we excluded a candidate variant in mitochondrial DNA as causative of these effects. Whole-exome sequencing identified compound heterozygous variants in the TIM22 gene (NM_013337), resulting in premature truncation in one allele (p.Tyr25Ter) and a point mutation in a conserved residue (p.Val33Leu), within the intermembrane space region, of the TIM22 protein in the second allele. Although mRNA transcripts of TIM22 were elevated, biochemical analyses revealed lower levels of TIM22 protein and an even greater deficiency of TIM22 complex formation. In agreement with a defect in carrier translocase function, carrier protein amounts in the inner membrane were found to be reduced. This is the first report of pathogenic variants in the TIM22 pore-forming subunit of the carrier translocase affecting the biogenesis of inner mitochondrial membrane proteins critical for metabolite exchange.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
| | - Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
| | - Sonia Emperador
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50013, Spain
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
| | - Sarah E Topol
- The Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Emily G Spencer
- The Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50013, Spain
| | - Ali Torkamani
- The Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037, United States
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Julio Montoya
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50013, Spain
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
- Max-Planck Institute for Biophysical Chemistry, D-37077, Göttingen, Germany
| |
Collapse
|
5
|
Kattimani Y, Veerappa AM. Dysregulation of NRXN1 by mutant MIR8485 leads to calcium overload in pre-synapses inducing neurodegeneration in Multiple sclerosis. Mult Scler Relat Disord 2018; 22:153-156. [PMID: 29729524 DOI: 10.1016/j.msard.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/13/2018] [Accepted: 04/06/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To identify Damaging mutations in microRNAs (miRNAs) and 3' untranslated regions (UTRs) of target genes to establish Multiple sclerosis (MS) disease pathway. METHODS Female aged 16, with Relapsing Remitting Multiple sclerosis (RRMS) was reported with initial symptoms of blurred vision, severe immobility, upper and lower limb numbness and backache. Whole Exome Sequencing (WES) and disease pathway analysis was performed to identify mutations in miRNAs and UTRs. RESULTS We identified Deleterious/Damaging multibase mutations in MIR8485 and NRXN1. miR-8485 was found carrying frameshift homozygous deletion of bases CA, while NRXN1 was found carrying nonframeshift homozygous substitution of bases CT to TC in exon 8 replacing Serine with Leucine. CONCLUSIONS Mutations in miR-8485 and NRXN1 was found to alter calcium homeostasis and NRXN1/NLGN1 cell adhesion molecule binding affinities. The miR-8485 mutation leads to overexpression of NRXN1 altering pre-synaptic Ca2+ homeostasis, inducing neurodegeneration.
Collapse
Affiliation(s)
- Yogita Kattimani
- Laboratory of Genomic Sciences, Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India.
| | - Avinash M Veerappa
- Laboratory of Genomic Sciences, Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India.
| |
Collapse
|
6
|
Rueda M, Wagner JL, Phillips TC, Topol SE, Muse ED, Lucas JR, Wagner GN, Topol EJ, Torkamani A. Molecular Autopsy for Sudden Death in the Young: Is Data Aggregation the Key? Front Cardiovasc Med 2017; 4:72. [PMID: 29181379 PMCID: PMC5694161 DOI: 10.3389/fcvm.2017.00072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022] Open
Abstract
The Scripps molecular autopsy study seeks to incorporate genetic testing into the postmortem examination of cases of sudden death in the young (<45 years old). Here, we describe the results from the first 2 years of the study, which consisted of whole exome sequencing (WES) of a cohort of 50 cases predominantly from San Diego County. Apart from the individual description of cases, we analyzed the data at the cohort-level, which brought new perspectives on the genetic causes of sudden death. We investigated the advantages and disadvantages of using WES compared to a gene panel for cardiac disease (usually the first genetic test used by medical examiners). In an attempt to connect complex clinical phenotypes with genotypes, we classified samples by their genetic fingerprint. Finally, we studied the benefits of analyzing the mitochondrial DNA genome. In this regard, we found that half of the cases clinically diagnosed as sudden infant death syndrome had an increased ratio of heteroplasmic variants, and that the variants were also present in the mothers. We believe that community-based data aggregation and sharing will eventually lead to an improved classification of variants. Allele frequencies for the all cases can be accessed via our genomics browser at https://genomics.scripps.edu/browser.
Collapse
Affiliation(s)
- Manuel Rueda
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| | - Jennifer L Wagner
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| | - Tierney C Phillips
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| | - Sarah E Topol
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| | - Evan D Muse
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States.,Division of Cardiology, Scripps Clinic, La Jolla, CA, United States
| | - Jonathan R Lucas
- Medical Examiner Department, San Diego County, San Diego, CA, United States
| | - Glenn N Wagner
- Medical Examiner Department, San Diego County, San Diego, CA, United States
| | - Eric J Topol
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States.,Division of Cardiology, Scripps Clinic, La Jolla, CA, United States
| | - Ali Torkamani
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
7
|
Niranjana Murthy AS, Veerappa AM, Ramachandra NB. Whole exome sequencing of discordant diseases in Monozygotic twins with Down syndrome reveals mutations for Congenital Heart Defect and epileptic seizures. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
Peng Q, Schork NJ, Wilhelmsen KC, Ehlers CL. Whole genome sequence association and ancestry-informed polygenic profile of EEG alpha in a Native American population. Am J Med Genet B Neuropsychiatr Genet 2017; 174:435-450. [PMID: 28436151 PMCID: PMC5435561 DOI: 10.1002/ajmg.b.32533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
EEG alpha activity is the dominant oscillation in most adult humans, is highly heritable, and has been associated with a number of cognitive functions. Two EEG phenotypes, low- and high-voltage alpha (LVA & HVA), have been demonstrated to have high heritabilities. They have different prevalence depending on a population's ancestral origins. In the present study we assessed the influence of ancestry admixture on EEG alpha power, and conducted a whole genome sequencing association analysis and an ancestry-informed polygenic study on those phenotypes in a Native American (NA) population that has a high prevalence of LVA. Seven common variants, in LD with each other upstream from gene ASIC2, reached genome-wide significance (p = 2 × 10-8 ) having a positive association with alpha voltage. They had lower minor allele frequencies in the NAs than in a global population sample. Overall correlations between lower degrees of NA (higher degree European) ancestry and HVA, and higher degrees of NA and LVA were also found. Additionally a rare-variant gene-based study identified gene TIA1 being negatively associated with LVA. Approximately 3% of SNPs exhibited a 15-fold enrichment that explained nearly half of the total SNP-heritability for EEG alpha. These regions showed the most significant anti-correlations between NA ancestry and alpha voltage, and were enriched for genes and pathways mediating cognitive functions. Our findings suggested that these regions likely harbor causal variants for HVA, and lacking of such variants could explain the high prevalence of LVA in this NA population, possibly illuminating the ancestral origin and genetic basis for EEG alpha.
Collapse
Affiliation(s)
- Qian Peng
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037 USA
- Department of Human Biology, J. Craig Venter Institute, La Jolla, California 92037 USA
| | - Nicholas J. Schork
- Department of Human Biology, J. Craig Venter Institute, La Jolla, California 92037 USA
| | - Kirk C. Wilhelmsen
- Department of Genetics and Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
| | - Cindy L. Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037 USA
| |
Collapse
|
9
|
Mutation of WIF1: a potential novel cause of a Nail-Patella-like disorder. Genet Med 2017; 19:1179-1183. [PMID: 28383544 PMCID: PMC5629099 DOI: 10.1038/gim.2017.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/25/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Nail-Patella syndrome is a dominantly inherited genetic disorder characterized by abnormalities of the nails, knees, elbows, and pelvis. Nail abnormalities are the most constant feature of Nail-Patella syndrome. Pathogenic mutations in a single gene, LMX1B, a mesenchymal determinant of dorsal-ventral patterning, explain approximately 95% of Nail-Patella syndrome cases. However, 5% of cases remain unexplained. METHODS Here, we present exome sequencing and analysis of four generations of a family with a dominantly inherited Nail-Patella-like disorder (nail dysplasia with some features of Nail-Patella syndrome) who tested negative for LMX1B mutation. RESULTS We identify a loss-of-function mutation in WIF1 (NM_007191 p.W15*), which is involved in mesoderm segmentation, as the suspected cause of the Nail-Patella-like disorder observed in this family. CONCLUSIONS Mutation of WIF1 is a potential novel cause of a Nail-Patella-like disorder. Testing of additional patients negative for LMX1B mutation is needed to confirm this finding and further clarify the phenotype.Genet Med advance online publication 06 April 2017.
Collapse
|
10
|
Sardo VL, Ferguson W, Erikson GA, Topol EJ, Baldwin KK, Torkamani A. Influence of donor age on induced pluripotent stem cells. Nat Biotechnol 2017; 35:69-74. [PMID: 27941802 PMCID: PMC5505172 DOI: 10.1038/nbt.3749] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are being pursued as a source of cells for autologous therapies, many of which will be aimed at aged patients. To explore the impact of age on iPSC quality, we produced iPSCs from blood cells of 16 donors aged 21-100. We find that iPSCs from older donors retain an epigenetic signature of age, which can be reduced through passaging. Clonal expansion via reprogramming also enables the discovery of somatic mutations present in individual donor cells, which are missed by bulk sequencing methods. We show that exomic mutations in iPSCs increase linearly with age, and all iPSC lines analyzed carry at least one gene-disrupting mutation, several of which have been associated with cancer or dysfunction. Unexpectedly, elderly donors (>90 yrs) harbor fewer mutations than predicted, likely due to a contracted blood progenitor pool. These studies establish that donor age is associated with an increased risk of abnormalities in iPSCs and will inform clinical development of reprogramming technology.
Collapse
Affiliation(s)
- Valentina Lo Sardo
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - William Ferguson
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Galina A. Erikson
- The Scripps Translational Science Institute, Scripps Health and The Scripps Research Institute, La Jolla, California
| | - Eric J Topol
- The Scripps Translational Science Institute, Scripps Health and The Scripps Research Institute, La Jolla, California
| | - Kristin K Baldwin
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Ali Torkamani
- The Scripps Translational Science Institute, Scripps Health and The Scripps Research Institute, La Jolla, California
| |
Collapse
|
11
|
Erikson GA, Bodian DL, Rueda M, Molparia B, Scott ER, Scott-Van Zeeland AA, Topol SE, Wineinger NE, Niederhuber JE, Topol EJ, Torkamani A. Whole-Genome Sequencing of a Healthy Aging Cohort. Cell 2016; 165:1002-11. [PMID: 27114037 DOI: 10.1016/j.cell.2016.03.022] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/05/2016] [Accepted: 03/14/2016] [Indexed: 01/23/2023]
Abstract
Studies of long-lived individuals have revealed few genetic mechanisms for protection against age-associated disease. Therefore, we pursued genome sequencing of a related phenotype-healthy aging-to understand the genetics of disease-free aging without medical intervention. In contrast with studies of exceptional longevity, usually focused on centenarians, healthy aging is not associated with known longevity variants, but is associated with reduced genetic susceptibility to Alzheimer and coronary artery disease. Additionally, healthy aging is not associated with a decreased rate of rare pathogenic variants, potentially indicating the presence of disease-resistance factors. In keeping with this possibility, we identify suggestive common and rare variant genetic associations implying that protection against cognitive decline is a genetic component of healthy aging. These findings, based on a relatively small cohort, require independent replication. Overall, our results suggest healthy aging is an overlapping but distinct phenotype from exceptional longevity that may be enriched with disease-protective genetic factors. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Galina A Erikson
- The Scripps Translational Science Institute, Scripps Health, and The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dale L Bodian
- Inova Translational Medicine Institute, Inova Health System, Falls Church, VA 22042 USA
| | - Manuel Rueda
- The Scripps Translational Science Institute, Scripps Health, and The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bhuvan Molparia
- The Scripps Translational Science Institute, Scripps Health, and The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erick R Scott
- The Scripps Translational Science Institute, Scripps Health, and The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Sarah E Topol
- The Scripps Translational Science Institute, Scripps Health, and The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan E Wineinger
- The Scripps Translational Science Institute, Scripps Health, and The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John E Niederhuber
- Inova Translational Medicine Institute, Inova Health System, Falls Church, VA 22042 USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eric J Topol
- The Scripps Translational Science Institute, Scripps Health, and The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ali Torkamani
- The Scripps Translational Science Institute, Scripps Health, and The Scripps Research Institute, La Jolla, CA 92037, USA; Cypher Genomics, Inc., San Diego, CA 92121, USA.
| |
Collapse
|
12
|
Kripke DF, Kline LE, Nievergelt CM, Murray SS, Shadan FF, Dawson A, Poceta JS, Cronin J, Jamil SM, Tranah GJ, Loving RT, Grizas AP, Hahn EK. Genetic variants associated with sleep disorders. Sleep Med 2015; 16:217-24. [PMID: 25660813 PMCID: PMC4352103 DOI: 10.1016/j.sleep.2014.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/30/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The diagnostic boundaries of sleep disorders are under considerable debate. The main sleep disorders are partly heritable; therefore, defining heritable pathophysiologic mechanisms could delineate diagnoses and suggest treatment. We collected clinical data and DNA from consenting patients scheduled to undergo clinical polysomnograms, to expand our understanding of the polymorphisms associated with the phenotypes of particular sleep disorders. METHODS Patients at least 21 years of age were recruited to contribute research questionnaires, and to provide access to their medical records, saliva for deoxyribonucleic acid (DNA), and polysomnographic data. From these complex data, 38 partly overlapping phenotypes were derived indicating complaints, subjective and objective sleep timing, and polysomnographic disturbances. A custom chip was used to genotype 768 single-nucleotide polymorphisms (SNPs). Additional assays derived ancestry-informative markers (eg, 751 participants of European ancestry). Linear regressions controlling for age, gender, and ancestry were used to assess the associations of each phenotype with each of the SNPs, highlighting those with Bonferroni-corrected significance. RESULTS In peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B), rs6888451 was associated with several markers of obstructive sleep apnea. In aryl hydrocarbon receptor nuclear translocator-like (ARNTL), rs10766071 was associated with decreased polysomnographic sleep duration. The association of rs3923809 in BTBD9 with periodic limb movements in sleep was confirmed. SNPs in casein kinase 1 delta (CSNK1D rs11552085), cryptochrome 1 (CRY1 rs4964515), and retinoic acid receptor-related orphan receptor A (RORA rs11071547) were less persuasively associated with sleep latency and time of falling asleep. CONCLUSIONS SNPs associated with several sleep phenotypes were suggested, but due to risks of false discovery, independent replications are needed before the importance of these associations can be assessed, followed by investigation of molecular mechanisms.
Collapse
Affiliation(s)
- Daniel F Kripke
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| | | | | | - Sarah S Murray
- Department of Pathology, Center for Advanced Laboratory Medicine, University of California, San Diego, CA, USA
| | - Farhad F Shadan
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA
| | - Arthur Dawson
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA
| | - J Steven Poceta
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA
| | - John Cronin
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA
| | - Shazia M Jamil
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | | | | | | |
Collapse
|
13
|
Kripke DF, Klimecki WT, Nievergelt CM, Rex KM, Murray SS, Shekhtman T, Tranah GJ, Loving RT, Lee HJ, Rhee MK, Shadan FF, Poceta JS, Jamil SM, Kline LE, Kelsoe JR. Circadian polymorphisms in night owls, in bipolars, and in non-24-hour sleep cycles. Psychiatry Investig 2014; 11:345-62. [PMID: 25395965 PMCID: PMC4225198 DOI: 10.4306/pi.2014.11.4.345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 12/13/2022] Open
Abstract
People called night owls habitually have late bedtimes and late times of arising, sometimes suffering a heritable circadian disturbance called delayed sleep phase syndrome (DSPS). Those with DSPS, those with more severe progressively-late non-24-hour sleep-wake cycles, and those with bipolar disorder may share genetic tendencies for slowed or delayed circadian cycles. We searched for polymorphisms associated with DSPS in a case-control study of DSPS research participants and a separate study of Sleep Center patients undergoing polysomnography. In 45 participants, we resequenced portions of 15 circadian genes to identify unknown polymorphisms that might be associated with DSPS, non-24-hour rhythms, or bipolar comorbidities. We then genotyped single nucleotide polymorphisms (SNPs) in both larger samples, using Illumina Golden Gate assays. Associations of SNPs with the DSPS phenotype and with the morningness-eveningness parametric phenotype were computed for both samples, then combined for meta-analyses. Delayed sleep and "eveningness" were inversely associated with loci in circadian genes NFIL3 (rs2482705) and RORC (rs3828057). A group of haplotypes overlapping BHLHE40 was associated with non-24-hour sleep-wake cycles, and less robustly, with delayed sleep and bipolar disorder (e.g., rs34883305, rs34870629, rs74439275, and rs3750275 were associated with n=37, p=4.58E-09, Bonferroni p=2.95E-06). Bright light and melatonin can palliate circadian disorders, and genetics may clarify the underlying circadian photoperiodic mechanisms. After further replication and identification of the causal polymorphisms, these findings may point to future treatments for DSPS, non-24-hour rhythms, and possibly bipolar disorder or depression.
Collapse
Affiliation(s)
- Daniel F. Kripke
- Department of Psychiatry, University of California, San Diego, CA, USA
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA
| | - Walter T. Klimecki
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | | | - Katharine M. Rex
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Sarah S. Murray
- Department of Pathology, Center for Advanced Laboratory Medicine, University of California, San Diego, CA, USA
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | | | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min Kyu Rhee
- Department of Psychology, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | - Shazia M. Jamil
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA
| | | | - John R. Kelsoe
- Department of Psychiatry, University of California, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|