1
|
Truong TA, Huang X, Barton M, Ashok A, Al Abed A, Almasri R, Shivdasanic MN, Reshamwala R, Ingles J, Thai MT, Nguyen CC, Zhao S, Zhang X, Gu Z, Vasanth A, Peng S, Nguyen TK, Do N, Nguyen NT, Zhao H, Phan HP. Flexible Electrode Arrays Based on a Wide Bandgap Semiconductors for Chronic Implantable Multiplexed Sensing and Heart Pacemakers. ACS NANO 2025; 19:1642-1659. [PMID: 39752298 DOI: 10.1021/acsnano.4c15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2025]
Abstract
Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals. This study introduces a multielectrode array featuring a wide bandgap (WBG) material as electrodes, demonstrating its suitability for chronic implantable applications. Our devices exhibit excellent flexibility and longevity, taking advantage of the low bending stiffness and chemical inertness in WBG nanomembranes and multimodalities for physical health monitoring, including temperature, strain, and impedance sensing. Our top-down manufacturing process enables the formation of distributed electrode arrays that can be seamlessly integrated onto the curvilinear surfaces of skins. As proof of concept for chronic cardiac pacing applications, we demonstrate the effective pacing functionality of our devices on rabbit hearts through a set of ex vivo experiments. The engineering approach proposed in this study overcomes the drawbacks of prior WBG material fabrication techniques, resulting in an implantable system with high bendability, effective pacing, and high-performance sensing.
Collapse
Affiliation(s)
- Thanh An Truong
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xinghao Huang
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew Barton
- School of Nursing & Midwifery, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Aditya Ashok
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Reem Almasri
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mohit N Shivdasanic
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ronak Reshamwala
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Joshua Ingles
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Mai Thanh Thai
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- College of Engineering and Computer Science and VinUni-Illinois Smart Health Center, Vin University, Hanoi 100000, Vietnam
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Sinuo Zhao
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xiuwen Zhang
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine (ACN), University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Arya Vasanth
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Nho Do
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
2
|
Liu M, Liu M, Zhang B, Fang M, Chen K, Zhang Y, Wang Q, Tian C, Wu L, Li Z. Research hotspots and frontiers of vagus nerve stimulation in stroke: a bibliometric analysis. Front Neurosci 2024; 18:1510658. [PMID: 39723424 PMCID: PMC11668697 DOI: 10.3389/fnins.2024.1510658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Vagus nerve stimulation (VNS) has emerged as a promising therapeutic approach for stroke treatment, drawing significant attention due to its potential benefits. However, despite this growing interest, a systematic bibliometric analysis of the research landscape is yet to be conducted. Methods We performed a comprehensive search of the Web of Science Core Collection (WoSCC) database for literature published between January 1, 2005, and August 31, 2024. CiteSpace and the Bibliometrix package in R software were used to generate knowledge maps and conduct a bibliometric analysis. This analysis focused on publication output, geographic distribution, institutional involvement, author and co-cited author networks, journal and co-cited journal relationships, co-cited references, and keyword trends. Results During the study period, 316 publications on VNS in stroke were identified, authored by 1,631 researchers from 1,124 institutions across 172 countries or regions. The number of publications showed steady growth, with the United States of America (USA) leading as the primary contributor. The University of Texas System emerged as the most active research institution. Frontiers in Neuroscience published the highest number of articles, while Stroke had the most citations. Professor Michael P. Kilgard authored the largest number of papers and was also the most frequently cited researcher. The main research trends focus on investigating VNS mechanisms via animal models and exploring its application in improving post-stroke sensorimotor function in the upper limbs. Moreover, VNS is showing promise in enhancing non-motor functions, such as swallowing, speech, and cognition, while addressing complications like post-stroke insomnia, depression, and disruptions in gut microbiota. Conclusion This bibliometric study offers a comprehensive overview of the research landscape and emerging trends in VNS for stroke rehabilitation, providing a solid foundation and reference point for future research directions in this field.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Mengya Liu
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohan Zhang
- School of Nursing, Centre for Smart Health, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Mingzhu Fang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Chen
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yishen Zhang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Wang
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Chunyan Tian
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Liang Wu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Zhe Li
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Rehabilitation Clinical Medicine Research Center, Zhengzhou, China
| |
Collapse
|
3
|
Dias AC, Jureidini RAG, Araujo-Filho JAB, Camerin GR, Zattar LC, Sernik RA, Malhotra A, Cerri LMO, Cerri GG. Advanced US of the Skin, Nerves, and Muscles of the Neck: Pearls and Pitfalls with Use of High-Frequency Transducers. Radiographics 2024; 44:e240029. [PMID: 39298354 DOI: 10.1148/rg.240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/21/2024]
Abstract
High-frequency US provides excellent visualization of superficial structures and lesions, is a preferred diagnostic modality for anatomic characterization of neck abnormalities, and has a central role in clinical decision making. Recent technological advancements have led to the development of transducers that surpass 20 MHz, elevating high-frequency US to a highly valuable diagnostic tool with broader clinical use and enabling greater spatial resolution in the assessment of skin and superficial nerves and muscles. The authors focus on evolving applications of high-frequency US in neck imaging, emphasizing practical insights and strategies in skin and neuromuscular applications. ©RSNA, 2024 Supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article.
Collapse
Affiliation(s)
- Alex C Dias
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, São Paulo, SP 01308-050, Brazil (A.C.D., R.A.G.J., J.A.B.A.F., G.R.C., L.C.Z., R.A.S., L.M.O.C., G.G.C.); and Department of Diagnostic Radiology, Yale University School of Medicine. Yale New Haven Hospital, New Haven, Conn (A.M.)
| | - Regiany A G Jureidini
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, São Paulo, SP 01308-050, Brazil (A.C.D., R.A.G.J., J.A.B.A.F., G.R.C., L.C.Z., R.A.S., L.M.O.C., G.G.C.); and Department of Diagnostic Radiology, Yale University School of Medicine. Yale New Haven Hospital, New Haven, Conn (A.M.)
| | - Jose A B Araujo-Filho
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, São Paulo, SP 01308-050, Brazil (A.C.D., R.A.G.J., J.A.B.A.F., G.R.C., L.C.Z., R.A.S., L.M.O.C., G.G.C.); and Department of Diagnostic Radiology, Yale University School of Medicine. Yale New Haven Hospital, New Haven, Conn (A.M.)
| | - Gabriela R Camerin
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, São Paulo, SP 01308-050, Brazil (A.C.D., R.A.G.J., J.A.B.A.F., G.R.C., L.C.Z., R.A.S., L.M.O.C., G.G.C.); and Department of Diagnostic Radiology, Yale University School of Medicine. Yale New Haven Hospital, New Haven, Conn (A.M.)
| | - Luciana C Zattar
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, São Paulo, SP 01308-050, Brazil (A.C.D., R.A.G.J., J.A.B.A.F., G.R.C., L.C.Z., R.A.S., L.M.O.C., G.G.C.); and Department of Diagnostic Radiology, Yale University School of Medicine. Yale New Haven Hospital, New Haven, Conn (A.M.)
| | - Renato A Sernik
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, São Paulo, SP 01308-050, Brazil (A.C.D., R.A.G.J., J.A.B.A.F., G.R.C., L.C.Z., R.A.S., L.M.O.C., G.G.C.); and Department of Diagnostic Radiology, Yale University School of Medicine. Yale New Haven Hospital, New Haven, Conn (A.M.)
| | - Ajay Malhotra
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, São Paulo, SP 01308-050, Brazil (A.C.D., R.A.G.J., J.A.B.A.F., G.R.C., L.C.Z., R.A.S., L.M.O.C., G.G.C.); and Department of Diagnostic Radiology, Yale University School of Medicine. Yale New Haven Hospital, New Haven, Conn (A.M.)
| | - Luciana M O Cerri
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, São Paulo, SP 01308-050, Brazil (A.C.D., R.A.G.J., J.A.B.A.F., G.R.C., L.C.Z., R.A.S., L.M.O.C., G.G.C.); and Department of Diagnostic Radiology, Yale University School of Medicine. Yale New Haven Hospital, New Haven, Conn (A.M.)
| | - Giovanni G Cerri
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, São Paulo, SP 01308-050, Brazil (A.C.D., R.A.G.J., J.A.B.A.F., G.R.C., L.C.Z., R.A.S., L.M.O.C., G.G.C.); and Department of Diagnostic Radiology, Yale University School of Medicine. Yale New Haven Hospital, New Haven, Conn (A.M.)
| |
Collapse
|
4
|
Zhang H, Zhao Y, Qu Y, Du J, Peng Y. Transcutaneous Cervical Vagus Nerve Magnetic Stimulation in Patients With Traumatic Brain Injury: A Feasibility Study. Neuromodulation 2024; 27:672-680. [PMID: 37865889 DOI: 10.1016/j.neurom.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVES Transcutaneous vagus nerve stimulation has shown promising results in improving cognitive and motor function after stroke. However, to our knowledge, there have been no studies in the modulation of the cervical vagus nerve using repetitive transcranial magnetic stimulation (rTMS) in patients with traumatic brain injury (TBI) with cognitive dysfunction. Thus, we conducted a single-arm feasibility trial to assess the safety and effectiveness of rTMS of the vagus nerve in patients with TBI. MATERIALS AND METHODS We enrolled ten patients with TBI and administered half-hour vagus nerve magnetic stimulation (VNMS) sessions for ten days to evaluate the feasibility of the treatment. The Montreal cognitive assessment-Beijing (MoCA-B), the Digit Span Test, and the Auditory Verbal Learning Test (AVLT) were used to measure cognitive function before and after the VNMS treatment. Physiological parameters of all subjects were assessed by electrocardiogram. RESULTS The findings showed that daily half-hour VNMS for ten days was feasible in patients with TBI, with minimal side effects and no clinically significant effects on physiological parameters. Eight patients showed improvement in MoCA-B, and five patients showed improvement in immediate memory as measured by AVLT. CONCLUSIONS We conclude that VNMS is a safe and feasible treatment option for patients with TBI with cognitive dysfunction. However, further controlled studies are necessary to establish the efficacy of VNMS in promoting cognitive recovery after TBI. SIGNIFICANCE This study is, to our knowledge, the first study to investigate the feasibility of VNMS for cognitive dysfunction in patients with TBI. Our findings offer the possibility of rTMS applied to the vagus nerve in clinical practice.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China; Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China; College of Sports Medicine and Rehabilitation, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu Zhao
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China; College of Sports Medicine and Rehabilitation, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Juan Du
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Yi Peng
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| |
Collapse
|
5
|
Yi J, Zou G, Huang J, Ren X, Tian Q, Yu Q, Wang P, Yuan Y, Tang W, Wang C, Liang L, Cao Z, Li Y, Yu M, Jiang Y, Zhang F, Yang X, Li W, Wang X, Luo Y, Loh XJ, Li G, Hu B, Liu Z, Gao H, Chen X. Water-responsive supercontractile polymer films for bioelectronic interfaces. Nature 2023; 624:295-302. [PMID: 38092907 DOI: 10.1038/s41586-023-06732-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2021] [Accepted: 10/10/2023] [Indexed: 12/18/2023]
Abstract
Connecting different electronic devices is usually straightforward because they have paired, standardized interfaces, in which the shapes and sizes match each other perfectly. Tissue-electronics interfaces, however, cannot be standardized, because tissues are soft1-3 and have arbitrary shapes and sizes4-6. Shape-adaptive wrapping and covering around irregularly sized and shaped objects have been achieved using heat-shrink films because they can contract largely and rapidly when heated7. However, these materials are unsuitable for biological applications because they are usually much harder than tissues and contract at temperatures higher than 90 °C (refs. 8,9). Therefore, it is challenging to prepare stimuli-responsive films with large and rapid contractions for which the stimuli and mechanical properties are compatible with vulnerable tissues and electronic integration processes. Here, inspired by spider silk10-12, we designed water-responsive supercontractile polymer films composed of poly(ethylene oxide) and poly(ethylene glycol)-α-cyclodextrin inclusion complex, which are initially dry, flexible and stable under ambient conditions, contract by more than 50% of their original length within seconds (about 30% per second) after wetting and become soft (about 100 kPa) and stretchable (around 600%) hydrogel thin films thereafter. This supercontraction is attributed to the aligned microporous hierarchical structures of the films, which also facilitate electronic integration. We used this film to fabricate shape-adaptive electrode arrays that simplify the implantation procedure through supercontraction and conformally wrap around nerves, muscles and hearts of different sizes when wetted for in vivo nerve stimulation and electrophysiological signal recording. This study demonstrates that this water-responsive material can play an important part in shaping the next-generation tissue-electronics interfaces as well as broadening the biomedical application of shape-adaptive materials.
Collapse
Affiliation(s)
- Junqi Yi
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore, Singapore
| | - Guijin Zou
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jianping Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Xueyang Ren
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiong Tian
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Qianhengyuan Yu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Ping Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Yuehui Yuan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Wenjie Tang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Changxian Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Linlin Liang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhengshuai Cao
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Yuanheng Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Mei Yu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Ying Jiang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feilong Zhang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xue Yang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wenlong Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiaoshi Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yifei Luo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.
- Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) and the Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China.
| | - Huajian Gao
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
6
|
Drakonaki E, Konschake M, Chlouverakis G, Tsiaoussis J. Ultrasound morphometry of the cervical vagus nerve for daily clinical practice: Reference values for cross sectional area and fascicle count. Ann Anat 2023; 250:152137. [PMID: 37506777 DOI: 10.1016/j.aanat.2023.152137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION High resolution ultrasound (US) of the cervical vagus nerve (CVN) is clinically relevant in the diagnostic workup and during neurostimulation therapy of several neurologic diseases. This prospective study aims to provide reference data of the cross-sectional area (CSA) and fascicle count of the normal CVN and to investigate their possible association with anthropometric data in a large cohort of patients. METHODS A total of 657 CVNs in 330 individuals without history of neurological disease were examined using US (7-15Mhz). The CVN fascicle count and CSA inside the hyperechoic epineurium at the level of the thyroid lobes were measured. Three CSA measurements were performed to calculate the mean value. Anthropometric data were recorded. RESULTS The mean fascicle count was 2.4 ± 1.1 (right) and 2 ± 1 (left) (paired t- test, p < 0.001). Two CVN patterns were identified: A single hypoechoic fascicular structure (26.2 % right, 36.3 % left) and a honeycomb structure of 2-6 discrete fascicles (72.3 % right, 63.7 % left). Right CVN mean CSA was larger compared to left (2.3 ± 1 mm2 and 1.8 ± 0.8 mm2 respectively, t-test, p-0.000). There was no difference in the CSA values between sex and no correlation to age or height. A positive correlation between the CSA and weight and BMI was found (Pearson's correlation, p = 0.01 right and p = 0.05 left). CONCLUSION The right CVN has larger CSA and contains more fascicles than the left. CVN is usually mono- or oligo-fascicular with a honeycomb appearance. The CSA increased with increasing BMI but no age and sex specific differences were noted.
Collapse
Affiliation(s)
- Elena Drakonaki
- Department of Anatomy, Medical School, University of Crete, Heraklion, Crete Greece; Diagnostic and Interventional Ultrasound Practice, Heraklion, Crete, Greece
| | - Marko Konschake
- Department of Anatomy, Histology and Embryology, Institute of Clinical and Functional Anatomy, Medical University Innsbruck (MUI), Innsbruck, Austria.
| | - Gregory Chlouverakis
- Biostatistics Laboratory, Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece.
| | - John Tsiaoussis
- Department of Anatomy, Medical School, University of Crete, Heraklion, Crete Greece
| |
Collapse
|
7
|
Heiling B, Karl A, Fedtke N, Müller N, Kloos C, Grimm A, Axer H. Evaluating Diagnostic Ultrasound of the Vagus Nerve as a Surrogate Marker for Autonomic Neuropathy in Diabetic Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59030525. [PMID: 36984526 PMCID: PMC10058247 DOI: 10.3390/medicina59030525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Background and Objectives: Diagnostic ultrasound of the vagus nerve has been used to examine different polyneuropathies, and it has been suggested to be useful as a marker of autonomic dysfunction in diabetic patients. Materials and Methods: We analyzed the cross-sectional area (CSA) of the right vagus nerve of 111 patients with type 2 diabetes in comparison to 104 healthy adults and 41 patients with CIDP (chronic inflammatory demyelinating polyneuropathy). In the diabetes group, sympathetic skin response (SSR) was measured as an indicator for autonomic neuropathy. Carotid intima-media thickness (CIMT) was measured as a surrogate for atherosclerosis. Clinical symptoms of polyneuropathy were assessed using the Neuropathy Symptom Score and the Neuropathy Disability Score. Results: In total, 61.3% of the diabetes patients had clinical signs of polyneuropathy; 23.4% had no SSR at the feet as an indicator of autonomic neuropathy. Mean vagus nerve CSA did not differ in patients with and without diabetic polyneuropathy or in diabetic patients with and without SSR at the feet. No significant correlation was found between vagus nerve CSA and CIMT or SSR parameters in diabetic patients. Mean CSA of the right vagus nerve was slightly larger in diabetic patients (p = 0.028) and in patients with CIDP (p = 0.015) than in healthy controls. Conclusions: Effect sizes and mean differences were rather small so that a reliable diagnosis cannot be performed based on the vagus nerve measurement of a single person alone. Vagus nerve CSA seems not suitable as an indicator of autonomic dysfunction or cardiovascular risk in diabetic patients.
Collapse
Affiliation(s)
- Bianka Heiling
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
- Clinician Scientist Program OrganAge, Jena University Hospital, 07747 Jena, Germany
| | - Adriana Karl
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Nadin Fedtke
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Nicolle Müller
- Department of Internal Medicine III, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Christof Kloos
- Department of Internal Medicine III, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Alexander Grimm
- Department of Neurology, Tübingen University Hospital, 72076 Tübingen, Germany
| | - Hubertus Axer
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| |
Collapse
|
8
|
Diwan AD, Melrose J. Intervertebral disc degeneration and how it leads to low back pain. JOR Spine 2023; 6:e1231. [PMID: 36994466 PMCID: PMC10041390 DOI: 10.1002/jsp2.1231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/15/2021] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this review was to evaluate data generated by animal models of intervertebral disc (IVD) degeneration published in the last decade and show how this has made invaluable contributions to the identification of molecular events occurring in and contributing to pain generation. IVD degeneration and associated spinal pain is a complex multifactorial process, its complexity poses difficulties in the selection of the most appropriate therapeutic target to focus on of many potential candidates in the formulation of strategies to alleviate pain perception and to effect disc repair and regeneration and the prevention of associated neuropathic and nociceptive pain. Nerve ingrowth and increased numbers of nociceptors and mechanoreceptors in the degenerate IVD are mechanically stimulated in the biomechanically incompetent abnormally loaded degenerate IVD leading to increased generation of low back pain. Maintenance of a healthy IVD is, thus, an important preventative measure that warrants further investigation to preclude the generation of low back pain. Recent studies with growth and differentiation factor 6 in IVD puncture and multi-level IVD degeneration models and a rat xenograft radiculopathy pain model have shown it has considerable potential in the prevention of further deterioration in degenerate IVDs, has regenerative properties that promote recovery of normal IVD architectural functional organization and inhibits the generation of inflammatory mediators that lead to disc degeneration and the generation of low back pain. Human clinical trials are warranted and eagerly anticipated with this compound to assess its efficacy in the treatment of IVD degeneration and the prevention of the generation of low back pain.
Collapse
Affiliation(s)
- Ashish D. Diwan
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSydneyNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
9
|
Jayaprakash N, Song W, Toth V, Vardhan A, Levy T, Tomaio J, Qanud K, Mughrabi I, Chang YC, Rob M, Daytz A, Abbas A, Nassrallah Z, Volpe BT, Tracey KJ, Al-Abed Y, Datta-Chaudhuri T, Miller L, Barbe MF, Lee SC, Zanos TP, Zanos S. Organ- and function-specific anatomical organization of vagal fibers supports fascicular vagus nerve stimulation. Brain Stimul 2023; 16:484-506. [PMID: 36773779 DOI: 10.1016/j.brs.2023.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Vagal fibers travel inside fascicles and form branches to innervate organs and regulate organ functions. Existing vagus nerve stimulation (VNS) therapies activate vagal fibers non-selectively, often resulting in reduced efficacy and side effects from non-targeted organs. The transverse and longitudinal arrangement of fibers inside the vagal trunk with respect to the functions they mediate and organs they innervate is unknown, however it is crucial for selective VNS. Using micro-computed tomography imaging, we tracked fascicular trajectories and found that, in swine, sensory and motor fascicles are spatially separated cephalad, close to the nodose ganglion, and merge caudad, towards the lower cervical and upper thoracic region; larynx-, heart- and lung-specific fascicles are separated caudad and progressively merge cephalad. Using quantified immunohistochemistry at single fiber level, we identified and characterized all vagal fibers and found that fibers of different morphological types are differentially distributed in fascicles: myelinated afferents and efferents occupy separate fascicles, myelinated and unmyelinated efferents also occupy separate fascicles, and small unmyelinated afferents are widely distributed within most fascicles. We developed a multi-contact cuff electrode to accommodate the fascicular structure of the vagal trunk and used it to deliver fascicle-selective cervical VNS in anesthetized and awake swine. Compound action potentials from distinct fiber types, and physiological responses from different organs, including laryngeal muscle, cough, breathing, and heart rate responses are elicited in a radially asymmetric manner, with consistent angular separations that agree with the documented fascicular organization. These results indicate that fibers in the trunk of the vagus nerve are anatomically organized according to functions they mediate and organs they innervate and can be asymmetrically activated by fascicular cervical VNS.
Collapse
Affiliation(s)
| | - Weiguo Song
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Viktor Toth
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Todd Levy
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Khaled Qanud
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Yao-Chuan Chang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Moontahinaz Rob
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Anna Daytz
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Adam Abbas
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Zeinab Nassrallah
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Bruce T Volpe
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Yousef Al-Abed
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Larry Miller
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Sunhee C Lee
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Stavros Zanos
- Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| |
Collapse
|
10
|
Comparing the accuracy of ultrasound-based measurements of the cervical vagus nerve. Sci Rep 2023; 13:884. [PMID: 36650212 PMCID: PMC9845339 DOI: 10.1038/s41598-023-27894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Vagus nerve stimulation (VNS) has become a promising therapy especially for drug resistant epilepsy and other pathologies. Side effects or missing therapeutic success are observed due to cuff electrodes that are too narrow or too wide. Preoperative high-resolution ultrasound is used to evaluate the size of the cervical vagus nerve (CVN) to estimate the size of cuff electrodes for VNS. It remains unclear how precise ultrasound reflects the CVN dimensions, which has been the objective of this study. CVN cross-sections and diameters were investigated in 23 sides from 12 bodies, using ultrasound, histology, and CVN casting in situ as a reference. Morphometric data were obtained including fascicle count and nerve composition in histology. CVN yielded significant side-, age-, and BMI-related differences. CVN cross-sections were smaller in ultrasound when compared to casting and histology (1.5 ± 0.4 vs. 3.1 ± 0.9 vs. 2.3 ± 0.7 mm2). With the given setting in ultrasound, CVN cross-sections were consistently underestimated when compared to casting. Ultrasound-based cross-section measurements are related to a biased estimation of CVN size. A factor to correct for method related differences may help to adjust for accurate cuff electrode sizes for patient needs and to reduce undesired effects and potentially material consumption.
Collapse
|
11
|
Upadhye AR, Kolluru C, Druschel L, Al Lababidi L, Ahmad SS, Menendez DM, Buyukcelik ON, Settell ML, Blanz SL, Jenkins MW, Wilson DL, Zhang J, Tatsuoka C, Grill WM, Pelot NA, Ludwig KA, Gustafson KJ, Shoffstall AJ. Fascicles split or merge every ∼560 microns within the human cervical vagus nerve. J Neural Eng 2022; 19:054001. [PMID: 36174538 PMCID: PMC10353574 DOI: 10.1088/1741-2552/ac9643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022]
Abstract
Objective.Vagus nerve stimulation (VNS) is Food and Drug Administration-approved for epilepsy, depression, and obesity, and stroke rehabilitation; however, the morphological anatomy of the vagus nerve targeted by stimulatation is poorly understood. Here, we used microCT to quantify the fascicular structure and neuroanatomy of human cervical vagus nerves (cVNs).Approach.We collected eight mid-cVN specimens from five fixed cadavers (three left nerves, five right nerves). Analysis focused on the 'surgical window': 5 cm of length, centered around the VNS implant location. Tissue was stained with osmium tetroxide, embedded in paraffin, and imaged on a microCT scanner. We visualized and quantified the merging and splitting of fascicles, and report a morphometric analysis of fascicles: count, diameter, and area.Main results.In our sample of human cVNs, a fascicle split or merge event was observed every ∼560µm (17.8 ± 6.1 events cm-1). Mean morphological outcomes included: fascicle count (6.6 ± 2.8 fascicles; range 1-15), fascicle diameter (514 ± 142µm; range 147-1360µm), and total cross-sectional fascicular area (1.32 ± 0.41 mm2; range 0.58-2.27 mm).Significance.The high degree of fascicular splitting and merging, along with wide range in key fascicular morphological parameters across humans may help to explain the clinical heterogeneity in patient responses to VNS. These data will enable modeling and experimental efforts to determine the clinical effect size of such variation. These data will also enable efforts to design improved VNS electrodes.
Collapse
Affiliation(s)
- Aniruddha R Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Lindsey Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Luna Al Lababidi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Sami S Ahmad
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Ozge N Buyukcelik
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Megan L Settell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Stephan L Blanz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States of America
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Jing Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Curtis Tatsuoka
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
- FES Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
- Department of Neurobiology, Duke University, Durham, NC, United States of America
- Department of Neurosurgery, Duke University, Durham, NC, United States of America
| | - Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States of America
| | - Kenneth J Gustafson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- FES Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| |
Collapse
|
12
|
Kronsteiner B, Zopf LM, Heimel P, Oberoi G, Kramer AM, Slezak P, Weninger WJ, Podesser BK, Kiss A, Moscato F. Mapping the functional anatomy and topography of the cardiac autonomic innervation for selective cardiac neuromodulation using MicroCT. Front Cell Dev Biol 2022; 10:968870. [PMID: 36172280 PMCID: PMC9511100 DOI: 10.3389/fcell.2022.968870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 01/21/2023] Open
Abstract
Background: Vagus nerve stimulation (VNS) has gained great importance as a promising therapy for a myriad of diseases. Of particular interest is the therapy of cardiovascular diseases, such as heart failure or atrial fibrillation using selective cardiac VNS. However, there is still a lack of organ-specific anatomical knowledge about the fascicular anatomy and topography of the cardiac branch (CB), which diminishes the therapeutic possibilities for selective cardiac neuromodulation. Here, we established a topographical and anatomical map of the superior cardiac VN in two animal species to dissect cervical and cardiac VN morphology. Methods: Autonomic nerves including superior CBs were harvested from domestic pigs and New Zeeland rabbits followed by imaging with microcomputed tomography (µCT) and 3D rendering. The data were analyzed in terms of relevant topographical and anatomical parameters. Results: Our data showed that cardiac vagal fascicles remained separated from other VN fascicles up to 22.19 mm (IQR 14.02-41.30 mm) in pigs and 7.68 mm (IQR 4.06-12.77 mm) in rabbits from the CB point and then started merging with other fascicles. Exchanges of nerve fascicles between sympathetic trunk (ST) and VN were observed in 3 out of 11 nerves, which might cause additional unwanted effects in unselective VNS. Our 3D rendered digital model of the cardiac fascicles was generated showing that CB first remained on the medial side where it branched off the VN, as also shown in the µCT data of 11 pig nerves, and then migrated towards the ventromedial site the further it was traced cranially. Conclusion: Our data provided an anatomical map of the cardiac vagal branches including cervical VN and ST for future approaches of selective cardiac neurostimulation, indicating the best position of selective cardiac VNS just above the CB point.
Collapse
Affiliation(s)
- Bettina Kronsteiner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Lydia M. Zopf
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Patrick Heimel
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Dental Clinic Vienna, Vienna, Austria
| | - Gunpreet Oberoi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Anne M. Kramer
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Paul Slezak
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang J. Weninger
- Department of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Bruno K. Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
13
|
Abstract
We review the structure and function of the vagus nerve, drawing on information obtained in humans and experimental animals. The vagus nerve is the largest and longest cranial nerve, supplying structures in the neck, thorax, and abdomen. It is also the only cranial nerve in which the vast majority of its innervation territory resides outside the head. While belonging to the parasympathetic division of the autonomic nervous system, the nerve is primarily sensory-it is dominated by sensory axons. We discuss the macroscopic and microscopic features of the nerve, including a detailed description of its extensive territory. Histochemical and genetic profiles of afferent and efferent axons are also detailed, as are the central nuclei involved in the processing of sensory information conveyed by the vagus nerve and the generation of motor (including parasympathetic) outflow via the vagus nerve. We provide a comprehensive review of the physiological roles of vagal sensory and motor neurons in control of the cardiovascular, respiratory, and gastrointestinal systems, and finish with a discussion on the interactions between the vagus nerve and the immune system. © 2022 American Physiological Society. Compr Physiol 12: 1-49, 2022.
Collapse
Affiliation(s)
- Matteo M Ottaviani
- Department of Neurosurgery, Università Politecnica delle Marche, Ancona, Italy
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.,Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
14
|
Ottaviani MM, Vallone F, Micera S, Recchia FA. Closed-Loop Vagus Nerve Stimulation for the Treatment of Cardiovascular Diseases: State of the Art and Future Directions. Front Cardiovasc Med 2022; 9:866957. [PMID: 35463766 PMCID: PMC9021417 DOI: 10.3389/fcvm.2022.866957] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
The autonomic nervous system exerts a fine beat-to-beat regulation of cardiovascular functions and is consequently involved in the onset and progression of many cardiovascular diseases (CVDs). Selective neuromodulation of the brain-heart axis with advanced neurotechnologies is an emerging approach to corroborate CVDs treatment when classical pharmacological agents show limited effectiveness. The vagus nerve is a major component of the cardiac neuroaxis, and vagus nerve stimulation (VNS) is a promising application to restore autonomic function under various pathological conditions. VNS has led to encouraging results in animal models of CVDs, but its translation to clinical practice has not been equally successful, calling for more investigation to optimize this technique. Herein we reviewed the state of the art of VNS for CVDs and discuss avenues for therapeutic optimization. Firstly, we provided a succinct description of cardiac vagal innervation anatomy and physiology and principles of VNS. Then, we examined the main clinical applications of VNS in CVDs and the related open challenges. Finally, we presented preclinical studies that aim at overcoming VNS limitations through optimization of anatomical targets, development of novel neural interface technologies, and design of efficient VNS closed-loop protocols.
Collapse
Affiliation(s)
- Matteo Maria Ottaviani
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Fabio Vallone
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Silvestro Micera
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Fabio A. Recchia
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Evaluation of the ideal length of the Seldinger needle for internal jugular vein catheter placement. Sci Rep 2022; 12:2745. [PMID: 35177678 PMCID: PMC8854409 DOI: 10.1038/s41598-022-06287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Placement of central venous catheters (CVC) into the internal jugular vein represents a routine clinical intervention. The periprocedural complication rate ranges from 5 to 20% and can be reduced by ultrasound guidance, training of residents and other measures. We aimed to proof that the average Seldinger needle is too long, increasing the risk of periprocedural injury, best epitomized in the stellate ganglion injury/irritation. The first part of the study was an online market analysis to investigate the standard needle length currently offered as part of the CVC placement sets. The second part of the study involved 35 hospitalized patients (14 female; median age 74.5 years). In those the distance between the skin and the internal jugular vein as well as the diameter of the internal jugular vein was measured by ultrasound in both, supine position as well as 45° semi-sitting position. In the third part of the study 80 body donors (45 female; median age 83.0 years) preserved by the ethanol/formaldehyde method were studied. In those the distance and angle between the typical landmark for insertion of the Seldinger needle for internal jugular vein catheter placement to the stellate ganglion was measured. The median [interquartile range] Seldinger needle length was 7 [4.0–10.0] cm. In the examined patients the maximum distance between the skin and the internal jugular vein was 1.87 cm. The minimum distance was 0.46 cm and the median distance averaging supine and 45° position was 1.14 [0.94–1.31] cm. Regarding the body donors the median distance from the insertion point of the internal jugular vein to the stellate ganglion was longer in men 5.5 [4.95–6.35] cm than in women 5.2 [4.7–5.9] (p = 0.031 unpaired t-test). With 7 cm average length the Seldinger needle currently sold as part of CVC sets is long enough to physically reach the stellate ganglion, not to mention more proximal structures. A shorter needle length would be sufficient to reach the internal jugular vein even in obese patients and with a small insertion angle while minimizing the possibility to cause severe injury as structures like the pleura and the stellate ganglion could not be reached by shorter needles.
Collapse
|
16
|
Molero-Chamizo A, Nitsche MA, Bolz A, Andújar Barroso RT, Alameda Bailén JR, García Palomeque JC, Rivera-Urbina GN. Non-Invasive Transcutaneous Vagus Nerve Stimulation for the Treatment of Fibromyalgia Symptoms: A Study Protocol. Brain Sci 2022; 12:brainsci12010095. [PMID: 35053839 PMCID: PMC8774206 DOI: 10.3390/brainsci12010095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Stimulation of the vagus nerve, a parasympathetic nerve that controls the neuro-digestive, vascular, and immune systems, induces pain relief, particularly in clinical conditions such as headache and rheumatoid arthritis. Transmission through vagal afferents towards the nucleus of the solitary tract (NST), the central relay nucleus of the vagus nerve, has been proposed as the main physiological mechanism that reduces pain intensity after vagal stimulation. Chronic pain symptoms of fibromyalgia patients might benefit from stimulation of the vagus nerve via normalization of altered autonomic and immune systems causing their respective symptoms. However, multi-session non-invasive vagal stimulation effects on fibromyalgia have not been evaluated in randomized clinical trials. We propose a parallel group, sham-controlled, randomized study to modulate the sympathetic–vagal balance and pain intensity in fibromyalgia patients by application of non-invasive transcutaneous vagus nerve stimulation (tVNS) over the vagal auricular and cervical branches. We will recruit 136 fibromyalgia patients with chronic moderate to high pain intensity. The primary outcome measure will be pain intensity, and secondary measures will be fatigue, health-related quality of life, sleep disorders, and depression. Heart rate variability and pro-inflammatory cytokine levels will be obtained as secondary physiological measures. We hypothesize that multiple tVNS sessions (five per week, for 4 weeks) will reduce pain intensity and improve quality of life as a result of normalization of the vagal control of nociception and immune–autonomic functions. Since both vagal branches project to the NST, we do not predict significantly different results between the two stimulation protocols.
Collapse
Affiliation(s)
- Andrés Molero-Chamizo
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (R.T.A.B.); (J.R.A.B.)
- Correspondence: ; Tel.: +34-959218478
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany;
- Department of Neurology, University Medical Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Armin Bolz
- tVNS Technologies GmbH, Ebrardstr. 31, 91052 Erlangen, Germany;
| | - Rafael Tomás Andújar Barroso
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (R.T.A.B.); (J.R.A.B.)
| | - José R. Alameda Bailén
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (R.T.A.B.); (J.R.A.B.)
| | - Jesús Carlos García Palomeque
- Department of the Histology, School of Medicine, Cadiz University and District Jerez Costa-N., Andalusian Health Service, 11003 Cádiz, Spain;
| | | |
Collapse
|
17
|
Rowan CC, Graudejus O, Otchy TM. A Microclip Peripheral Nerve Interface (μcPNI) for Bioelectronic Interfacing with Small Nerves. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102945. [PMID: 34837353 PMCID: PMC8787429 DOI: 10.1002/advs.202102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/12/2021] [Revised: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Peripheral nerves carry sensory (afferent) and motor (efferent) signals between the central nervous system and other parts of the body. The peripheral nervous system (PNS) is therefore rich in targets for therapeutic neuromodulation, bioelectronic medicine, and neuroprosthetics. Peripheral nerve interfaces (PNIs) generally suffer from a tradeoff between selectivity and invasiveness. This work describes the fabrication, evaluation, and chronic implantation in zebra finches of a novel PNI that breaks this tradeoff by interfacing with small nerves. This PNI integrates a soft, stretchable microelectrode array with a 2-photon 3D printed microclip (μcPNI). The advantages of this μcPNI compared to other designs are: a) increased spatial resolution due to bi-layer wiring of the electrode leads, b) reduced mismatch in biomechanical properties with the nerve, c) reduced disturbance to the host tissue due to the small size, d) elimination of sutures or adhesives, e) high circumferential contact with small nerves, f) functionality under considerable strain, and g) graded neuromodulation in a low-threshold stimulation regime. Results demonstrate that the μcPNIs are electromechanically robust, and are capable of reliably recording and stimulating neural activity in vivo in small nerves. The μcPNI may also inform the development of new optical, thermal, ultrasonic, or chemical PNIs as well.
Collapse
Affiliation(s)
| | - Oliver Graudejus
- BMSEED LLCPhoenixAZ85034USA
- School of Molecular SciencesArizona State UniversityTempeAZ85281USA
| | - Timothy M. Otchy
- Department of BiologyBoston UniversityBostonMA02215USA
- Neurophotonics CenterBoston UniversityBostonMA02215USA
- Center for Systems NeuroscienceBoston UniversityBostonMA02215USA
| |
Collapse
|
18
|
Abdelnaby R, Elsayed M, Mohamed KA, Dardeer KT, Sonbol YT, ELgenidy A, Barakat MH, NasrEldin YK, Maier A. Sonographic Reference Values of Vagus Nerve: A Systematic Review and Meta-analysis. J Clin Neurophysiol 2022; 39:59-71. [PMID: 34144573 DOI: 10.1097/wnp.0000000000000856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To establish the first comprehensive and standardized set of vagus nerve (VN) sonographic reference values across all the published studies that can be used to standardize and guide clinical practice and research. METHODS This systematic review includes all possible available data from a total of 27 studies and 21 of them were included in the meta-analysis having a total of 864 participants. RESULTS The overall mean cross-sectional area ranged from 2.29 to 2.76 mm2 for the right VN and from 1.83 to 2.23 mm2 for the left VN with 95% confidence interval. Sonographic reference values of VN at common carotid artery bifurcation, thyroid gland, and cartilage as well as other anatomic landmarks were provided. CONCLUSIONS The mean cross-sectional area of the right VN of 2.53 mm2 and the left one of 2.03 mm2 can be considered as sonographic reference values in healthy adults. This review provides these reference values to be considered in the further sonographic evaluation of VNs.
Collapse
Affiliation(s)
- Ramy Abdelnaby
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Mohamed Elsayed
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| | | | | | | | - Anas ELgenidy
- Faculty of Medicine, Cairo University, Cairo, Egypt ; and
| | | | - Yasmin K NasrEldin
- Rheumatology and Rehabilitation Department, El-Minia University, EL-Menia, Egypt
| | - Andrea Maier
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
19
|
Havton LA, Biscola NP, Stern E, Mihaylov PV, Kubal CA, Wo JM, Gupta A, Baronowsky E, Ward MP, Jaffey DM, Powley TL. Human organ donor-derived vagus nerve biopsies allow for well-preserved ultrastructure and high-resolution mapping of myelinated and unmyelinated fibers. Sci Rep 2021; 11:23831. [PMID: 34903749 PMCID: PMC8668909 DOI: 10.1038/s41598-021-03248-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
The vagus nerve provides motor, sensory, and autonomic innervation of multiple organs, and electrical vagus nerve stimulation (VNS) provides an adjunctive treatment option for e.g. medication-refractory epilepsy and treatment-resistant depression. The mechanisms of action for VNS are not known, and high-resolution anatomical mapping of the human vagus nerve is needed to better understand its functional organization. Electron microscopy (EM) is required for the detection of both myelinated and unmyelinated axons, but access to well-preserved human vagus nerves for ultrastructural studies is sparse. Intact human vagus nerve samples were procured intra-operatively from deceased organ donors, and tissues were immediately immersion fixed and processed for EM. Ultrastructural studies of cervical and sub-diaphragmatic vagus nerve segments showed excellent preservation of the lamellated wall of myelin sheaths, and the axolemma of myelinated and unmyelinated fibers were intact. Microtubules, neurofilaments, and mitochondria were readily identified in the axoplasm, and the ultrastructural integrity of Schwann cell nuclei, Remak bundles, and basal lamina was also well preserved. Digital segmentation of myelinated and unmyelinated axons allowed for determination of fiber size and myelination. We propose a novel source of human vagus nerve tissues for detailed ultrastructural studies and mapping to support efforts to refine neuromodulation strategies, including VNS.
Collapse
Affiliation(s)
- Leif A Havton
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.
| | - Natalia P Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Stern
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Plamen V Mihaylov
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - John M Wo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anita Gupta
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth Baronowsky
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew P Ward
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Deborah M Jaffey
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
20
|
Neuhuber WL, Berthoud HR. Functional anatomy of the vagus system - Emphasis on the somato-visceral interface. Auton Neurosci 2021; 236:102887. [PMID: 34634680 PMCID: PMC8627476 DOI: 10.1016/j.autneu.2021.102887] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Due to its pivotal role in autonomic networks, the vagus attracts continuous interest from both basic scientists and clinicians. In particular, recent advances in vagus nerve stimulation strategies and their application to pathological conditions beyond epilepsy provide a good opportunity to recall basic features of vagal peripheral and central anatomy. In addition to the "classical" vagal brainstem nuclei, i.e., dorsal motor nucleus, nucleus ambiguus and nucleus tractus solitarii, the spinal trigeminal and paratrigeminal nuclei come into play as targets of vagal afferents. On the other hand, the nucleus of the solitary tract receives and integrates not only visceral but also somatic afferents. Thus, the vagus system participates significantly in what may be defined as "somato-visceral interface".
Collapse
Affiliation(s)
- Winfried L Neuhuber
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University, Krankenhausstrasse 9, Erlangen, Germany.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
21
|
Intra-operative monitoring as an adjuvant to standard vagus nerve stimulation implantation. Childs Nerv Syst 2021; 37:3809-3816. [PMID: 34302220 DOI: 10.1007/s00381-021-05295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/27/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The treatment of refractory epilepsy by vagus nerve stimulation (VNS) is a well-established therapy. Complications following VNS insertion may be procedure-related or stimulation-related. Herein, we describe our technique of intra-operative neuro-monitoring (IONM) in an attempt to diminish these adverse events. METHODS This retrospective study describes 66 consecutive patients between the ages of 3 and 12 years who had undergone primary VNS implantation. The study population consisted of two cohorts, one in which the VNS device was implanted according to the standard described technique and a second group in which IONM was used as an adjuvant during the VNS device placement. Prior to VNS insertion, a Pediatric Voice Handicap Index (PVHI) was performed to assess voice-related quality of life, and this was repeated at 3 months following VNS insertion. RESULTS Sixty-six patients underwent the VNS implantation. Forty-three patients had a "standard" VNS insertion technique performed, whereas 23 had IONM performed during the VNS implantation. There were significant changes in the PVHI scores across both cohorts at 3-month follow-up. There were no statistically significant differences in PVHI scores between the monitored group and non-monitored group at 3-month follow up. CONCLUSIONS IONM can be used during VNS insertions to ensure correct placement of the leads on CNX. IONM may minimise vocal cord stimulation by placing the lead coils on the area of nerve eliciting the least amount of vocal cord EMG response. IONM however does not appear to improve voice outcomes at early follow up.
Collapse
|
22
|
Braut T, Maršić M, Ravlić I, Maržić D, Marijić B, Malvić G, Vrebac I, Velepič M. Posttraumatic Vernet syndrome without fracture: A case report and short literature review. Medicine (Baltimore) 2021; 100:e27618. [PMID: 34713846 PMCID: PMC8556020 DOI: 10.1097/md.0000000000027618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE The aim of this case is to emphasize the need to include nerve traction in the differential diagnosis of nerve deficits associated with Vernet syndrome. This mechanism of injury has been described only once, but must not be overlooked and should be considered and included as a possible cause in diagnostic algorithms. PATIENT CONCERNS A patient presenting with dysphagia, extreme hoarseness, and limited shoulder movement after head injury was admitted to the emergency department. DIAGNOSES Multidisciplinary evaluation was performed, and nerve traction-induced Vernet syndrome was established as a running diagnosis. INTERVENTIONS Intensive swallowing and speech exercises, assisted by a specialist, were performed. OUTCOMES Swallowing and speech exercises significantly and objectively improved the patient's swallowing and voice, with mild hoarseness of voice remaining as the main symptom. Spectral acoustic analysis went from a voice pitch of 163.77 Hz to normal (187.77 Hz), jitter improved from 17.87% to 0.86% and shimmer values decreased from 39.86% to 19.60%. Breathiness during phonation measuring 2.91% was reduced to 1.08% and appropriate average intensity of voice (63.95 dB) was achieved. Initial dysphagia and fluid retention in the right piriform sinus, along with tracheal aspiration, were not observed in control fiberoptic endoscopic evaluation of swallowing. LESSONS According to our knowledge and literature data, this is the second reported case of posttraumatic Vernet syndrome without radiologically confirmed jugular foramen fracture, induced by nerve traction. Such patients need a prompt multidisciplinary approach in diagnosis and timely posttraumatic rehabilitation therapy for favorable clinical evolution and retrieval of nerve function.
Collapse
Affiliation(s)
- Tamara Braut
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Rijeka University Hospital Center, Rijeka, Croatia
| | - Matej Maršić
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Rijeka University Hospital Center, Rijeka, Croatia
| | - Iva Ravlić
- University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Diana Maržić
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Rijeka University Hospital Center, Rijeka, Croatia
| | - Blažen Marijić
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Rijeka University Hospital Center, Rijeka, Croatia
| | - Goran Malvić
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Rijeka University Hospital Center, Rijeka, Croatia
| | - Ilinko Vrebac
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Rijeka University Hospital Center, Rijeka, Croatia
| | - Marko Velepič
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Rijeka University Hospital Center, Rijeka, Croatia
| |
Collapse
|
23
|
Harcourt-Brown TR, Carter M. Implantable vagus nerve stimulator settings and short-term adverse effects in epileptic dogs. J Vet Intern Med 2021; 35:2350-2358. [PMID: 34472639 PMCID: PMC8478022 DOI: 10.1111/jvim.16226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Implantable vagus nerve stimulation (VNS) devices can be used to treat epilepsy in dogs. Adverse effects and short-term complications associated with delivering suggested therapeutic electrical stimulation (>1.5 mA) are not well-described. OBJECTIVES To compare complications and adverse effects observed with standard and rapid protocols of current increase. ANIMALS Sixteen client-owned dogs with idiopathic epilepsy. METHODS Nonrandomized, nonblinded prospective cohort study. Surgical complications, stimulation-related adverse effects, modifications to stimulator settings, number of hospital visits, and time to reach 1.5 mA stimulation current without intolerable adverse effects were described in dogs receiving current increases every 1 to 3 weeks (slow ramping) and dogs receiving current increases every 8 to 12 hours (fast ramping). RESULTS Self-resolving surgery site seromas formed in 6 dogs. No other surgical complications were observed. Fourteen dogs reached 1.5 mA. Coughing (11/14 dogs; 5 slow, 6 fast ramping) was the most common adverse effect. Intolerable coughing that limited current increases despite changing other stimulus parameters occurred in 6/7 of the fast-ramping group and in none of the slow-ramping group. Median time to 1.5 mA was 72 days (range, 28-98) in the slow-ramping group and 77 days (range, 3-152) in the fast-ramping group. Median number of clinic visits was 6 for the slow-ramping group (range, 5-6) and 3 for the fast-ramping group (range, 1-7). CONCLUSIONS AND CLINICAL IMPORTANCE Coughing is a common adverse effect of VNS in dogs and generally is well tolerated, particularly if current is increased slowly and other stimulation parameters are adapted for effect.
Collapse
Affiliation(s)
| | - Michael Carter
- Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
24
|
Souza RR, Robertson NM, McIntyre CK, Rennaker RL, Hays SA, Kilgard MP. Vagus nerve stimulation enhances fear extinction as an inverted-U function of stimulation intensity. Exp Neurol 2021; 341:113718. [PMID: 33844986 DOI: 10.1016/j.expneurol.2021.113718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2021] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Studies in rodents indicate that pairing vagus nerve stimulation (VNS) with extinction training enhances fear extinction. However, the role of stimulation parameters on the effects of VNS remains largely unknown. Identifying the optimal stimulation intensity is a critical step in clinical translation of neuromodulation-based therapies. Here, we sought to investigate the role of stimulation intensity in rats receiving VNS paired with extinction training in a rat model for Posttraumatic Stress Disorder (PTSD). Male Sprague-Dawley rats underwent single prolonged stress followed by a severe fear conditioning training and were implanted with a VNS device. After recovery, independent groups of rats were exposed to extinction training paired with sham (0 mA) or VNS at different intensities (0.4, 0.8, or 1.6 mA). VNS intensities of 0.4 mA or 0.8 mA decreased conditioned fear during extinction training compared to sham stimulation. Pairing extinction training with moderate VNS intensity of 0.8 mA produced significant reduction in conditioned fear during extinction retention when rats were tested a week after VNS-paired extinction. High intensity VNS at 1.6 mA failed to enhance extinction. These findings indicate that a narrow range of VNS intensities enhances extinction learning, and suggest that the 0.8 mA VNS intensity used in earlier rodent and human stroke studies may also be the optimal in using VNS as an adjuvant in exposure therapies for PTSD.
Collapse
Affiliation(s)
- Rimenez R Souza
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Nicole M Robertson
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Christa K McIntyre
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| |
Collapse
|
25
|
Horsager J, Walter U, Fedorova TD, Andersen KB, Skjærbæk C, Knudsen K, Okkels N, von Weitzel-Mudersbach P, Dyrskog SE, Bergholt B, Borghammer P. Vagus Nerve Cross-Sectional Area in Patients With Parkinson's Disease-An Ultrasound Case-Control Study. Front Neurol 2021; 12:681413. [PMID: 34239497 PMCID: PMC8258145 DOI: 10.3389/fneur.2021.681413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Vagal parasympathetic neurons are prone to degeneration in Parkinson's disease (PD). High-resolution ultrasound can precisely estimate the cross-sectional (CSA) area of peripheral nerves. Here, we tested the hypothesis that vagus CSA is reduced in PD. Methods: We included 56 healthy controls (HCs) and 63 patients with PD. Using a high-end ultrasound system equipped with a high-frequency transducer, five images were obtained of each nerve. The hypoechoic neuronal tissue was delineated offline with dedicated software and the CSA extracted. Results: In the initial PD vs. HC comparison, no statistically significant differences were observed in mean left vagus CSA (HC: 1.97 mm2, PD: 1.89 mm2, P = 0.36) nor in mean right vagus CSA (HC: 2.37 mm2, PD: 2.23 mm2, P = 0.17). The right vagus CSA was significantly larger than the left vagus CSA in both groups (P < 0.0001). Females were overrepresented in the HC group and presented with generally smaller vagus CSAs. Consequently, sex-adjusted CSA was significantly smaller for the right vagus nerve of the PD group (P = 0.041), but not for the left. Conclusion: A small but significant reduction in sex-adjusted right vagus CSA was observed in patients with PD. The left vagus CSA was not significantly reduced in patients with PD. Ultrasound may not be a suitable method to detecting vagal axonal loss in individual patients.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Uwe Walter
- Department of Neurology, Rostock University, Rostock, Germany
| | - Tatyana D. Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Katrine B. Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Stig Eric Dyrskog
- Department of Neuro-Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Bo Bergholt
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
26
|
Stumpp L, Smets H, Vespa S, Cury J, Doguet P, Delbeke J, Nonclercq A, El Tahry R. Vagus Nerve Electroneurogram-Based Detection of Acute Pentylenetetrazol Induced Seizures in Rats. Int J Neural Syst 2021; 31:2150024. [PMID: 34030610 DOI: 10.1142/s0129065721500246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
On-demand stimulation improves the efficacy of vagus nerve stimulation (VNS) in refractory epilepsy. The vagus nerve is the main peripheral parasympathetic connection and seizures are known to exhibit autonomic symptoms. Therefore, we hypothesized that seizure detection is possible through vagus nerve electroneurogram (VENG) recording. We developed a metric able to measure abrupt changes in amplitude and frequency of spontaneous vagus nerve action potentials. A classifier was trained using a "leave-one-out" method on a set of 6 seizures and 3 control recordings to utilize the VENG spike feature-based metric for seizure detection. We were able to detect pentylenetetrazol (PTZ) induced acute seizures in 6/6 animals during different stages of the seizure with no false detection. The classifier detected the seizure during an early stage in 3/6 animals and at the onset of tonic clonic stage of the seizure in 3/6 animals. EMG and motion artefacts often accompany epileptic activity. We showed the "epileptic" neural signal to be independent from EMG and motion artefacts. We confirmed the existence of seizure related signals in the VENG recording and proved their applicability for seizure detection. This detection might be a promising tool to improve efficacy of VNS treatment by developing new responsive stimulation systems.
Collapse
Affiliation(s)
- Lars Stumpp
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Hugo Smets
- BEAMS Department, Université libre de Bruxelles, Brussels, Belgium
| | - Simone Vespa
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Joaquin Cury
- BEAMS Department, Université libre de Bruxelles, Brussels, Belgium
| | | | - Jean Delbeke
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | | | - Riem El Tahry
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.,Cliniques Universitaires Saint Luc, Center for Refractory Epilepsy, Brussels, Belgium
| |
Collapse
|
27
|
Pelot NA, Goldhagen GB, Cariello JE, Musselman ED, Clissold KA, Ezzell JA, Grill WM. Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Front Neurosci 2020; 14:601479. [PMID: 33250710 PMCID: PMC7672126 DOI: 10.3389/fnins.2020.601479] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
It is necessary to understand the morphology of the vagus nerve (VN) to design and deliver effective and selective vagus nerve stimulation (VNS) because nerve morphology influences fiber responses to electrical stimulation. Specifically, nerve diameter (and thus, electrode-fiber distance), fascicle diameter, fascicular organization, and perineurium thickness all significantly affect the responses of nerve fibers to electrical signals delivered through a cuff electrode. We quantified the morphology of cervical and subdiaphragmatic VNs in humans, pigs, and rats: effective nerve diameter, number of fascicles, effective fascicle diameters, proportions of endoneurial, perineurial, and epineurial tissues, and perineurium thickness. The human and pig VNs were comparable sizes (∼2 mm cervically; ∼1.6 mm subdiaphragmatically), while the rat nerves were ten times smaller. The pig nerves had ten times more fascicles-and the fascicles were smaller-than in human nerves (47 vs. 7 fascicles cervically; 38 vs. 5 fascicles subdiaphragmatically). Comparing the cervical to the subdiaphragmatic VNs, the nerves and fascicles were larger at the cervical level for all species and there were more fascicles for pigs. Human morphology generally exhibited greater variability across samples than pigs and rats. A prior study of human somatic nerves indicated that the ratio of perineurium thickness to fascicle diameter was approximately constant across fascicle diameters. However, our data found thicker human and pig VN perineurium than those prior data: the VNs had thicker perineurium for larger fascicles and thicker perineurium normalized by fascicle diameter for smaller fascicles. Understanding these differences in VN morphology between preclinical models and the clinical target, as well as the variability across individuals of a species, is essential for designing suitable cuff electrodes and stimulation parameters and for informing translation of preclinical results to clinical application to advance the therapeutic efficacy of VNS.
Collapse
Affiliation(s)
- Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Gabriel B. Goldhagen
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Jake E. Cariello
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Eric D. Musselman
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Kara A. Clissold
- Histology Research Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. Ashley Ezzell
- Histology Research Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University, Durham, NC, United States
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
28
|
Groff J, Vasudevan S, Yaghouby F. Vagus Nerve Stimulation Unequally Disturbs Circadian Variation of Cardiac Rhythms in Male and Female Rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3384-3387. [PMID: 33018730 DOI: 10.1109/embc44109.2020.9176140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Vagus nerve stimulation (VNS) is a neurostimulation therapy for epilepsy and severe depression and has been recently shown to be effective for other conditions. Despite its demonstrated safety and efficacy, long-term and off-target effects of VNS remain to be fully determined. One of the complications reported in epilepsy is stimulation-induced sleep abnormalities. As epilepsy itself can impact sleep quality, contribution of VNS alone in such off-target effects remain mainly unknown. In this study, we analyzed data from long-term VNS experiments in rats to characterize effects of VNS on circadian rhythms derived from heart rate and heart rate variability (HRV). We have also explored possible sex differences in long-term effects of VNS on intrinsic biological rhythms. Compared with control animals, significant VNS-induced changes in circadian rhythms were observed particularly in female rats over 24h and 6h light cycles (1PM-7PM). These findings enhance our understanding of VNS contribution and biological sex role on sleep difficulties reported by using VNS therapy.
Collapse
|
29
|
Harris AR. Current perspectives on the safe electrical stimulation of peripheral nerves with platinum electrodes. ACTA ACUST UNITED AC 2020. [DOI: 10.2217/bem-2020-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
This review details some peripheral nervous system (PNS) targets and electrode designs used for electrical stimulation. It investigates limitations in current knowledge of safe electrical stimulation and possible future electrode developments. Current PNS targets are large, leading to poor resolution and off-target side-effects. Most clinical devices are platinum or platinum/iridium embedded in an insulation material. Their safety is usually guided by the Shannon plot, which is not valid for the PNS. New electrode designs are needed to target smaller nerve fibers, enabling higher resolution electrical therapies with fewer off-target side-effects. Damage can occur through biological and electrochemical mechanisms. Greater mechanistic understanding is required to ensure safe and efficacious, long-term electrical stimulation with new electrode materials, geometries and stimulation waveforms.
Collapse
Affiliation(s)
- Alexander R Harris
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
30
|
Hutchings C, Phillips JA, Djamgoz MBA. Nerve input to tumours: Pathophysiological consequences of a dynamic relationship. Biochim Biophys Acta Rev Cancer 2020; 1874:188411. [PMID: 32828885 DOI: 10.1016/j.bbcan.2020.188411] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
It is well known that tumours arising in different organs are innervated and that 'perineural invasion' (cancer cells escaping from the tumour by following the nerve trunk) is a negative prognostic factor. More surprisingly, increasing evidence suggests that the nerves can provide active inputs to tumours and there is two-way communication between nerves and cancer cells within the tumour microenvironment. Cells of the immune system also interact with the nerves and cancer cells. Thus, the nerve connections can exert significant control over cancer progression and modulating these (physically or chemically) can affect significantly the cancer process. Nerve inputs to tumours are derived mainly from the sympathetic (adrenergic) and the parasympathetic (cholinergic) systems, which are interactive. An important component of the latter is the vagus nerve, the largest of the cranial nerves. Here, we present a two-part review of the nerve inputs to tumours and their effects on tumorigenesis. First, we review briefly some relevant general issues including ultrastructural aspects, stemness, interactions between neurones and primary tumours, and communication between neurones and metastasizing tumour cells. Ultrastructural characteristics include synaptic vesicles, tumour microtubes and gap junctions enabling formation of cellular networks. Second, we evaluate the pathophysiology of the nerve input to five major carcinomas: cancers of prostate, stomach, colon, lung and pancreas. For each cancer, we present (i) the nerve inputs normally present in the cancer organ and (ii) how these interact and influence the cancer process. The best clinical evidence for the role of nerves in promoting tumorigenesis comes from prostate cancer patients where metastatic progression has been shown to be suppressed significantly in cases of spinal cord injury. The balance of the sympathetic and parasympathetic contributions to early versus late tumorigenesis varies amongst the different cancers. Different branches of the vagus provide functional inputs to several of the carcinomas and, in two-way interaction with the sympathetic nervous system, affect different stages of the cancer process. Overall, the impact of the vagus nerve can be 'direct' or 'indirect'. Directly, the effect of the vagus is primarily to promote tumorigenesis and this is mediated through cholinergic receptor mechanisms. Indirectly, pro- and anti-tumour effects can occur by stimulation or inhibition of the sympathetic nervous system, respectively. Less well understood are the 'indirect' anti-tumour effect of the vagus nerve via immunomodulation/inflammation, and the role of sensory innervation. A frequent occurrence in the nerve-tumour interactions is the presence of positive feedback driven by agents like nerve growth factor. We conclude that the nerve inputs to tumours can actively and dynamically impact upon cancer progression and are open to clinical exploitation.
Collapse
Affiliation(s)
- Charlotte Hutchings
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Jade A Phillips
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey.
| |
Collapse
|
31
|
Settell ML, Pelot NA, Knudsen BE, Dingle AM, McConico AL, Nicolai EN, Trevathan JK, Ezzell JA, Ross EK, Gustafson KJ, Shoffstall AJ, Williams JC, Zeng W, Poore SO, Populin LC, Suminski AJ, Grill WM, Ludwig KA. Functional vagotopy in the cervical vagus nerve of the domestic pig: implications for the study of vagus nerve stimulation. J Neural Eng 2020; 17:026022. [PMID: 32108590 PMCID: PMC7306215 DOI: 10.1088/1741-2552/ab7ad4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Given current clinical interest in vagus nerve stimulation (VNS), there are surprisingly few studies characterizing the anatomy of the vagus nerve in large animal models as it pertains to on-and off-target engagement of local fibers. We sought to address this gap by evaluating vagal anatomy in the pig, whose vagus nerve organization and size approximates the human vagus nerve. APPROACH Here we combined microdissection, histology, and immunohistochemistry to provide data on key features across the cervical vagus nerve in a swine model, and compare our results to other animal models (mouse, rat, dog, non-human primate) and humans. MAIN RESULTS In a swine model we quantified the nerve diameter, number and diameter of fascicles, and distance of fascicles from the epineural surface where stimulating electrodes are placed. We also characterized the relative locations of the superior and recurrent laryngeal branches of the vagus nerve that have been implicated in therapy limiting side effects with common electrode placement. We identified key variants across the cohort that may be important for VNS with respect to changing sympathetic/parasympathetic tone, such as cross-connections to the sympathetic trunk. We discovered that cell bodies of pseudo-unipolar cells aggregate together to form a very distinct grouping within the nodose ganglion. This distinct grouping gives rise to a larger number of smaller fascicles as one moves caudally down the vagus nerve. This often leads to a distinct bimodal organization, or 'vagotopy'. This vagotopy was supported by immunohistochemistry where approximately half of the fascicles were immunoreactive for choline acetyltransferase, and reactive fascicles were generally grouped in one half of the nerve. SIGNIFICANCE The vagotopy observed via histology may be advantageous to exploit in design of electrodes/stimulation paradigms. We also placed our data in context of historic and recent histology spanning multiple models, thus providing a comprehensive resource to understand similarities and differences across species.
Collapse
Affiliation(s)
- Megan L Settell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Mayo Clinic, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States of America
| | - Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Bruce E Knudsen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Aaron M Dingle
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Andrea L McConico
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Evan N Nicolai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Mayo Clinic, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States of America
| | - James K Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Mayo Clinic, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States of America
| | - J Ashley Ezzell
- Histology Research Core, University of North Carolina School of Medicine, Durham, NC, United States of America
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Durham, NC, United States of America
| | - Erika K Ross
- Abbott Neuromodulation, Plano, TX, United States of America
| | - Kenneth J Gustafson
- Department of Biomedical Engineering, Western Reserve University, Cleveland, OH, United States of America
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Western Reserve University, Cleveland, OH, United States of America
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Justin C Williams
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Weifeng Zeng
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Samuel O Poore
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States of America
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Luis C Populin
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Aaron J Suminski
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
- Department of Neurobiology, Duke University, Durham, NC, United States of America
- Department of Neurosurgery, Duke University, Durham, NC, United States of America
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
32
|
Ultrasonography of the Vagus Nerve in the Diagnosis of Parkinson's Disease. PARKINSONS DISEASE 2020; 2020:2627471. [PMID: 32318257 PMCID: PMC7150709 DOI: 10.1155/2020/2627471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/19/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 11/29/2022]
Abstract
Background It is currently impossible to diagnose Parkinson's disease (PD) in the premotor phase even though at the time of motor symptom onset the number of already degenerated dopaminergic substantia nigra neurons is considerable. Degeneration of the dorsal nucleus of the vagus nerve (VN) has been reported early in the disease course, and it could lead to impaired function of the VN, resulting in certain nonmotor symptoms of PD. Therefore, we raised a hypothesis that the loss of VN neurons could result in a smaller diameter of the VN among PD patients. Methods 20 PD patients and 20 age- and gender-matched individuals without any neurodegenerative disease were enrolled in a pilot study. The diameters of the right and left VNs were measured using ultrasonography, their average was calculated, and the narrower VN diameter was noted separately. Results No difference was found between the PD and control groups neither in the average VN diameter (mean 1.17; 95% confidence interval (CI) 1.10–1.24 vs. 1.13; 1.07–1.18, mm; p=0.353) nor in the narrower VN diameter (mean 1.11; 95% confidence interval (CI) 1.02–1.20 vs. 1.07; 1.02–1.13, mm; p=0.421). The narrower VN diameter and the average VN diameter were not able to distinguish between PD patients and controls (area under curve (AUC) = 0.588, 95% CI = 0.408–0.767, and p=0.344; and AUC = 0.578, 95% CI = 0.396–0.759, and p=0.402). Conclusions To conclude, no differences were found in VN diameter between the PD and control groups. Therefore, our data do not support the hypothesis that PD could be associated with a smaller diameter of the VN.
Collapse
|
33
|
Blanchard AR, Comfort WE. Keeping in Touch with Mental Health: The Orienting Reflex and Behavioral Outcomes from Calatonia. Brain Sci 2020; 10:E182. [PMID: 32235727 PMCID: PMC7139622 DOI: 10.3390/brainsci10030182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Physical and psychological therapy based on touch has been gradually integrated into broader mental health settings in the past two decades, evolving from a variety of psychodynamic, neurobiological and trauma-based approaches, as well as Eastern and spiritual philosophies and other integrative and converging systems. Nevertheless, with the exception of a limited number of well-known massage therapy techniques, only a few structured protocols of touch therapy have been standardized and researched to date. This article describes a well-defined protocol of touch therapy in the context of psychotherapy-the Calatonia technique-which engages the orienting reflex. The orienting reflex hypothesis is explored here as one of the elements of this technique that helps to decrease states of hypervigilance and chronic startle reactivity (startle and defensive reflexes) and restore positive motivational and appetitive states.
Collapse
Affiliation(s)
| | - William Edgar Comfort
- Social and Cognitive Science Laboratory, Centre for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo 01241, Brazil;
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To give an overview on recent developments in permanent implant-based therapy of resistant hypertension. RECENT FINDINGS The American Heart Association (AHA) recently updated their guidelines to treat high blood pressure (BP). As elevated BP now is defined as a systolic BP above 120 mmHg, the prevalence of hypertension in the USA has increased from 32% (old definition of hypertension) to 46%. In the past years, device- and implant-mediated therapies have evolved and extensively studied in various patient populations. Despite an initial drawback in a randomized controlled trial (RCT) of bilateral carotid sinus stimulation (CSS), new and less invasive and unilateral systems for baroreflex activation therapy (BAT) with the BAROSTIM NEO® have been developed which show promising results in small non-randomized controlled (RCT) studies. Selective vagal nerve stimulation (VNS) has been successfully evaluated in rodents, but has not yet been tested in humans. A new endovascular approach to reshape the carotid sinus to lower BP (MobiusHD™) has been introduced (baroreflex amplification therapy) with favorable results in non-RCT trials. However, long-term results are not yet available for this treatment option. A specific subgroup of patients, those with indication for a 2-chamber cardiac pacemaker, may benefit from a new stimulation paradigm which reduces the AV latency and therefore limits the filling time of the left ventricle. The most invasive approach for resistant hypertension still is the neuromodulation by deep brain stimulation (DBS), which has been shown to significantly lower BP in single cases. Implant-mediated therapy remains a promising approach for the treatment of resistant hypertension. Due to their invasiveness, such treatment options must prove superiority over conventional therapies with regard to safety and efficacy before they can be generally offered to a wider patient population. Overall, BAROSTIM NEO® and MobiusHD™, for which large RCTs will soon be available, are likely to meet those criteria and may represent the first implant-mediated therapeutical options for hypertension, while the use of DBS probably will be reserved for individual cases. The utility of VNS awaits appropriate assessment.
Collapse
|
35
|
Abstract
The small intestine is the longest organ in the human body, spanning a length of ∼5 m and compartmentalized into three distinct regions with specific roles in maintenance of comprehensive homeostasis. Along its length exists as a unique and independent system-called the enteric nervous system (ENS)-which coordinates the multitude of functions continuously around the clock. Yet, with so many vital roles played, the functions, relationships, and roles of the small intestine and ENS remain largely elusive. This fundamental hole in the physiology of the small intestine and ENS introduces a substantial number of challenges when attempting to create bioelectronic approaches for treatment of various disorders originating in the small intestine. Here, we review existing therapeutic options for modulating the small intestine, discuss fundamental gaps that must be addressed, and highlight novel methods and approaches to consider for development of bioelectronic approaches aiming to modulate the small intestine.
Collapse
Affiliation(s)
- Yogi A Patel
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Pankaj J Pasricha
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205.,Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
36
|
Ntiloudi D, Qanud K, Tomaio JN, Giannakoulas G, Al-Abed Y, Zanos S. Pulmonary arterial hypertension: the case for a bioelectronic treatment. Bioelectron Med 2019; 5:20. [PMID: 32232109 PMCID: PMC7098229 DOI: 10.1186/s42234-019-0036-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease of unknown etiology that progresses to right ventricular failure. It has a complex pathophysiology, which involves an imbalance between vasoconstrictive and vasodilative processes in the pulmonary circulation, pulmonary vasoconstriction, vascular and right ventricular remodeling, systemic inflammation, and autonomic imbalance, with a reduced parasympathetic and increased sympathetic tone. Current pharmacological treatments for PAH include several classes of drugs that target signaling pathways in vascular biology and cardiovascular physiology, but they can have severe unwanted effects and they do not typically stop the progression of the disease. Pulmonary artery denervation has been tested clinically as a method to suppress sympathetic overactivation, however it is a nonspecific and irreversible intervention. Bioelectronic medicine, in particular vagus nerve stimulation (VNS), has been used in cardiovascular disorders like arrhythmias, heart failure and arterial hypertension and could, in principle, be tested as a treatment in PAH. VNS can produce pulmonary vasodilation and renormalize right ventricular function, via activation of pulmonary and cardiac vagal fibers. It can suppress systemic inflammation, via activation of fibers that innervate the spleen. Finally, VNS can gradually restore the balance between parasympathetic and sympathetic tone by regulating autonomic reflexes. Preclinical studies support the feasibility of using VNS in PAH. However, there are challenges with such an approach, arising from the need to affect a relatively small number of relevant vagal fibers, and the potential for unwanted cardiac and noncardiac effects of VNS in this sensitive patient population.
Collapse
Affiliation(s)
- Despοina Ntiloudi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA.,2Department of Cardiology, AHEPA University Hospital, Thessaloniki, Greece
| | - Khaled Qanud
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Jacquelyn-Nicole Tomaio
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | | | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
37
|
Bucksot JE, Wells AJ, Rahebi KC, Sivaji V, Romero-Ortega M, Kilgard MP, Rennaker RL, Hays SA. Flat electrode contacts for vagus nerve stimulation. PLoS One 2019; 14:e0215191. [PMID: 31738766 PMCID: PMC6862926 DOI: 10.1371/journal.pone.0215191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
The majority of available systems for vagus nerve stimulation use helical stimulation electrodes, which cover the majority of the circumference of the nerve and produce largely uniform current density within the nerve. Flat stimulation electrodes that contact only one side of the nerve may provide advantages, including ease of fabrication. However, it is possible that the flat configuration will yield inefficient fiber recruitment due to a less uniform current distribution within the nerve. Here we tested the hypothesis that flat electrodes will require higher current amplitude to activate all large-diameter fibers throughout the whole cross-section of a nerve than circumferential designs. Computational modeling and in vivo experiments were performed to evaluate fiber recruitment in different nerves and different species using a variety of electrode designs. Initial results demonstrated similar fiber recruitment in the rat vagus and sciatic nerves with a standard circumferential cuff electrode and a cuff electrode modified to approximate a flat configuration. Follow up experiments comparing true flat electrodes to circumferential electrodes on the rabbit sciatic nerve confirmed that fiber recruitment was equivalent between the two designs. These findings demonstrate that flat electrodes represent a viable design for nerve stimulation that may provide advantages over the current circumferential designs for applications in which the goal is uniform activation of all fascicles within the nerve.
Collapse
Affiliation(s)
- Jesse E. Bucksot
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
| | - Andrew J. Wells
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
| | - Kimiya C. Rahebi
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
| | - Vishnoukumaar Sivaji
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
| | - Mario Romero-Ortega
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
| | - Michael P. Kilgard
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
- The University of Texas at Dallas, School of Behavioral Brain Sciences,
Richardson, Texas, United States of America
| | - Robert L. Rennaker
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
- The University of Texas at Dallas, School of Behavioral Brain Sciences,
Richardson, Texas, United States of America
| | - Seth A. Hays
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
- The University of Texas at Dallas, School of Behavioral Brain Sciences,
Richardson, Texas, United States of America
| |
Collapse
|
38
|
Noller CM, Levine YA, Urakov TM, Aronson JP, Nash MS. Vagus Nerve Stimulation in Rodent Models: An Overview of Technical Considerations. Front Neurosci 2019; 13:911. [PMID: 31551679 PMCID: PMC6738225 DOI: 10.3389/fnins.2019.00911] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Over the last several decades, vagus nerve stimulation (VNS) has evolved from a treatment for select neuropsychiatric disorders to one that holds promise in treating numerous inflammatory conditions. Growing interest has focused on the use of VNS for other indications, such as heart failure, rheumatoid arthritis, inflammatory bowel disease, ischemic stroke, and traumatic brain injury. As pre-clinical research often guides expansion into new clinical avenues, animal models of VNS have also increased in recent years. To advance this promising treatment, however, there are a number of experimental parameters that must be considered when planning a study, such as physiology of the vagus nerve, electrical stimulation parameters, electrode design, stimulation equipment, and microsurgical technique. In this review, we discuss these important considerations and how a combination of clinically relevant stimulation parameters can be used to achieve beneficial therapeutic results in pre-clinical studies of sub-acute to chronic VNS, and provide a practical guide for performing this work in rodent models. Finally, by integrating clinical and pre-clinical research, we present indeterminate issues as opportunities for future research.
Collapse
Affiliation(s)
- Crystal M. Noller
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, United States
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | | | - Timur M. Urakov
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Jackson Memorial Hospital, Miami, FL, United States
| | - Joshua P. Aronson
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Mark S. Nash
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Physical Medicine and Rehabilitation, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
39
|
Labuschagne JJ, Hammer N. Duplicated Vagus Nerve in Adolescence: Case Report and Review of Literature. World Neurosurg 2019; 131:180-185. [PMID: 31408750 DOI: 10.1016/j.wneu.2019.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Vagus nerve stimulation (VNS) has become an increasingly popular procedure for the treatment of epilepsy and depression. Significant complications or side effects associated with VNS surgery may result from either the inadvertent direct injury to the vagus nerve as part of the surgical approach, placement of the electrode, or the concomitant stimulation of vagal efferent fibers. To mitigate these effects, the recognition of anatomic variants that may place the nerve at increased risk is necessary. CASE DESCRIPTION During microsurgical dissection of the carotid sheath for the implantation of a vagus nerve stimulator in a 17-year-old male patient with refractory epilepsy, additional nonidentified nerve tissue was found running parallel to the vagus nerve. These fibers were two thirds of the thickness of the vagus nerve and ran medial to it, from the most superior to the most inferior aspect of the carotid sheath dissection, found at a distance of at least 4 cm in a craniocaudal direction. This duplicated nerve did not appear to branch from the vagal trunk nor exit the sheath but rather paralleled the course of the vagus nerve. The parallel course and the proximity of the unidentified nerve make this structure likely to be a duplicated vagus nerve. CONCLUSIONS This is the first reported case of cervical vagus nerve duplication presented in the literature. Surgeons performing VNS implantations should be cognizant of this potential anomaly in order to avoid inadvertent injury to the nerve.
Collapse
Affiliation(s)
- Jason John Labuschagne
- Netcare Unitas Hospital, Centurion, South Africa; Department of Neurosurgery, University of Witwatersrand, Johannesburg, South Africa; Department of Pediatric Neurosurgery, Nelson Mandela Children's Hospital, Johannesburg, South Africa.
| | - Niels Hammer
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Department of Trauma, Orthopedic and Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany; Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany
| |
Collapse
|
40
|
Van Puyvelde M, Neyt X, McGlone F, Pattyn N. Voice Stress Analysis: A New Framework for Voice and Effort in Human Performance. Front Psychol 2018; 9:1994. [PMID: 30515113 PMCID: PMC6255927 DOI: 10.3389/fpsyg.2018.01994] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2018] [Accepted: 09/28/2018] [Indexed: 11/24/2022] Open
Abstract
People rely on speech for communication, both in a personal and professional context, and often under different conditions of physical, cognitive and/or emotional load. Since vocalization is entirely integrated within both our central (CNS) and autonomic nervous system (ANS), a mounting number of studies have examined the relationship between voice output and the impact of stress. In the current paper, we will outline the different stages of voice output, i.e., breathing, phonation and resonance in relation to a neurovisceral integrated perspective on stress and human performance. In reviewing the function of these three stages of voice output, we will give an overview of the voice parameters encountered in studies on voice stress analysis (VSA) and review the impact of the different types of physiological, cognitive and/or emotional load. In the section "Discussion," with regard to physical load, a competition for ventilation processes required to speak and those to meet metabolic demand of exercised muscles is described. With regard to cognitive and emotional load, we will present the "Model for Voice and Effort" (MoVE) that comprises the integration of ongoing top-down and bottom-up activity under different types of load and combined patterns of voice output. In the MoVE, it is proposed that the fundamental frequency (F0) values as well as jitter give insight in bottom-up/arousal activity and the effort a subject is capable to generate but that its range and variance are related to ongoing top-down processes and the amount of control a subject can maintain. Within the MoVE, a key-role is given to the anterior cingulate cortex (ACC) which is known to be involved in both the equilibration between bottom-up arousal and top-down regulation and vocal activity. Moreover, the connectivity between the ACC and the nervus vagus (NV) is underlined as an indication of the importance of respiration. Since respiration is the driving force of both stress and voice production, it is hypothesized to be the missing-link in our understanding of the underlying mechanisms of the dynamic between speech and stress.
Collapse
Affiliation(s)
- Martine Van Puyvelde
- VIPER Research Unit, LIFE Department, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition, Experimental and Applied Psychology, Department of Psychological and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Clinical and Lifespan Psychology, Department of Psychological and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Xavier Neyt
- VIPER Research Unit, LIFE Department, Royal Military Academy, Brussels, Belgium
| | - Francis McGlone
- School of Natural Sciences and Psychology, Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Nathalie Pattyn
- VIPER Research Unit, LIFE Department, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition, Experimental and Applied Psychology, Department of Psychological and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- MFYS-BLITS, Department of Human Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
41
|
Burger AM, Van Diest I, van der Does W, Hysaj M, Thayer JF, Brosschot JF, Verkuil B. Transcutaneous vagus nerve stimulation and extinction of prepared fear: A conceptual non-replication. Sci Rep 2018; 8:11471. [PMID: 30065275 PMCID: PMC6068181 DOI: 10.1038/s41598-018-29561-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
Transcutaneous stimulation of the auricular branch of the vagus nerve (tVNS) may accelerate fear extinction in healthy humans. Here, we aimed to investigate this hypothesis in healthy young participants in a prepared learning paradigm, using spider pictures as conditioned stimuli. After a fear conditioning phase, participants were randomly allocated to receive tVNS (final N = 42) or sham stimulation (final N = 43) during an extinction phase. Conditioned fear was assessed using US expectancy ratings, skin conductance and fear potentiated startle responses. After successful fear acquisition, participants in both groups showed a reduction of fear over the course of the extinction phase. There were no between-group differences in extinction rates for physiological indices of fear. Contrary to previous findings, participants in the tVNS condition also did not show accelerated declarative extinction learning. Participants in the tVNS condition did have lower initial US expectancy ratings for the CS− trials than those who received sham stimulation, which may indicate an enhanced processing of safety cues due to tVNS. In conclusion, the expected accelerated extinction due to tVNS was not observed. The results from this study call for more research on the optimal tVNS stimulation intensity settings.
Collapse
Affiliation(s)
- Andreas M Burger
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands. .,Faculty of Psychology, Katholieke Universiteit Leuven, Tiensestraat 102, 3000, Leuven, Belgium.
| | - Ilse Van Diest
- Faculty of Psychology, Katholieke Universiteit Leuven, Tiensestraat 102, 3000, Leuven, Belgium
| | - Willem van der Does
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
| | - Marsida Hysaj
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
| | - Julian F Thayer
- Department of Psychology, The Ohio State University, 1835 Neil Avenue Mall, Columbus, OH, 43210, United States
| | - Jos F Brosschot
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
| | - Bart Verkuil
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
| |
Collapse
|
42
|
Saito S, Ozawa H, Fujioka M, Hikishima K, Hata J, Kurihara S, Okano HJ, Ogawa K. Visualization of nerve fibers around the carotid bifurcation with use of a 9.4 Tesla microscopic magnetic resonance diffusion tensor imaging with tractography. Head Neck 2018; 40:2228-2234. [PMID: 29947092 PMCID: PMC6220873 DOI: 10.1002/hed.25318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
Background Precise imaging of nerves have been challenging in the head and neck region, mainly due to low spatial resolution. Here, we investigated how nerves in the head and neck region could be visualized using an ultra‐high magnetic field MR system. Methods We used formol‐carbol‐fixed human cadaveric necks and obtained MR diffusion tensor images (DTIs) using a 9.4 Tesla (T) ultra‐high magnetic field MR system. Afterward, we prepared tissue sections and checked the anatomic relationships between the neurons and the carotid artery in order to confirm that the visualized fibers are indeed neuron fibers. Results We were able to identify nerves, including the vagus nerve, the hypoglossal nerve, and the spinal‐accessory nerve. Hematoxylin‐eosin stained histological sections confirmed neuron fibers in the same anatomic position. Conclusion This technique has the feasibility to be applied for a more accurate anatomic understanding, maybe even close to a histological level.
Collapse
Affiliation(s)
- Shin Saito
- Department of Otolaryngology - Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Ozawa
- Department of Otolaryngology - Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masato Fujioka
- Department of Otolaryngology - Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | - Junichi Hata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Sho Kurihara
- Department of Otorhinolaryngology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, the Jikei University School of Medicine, Tokyo, Japan
| | - Kaoru Ogawa
- Department of Otolaryngology - Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Dali M, Rossel O, Andreu D, Laporte L, Hernández A, Laforet J, Marijon E, Hagège A, Clerc M, Henry C, Guiraud D. Model based optimal multipolar stimulation without a priori knowledge of nerve structure: application to vagus nerve stimulation. J Neural Eng 2018; 15:046018. [DOI: 10.1088/1741-2552/aabeb9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
|
44
|
Cervical vagus nerve morphometry and vascularity in the context of nerve stimulation - A cadaveric study. Sci Rep 2018; 8:7997. [PMID: 29789596 PMCID: PMC5964190 DOI: 10.1038/s41598-018-26135-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2017] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
Vagus nerve stimulation (VNS) has become a well-established therapy for epilepsy and depression, and is emerging to treat inflammatory disease, with the cervical vagus nerve (CVN) as major stimulation site. CVN morphometries are missing for VNS, considering its variability. Morphometric data were obtained from CVNs in 27 cadavers, including branching patterns and histology. Cross-sectional area, greater and lesser diameters averaged 7.2 ± 3.1 mm2, 5.1 ± 1.5 and 4.1 ± 1.3 mm, and were ≤11.0 mm2, ≤7.0 and ≤5.8 mm in 90% of the specimens, respectively. Midline distance (position lateral to the laryngeal eminence) and skin distance (anterior-posterior from skin) averaged 34.5 ± 6.2 and 36.2 ± 9.4 mm, ≤49.0 and ≤41.0 mm in 90%, respectively. Nerve dimensions and surface topography correlated closely, but without gender-, side- or branching-dependent differences. The nerve fascicle number averaged 5.2 ± 3.5. Vagal arteries were observed in 49% of the cases. Negative correlations were found for age and cross-sectional area, as well as subperineural vessel count. Detailed anatomical data on the CVN and its vascularity are given, forming the morphometric basis for VNS refinement, filling an evident gap in light of the CVN being a structure with variable positions and branching. A 35 × 35-mm rule may apply for the CVN position, irrespective of branching or positional variation.
Collapse
|
45
|
Cozzens JW. The Surgical Technique of Vagus Nerve Stimulator Implantation. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/17/2022]
|
46
|
Pelz JO, Belau E, Henn P, Hammer N, Classen J, Weise D. Sonographic evaluation of the vagus nerves: Protocol, reference values, and side-to-side differences. Muscle Nerve 2017; 57:766-771. [DOI: 10.1002/mus.25993] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/14/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Johann Otto Pelz
- Department of Neurology; Leipzig University Hospital; Liebigstrasse 20, 04103 Leipzig Germany
| | - Elena Belau
- Department of Neurology; Leipzig University Hospital; Liebigstrasse 20, 04103 Leipzig Germany
| | - Philipp Henn
- Department of Neurology; Leipzig University Hospital; Liebigstrasse 20, 04103 Leipzig Germany
| | - Niels Hammer
- Department of Anatomy; University of Otago; Dunedin New Zealand
| | - Joseph Classen
- Department of Neurology; Leipzig University Hospital; Liebigstrasse 20, 04103 Leipzig Germany
| | - David Weise
- Department of Neurology; Leipzig University Hospital; Liebigstrasse 20, 04103 Leipzig Germany
| |
Collapse
|
47
|
Nonis R, D’Ostilio K, Schoenen J, Magis D. Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: An electrophysiological study in healthy volunteers. Cephalalgia 2017; 37:1285-1293. [PMID: 28648089 PMCID: PMC5680905 DOI: 10.1177/0333102417717470] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 11/23/2022]
Abstract
Background Benefits of cervical non-invasive vagus nerve stimulation (nVNS) devices have been shown in episodic cluster headache and preliminarily suggested in migraine, but direct evidence of vagus nerve activation using such devices is lacking. Vagal somatosensory evoked potentials (vSEPs) associated with vagal afferent activation have been reported for invasive vagus nerve stimulation (iVNS) and non-invasive auricular vagal stimulation. Here, we aimed to show and characterise vSEPs for cervical nVNS. Methods vSEPs were recorded for 12 healthy volunteers who received nVNS over the cervical vagus nerve, bipolar electrode/DS7A stimulation over the inner tragus, and nVNS over the sternocleidomastoid (SCM) muscle. We measured peak-to-peak amplitudes (P1-N1), wave latencies, and N1 area under the curve. Results P1-N1 vSEPs were observed for cervical nVNS (11/12) and auricular stimulation (9/12), with latencies similar to those described previously, whereas SCM stimulation revealed only a muscle artefact with a much longer latency. A dose-response analysis showed that cervical nVNS elicited a clear vSEP response in more than 80% of the participants using an intensity of 15 V. Conclusion Cervical nVNS can activate vagal afferent fibres, as evidenced by the recording of far-field vSEPs similar to those seen with iVNS and non-invasive auricular stimulation.
Collapse
Affiliation(s)
- Romain Nonis
- Headache Research Unit, University Department of Neurology CHR, Liège, Belgium
| | - Kevin D’Ostilio
- Headache Research Unit, University Department of Neurology CHR, Liège, Belgium
| | - Jean Schoenen
- Headache Research Unit, University Department of Neurology CHR, Liège, Belgium
| | - Delphine Magis
- Headache Research Unit, University Department of Neurology CHR, Liège, Belgium
| |
Collapse
|
48
|
Ouahchi Y, Duclos C, Marie JP, Verin E. Implication of the vagus nerve in breathing pattern during sequential swallowing in rats. Physiol Behav 2017; 179:434-441. [DOI: 10.1016/j.physbeh.2017.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2016] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
|
49
|
Planitzer U, Hammer N, Bechmann I, Glätzner J, Löffler S, Möbius R, Tillmann BN, Weise D, Winkler D. Positional Relations of the Cervical Vagus Nerve Revisited. Neuromodulation 2017; 20:361-368. [PMID: 28145065 DOI: 10.1111/ner.12557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2016] [Revised: 10/19/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The cervical part of the vagus nerve (CVN) has become an important target for stimulation therapy to treat epilepsy and psychiatric conditions. For this purpose, the CVN is visualized in the carotid sheath, assuming it to be localized dorsomedially between the carotid artery (CA) and the internal jugular vein (JV). The aim of our morphological study was therefore to revisit the CVN relationships to the CA and JV, hypothesizing it to have common variations to this classical textbook anatomy. MATERIALS AND METHODS Positional relations of the CVN, CA and JV were investigated in the carotid sheath of 35 cadavers at the C3 to C6 level. Positional relations of the CVN, CA and JV were documented on the basis of a 3 × 3 chart. RESULTS Eighteen different arrangements of the CVN, CA and JV were observed. The typical topographic relationship of the CVN dorsomedially between the CA and JV was only found in 42% of all cases. The CVN was located dorsally or (dorso-)laterally to the CA in 80% and dorsally or (dorso-)medially of the JV in 96% of all cases. CONCLUSIONS Classical textbook anatomy of the CVN is only present in a minority of cases. Positional variations in contrast to textbook anatomy are considerably more frequent than previously described, which might be a hypothetical morphological explanation for the lack of efficacy or side effects of CVN stimulation. Furthermore, the position of the CVN relative to the internal jugular vein is more consistent than to the CA.
Collapse
Affiliation(s)
- Uwe Planitzer
- Faculty of Medicine, Department of Neurosurgery, University Clinic of Leipzig, Leipzig, Germany.,Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Niels Hammer
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Juliane Glätzner
- Faculty of Medicine, Department of Neurosurgery, University Clinic of Leipzig, Leipzig, Germany
| | - Sabine Löffler
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Robert Möbius
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | | | - David Weise
- Faculty of Medicine, Department of Neurology, University Clinic of Leipzig, Leipzig, Germany
| | - Dirk Winkler
- Faculty of Medicine, Department of Neurosurgery, University Clinic of Leipzig, Leipzig, Germany
| |
Collapse
|
50
|
Affiliation(s)
- Adam D Farmer
- Senior Lecturer in the Centre for Neuroscience and Trauma, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, and Consultant Gastroenterologist in the Department of Gastroenterology, University Hospitals of North Midlands, Stoke on Trent, Staffordshire ST4 6QG
| | - Ahmed Albu-Soda
- Clinical Research Fellow in the Centre for Neuroscience and Trauma, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Qasim Aziz
- Professor of Neurogastroenterology in the Centre for Neuroscience and Trauma, Blizard Institute, and Director of the Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London
| |
Collapse
|