1
|
Tarasiuk O, Invernizzi C, Alberti P. In vitro neurotoxicity testing: lessons from chemotherapy-induced peripheral neurotoxicity. Expert Opin Drug Metab Toxicol 2024; 20:1037-1052. [PMID: 39246127 DOI: 10.1080/17425255.2024.2401584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Chemotherapy induced peripheral neurotoxicity (CIPN) is a long-lasting, or even permanent, late toxicity caused by largely used anticancer drugs. CIPN affects a growing population of cancer survivors and diminishes their quality of life since there is no curative/preventive treatment. Among several reasons for this unmet clinical need, there is an incomplete knowledge on mechanisms leading to CIPN. Therefore, bench side research is still greatly needed: in vitro studies are pivotal to both evaluate neurotoxicity mechanisms and potential neuroprotection strategies. AREAS COVERED Advantages and disadvantages of in vitro approaches are addressed with respect to their applicability to the CIPN field. Different cell cultures and techniques to assess neurotoxicity/neuroprotection are described. PubMed search-string: (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (in vitro) AND (((((model) OR SH-SY5Y) OR PC12) OR iPSC) OR DRG neurons); (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (model) AND (((neurite elongation) OR cell viability) OR morphology). No articles published before 1990 were selected. EXPERT OPINION CIPN is an ideal experimental setting to test axonal damage and, in general, peripheral nervous system mechanisms of disease and neuroprotection. Therefore, starting from robust preclinical data in this field, potentially, relevant biological rationale can be transferred to other human spontaneous diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Olga Tarasiuk
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Chiara Invernizzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- Neuroscience, School of Medicine and Surgery, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
2
|
Smulders PS, Heikamp K, Hermanides J, Hollmann MW, ten Hoope W, Weber NC. Chemotherapy-induced peripheral neuropathy models constructed from human induced pluripotent stem cells and directly converted cells: a systematic review. Pain 2024; 165:1914-1925. [PMID: 38381959 PMCID: PMC11331829 DOI: 10.1097/j.pain.0000000000003193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/23/2024]
Abstract
ABSTRACT Developments in human cellular reprogramming now allow for the generation of human neurons for in vitro disease modelling. This technique has since been used for chemotherapy-induced peripheral neuropathy (CIPN) research, resulting in the description of numerous CIPN models constructed from human neurons. This systematic review provides a critical analysis of available models and their methodological considerations (ie, used cell type and source, CIPN induction strategy, and validation method) for prospective researchers aiming to incorporate human in vitro models of CIPN in their research. The search strategy was developed with assistance from a clinical librarian and conducted in MEDLINE (PubMed) and Embase (Ovid) on September 26, 2023. Twenty-six peer-reviewed experimental studies presenting original data about human reprogrammed nonmotor neuron cell culture systems and relevant market available chemotherapeutics drugs were included. Virtually, all recent reports modeled CIPN using nociceptive dorsal root ganglion neurons. Drugs known to cause the highest incidence of CIPN were most used. Furthermore, treatment effects were almost exclusively validated by the acute effects of chemotherapeutics on neurite dynamics and cytotoxicity parameters, enabling the extrapolation of the half-maximal inhibitory concentration for the 4 most used chemotherapeutics. Overall, substantial heterogeneity was observed in the way studies applied chemotherapy and reported their findings. We therefore propose 6 suggestions to improve the clinical relevance and appropriateness of human cellular reprogramming-derived CIPN models.
Collapse
Affiliation(s)
- Pascal S.H. Smulders
- Department of Anesthesiology, Amsterdam UMC location University of Amsterdam, Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Kim Heikamp
- Department of Anesthesiology, Amsterdam UMC location University of Amsterdam, Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Jeroen Hermanides
- Department of Anesthesiology, Amsterdam UMC location University of Amsterdam, Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam UMC location University of Amsterdam, Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Werner ten Hoope
- Department of Anesthesiology, Amsterdam UMC location University of Amsterdam, Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
- Department of Anesthesiology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Nina C. Weber
- Department of Anesthesiology, Amsterdam UMC location University of Amsterdam, Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| |
Collapse
|
3
|
Theofilas P, Wang C, Butler D, Morales DO, Petersen C, Ambrose A, Chin B, Yang T, Khan S, Ng R, Kayed R, Karch CM, Miller BL, Gestwicki JE, Gan L, Temple S, Arkin MR, Grinberg LT. iPSC-induced neurons with the V337M MAPT mutation are selectively vulnerable to caspase-mediated cleavage of tau and apoptotic cell death. Mol Cell Neurosci 2024; 130:103954. [PMID: 39032719 DOI: 10.1016/j.mcn.2024.103954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Tau post-translational modifications (PTMs) result in the gradual build-up of abnormal tau and neuronal degeneration in tauopathies, encompassing variants of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Tau proteolytically cleaved by active caspases, including caspase-6, may be neurotoxic and prone to self-aggregation. Also, our recent findings show that caspase-6 truncated tau represents a frequent and understudied aspect of tau pathology in AD in addition to phospho-tau pathology. In AD and Pick's disease, a large percentage of caspase-6 associated cleaved-tau positive neurons lack phospho-tau, suggesting that many vulnerable neurons to tau pathology go undetected when using conventional phospho-tau antibodies and possibly will not respond to phospho-tau based therapies. Therefore, therapeutic strategies against caspase cleaved-tau pathology could be necessary to modulate the extent of tau abnormalities in AD and other tauopathies. METHODS To understand the timing and progression of caspase activation, tau cleavage, and neuronal death, we created two mAbs targeting caspase-6 tau cleavage sites and probed postmortem brain tissue from an individual with FTLD due to the V337M MAPT mutation. We then assessed tau cleavage and apoptotic stress response in cortical neurons derived from induced pluripotent stem cells (iPSCs) carrying the FTD-related V337M MAPT mutation. Finally, we evaluated the neuroprotective effects of caspase inhibitors in these iPSC-derived neurons. RESULTS FTLD V337M MAPT postmortem brain showed positivity for both cleaved tau mAbs and active caspase-6. Relative to isogenic wild-type MAPT controls, V337M MAPT neurons cultured for 3 months post-differentiation showed a time-dependent increase in pathogenic tau in the form of caspase-cleaved tau, phospho-tau, and higher levels of tau oligomers. Accumulation of toxic tau species in V337M MAPT neurons was correlated with increased vulnerability to pro-apoptotic stress. Notably, this mutation-associated cell death was pharmacologically rescued by the inhibition of effector caspases. CONCLUSIONS Our results suggest an upstream, time-dependent accumulation of caspase-6 cleaved tau in V337M MAPT neurons promoting neurotoxicity. These processes can be reversed by caspase inhibition. These results underscore the potential of developing caspase-6 inhibitors as therapeutic agents for FTLD and other tauopathies. Additionally, they highlight the promise of using caspase-cleaved tau as biomarkers for these conditions.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | - Dulce O Morales
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Cathrine Petersen
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Andrew Ambrose
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA
| | | | | | - Shireen Khan
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Raymond Ng
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Rakez Kayed
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA.
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA; Department of Pathology, University of Sao Paulo Medical School, Brazil.
| |
Collapse
|
4
|
Cantor EL, Shen F, Jiang G, Philips S, Schneider BP. Optimization of a human induced pluripotent stem cell-derived sensory neuron model for the in vitro evaluation of taxane-induced neurotoxicity. Sci Rep 2024; 14:19075. [PMID: 39154055 PMCID: PMC11330481 DOI: 10.1038/s41598-024-69280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Human induced pluripotent stem cell-derived sensory neuron (iPSC-dSN) models are a valuable resource for the study of neurotoxicity but are affected by poor replicability and reproducibility, often due to a lack of optimization. Here, we identify experimental factors related to culture conditions that substantially impact cellular drug response in vitro and determine optimal conditions for improved replicability and reproducibility. Treatment duration and cell seeding density were both found to be significant factors, while cell line differences also contributed to variation. A replicable dose-response in viability was demonstrated after 48-h exposure to docetaxel or paclitaxel. Additionally, a replicable dose-dependent reduction in neurite outgrowth was demonstrated, demonstrating the applicability of the model for the examination of additional phenotypes. Overall, we have established an optimized iPSC-dSN model for the study of taxane-induced neurotoxicity.
Collapse
Affiliation(s)
- Erica L Cantor
- Hematology/Oncology Division, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fei Shen
- Hematology/Oncology Division, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guanglong Jiang
- Medical and Molecular Genetics Division, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Santosh Philips
- Hematology/Oncology Division, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bryan P Schneider
- Hematology/Oncology Division, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Petrova V, Snavely AR, Splaine J, Zhen S, Singh B, Pandey R, Chen K, Cheng A, Hermawan C, Barrett LB, Smith JA, Woolf CJ. Identification of novel neuroprotectants against vincristine-induced neurotoxicity in iPSC-derived neurons. Cell Mol Life Sci 2024; 81:315. [PMID: 39066803 PMCID: PMC11335239 DOI: 10.1007/s00018-024-05340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of cancer chemotherapy that can often limit treatment options for cancer patients or have life-long neurodegenerative consequences that reduce the patient's quality of life. CIPN is caused by the detrimental actions of various chemotherapeutic agents on peripheral axons. Currently, there are no approved preventative measures or treatment options for CIPN, highlighting the need for the discovery of novel therapeutics and improving our understanding of disease mechanisms. In this study, we utilized human-induced pluripotent stem cell (hiPSC)-derived motor neurons as a platform to mimic axonal damage after treatment with vincristine, a chemotherapeutic used for the treatment of breast cancers, osteosarcomas, and leukemia. We screened a total of 1902 small molecules for neuroprotective properties in rescuing vincristine-induced axon growth deficits. From our primary screen, we identified 38 hit compounds that were subjected to secondary dose response screens. Six compounds showed favorable pharmacological profiles - AZD7762, A-674563, Blebbistatin, Glesatinib, KW-2449, and Pelitinib, all novel neuroprotectants against vincristine toxicity to neurons. In addition, four of these six compounds also showed efficacy against vincristine-induced growth arrest in human iPSC-derived sensory neurons. In this study, we utilized high-throughput screening of a large library of compounds in a therapeutically relevant assay. We identified several novel compounds that are efficacious in protecting different neuronal subtypes from the toxicity induced by a common chemotherapeutic agent, vincristine which could have therapeutic potential in the clinic.
Collapse
Affiliation(s)
- Veselina Petrova
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew R Snavely
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer Splaine
- ICCB-Longwood Screening Facility, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Shannon Zhen
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Bhagat Singh
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Roshan Pandey
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kuchuan Chen
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Anya Cheng
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Crystal Hermawan
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Lee B Barrett
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer A Smith
- ICCB-Longwood Screening Facility, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
- F.M. Kirby Neurobiology Center, Center for Life Science, 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Petrova V, Snavely AR, Splaine J, Zhen S, Singh B, Pandey R, Chen K, Cheng A, Hermawan C, Barrett LB, Smith JA, Woolf C. Identification of novel neuroprotectants against vincristine-induced neurotoxicity in iPSC-derived neurons. RESEARCH SQUARE 2024:rs.3.rs-4545853. [PMID: 39011110 PMCID: PMC11247920 DOI: 10.21203/rs.3.rs-4545853/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of cancer chemotherapy that can often limit treatment options for cancer patients or have life-long neurodegenerative consequences that reduce the patient's quality of life. CIPN is caused by the detrimental actions of various chemotherapeutic agents on peripheral axons. Currently, there are no approved preventative measures or treatment options for CIPN, highlighting the need for the discovery of novel therapeutics and improving our understanding of disease mechanisms. In this study, we utilized human-induced pluripotent stem cell (hiPSC)-derived motor neurons as a platform to mimic axonal damage after treatment with vincristine, a chemotherapeutic used for the treatment of breast cancers, osteosarcomas, and leukemia. We screened a total of 1902 small molecules for neuroprotective properties in rescuing vincristine-induced axon growth deficits. From our primary screen, we identified 38 hit compounds that were subjected to secondary dose response screens. Six compounds showed favorable pharmacological profiles - AZD7762, A-674563, Blebbistatin, Glesatinib, KW-2449, and Pelitinib, all novel neuroprotectants against vincristine toxicity to neurons. In addition, four of these six compounds also showed efficacy against vincristine-induced growth arrest in human iPSC-derived sensory neurons. In this study, we utilized high-throughput screening of a large library of compounds in a therapeutically relevant assay. We identified several novel compounds that are efficacious in protecting different neuronal subtypes from the toxicity induced by a common chemotherapeutic agent, vincristine which could have therapeutic potential in the clinic.
Collapse
Affiliation(s)
| | | | | | - Shannon Zhen
- Boston Childrens Hospital: Boston Children's Hospital
| | - Bhagat Singh
- Boston Childrens Hospital: Boston Children's Hospital
| | | | | | - Anya Cheng
- Boston Childrens Hospital: Boston Children's Hospital
| | | | | | - Jennifer A Smith
- Harvard Medical School Center for Blood Research: Harvard Medical School
| | | |
Collapse
|
7
|
Gomez-Deza J, Slavutsky AL, Nebiyou M, Le Pichon CE. Local production of reactive oxygen species drives vincristine-induced axon degeneration. Cell Death Dis 2023; 14:807. [PMID: 38065950 PMCID: PMC10709426 DOI: 10.1038/s41419-023-06227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/27/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
Neurological side effects arising from chemotherapy, such as severe pain and cognitive impairment, are a major concern for cancer patients. These major side effects can lead to reduction or termination of chemotherapy medication in patients, negatively impacting their prognoses. With cancer survival rates improving dramatically, addressing side effects of cancer treatment has become pressing. Here, we use iPSC-derived human neurons to investigate the molecular mechanisms that lead to neurotoxicity induced by vincristine, a common chemotherapeutic used to treat solid tumors. Our results uncover a novel mechanism by which vincristine causes a local increase in mitochondrial proteins that produce reactive oxygen species (ROS) in the axon. Vincristine triggers a cascade of axon pathology, causing mitochondrial dysfunction that leads to elevated axonal ROS levels and SARM1-dependent axon degeneration. Importantly, we show that the neurotoxic effect of increased axonal ROS can be mitigated by the small molecule mitochondrial division inhibitor 1 (mdivi-1) and antioxidants glutathione and mitoquinone, identifying a novel therapeutic avenue to treat the neurological effects of chemotherapy.
Collapse
Affiliation(s)
- Jorge Gomez-Deza
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anastasia L Slavutsky
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Nebiyou
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Wu S, Xiong T, Guo S, Zhu C, He J, Wang S. An up-to-date view of paclitaxel-induced peripheral neuropathy. J Cancer Res Ther 2023; 19:1501-1508. [PMID: 38156915 DOI: 10.4103/jcrt.jcrt_1982_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/12/2023] [Indexed: 01/03/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN),referring to the damage to the peripheral nerves caused by exposure to a neurotoxic chemotherapeutic agent, is a common side effect amongst patients undergoing chemotherapy. Paclitaxel-induced peripheral neuropathy (PIPN) can lead to dose reduction or early cessation of chemotherapy, which is not conducive to patients'survival. Even after treatment is discontinued, PIPN symptoms carried a greater risk of worsening and plagued the patient's life, leading to long-term morbidity in survivors. Here, we summarize the research progress for clinical manifestations, risk factors, pathogenesis, prevention and treatment of PIPN, so as to embark on the path of preventing PIPN with prolongation of patient's life quality on a long-term basis.
Collapse
Affiliation(s)
- Shan Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Tu Xiong
- Department of Radiology, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Shenglan Guo
- Department of Pharmacy, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiyi Zhu
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Jing He
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Shurong Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Du J, Sudlow LC, Luzhansky ID, Berezin MY. DRG Explant Model: Elucidating Mechanisms of Oxaliplatin-Induced Peripheral Neuropathy and Identifying Potential Therapeutic Targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.560580. [PMID: 37873159 PMCID: PMC10592953 DOI: 10.1101/2023.10.05.560580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Oxaliplatin triggered chemotherapy induced peripheral neuropathy (CIPN) is a common and debilitating side effect of cancer treatment which limits the efficacy of chemotherapy and negatively impacts patients quality of life dramatically. For better understanding the mechanisms of CIPN and screen for potential therapeutic targets, it is critical to have reliable in vitro assays that effectively mirror the neuropathy in vivo . In this study, we established a dorsal root ganglia (DRG) explant model. This model displayed dose-dependent inhibition of neurite outgrowth in response to oxaliplatin, while oxalic acid exhibited no significant impact on the regrowth of DRG. The robustness of this assay was further demonstrated by the inhibition of OCT2 transporter, which facilitates oxaliplatin accumulation in neurons, fully restoring the neurite regrowth capacity. Using this model, we revealed that oxaliplatin triggered a substantial increase of oxidative stress in DRG. Notably, inhibition of TXNIP with verapamil significantly reduced oxidative stress level. Our results demonstrated the use of DRG explants as an efficient model to study the mechanisms of CIPN and screen for potential treatments.
Collapse
|
10
|
Snavely AR, Heo K, Petrova V, Ho TSY, Huang X, Hermawan C, Kagan R, Deng T, Singeç I, Chen L, Barret LB, Woolf CJ. Bortezomib-induced neurotoxicity in human neurons is the consequence of nicotinamide adenine dinucleotide depletion. Dis Model Mech 2022; 15:dmm049358. [PMID: 36398590 PMCID: PMC9789399 DOI: 10.1242/dmm.049358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
The proteosome inhibitor bortezomib has revolutionized the treatment of multiple hematologic malignancies, but in many cases, its efficacy is limited by a dose-dependent peripheral neuropathy. We show that human induced pluripotent stem cell (hiPSC)-derived motor neurons and sensory neurons provide a model system for the study of bortezomib-induced peripheral neuropathy, with promising implications for furthering the mechanistic understanding of and developing treatments for preventing axonal damage. Human neurons in tissue culture displayed distal-to-proximal neurite degeneration when exposed to bortezomib. This process coincided with disruptions in mitochondrial function and energy homeostasis, similar to those described in rodent models of bortezomib-induced neuropathy. Moreover, although the degenerative process was unaffected by inhibition of caspases, it was completely blocked by exogenous nicotinamide adenine dinucleotide (NAD+), a mediator of the SARM1-dependent axon degeneration pathway. We demonstrate that bortezomib-induced neurotoxicity in relevant human neurons proceeds through mitochondrial dysfunction and NAD+ depletion-mediated axon degeneration, raising the possibility that targeting these changes might provide effective therapeutics for the prevention of bortezomib-induced neuropathy and that modeling chemotherapy-induced neuropathy in human neurons has utility.
Collapse
Affiliation(s)
- Andrew R. Snavely
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keungjung Heo
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Veselina Petrova
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tammy Szu-Yu Ho
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xuan Huang
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Crystal Hermawan
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ruth Kagan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tao Deng
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Long Chen
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lee B. Barret
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Clifford J. Woolf
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Mortensen C, Andersen NE, Stage TB. Bridging the Translational Gap in Chemotherapy-Induced Peripheral Neuropathy with iPSC-Based Modeling. Cancers (Basel) 2022; 14:cancers14163939. [PMID: 36010931 PMCID: PMC9406154 DOI: 10.3390/cancers14163939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Chemotherapy-induced peripheral neuropathy (CIPN) remains a clinical challenge with a considerable impact on the effective treatment of cancers and quality of life during and after concluding chemotherapy. Given the limited understanding of CIPN, there are no options for the treatment and prevention of CIPN. Decades of research with the unsuccessful translation of preclinical findings to clinical studies argue for the requirement of human model systems. This review focuses on the translational potential of human induced pluripotent stem cells (iPSCs) in CIPN research. We provide an overview of the current studies and discuss important aspects to improve the translation of in vitro findings. We identified distinct effects on the neurite network and cell viability upon exposure to different classes of chemotherapy. Our study revealed considerable variability between donors and between neurons of the central and peripheral nervous system. Translational success may be improved by including multiple iPSC donors with known clinical data and selecting clinically relevant concentrations. Abstract Chemotherapy-induced peripheral neuropathy (CIPN) is a common and potentially serious adverse effect of a wide range of chemotherapeutics. The lack of understanding of the molecular mechanisms underlying CIPN limits the efficacy of chemotherapy and development of therapeutics for treatment and prevention of CIPN. Human induced pluripotent stem cells (iPSCs) have become an important tool to generate the cell types associated with CIPN symptoms in cancer patients. We reviewed the literature for iPSC-derived models that assessed neurotoxicity among chemotherapeutics associated with CIPN. Furthermore, we discuss the gaps in our current knowledge and provide guidance for selecting clinically relevant concentrations of chemotherapy for in vitro studies. Studies in iPSC-derived neurons revealed differential sensitivity towards mechanistically diverse chemotherapeutics associated with CIPN. Additionally, the sensitivity to chemotherapy was determined by donor background and whether the neurons had a central or peripheral nervous system identity. We propose to utilize clinically relevant concentrations that reflect the free, unbound fraction of chemotherapeutics in plasma in future studies. In conclusion, iPSC-derived sensory neurons are a valuable model to assess CIPN; however, studies in Schwann cells and motor neurons are warranted. The inclusion of multiple iPSC donors and concentrations of chemotherapy known to be achievable in patients can potentially improve translational success.
Collapse
Affiliation(s)
- Christina Mortensen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Nanna Elman Andersen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Tore Bjerregaard Stage
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, DK-5000 Odense C, Denmark
- Department of Clinical Pharmacology, Odense University Hospital, DK-5000 Odense C, Denmark
- Correspondence:
| |
Collapse
|
12
|
Sefiani A, Rusyn I, Geoffroy CG. Novel adult cortical neuron processing and screening method illustrates sex- and age-dependent effects of pharmaceutical compounds. Sci Rep 2022; 12:13125. [PMID: 35908049 PMCID: PMC9338961 DOI: 10.1038/s41598-022-17389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases and neurotraumatic injuries are typically age-associated disorders that can reduce neuron survival, neurite outgrowth, and synaptic plasticity leading to loss of cognitive capacity, executive function, and motor control. In pursuit of reducing the loss of said neurological functions, novel compounds are sought that promote neuron viability, neuritogenesis, and/or synaptic plasticity. Current high content in vitro screenings typically use cells that are iPSC-derived, embryonic, or originate from post-natal tissues; however, most patients suffering from neurodegenerative diseases and neurotrauma are of middle-age and older. The chasm in maturity between the neurons used in drug screens and those in a target population is a barrier for translational success of in vitro results. It has been historically challenging to culture adult neurons let alone conduct screenings; therefore, age-appropriate drug screenings have previously not been plausible. We have modified Miltenyi's protocol to increase neuronal yield, neuron purity, and neural viability at a reduced cost to expand our capacity to screen compounds directly in primary adult neurons. To our knowledge, we developed the first morphology-based screening system using adult cortical neurons and the first to incorporate age and sex as biological variables in a screen using adult cortical neurons. By using primary adult cortical neurons from mice that were 4 to 48 weeks old for screening pharmaceutical agents, we have demonstrated age- and sex-dependent effects on neuritogenesis and neuron survival in vitro. Utilizing age- and sex-appropriate in vitro models to find novel compounds increasing neuron survival and neurite outgrowth, made possible by our modified adult neuron processing method, will greatly increase the relevance of in vitro screening for finding neuroprotective compounds.
Collapse
Affiliation(s)
- Arthur Sefiani
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX, 77807, USA.
| |
Collapse
|
13
|
Shin GJE, Abaci HE, Smith MC. Cellular Pathogenesis of Chemotherapy-Induced Peripheral Neuropathy: Insights From Drosophila and Human-Engineered Skin Models. FRONTIERS IN PAIN RESEARCH 2022; 3:912977. [PMID: 35875478 PMCID: PMC9304629 DOI: 10.3389/fpain.2022.912977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a highly prevalent and complex condition arising from chemotherapy cancer treatments. Currently, there are no treatment or prevention options in the clinic. CIPN accompanies pain-related sensory functions starting from the hands and feet. Studies focusing on neurons in vitro and in vivo models significantly advanced our understanding of CIPN pathological mechanisms. However, given the direct toxicity shown in both neurons and non-neuronal cells, effective in vivo or in vitro models that allow the investigation of neurons in their local environment are required. No single model can provide a complete solution for the required investigation, therefore, utilizing a multi-model approach would allow complementary advantages of different models and robustly validate findings before further translation. This review aims first to summarize approaches and insights from CIPN in vivo models utilizing small model organisms. We will focus on Drosophila melanogaster CIPN models that are genetically amenable and accessible to study neuronal interactions with the local environment in vivo. Second, we will discuss how these findings could be tested in physiologically relevant vertebrate models. We will focus on in vitro approaches using human cells and summarize the current understanding of engineering approaches that may allow the investigation of pathological changes in neurons and the skin environment.
Collapse
Affiliation(s)
- Grace Ji-eun Shin
- Zuckerman Mind Brain and Behavior Institute, Jerome L. Greene Science Center, Columbia University, New York, NY, United States
- *Correspondence: Grace Ji-eun Shin
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Medical Center, Saint Nicholas Avenue, New York, NY, United States
| | - Madison Christine Smith
- Zuckerman Mind Brain and Behavior Institute, Jerome L. Greene Science Center, Columbia University, New York, NY, United States
| |
Collapse
|
14
|
Tsui M, Biro J, Chan J, Min W, Dobbs K, Notarangelo LD, Grunebaum E. Purine nucleoside phosphorylase deficiency induces p53-mediated intrinsic apoptosis in human induced pluripotent stem cell-derived neurons. Sci Rep 2022; 12:9084. [PMID: 35641516 PMCID: PMC9156781 DOI: 10.1038/s41598-022-10935-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023] Open
Abstract
Purine nucleoside phosphorylase (PNP) is an important enzyme in the purine degradation and salvage pathway. PNP deficiency results in marked T lineage lymphopenia and severe immunodeficiency. Additionally, PNP-deficient patients and mice suffer from diverse non-infectious neurological abnormalities of unknown etiology. To further investigate the cause for these neurologic abnormalities, induced pluripotent stem cells (iPSC) from two PNP-deficient patients were differentiated into neurons. The iPSC-derived PNP-deficient neurons had significantly reduced soma and nuclei volumes. The PNP-deficient neurons demonstrated increased spontaneous and staurosporine-induced apoptosis, measured by cleaved caspase-3 expression, together with decreased mitochondrial membrane potential and increased cleaved caspase-9 expression, indicative of enhanced intrinsic apoptosis. Greater expression of tumor protein p53 was also observed in these neurons, and inhibition of p53 using pifithrin-α prevented the apoptosis. Importantly, treatment of the iPSC-derived PNP-deficient neurons with exogenous PNP enzyme alleviated the apoptosis. Inhibition of ribonucleotide reductase (RNR) in iPSC derived from PNP-proficient neurons with hydroxyurea or with nicotinamide and trichostatin A increased the intrinsic neuronal apoptosis, implicating RNR dysfunction as the potential mechanism for the damage caused by PNP deficiency. The findings presented here establish a potential mechanism for the neurological defects observed in PNP-deficient patients and reinforce the critical role that PNP has for neuronal viability.
Collapse
Affiliation(s)
- Michael Tsui
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,The Institute of Medical Sciences, The University to Toronto, Toronto, ON, Canada
| | - Jeremy Biro
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Jonathan Chan
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Weixian Min
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Eyal Grunebaum
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada. .,The Institute of Medical Sciences, The University to Toronto, Toronto, ON, Canada. .,Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G1X8, Canada.
| |
Collapse
|
15
|
Wang Q, Chen FY, Ling ZM, Su WF, Zhao YY, Chen G, Wei ZY. The Effect of Schwann Cells/Schwann Cell-Like Cells on Cell Therapy for Peripheral Neuropathy. Front Cell Neurosci 2022; 16:836931. [PMID: 35350167 PMCID: PMC8957843 DOI: 10.3389/fncel.2022.836931] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Peripheral neuropathy is a common neurological issue that leads to sensory and motor disorders. Over time, the treatment for peripheral neuropathy has primarily focused on medications for specific symptoms and surgical techniques. Despite the different advantages of these treatments, functional recovery remains less than ideal. Schwann cells, as the primary glial cells in the peripheral nervous system, play crucial roles in physiological and pathological conditions by maintaining nerve structure and functions and secreting various signaling molecules and neurotrophic factors to support both axonal growth and myelination. In addition, stem cells, including mesenchymal stromal cells, skin precursor cells and neural stem cells, have the potential to differentiate into Schwann-like cells to perform similar functions as Schwann cells. Therefore, accumulating evidence indicates that Schwann cell transplantation plays a crucial role in the resolution of peripheral neuropathy. In this review, we summarize the literature regarding the use of Schwann cell/Schwann cell-like cell transplantation for different peripheral neuropathies and the potential role of promoting nerve repair and functional recovery. Finally, we discuss the limitations and challenges of Schwann cell/Schwann cell-like cell transplantation in future clinical applications. Together, these studies provide insights into the effect of Schwann cells/Schwann cell-like cells on cell therapy and uncover prospective therapeutic strategies for peripheral neuropathy.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fang-Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, China
| | - Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Gang Chen,
| | - Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Zhong-Ya Wei,
| |
Collapse
|
16
|
Yokoi R, Shigemoto-Kuroda T, Matsuda N, Odawara A, Suzuki I. Electrophysiological responses to seizurogenic compounds dependent on E/I balance in human iPSC-derived cortical neural networks. J Pharmacol Sci 2022; 148:267-278. [DOI: 10.1016/j.jphs.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022] Open
|
17
|
Holzer AK, Karreman C, Suciu I, Furmanowsky LS, Wohlfarth H, Loser D, Dirks WG, Pardo González E, Leist M. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:727-741. [PMID: 35689659 PMCID: PMC9299516 DOI: 10.1093/stcltm/szac031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/09/2022] [Indexed: 11/12/2022] Open
Abstract
In vitro models of the peripheral nervous system would benefit from further refinements to better support studies on neuropathies. In particular, the assessment of pain-related signals is still difficult in human cell cultures. Here, we harnessed induced pluripotent stem cells (iPSCs) to generate peripheral sensory neurons enriched in nociceptors. The objective was to generate a culture system with signaling endpoints suitable for pharmacological and toxicological studies. Neurons generated by conventional differentiation protocols expressed moderate levels of P2X3 purinergic receptors and only low levels of TRPV1 capsaicin receptors, when maturation time was kept to the upper practically useful limit of 6 weeks. As alternative approach, we generated cells with an inducible NGN1 transgene. Ectopic expression of this transcription factor during a defined time window of differentiation resulted in highly enriched nociceptor cultures, as determined by functional (P2X3 and TRPV1 receptors) and immunocytochemical phenotyping, complemented by extensive transcriptome profiling. Single cell recordings of Ca2+-indicator fluorescence from >9000 cells were used to establish the “fraction of reactive cells” in a stimulated population as experimental endpoint, that appeared robust, transparent and quantifiable. To provide an example of application to biomedical studies, functional consequences of prolonged exposure to the chemotherapeutic drug oxaliplatin were examined at non-cytotoxic concentrations. We found (i) neuronal (allodynia-like) hypersensitivity to otherwise non-activating mechanical stimulation that could be blocked by modulators of voltage-gated sodium channels; (ii) hyper-responsiveness to TRPV1 receptor stimulation. These findings and several other measured functional alterations indicate that the model is suitable for pharmacological and toxicological studies related to peripheral neuropathies.
Collapse
Affiliation(s)
- Anna-Katharina Holzer
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
- Graduate School Biological Sciences (GBS), University of Konstanz, Konstanz, Germany
| | - Christiaan Karreman
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Ilinca Suciu
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Lara-Seline Furmanowsky
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Harald Wohlfarth
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Dominik Loser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Wilhelm G Dirks
- Department of Human and Animal Cell Lines, DSMZ, German Collection of Microorganisms and Cell Cultures and German Biological Resource Center, Braunschweig, Germany
| | - Emilio Pardo González
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Marcel Leist
- Corresponding author: Marcel Leist, PhD, In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation at the University of Konstanz, Universitaetsstr. 10, Konstanz 78457, Germany.
| |
Collapse
|
18
|
Chua KC, El-Haj N, Priotti J, Kroetz DL. Mechanistic insights into the pathogenesis of microtubule-targeting agent-induced peripheral neuropathy from pharmacogenetic and functional studies. Basic Clin Pharmacol Toxicol 2022; 130 Suppl 1:60-74. [PMID: 34481421 PMCID: PMC8716520 DOI: 10.1111/bcpt.13654] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting toxicity that affects 30%-40% of patients undergoing cancer treatment. Although multiple mechanisms of chemotherapy-induced neurotoxicity have been described in preclinical models, these have not been translated into widely effective strategies for the prevention or treatment of CIPN. Predictive biomarkers to inform therapeutic approaches are also lacking. Recent studies have examined genetic risk factors associated with CIPN susceptibility. This review provides an overview of the clinical and pathologic features of CIPN and summarizes efforts to identify target pathways through genetic and functional studies. Structurally and mechanistically diverse chemotherapeutics are associated with CIPN; however, the current review is focused on microtubule-targeting agents since these are the focus of most pharmacogenetic association and functional studies of CIPN. Genome-wide pharmacogenetic association studies are useful tools to identify not only causative genes and genetic variants but also genetic networks implicated in drug response or toxicity and have been increasingly applied to investigations of CIPN. Induced pluripotent stem cell-derived models of human sensory neurons are especially useful to understand the mechanistic significance of genomic findings. Combined genetic and functional genomic efforts to understand CIPN hold great promise for developing therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Katherina C. Chua
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA 94143-2911,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Nura El-Haj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Josefina Priotti
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143-2911
| |
Collapse
|
19
|
Sharma A, Johnson KB, Bie B, Rhoades EE, Sen A, Kida Y, Hockings J, Gatta A, Davenport J, Arcangelini C, Ritzu J, DeVecchio J, Hughen R, Wei M, Thomas Budd G, Lynn Henry N, Eng C, Foss J, Rotroff DM. A Multimodal Approach to Discover Biomarkers for Taxane-Induced Peripheral Neuropathy (TIPN): A Study Protocol. Technol Cancer Res Treat 2022; 21:15330338221127169. [PMID: 36172750 PMCID: PMC9523841 DOI: 10.1177/15330338221127169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction: Taxanes are a class of chemotherapeutics commonly used to treat various solid tumors, including breast and ovarian cancers. Taxane-induced peripheral neuropathy (TIPN) occurs in up to 70% of patients, impacting quality of life both during and after treatment. TIPN typically manifests as tingling and numbness in the hands and feet and can cause irreversible loss of function of peripheral nerves. TIPN can be dose-limiting, potentially impacting clinical outcomes. The mechanisms underlying TIPN are poorly understood. As such, there are limited treatment options and no tools to provide early detection of those who will develop TIPN. Although some patients may have a genetic predisposition, genetic biomarkers have been inconsistent in predicting chemotherapy-induced peripheral neuropathy (CIPN). Moreover, other molecular markers (eg, metabolites, mRNA, miRNA, proteins) may be informative for predicting CIPN, but remain largely unexplored. We anticipate that combinations of multiple biomarkers will be required to consistently predict those who will develop TIPN. Methods: To address this clinical gap of identifying patients at risk of TIPN, we initiated the Genetics and Inflammatory Markers for CIPN (GENIE) study. This longitudinal multicenter observational study uses a novel, multimodal approach to evaluate genomic variation, metabolites, DNA methylation, gene expression, and circulating cytokines/chemokines prior to, during, and after taxane treatment in 400 patients with breast cancer. Molecular and patient reported data will be collected prior to, during, and after taxane therapy. Multi-modal data will be used to develop a set of comprehensive predictive biomarker signatures of TIPN. Conclusion: The goal of this study is to enable early detection of patients at risk of developing TIPN, provide a tool to modify taxane treatment to minimize morbidity from TIPN, and improved patient quality of life. Here we provide a brief review of the current state of research into CIPN and TIPN and introduce the GENIE study design.
Collapse
Affiliation(s)
- Anukriti Sharma
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Ken B. Johnson
- Department of Anesthesiology, University of Utah, UT, USA
| | - Bihua Bie
- Department of Anesthesiology, Cleveland Clinic, OH, USA
| | | | - Alper Sen
- Department of Anesthesiology, University of Utah, UT, USA
| | - Yuri Kida
- Department of Anesthesiology, University of Utah, UT, USA
| | - Jennifer Hockings
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA
- Department of Pharmacy, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alycia Gatta
- Taussig Cancer Institute, Cleveland Clinic, OH, USA
| | | | | | | | - Jennifer DeVecchio
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Ron Hughen
- Department of Anesthesiology, University of Utah, UT, USA
| | - Mei Wei
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - G. Thomas Budd
- Taussig Cancer Institute, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - N. Lynn Henry
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Charis Eng
- Taussig Cancer Institute, Cleveland Clinic, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joseph Foss
- Department of Anesthesiology, Cleveland Clinic, OH, USA
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
20
|
Cunningham GM, Shen F, Wu X, Cantor EL, Gardner L, Philips S, Jiang G, Bales CL, Tan Z, Liu Y, Wan J, Fehrenbacher JC, Schneider BP. The impact of SBF2 on taxane-induced peripheral neuropathy. PLoS Genet 2022; 18:e1009968. [PMID: 34986146 PMCID: PMC8765656 DOI: 10.1371/journal.pgen.1009968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/18/2022] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Taxane-induced peripheral neuropathy (TIPN) is a devastating survivorship issue for many cancer patients. In addition to its impact on quality of life, this toxicity may lead to dose reductions or treatment discontinuation, adversely impacting survival outcomes and leading to health disparities in African Americans (AA). Our lab has previously identified deleterious mutations in SET-Binding Factor 2 (SBF2) that significantly associated with severe TIPN in AA patients. Here, we demonstrate the impact of SBF2 on taxane-induced neuronal damage using an ex vivo model of SBF2 knockdown of induced pluripotent stem cell-derived sensory neurons. Knockdown of SBF2 exacerbated paclitaxel changes to cell viability and neurite outgrowth while attenuating paclitaxel-induced sodium current inhibition. Our studies identified paclitaxel-induced expression changes specific to mature sensory neurons and revealed candidate genes involved in the exacerbation of paclitaxel-induced phenotypes accompanying SBF2 knockdown. Overall, these findings provide ex vivo support for the impact of SBF2 on the development of TIPN and shed light on the potential pathways involved.
Collapse
Affiliation(s)
- Geneva M. Cunningham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Fei Shen
- Department of Hematology and Oncology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Xi Wu
- Department of Hematology and Oncology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Erica L. Cantor
- Department of Hematology and Oncology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Laura Gardner
- Department of Hematology and Oncology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Santosh Philips
- Department of Clinical Pharmacology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Guanglong Jiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Casey L. Bales
- Department of Clinical Pharmacology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Zhiyong Tan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Jill C. Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| | - Bryan P. Schneider
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
- Department of Hematology and Oncology, Indiana University School of Medicine; Indianapolis, Indiana, United States of America
| |
Collapse
|
21
|
Considerations for a Reliable In Vitro Model of Chemotherapy-Induced Peripheral Neuropathy. TOXICS 2021; 9:toxics9110300. [PMID: 34822690 PMCID: PMC8620674 DOI: 10.3390/toxics9110300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is widely recognized as a potentially severe toxicity that often leads to dose reduction or discontinuation of cancer treatment. Symptoms may persist despite discontinuation of chemotherapy and quality of life can be severely compromised. The clinical symptoms of CIPN, and the cellular and molecular targets involved in CIPN, are just as diverse as the wide variety of anticancer agents that cause peripheral neurotoxicity. There is an urgent need for extensive molecular and functional investigations aimed at understanding the mechanisms of CIPN. Furthermore, a reliable human cell culture system that recapitulates the diversity of neuronal modalities found in vivo and the pathophysiological changes that underlie CIPN would serve to advance the understanding of the pathogenesis of CIPN. The demonstration of experimental reproducibility in a human peripheral neuronal cell system will increase confidence that such an in vitro model is clinically useful, ultimately resulting in deeper exploration for the prevention and treatment of CIPN. Herein, we review current in vitro models with a focus on key characteristics and attributes desirable for an ideal human cell culture model relevant for CIPN investigations.
Collapse
|
22
|
Jayakar S, Shim J, Jo S, Bean BP, Singeç I, Woolf CJ. Developing nociceptor-selective treatments for acute and chronic pain. Sci Transl Med 2021; 13:eabj9837. [PMID: 34757806 PMCID: PMC9964063 DOI: 10.1126/scitranslmed.abj9837] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite substantial efforts dedicated to the development of new, nonaddictive analgesics, success in treating pain has been limited. Clinically available analgesic agents generally lack efficacy and may have undesirable side effects. Traditional target-based drug discovery efforts that generate compounds with selectivity for single targets have a high rate of attrition because of their poor clinical efficacy. Here, we examine the challenges associated with the current analgesic drug discovery model and review evidence in favor of stem cell–derived neuronal-based screening approaches for the identification of analgesic targets and compounds for treating diverse forms of acute and chronic pain.
Collapse
Affiliation(s)
- Selwyn Jayakar
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Jaehoon Shim
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH); Bethesda, MD 20892, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| |
Collapse
|
23
|
Image-Based Quantitation of Kainic Acid-Induced Excitotoxicity as a Model of Neurodegeneration in Human iPSC-Derived Neurons. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2549:187-207. [PMID: 34505266 DOI: 10.1007/7651_2021_421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Excitotoxicity is a feature of many neurodegenerative diseases and acquired forms of neural injury that is characterized by disruption of neuronal morphology. This is typically seen as beading and fragmentation of neurites when exposed to excitotoxins such as the AMPA receptor agonist kainic acid, with the extent to which these occur used to quantitate neurodegeneration. Induced pluripotent stem cells (iPSCs) provide a means to generate human neurons in vitro for mechanistic studies and can thereby be used to investigate how cells respond to excitotoxicity and to identify or test potential neuroprotective agents. To facilitate such studies, we have optimized a protocol for human iPSC differentiation to mature neurons in a 96-well plate format that enables image-based quantitation of changes to neuron morphology when exposed to kainic acid. Our protocol assays neuron morphology across seven excitotoxin concentrations with multiple control conditions and is ideally suited to comparison of neurons generated through differentiation of two isogenic iPSC lines in a single plate. We have included detailed step-by-step protocols for neural stem cell differentiation, neuronal maturation and exposure to kainic acid treatment, as well as different approaches to image-based quantitation that involve immunofluorescence or phase-contrast microscopy.
Collapse
|
24
|
Wang M, Wang J, Tsui AYP, Li Z, Zhang Y, Zhao Q, Xing H, Wang X. Mechanisms of peripheral neurotoxicity associated with four chemotherapy drugs using human induced pluripotent stem cell-derived peripheral neurons. Toxicol In Vitro 2021; 77:105233. [PMID: 34390763 DOI: 10.1016/j.tiv.2021.105233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 01/22/2023]
Abstract
The awareness of the long-term toxicities of cancer survivors after chemotherapy treatment has been gradually strengthened as the population of cancer survivors grows. Generally, chemotherapy-induced peripheral neurotoxicity (CIPN) is studied by animal models which are not only expensive and time-consuming, but also species-specific differences. The generation of human induced pluripotent stem cells (hiPSCs) and differentiation of peripheral neurons have provided an in vitro model to elucidate the risk of CIPN. Here, we developed a drug-induced peripheral neurotoxicity model using hiPSC-derived peripheral neurons (hiPSC-PNs) to study the mechanisms of different chemotherapeutic agents on neuronal viability using LDH assay, a cell apoptosis assay determined by caspase 3/7 activation, neurite outgrowth, ion channel expression and neurotransmitter release following treatment of cisplatin, bortezomib, ixabepilone, or pomalidomide. Our data showed that the multiple endpoints of the hiPSC-PNs model had different sensitivity to various chemotherapeutic agents. Furthermore, the chemotherapeutics separated cell viability from the decrease in neurite lengthand changed levels of ion channels and neurotransmitters to a certain extent. Thus, we study the mechanisms of peripheral neurotoxicity induced by chemotherapeutic agents through changes in these indicators.
Collapse
Affiliation(s)
- Meiting Wang
- China State Institute of Pharmaceutical Industry, Shanghai InnoStar Bio-Tech Co., Ltd., Shanghai 201203, China
| | - Jiaxian Wang
- Nanjing HELP Stem Cell Innovations Co., Ltd., Nanjing 211100, China
| | - Alex Y P Tsui
- Nanjing HELP Stem Cell Innovations Co., Ltd., Nanjing 211100, China
| | - Zhaomin Li
- Nanjing HELP Stem Cell Innovations Co., Ltd., Nanjing 211100, China
| | - Yizhe Zhang
- China State Institute of Pharmaceutical Industry, Shanghai InnoStar Bio-Tech Co., Ltd., Shanghai 201203, China
| | - Qi Zhao
- China State Institute of Pharmaceutical Industry, Shanghai InnoStar Bio-Tech Co., Ltd., Shanghai 201203, China
| | - Hongyan Xing
- China State Institute of Pharmaceutical Industry, Shanghai InnoStar Bio-Tech Co., Ltd., Shanghai 201203, China
| | - Xijie Wang
- China State Institute of Pharmaceutical Industry, Shanghai InnoStar Bio-Tech Co., Ltd., Shanghai 201203, China.
| |
Collapse
|
25
|
Diouf B, Wing C, Panetta JC, Eddins D, Lin W, Yang W, Fan Y, Pei D, Cheng C, Delaney SM, Zhang W, Bonten EJ, Crews KR, Paugh SW, Li L, Freeman BB, Autry RJ, Beard JA, Ferguson DC, Janke LJ, Ness KK, Chen T, Zakharenko SS, Jeha S, Pui CH, Relling MV, Eileen Dolan M, Evans WE. Identification of small molecules that mitigate vincristine-induced neurotoxicity while sensitizing leukemia cells to vincristine. Clin Transl Sci 2021; 14:1490-1504. [PMID: 33742760 PMCID: PMC8301581 DOI: 10.1111/cts.13012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Vincristine (VCR) is one of the most widely prescribed medications for treating solid tumors and acute lymphoblastic leukemia (ALL) in children and adults. However, its major dose-limiting toxicity is peripheral neuropathy that can disrupt curative therapy. Peripheral neuropathy can also persist into adulthood, compromising quality of life of childhood cancer survivors. Reducing VCR-induced neurotoxicity without compromising its anticancer effects would be ideal. Here, we show that low expression of NHP2L1 is associated with increased sensitivity of primary leukemia cells to VCR, and that concomitant administration of VCR with inhibitors of NHP2L1 increases VCR cytotoxicity in leukemia cells, prolongs survival of ALL xenograft mice, but decreases VCR effects on human-induced pluripotent stem cell-derived neurons and mitigates neurotoxicity in mice. These findings offer a strategy for increasing VCR's antileukemic effects while reducing peripheral neuropathy in patients treated with this widely prescribed medication.
Collapse
Affiliation(s)
- Barthelemy Diouf
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Claudia Wing
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - John C Panetta
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Donnie Eddins
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wenjian Yang
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shannon M Delaney
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erik J Bonten
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kristine R Crews
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Steven W Paugh
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lie Li
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Burgess B Freeman
- Preclinical Pharmacokinetics Shared Resource, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert J Autry
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jordan A Beard
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mary V Relling
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - William E Evans
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
26
|
Belair DG, Sudak K, Connelly K, Collins ND, Kopytek SJ, Kolaja KL. Investigation Into the Role of ERK in Tyrosine Kinase Inhibitor-Induced Neuropathy. Toxicol Sci 2021; 181:160-174. [PMID: 33749749 DOI: 10.1093/toxsci/kfab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and debilitating adverse event that can alter patient treatment options and halt candidate drug development. A case study is presented here describing the preclinical and clinical development of CC-90003, a small molecule extracellular signal-regulated kinase (ERK)1/2 inhibitor investigated as an oncology therapy. In a Phase Ia clinical trial, CC-90003 elicited adverse drug-related neuropathy and neurotoxicity that contributed to discontinued development of CC-90003 for oncology therapy. Preclinical evaluation of CC-90003 in dogs revealed clinical signs and electrophysiological changes consistent with peripheral neuropathy that was reversible. Mice did not exhibit signs of neuropathy upon daily dosing with CC-90003, supporting that rodents generally poorly predict CIPN. We sought to investigate the mechanism of CC-90003-induced peripheral neuropathy using a phenotypic in vitro assay. Translating preclinical neuropathy findings to humans proves challenging as no robust in vitro models of CIPN exist. An approach was taken to examine the influence of CIPN-associated drugs on human-induced pluripotent stem cell-derived peripheral neuron (hiPSC-PN) electrophysiology on multielectrode arrays (MEAs). The MEA assay with hiPSC-PNs was sensitive to CIPN-associated drugs cisplatin, sunitinib, colchicine, and importantly, to CC-90003 in concordance with clinical neuropathy incidence. Biochemical data together with in vitro MEA data for CC-90003 and 12 of its structural analogs, all having similar ERK inhibitory activity, revealed that CC-90003 disrupted in vitro neuronal electrophysiology likely via on-target ERK inhibition combined with off-target kinase inhibition and translocator protein inhibition. This approach could prove useful for assessing CIPN risk and interrogating mechanisms of drug-induced neuropathy.
Collapse
Affiliation(s)
- David G Belair
- Nonclinical Safety, Bristol Myers Squibb (formerly Celgene), Summit, New Jersey 07901, USA
| | - Katelyn Sudak
- Nonclinical Safety, Bristol Myers Squibb (formerly Celgene), Summit, New Jersey 07901, USA
| | - Kimberly Connelly
- Nonclinical Safety, Bristol Myers Squibb (formerly Celgene), Summit, New Jersey 07901, USA
| | - Nathaniel D Collins
- Nonclinical Safety, Bristol Myers Squibb (formerly Celgene), Summit, New Jersey 07901, USA
| | - Stephan J Kopytek
- Nonclinical Safety, Bristol Myers Squibb (formerly Celgene), Summit, New Jersey 07901, USA
| | - Kyle L Kolaja
- Nonclinical Safety, Bristol Myers Squibb (formerly Celgene), Summit, New Jersey 07901, USA
| |
Collapse
|
27
|
Kankowski S, Grothe C, Haastert-Talini K. Neuropathic pain: Spotlighting anatomy, experimental models, mechanisms, and therapeutic aspects. Eur J Neurosci 2021; 54:4475-4496. [PMID: 33942412 DOI: 10.1111/ejn.15266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
The International Association for the Study of Pain defines neuropathic pain as "pain arising as a direct consequence of a lesion or disease affecting the somatosensory system". The associated changes can be observed in the peripheral as well as the central nervous system. The available literature discusses a wide variety of causes as predisposing for the development and amplification of neuropathic pain. Further, key interactions within sensory pathways have been discovered, but no common molecular mechanism leading to neuropathic pain has been identified until now. In the first part of this review, the pain mediating lateral spinothalamic tract is described. Different in vivo models are presented that allow studying trauma-, chemotherapy-, virus-, and diabetes-induced neuropathic pain in rodents. We furthermore discuss approaches to assess neuropathic pain in these models. Second, the current knowledge about cellular and molecular mechanisms suggested to underlie the development of neuropathic pain is presented and discussed. A summary of established therapies that are already applied in the clinic and novel, promising approaches closes the paper. In conclusion, the established animal models are able to emulate the diversity of neuropathic pain observed in the clinics. However, the assessment of neuropathic pain in the presented in vivo models should be improved. The determination of common molecular markers with suitable in vitro models would simplify the assessment of neuropathic pain in vivo. This would furthermore provide insights into common molecular mechanisms of the disease and establish a basis to search for satisfying therapeutic approaches.
Collapse
Affiliation(s)
- Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany.,Center for Systems Neuroscience (ZNS) Hannover, Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany.,Center for Systems Neuroscience (ZNS) Hannover, Hannover, Germany
| |
Collapse
|
28
|
Schinke C, Fernandez Vallone V, Ivanov A, Peng Y, Körtvelyessy P, Nolte L, Huehnchen P, Beule D, Stachelscheid H, Boehmerle W, Endres M. Modeling chemotherapy induced neurotoxicity with human induced pluripotent stem cell (iPSC) -derived sensory neurons. Neurobiol Dis 2021; 155:105391. [PMID: 33984509 DOI: 10.1016/j.nbd.2021.105391] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent, potentially irreversible adverse effect of cytotoxic chemotherapy often leading to a reduction or discontinuation of treatment which negatively impacts patients' prognosis. To date, however, neither predictive biomarkers nor preventive treatments for CIPN are available, which is partially due to a lack of suitable experimental models. We therefore aimed to evaluate whether sensory neurons derived from induced pluripotent stem cells (iPSC-DSN) can serve as human disease model system for CIPN. Treatment of iPSC-DSN for 24 h with the neurotoxic drugs paclitaxel, bortezomib, vincristine and cisplatin led to axonal blebbing and a dose dependent decline of cell viability in clinically relevant IC50 ranges, which was not observed for the non-neurotoxic compounds doxorubicin and 5-fluorouracil. Paclitaxel treatment effects were less pronounced after 24 h but prominent when treatment was applied for 72 h. Global transcriptome analyses performed at 24 h, i.e. before paclitaxel-induced cell death occurred, revealed the differential expression of genes of neuronal injury, cellular stress response, and sterol pathways. We further evaluated if known neuroprotective strategies can be reproduced in iPSC-DSN and observed protective effects of lithium replicating findings from rodent dorsal root ganglia cells. Comparing sensory neurons derived from two different healthy donors, we found preliminary evidence that these cell lines react differentially to neurotoxic drugs as expected from the variable presentation of CIPN in patients. In conclusion, iPSC-DSN are a promising platform to study the pathogenesis of CIPN and to evaluate neuroprotective treatment strategies. In the future, the application of patient-specific iPSC-DSN could open new avenues for personalized medicine with individual risk prediction, choice of chemotherapeutic compounds and preventive treatments.
Collapse
Affiliation(s)
- Christian Schinke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik und Hochschulambulanz für Neurologie, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Anna-Louisa-Karsch Straße 2, 10178 Berlin, Germany
| | - Valeria Fernandez Vallone
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Stem Cell Core Facility, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andranik Ivanov
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Charitéplatz 1, 10117 Berlin, Germany
| | - Yangfan Peng
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik und Hochschulambulanz für Neurologie, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institut für Neurophysiologie, Charitéplatz 1, 10117 Berlin, Germany
| | - Péter Körtvelyessy
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik und Hochschulambulanz für Neurologie, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany
| | - Luca Nolte
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik und Hochschulambulanz für Neurologie, Charitéplatz 1, 10117 Berlin, Germany
| | - Petra Huehnchen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik und Hochschulambulanz für Neurologie, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Anna-Louisa-Karsch Straße 2, 10178 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Charitéplatz 1, 10117 Berlin, Germany; Max-Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Harald Stachelscheid
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Stem Cell Core Facility, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Wolfgang Boehmerle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik und Hochschulambulanz für Neurologie, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Anna-Louisa-Karsch Straße 2, 10178 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany.
| | - Matthias Endres
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik und Hochschulambulanz für Neurologie, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Anna-Louisa-Karsch Straße 2, 10178 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Germany; German Center for Cardiovascular Research (DZHK), partner site Berlin, Germany
| |
Collapse
|
29
|
Filippova N, Yang X, Ananthan S, Calano J, Pathak V, Bratton L, Vekariya RH, Zhang S, Ofori E, Hayward EN, Namkoong D, Crossman DK, Crowley MR, King PH, Mobley J, Nabors LB. Targeting the HuR Oncogenic Role with a New Class of Cytoplasmic Dimerization Inhibitors. Cancer Res 2021; 81:2220-2233. [PMID: 33602784 DOI: 10.1158/0008-5472.can-20-2858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/29/2020] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
The development of novel therapeutics that exploit alterations in the activation state of key cellular signaling pathways due to mutations in upstream regulators has generated the field of personalized medicine. These first-generation efforts have focused on actionable mutations identified by deep sequencing of large numbers of tumor samples. We propose that a second-generation opportunity exists by exploiting key downstream "nodes of control" that contribute to oncogenesis and are inappropriately activated due to loss of upstream regulation and microenvironmental influences. The RNA-binding protein HuR represents such a node. Because HuR functionality in cancer cells is dependent on HuR dimerization and its nuclear/cytoplasmic shuttling, we developed a new class of molecules targeting HuR protein dimerization. A structure-activity relationship algorithm enabled development of inhibitors of HuR multimer formation that were soluble, had micromolar activity, and penetrated the blood-brain barrier. These inhibitors were evaluated for activity validation and specificity in a robust cell-based assay of HuR dimerization. SRI-42127, a molecule that met these criteria, inhibited HuR multimer formation across primary patient-derived glioblastoma xenolines (PDGx), leading to arrest of proliferation, induction of apoptosis, and inhibition of colony formation. SRI-42127 had favorable attributes with central nervous system penetration and inhibited tumor growth in mouse models. RNA and protein analysis of SRI-42127-treated PDGx xenolines across glioblastoma molecular subtypes confirmed attenuation of targets upregulated by HuR. These results highlight how focusing on key attributes of HuR that contribute to cancer progression, namely cytoplasmic localization and multimerization, has led to the development of a novel, highly effective inhibitor. SIGNIFICANCE: These findings utilize a cell-based mechanism of action assay with a structure-activity relationship compound development pathway to discover inhibitors that target HuR dimerization, a mechanism required for cancer promotion.
Collapse
Affiliation(s)
- Natalia Filippova
- Division of Neuro-oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiuhua Yang
- Division of Neuro-oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Subramaniam Ananthan
- Drug Discovery Division, Chemistry Department, Southern Research Institute, Birmingham, Alabama
| | - Jennifer Calano
- Division of Neuro-oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Vibha Pathak
- Drug Discovery Division, Chemistry Department, Southern Research Institute, Birmingham, Alabama
| | - Larry Bratton
- Drug Discovery Division, Chemistry Department, Southern Research Institute, Birmingham, Alabama
| | - Rakesh H Vekariya
- Drug Discovery Division, Chemistry Department, Southern Research Institute, Birmingham, Alabama
| | - Sixue Zhang
- Drug Discovery Division, Chemistry Department, Southern Research Institute, Birmingham, Alabama
| | - Edward Ofori
- Drug Discovery Division, Chemistry Department, Southern Research Institute, Birmingham, Alabama
| | - Emily N Hayward
- Division of Neuro-oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David Namkoong
- Division of Neuro-oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David K Crossman
- Department of Genetics, UAB Genomics Core, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael R Crowley
- Department of Genetics, UAB Genomics Core, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peter H King
- Department of Neurology, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - James Mobley
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, O'Neal Comprehensive Cancer Center MS/Proteomics Shared Facility, University of Alabama at Birmingham, Birmingham, Alabama
| | - Louis B Nabors
- Division of Neuro-oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
30
|
Yamamoto S, Egashira N. Drug Repositioning for the Prevention and Treatment of Chemotherapy-Induced Peripheral Neuropathy: A Mechanism- and Screening-Based Strategy. Front Pharmacol 2021; 11:607780. [PMID: 33519471 PMCID: PMC7840493 DOI: 10.3389/fphar.2020.607780] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse effect observed in most patients treated with neurotoxic anti-cancer drugs. Currently, there are no therapeutic options available for the prevention of CIPN. Furthermore, few drugs are recommended for the treatment of existing neuropathies because the mechanisms of CIPN remain unclear. Each chemotherapeutic drug induces neuropathy by distinct mechanisms, and thus we need to understand the characteristics of CIPN specific to individual drugs. Here, we review the known pathogenic mechanisms of oxaliplatin- and paclitaxel-induced CIPN, highlighting recent findings. Cancer chemotherapy is performed in a planned manner; therefore, preventive strategies can be planned for CIPN. Drug repositioning studies, which identify the unexpected actions of already approved drugs, have increased in recent years. We have also focused on drug repositioning studies, especially for prevention, because they should be rapidly translated to patients suffering from CIPN.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
31
|
Xiong C, Chua KC, Stage TB, Priotti J, Kim J, Altman-Merino A, Chan D, Saraf K, Canato Ferracini A, Fattahi F, Kroetz DL. Human Induced Pluripotent Stem Cell Derived Sensory Neurons are Sensitive to the Neurotoxic Effects of Paclitaxel. Clin Transl Sci 2020; 14:568-581. [PMID: 33340242 PMCID: PMC7993321 DOI: 10.1111/cts.12912] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy‐induced peripheral neuropathy (CIPN) is a dose‐limiting adverse event associated with treatment with paclitaxel and other chemotherapeutic agents. The prevention and treatment of CIPN are limited by a lack of understanding of the molecular mechanisms underlying this toxicity. In the current study, a human induced pluripotent stem cell–derived sensory neuron (iPSC‐SN) model was developed for the study of chemotherapy‐induced neurotoxicity. The iPSC‐SNs express proteins characteristic of nociceptor, mechanoreceptor, and proprioceptor sensory neurons and show Ca2+ influx in response to capsaicin, α,β‐meATP, and glutamate. The iPSC‐SNs are relatively resistant to the cytotoxic effects of paclitaxel, with half‐maximal inhibitory concentration (IC50) values of 38.1 µM (95% confidence interval (CI) 22.9–70.9 µM) for 48‐hour exposure and 9.3 µM (95% CI 5.7–16.5 µM) for 72‐hour treatment. Paclitaxel causes dose‐dependent and time‐dependent changes in neurite network complexity detected by βIII‐tubulin staining and high content imaging. The IC50 for paclitaxel reduction of neurite area was 1.4 µM (95% CI 0.3–16.9 µM) for 48‐hour exposure and 0.6 µM (95% CI 0.09–9.9 µM) for 72‐hour exposure. Decreased mitochondrial membrane potential, slower movement of mitochondria down the neurites, and changes in glutamate‐induced neuronal excitability were also observed with paclitaxel exposure. The iPSC‐SNs were also sensitive to docetaxel, vincristine, and bortezomib. Collectively, these data support the use of iPSC‐SNs for detailed mechanistic investigations of genes and pathways implicated in chemotherapy‐induced neurotoxicity and the identification of novel therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Chenling Xiong
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Katherina C Chua
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Tore B Stage
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.,Department of Public Health, Clinical Pharmacology and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Josefina Priotti
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Kim
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Anne Altman-Merino
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Daniel Chan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Krishna Saraf
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Amanda Canato Ferracini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.,Faculty of Medical Sciences, University of Campinas, Sao Paulo, Brazil
| | - Faranak Fattahi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
32
|
A locust embryo as predictive developmental neurotoxicity testing system for pioneer axon pathway formation. Arch Toxicol 2020; 94:4099-4113. [PMID: 33079231 DOI: 10.1007/s00204-020-02929-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
Exposure to environmental chemicals during in utero and early postnatal development can cause a wide range of neurological defects. Since current guidelines for identifying developmental neurotoxic chemicals depend on the use of large numbers of rodents in animal experiments, it has been proposed to design rapid and cost-efficient in vitro screening test batteries that are mainly based on mixed neuronal/glial cultures. However, cell culture tests do not assay correct wiring of neuronal circuits. The establishment of precise anatomical connectivity is a key event in the development of a functional brain. Here, we expose intact embryos of the locust (Locusta migratoria) in serum-free culture to test chemicals and visualize correct navigation of identified pioneer axons by fluorescence microscopy. We define separate toxicological endpoints for axonal elongation and navigation along a stereotyped pathway. To distinguish developmental neurotoxicity (DNT) from general toxicity, we quantify defects in axonal elongation and navigation in concentration-response curves and compare it to the biochemically determined viability of the embryo. The investigation of a panel of recognized DNT-positive and -negative test compounds supports a rather high predictability of this invertebrate embryo assay. Similar to the semaphorin-mediated guidance of neurites in mammalian cortex, correct axonal navigation of the locust pioneer axons relies on steering cues from members of this family of cell recognition molecules. Due to the evolutionary conserved mechanisms of neurite guidance, we suggest that our pioneer axon paradigm might provide mechanistically relevant information on the DNT potential of chemical agents on the processes of axon elongation, navigation, and fasciculation.
Collapse
|
33
|
St. Germain DC, O’Mara AM, Robinson JL, Torres AD, Minasian LM. Chemotherapy‐induced peripheral neuropathy: Identifying the research gaps and associated changes to clinical trial design. Cancer 2020; 126:4602-4613. [DOI: 10.1002/cncr.33108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022]
Affiliation(s)
| | - Ann M. O’Mara
- Division of Cancer Prevention National Cancer Institute Bethesda Maryland
| | - Jennifer L. Robinson
- Department of Behavioral and Community Health University of Maryland College Park Maryland
| | | | - Lori M. Minasian
- Division of Cancer Prevention National Cancer Institute Bethesda Maryland
| |
Collapse
|
34
|
Chua KC, Xiong C, Ho C, Mushiroda T, Jiang C, Mulkey F, Lai D, Schneider BP, Rashkin SR, Witte JS, Friedman PN, Ratain MJ, McLeod HL, Rugo HS, Shulman LN, Kubo M, Owzar K, Kroetz DL. Genomewide Meta-Analysis Validates a Role for S1PR1 in Microtubule Targeting Agent-Induced Sensory Peripheral Neuropathy. Clin Pharmacol Ther 2020; 108:625-634. [PMID: 32562552 DOI: 10.1002/cpt.1958] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022]
Abstract
Microtubule targeting agents (MTAs) are anticancer therapies commonly prescribed for breast cancer and other solid tumors. Sensory peripheral neuropathy (PN) is the major dose-limiting toxicity for MTAs and can limit clinical efficacy. The current pharmacogenomic study aimed to identify genetic variations that explain patient susceptibility and drive mechanisms underlying development of MTA-induced PN. A meta-analysis of genomewide association studies (GWAS) from two clinical cohorts treated with MTAs (Cancer and Leukemia Group B (CALGB) 40502 and CALGB 40101) was conducted using a Cox regression model with cumulative dose to first instance of grade 2 or higher PN. Summary statistics from a GWAS of European subjects (n = 469) in CALGB 40502 that estimated cause-specific risk of PN were meta-analyzed with those from a previously published GWAS of European ancestry (n = 855) from CALGB 40101 that estimated the risk of PN. Novel single nucleotide polymorphisms in an enhancer region downstream of sphingosine-1-phosphate receptor 1 (S1PR1 encoding S1PR1 ; e.g., rs74497159, βCALGB 40101 per allele log hazard ratio (95% confidence interval (CI)) = 0.591 (0.254-0.928), βCALGB 40502 per allele log hazard ratio (95% CI) = 0.693 (0.334-1.053); PMETA = 3.62 × 10-7 ) were the most highly ranked associations based on P values with risk of developing grade 2 and higher PN. In silico functional analysis identified multiple regulatory elements and potential enhancer activity for S1PR1 within this genomic region. Inhibition of S1PR1 function in induced pluripotent stem cell-derived human sensory neurons shows partial protection against paclitaxel-induced neurite damage. These pharmacogenetic findings further support ongoing clinical evaluations to target S1PR1 as a therapeutic strategy for prevention and/or treatment of MTA-induced neuropathy.
Collapse
Affiliation(s)
- Katherina C Chua
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Chenling Xiong
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Carol Ho
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Taisei Mushiroda
- Laboratory of Genotyping Development, Riken Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Chen Jiang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA.,Alliance Statistics and Data Center, Duke University, Durham, North Carolina, USA
| | - Flora Mulkey
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA.,Alliance Statistics and Data Center, Duke University, Durham, North Carolina, USA
| | - Dongbing Lai
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Sara R Rashkin
- Department of Biostatistics and Epidemiology, University of California San Francisco, San Francisco, California, USA
| | - John S Witte
- Department of Biostatistics and Epidemiology, University of California San Francisco, San Francisco, California, USA
| | - Paula N Friedman
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mark J Ratain
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Howard L McLeod
- DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, Florida, USA
| | - Hope S Rugo
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lawrence N Shulman
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michiaki Kubo
- Laboratory of Genotyping Development, Riken Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA.,Alliance Statistics and Data Center, Duke University, Durham, North Carolina, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
35
|
Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 2020; 1471:18-56. [PMID: 30875083 PMCID: PMC8193821 DOI: 10.1111/nyas.14012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Development of effective therapeutics for neurological disorders has historically been challenging partly because of lack of accurate model systems in which to investigate disease etiology and test new therapeutics at the preclinical stage. Human stem cells, particularly patient-derived induced pluripotent stem cells (iPSCs) upon differentiation, have the ability to recapitulate aspects of disease pathophysiology and are increasingly recognized as robust scalable systems for drug discovery. We review advances in deriving cellular models of human central nervous system (CNS) disorders using iPSCs along with strategies for investigating disease-relevant phenotypes, translatable biomarkers, and therapeutic targets. Given their potential to identify novel therapeutic targets and leads, we focus on phenotype-based, small-molecule screens employing human stem cell-derived models. Integrated efforts to assemble patient iPSC-derived cell models with deeply annotated clinicopathological data, along with molecular and drug-response signatures, may aid in the stratification of patients, diagnostics, and clinical trial success, shifting translational science and precision medicine approaches. A number of remaining challenges, including the optimization of cost-effective, large-scale culture of iPSC-derived cell types, incorporation of aging into neuronal models, as well as robustness and automation of phenotypic assays to support quantitative drug efficacy, toxicity, and metabolism testing workflows, are covered. Continued advancement of the field is expected to help fully humanize the process of CNS drug discovery.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| |
Collapse
|
36
|
Shirakawa T, Suzuki I. Approach to Neurotoxicity using Human iPSC Neurons: Consortium for Safety Assessment using Human iPS Cells. Curr Pharm Biotechnol 2020; 21:780-786. [DOI: 10.2174/1389201020666191129103730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 11/03/2019] [Indexed: 01/05/2023]
Abstract
Neurotoxicity, as well as cardiotoxicity and hepatotoxicity, resulting from administration of
a test article is considered a major adverse effect both pre-clinically and clinically. Among the different
types of neurotoxicity occurring during the drug development process, seizure is one of the most serious
one. Seizure occurrence is usually assessed using in vivo animal models, the Functional Observational
Battery, the Irwin test or electroencephalograms. In in vitro studies, a number of assessments can
be performed using animal organs/cells. Interestingly, recent developments in stem cell biology, especially
the development of Human-Induced Pluripotent Stem (iPS) cells, are enabling the assessment of
neurotoxicity in human iPS cell-derived neurons. Further, a Multi-Electrode Array (MEA) using rodent
neurons is a useful tool for identifying seizure-inducing compounds. The Consortium for Safety Assessment
using Human iPS Cells (CSAHi; http://csahi.org/en/) was established in 2013 by the Japan
Pharmaceutical Manufacturers Association (JPMA) to verify the application of human iPS cell-derived
neuronal cells to drug safety evaluation. The Neuro Team of CSAHi has been attempting to evaluate the
seizure risk of compounds using the MEA platform. Here, we review the current status of neurotoxicity
and recent work, including problems related to the use of the MEA assay with human iPS neuronal
cell-derived neurons, and future developments.
Collapse
Affiliation(s)
- Takafumi Shirakawa
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Neuro Team, Japan
| | - Ikuro Suzuki
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Neuro Team, Japan
| |
Collapse
|
37
|
Lehmann HC, Staff NP, Hoke A. Modeling chemotherapy induced peripheral neuropathy (CIPN) in vitro: Prospects and limitations. Exp Neurol 2020; 326:113140. [DOI: 10.1016/j.expneurol.2019.113140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
|
38
|
Genualdi C, Feinstein S, Wilson L, Jordan M, Stagg N. Assessing the utility of in vitro microtubule assays for studying mechanisms of peripheral neuropathy with the microtubule inhibitor class of cancer chemotherapy. Chem Biol Interact 2020; 315:108906. [DOI: 10.1016/j.cbi.2019.108906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/28/2023]
|
39
|
Eldridge S, Guo L, Hamre J. A Comparative Review of Chemotherapy-Induced Peripheral Neuropathy in In Vivo and In Vitro Models. Toxicol Pathol 2020; 48:190-201. [PMID: 31331249 PMCID: PMC6917839 DOI: 10.1177/0192623319861937] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is an adverse effect caused by several classes of widely used anticancer therapeutics. Chemotherapy-induced peripheral neuropathy frequently leads to dose reduction or discontinuation of chemotherapy regimens, and CIPN symptoms can persist long after completion of chemotherapy and severely diminish the quality of life of patients. Differences in the clinical presentation of CIPN by widely diverse classifications of anticancer agents have spawned multiple mechanistic hypotheses that seek to explain the pathogenesis of CIPN. Despite its clinical relevance, common occurrence, and extensive investigation, the pathophysiology of CIPN remains unclear. Furthermore, there is no unequivocal gold standard for the prevention and treatment of CIPN. Herein, we review in vivo and in vitro models of CIPN with a focus on histopathological changes and morphological features aimed at understanding the pathophysiology of CIPN and identify gaps requiring deeper exploration. An elucidation of the underlying mechanisms of CIPN is imperative to identify potential targets and approaches for prevention and treatment.
Collapse
Affiliation(s)
- Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John Hamre
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
40
|
Genova E, Cavion F, Lucafò M, Leo LD, Pelin M, Stocco G, Decorti G. Induced pluripotent stem cells for therapy personalization in pediatric patients: Focus on drug-induced adverse events. World J Stem Cells 2019; 11:1020-1044. [PMID: 31875867 PMCID: PMC6904863 DOI: 10.4252/wjsc.v11.i12.1020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Adverse drug reactions (ADRs) are major clinical problems, particularly in special populations such as pediatric patients. Indeed, ADRs may be caused by a plethora of different drugs leading, in some cases, to hospitalization, disability or even death. In addition, pediatric patients may respond differently to drugs with respect to adults and may be prone to developing different kinds of ADRs, leading, in some cases, to more severe consequences. To improve the comprehension, and thus the prevention, of ADRs, the set-up of sensitive and personalized assays is urgently needed. Important progress is represented by the possibility of setting up groundbreaking patient-specific assays. This goal has been powerfully achieved using induced pluripotent stem cells (iPSCs). Due to their genetic and physiological species-specific differences and their ability to be differentiated ideally into all tissues of the human body, this model may be accurate in predicting drug toxicity, especially when this toxicity is related to individual genetic differences. This review is an up-to-date summary of the employment of iPSCs as a model to study ADRs, with particular attention to drugs used in the pediatric field. We especially focused on the intestinal, hepatic, pancreatic, renal, cardiac, and neuronal levels, also discussing progress in organoids creation. The latter are three-dimensional in vitro culture systems derived from pluripotent or adult stem cells simulating the architecture and functionality of native organs such as the intestine, liver, pancreas, kidney, heart, and brain. Based on the existing knowledge, these models are powerful and promising tools in multiple clinical applications including toxicity screening, disease modeling, personalized and regenerative medicine.
Collapse
Affiliation(s)
- Elena Genova
- PhD School in Reproduction and Development Sciences, University of Trieste, Trieste 34127, Italy
| | - Federica Cavion
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Marianna Lucafò
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste 34137, Italy
| | - Luigina De Leo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste 34137, Italy
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| | - Giuliana Decorti
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste 34137, Italy
| |
Collapse
|
41
|
Calls A, Carozzi V, Navarro X, Monza L, Bruna J. Pathogenesis of platinum-induced peripheral neurotoxicity: Insights from preclinical studies. Exp Neurol 2019; 325:113141. [PMID: 31865195 DOI: 10.1016/j.expneurol.2019.113141] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
One of the most relevant dose-limiting adverse effects of platinum drugs is the development of a sensory peripheral neuropathy that highly impairs the patients' quality of life. Nowadays there are no available efficacy strategies for the treatment of platinum-induced peripheral neurotoxicity (PIPN), and the only way to prevent its development and progression is by reducing the dose of the cytostatic drug or even withdrawing the chemotherapy regimen. This clinical issue has been the main focus of hundreds of preclinical research works during recent decades. As a consequence, dozens of in vitro and in vivo models of PIPN have been developed to elucidate the molecular mechanisms involved in its development and to find neuroprotective targets. The apoptosis of peripheral neurons has been identified as the main mechanism involved in PIPN pathogenesis. This mechanism of DRG sensory neurons cell death is triggered by the nuclear and mitochondrial DNA platination together with the increase of the oxidative cellular status induced by the depletion of cytoplasmic antioxidant mechanisms. However, since there has been no successful transfer of preclinical results to clinical practise in terms of therapeutic approaches, some mechanisms of PIPN pathogenesis still remain to be elucidated. This review is focused on the pathogenic mechanisms underlying PIPN described up to now, provided by the critical analysis of in vitro and in vivo models.
Collapse
Affiliation(s)
- Aina Calls
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Valentina Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milan Bicocca. Italy; Milan Center For Neuroscience, Milan, Italy
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milan Bicocca. Italy
| | - Jordi Bruna
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain; Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-Institut Català d'Oncologia L'Hospitalet, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Feixa Llarga s/n, 08907 Barcelona, Spain.
| |
Collapse
|
42
|
Miki D, Kobayashi Y, Okada T, Miyamoto T, Takei N, Sekino Y, Koganezawa N, Shirao T, Saito Y. Characterization of Functional Primary Cilia in Human Induced Pluripotent Stem Cell-Derived Neurons. Neurochem Res 2019; 44:1736-1744. [PMID: 31037609 DOI: 10.1007/s11064-019-02806-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in human induced pluripotent stem cells (hiPSCs) offer new possibilities for biomedical research and clinical applications. Neurons differentiated from hiPSCs may be promising tools to develop novel treatment methods for various neurological diseases. However, the detailed process underlying functional maturation of hiPSC-derived neurons remains poorly understood. Here, we analyze the developmental architecture of hiPSC-derived cortical neurons, iCell GlutaNeurons, focusing on the primary cilium, a single sensory organelle that protrudes from the surface of most growth-arrested vertebrate cells. To characterize the neuronal cilia, cells were cultured for various periods and evaluated immunohistochemically by co-staining with antibodies against ciliary markers Arl13b and MAP2. Primary cilia were detected in neurons within days, and their prevalence and length increased with increasing days in culture. Treatment with the mood stabilizer lithium led to primary cilia length elongation, while treatment with the orexigenic neuropeptide melanin-concentrating hormone caused cilia length shortening in iCell GlutaNeurons. The present findings suggest that iCell GlutaNeurons develop neuronal primary cilia together with the signaling machinery for regulation of cilia length. Our approach to the primary cilium as a cellular antenna can be useful for both assessment of neuronal maturation and validation of pharmaceutical agents in hiPSC-derived neurons.
Collapse
Affiliation(s)
- Daisuke Miki
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Tomoya Okada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Tatuso Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Yuko Sekino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.
| |
Collapse
|
43
|
Li J, Settivari R, LeBaron MJ, Marty MS. An industry perspective: A streamlined screening strategy using alternative models for chemical assessment of developmental neurotoxicity. Neurotoxicology 2019; 73:17-30. [DOI: 10.1016/j.neuro.2019.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
|
44
|
Malacrida A, Meregalli C, Rodriguez-Menendez V, Nicolini G. Chemotherapy-Induced Peripheral Neuropathy and Changes in Cytoskeleton. Int J Mol Sci 2019; 20:E2287. [PMID: 31075828 PMCID: PMC6540147 DOI: 10.3390/ijms20092287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022] Open
Abstract
Despite the different antineoplastic mechanisms of action, peripheral neurotoxicity induced by all chemotherapy drugs (anti-tubulin agents, platinum compounds, proteasome inhibitors, thalidomide) is associated with neuron morphological changes ascribable to cytoskeleton modifications. The "dying back" degeneration of distal terminals (sensory nerves) of dorsal root ganglia sensory neurons, observed in animal models, in in vitro cultures and biopsies of patients is the most evident hallmark of the perturbation of the cytoskeleton. On the other hand, in highly polarized cells like neurons, the cytoskeleton carries out its role not only in axons but also has a fundamental role in dendrite plasticity and in the organization of soma. In the literature, there are many studies focused on the antineoplastic-induced alteration of microtubule organization (and consequently, fast axonal transport defects) while very few studies have investigated the effect of the different classes of drugs on microfilaments, intermediate filaments and associated proteins. Therefore, in this review, we will focus on: (1) Highlighting the fundamental role of the crosstalk among the three filamentous subsystems and (2) investigating pivotal cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Virginia Rodriguez-Menendez
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Gabriella Nicolini
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| |
Collapse
|
45
|
In vitro assessment of chemotherapy-induced neuronal toxicity. Toxicol In Vitro 2018; 50:109-123. [PMID: 29427706 DOI: 10.1016/j.tiv.2018.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/13/2017] [Accepted: 02/06/2018] [Indexed: 12/14/2022]
Abstract
Neurotoxicity is a major concern during drug development, and together with liver and cardio-toxicity, it is one of the main causes of clinical drug attrition. Current pre-clinical models may not sufficiently identify and predict the risk for central or peripheral nervous system toxicity. One such example is clinically dose-limiting neuropathic effects after the administration of chemotherapeutic agents. Thus, the need to establish novel in vitro tools to evaluate the risk of neurotoxicities, such as neuropathy, remains unmet in drug discovery. Though in vitro studies have been conducted using primary and immortalized cell lines, some limitations include the utility for higher throughput methodologies, method reproducibility, and species extrapolation. As a novel alternative, human induced-pluripotent stem cell (iPSC)-derived neurons appear promising for testing new drug candidates. These iPSC-derived neurons are readily available and can be manipulated as required. Here, we describe a novel approach to assess neurotoxicity caused by different classes of chemotherapeutics using kinetic monitoring of neurite dynamic changes and apoptosis in human iPSC-neurons. These studies show promising changes in neurite dynamics in response to clinical inducers of neuropathy, as well as the ability to rank-order and gather mechanistic insight into class-specific compound induced neurotoxicity. This platform can be utilized in early drug development, as part of a weight of evidence approach, to screen drug candidates, and potentially reduce clinical attrition due to neurotoxicity.
Collapse
|
46
|
Sherman SP, Bang AG. High-throughput screen for compounds that modulate neurite growth of human induced pluripotent stem cell-derived neurons. Dis Model Mech 2018; 11:dmm.031906. [PMID: 29361516 PMCID: PMC5894944 DOI: 10.1242/dmm.031906] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/29/2017] [Indexed: 01/01/2023] Open
Abstract
Development of technology platforms to perform compound screens of human induced pluripotent stem cell (hiPSC)-derived neurons with relatively high throughput is essential to realize their potential for drug discovery. Here, we demonstrate the feasibility of high-throughput screening of hiPSC-derived neurons using a high-content, image-based approach focused on neurite growth, a process that is fundamental to formation of neural networks and nerve regeneration. From a collection of 4421 bioactive small molecules, we identified 108 hit compounds, including 37 approved drugs, that target molecules or pathways known to regulate neurite growth, as well as those not previously associated with this process. These data provide evidence that many pathways and targets known to play roles in neurite growth have similar activities in hiPSC-derived neurons that can be identified in an unbiased phenotypic screen. The data also suggest that hiPSC-derived neurons provide a useful system to study the mechanisms of action and off-target activities of the approved drugs identified as hits, leading to a better understanding of their clinical efficacy and toxicity, especially in the context of specific human genetic backgrounds. Finally, the hit set we report constitutes a sublibrary of approved drugs and tool compounds that modulate neurites. This sublibrary will be invaluable for phenotypic analyses and interrogation of hiPSC-based disease models as probes for defining phenotypic differences and cellular vulnerabilities in patient versus control cells, as well as for investigations of the molecular mechanisms underlying human neurite growth in development and maintenance of neuronal networks, and nerve regeneration. Summary: High-throughput, small molecule screening of hiPSC-derived neurons using a high-content, image-based approach focused on neurite growth identified hit compounds, including approved drugs, which target molecules or pathways known to regulate neurite growth.
Collapse
Affiliation(s)
- Sean P Sherman
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute La Jolla, CA 92037, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute La Jolla, CA 92037, USA
| |
Collapse
|
47
|
Legradi JB, Di Paolo C, Kraak MHS, van der Geest HG, Schymanski EL, Williams AJ, Dingemans MML, Massei R, Brack W, Cousin X, Begout ML, van der Oost R, Carion A, Suarez-Ulloa V, Silvestre F, Escher BI, Engwall M, Nilén G, Keiter SH, Pollet D, Waldmann P, Kienle C, Werner I, Haigis AC, Knapen D, Vergauwen L, Spehr M, Schulz W, Busch W, Leuthold D, Scholz S, vom Berg CM, Basu N, Murphy CA, Lampert A, Kuckelkorn J, Grummt T, Hollert H. An ecotoxicological view on neurotoxicity assessment. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:46. [PMID: 30595996 PMCID: PMC6292971 DOI: 10.1186/s12302-018-0173-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/31/2018] [Indexed: 05/04/2023]
Abstract
The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems.
Collapse
Affiliation(s)
- J. B. Legradi
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Environment and Health, VU University, 1081 HV Amsterdam, The Netherlands
| | - C. Di Paolo
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - M. H. S. Kraak
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - H. G. van der Geest
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - E. L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - A. J. Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
| | - M. M. L. Dingemans
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - R. Massei
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - W. Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - X. Cousin
- Ifremer, UMR MARBEC, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, 34250 Palavas-les-Flots, France
- INRA, UMR GABI, INRA, AgroParisTech, Domaine de Vilvert, Batiment 231, 78350 Jouy-en-Josas, France
| | - M.-L. Begout
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, 17137 L’Houmeau, France
| | - R. van der Oost
- Department of Technology, Research and Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, The Netherlands
| | - A. Carion
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - V. Suarez-Ulloa
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - F. Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - B. I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany
| | - M. Engwall
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - G. Nilén
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - S. H. Keiter
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - D. Pollet
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - P. Waldmann
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - C. Kienle
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - I. Werner
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - A.-C. Haigis
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - D. Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - L. Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - M. Spehr
- Institute for Biology II, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - W. Schulz
- Zweckverband Landeswasserversorgung, Langenau, Germany
| | - W. Busch
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - D. Leuthold
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - S. Scholz
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - C. M. vom Berg
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, 8600 Switzerland
| | - N. Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - C. A. Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, USA
| | - A. Lampert
- Institute of Physiology (Neurophysiology), Aachen, Germany
| | - J. Kuckelkorn
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - T. Grummt
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - H. Hollert
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
48
|
Humanity in a Dish: Population Genetics with iPSCs. Trends Cell Biol 2017; 28:46-57. [PMID: 29054332 DOI: 10.1016/j.tcb.2017.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are powerful tools for investigating the relationship between genotype and phenotype. Recent publications have described iPSC cohort studies of common genetic variants and their effects on gene expression and cellular phenotypes. These in vitro quantitative trait locus (QTL) studies are the first experiments in a new paradigm with great potential: iPSC-based functional population genetic studies. iPSC collections from large cohorts are currently under development to facilitate the next wave of these studies, which have the potential to discover the effects of common genetic variants on cellular phenotypes and to uncover the molecular basis of common genetic diseases. Here, we describe the recent advances in this developing field, and provide a road map for future in vitro functional population genetic studies and trial-in-a-dish experiments.
Collapse
|
49
|
Abstract
The development of stem cell biology has revolutionized regenerative medicine and its clinical applications. Another aspect through which stem cells would benefit human health is their use in toxicology. In fact, owing to their ability to differentiate into all the lineages of the human body, including germ cells, stem cells, and, in particular, pluripotent stem cells, can be utilized for the assessment, in vitro, of embryonic, developmental, reproductive, organ, and functional toxicities, relevant to human physiology, without employing live animal tests and with the possibility of high throughput applications. Thus, stem cell toxicology would tremendously assist in the toxicological evaluation of the increasing number of synthetic chemicals that we are exposed to, of which toxicity information is limited. In this review, we introduce stem cell toxicology, as an emerging branch of in vitro toxicology, which offers quick and efficient alternatives to traditional toxicology assessments. We first discuss the development of stem cell toxicology, and we then emphasize its advantages and highlight the achievements of human pluripotent stem cell-based toxicity research.
Collapse
Affiliation(s)
- Shuyu Liu
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Nuoya Yin
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Francesco Faiola
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| |
Collapse
|
50
|
Fukuda Y, Li Y, Segal RA. A Mechanistic Understanding of Axon Degeneration in Chemotherapy-Induced Peripheral Neuropathy. Front Neurosci 2017; 11:481. [PMID: 28912674 PMCID: PMC5583221 DOI: 10.3389/fnins.2017.00481] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Chemotherapeutic agents cause many short and long term toxic side effects to peripheral nervous system (PNS) that drastically alter quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is a common and enduring disorder caused by several anti-neoplastic agents. CIPN typically presents with neuropathic pain, numbness of distal extremities, and/or oversensitivity to thermal or mechanical stimuli. This adverse side effect often requires a reduction in chemotherapy dosage or even discontinuation of treatment. Currently there are no effective treatment options for CIPN. While the underlying mechanisms for CIPN are not understood, current data identify a “dying back” axon degeneration of distal nerve endings as the major pathology in this disorder. Therefore, mechanistic understanding of axon degeneration will provide insights into the pathway and molecular players responsible for CIPN. Here, we review recent findings that expand our understanding of the pathogenesis of CIPN and discuss pathways that may be shared with the axonal degeneration that occurs during developmental axon pruning and during injury-induced Wallerian degeneration. These mechanistic insights provide new avenues for development of therapies to prevent or treat CIPN.
Collapse
Affiliation(s)
- Yusuke Fukuda
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Yihang Li
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| |
Collapse
|