1
|
Mika K, Marinić M, Singh M, Muter J, Brosens JJ, Lynch VJ. Evolutionary transcriptomics implicates new genes and pathways in human pregnancy and adverse pregnancy outcomes. eLife 2021; 10:e69584. [PMID: 34623259 PMCID: PMC8660021 DOI: 10.7554/elife.69584] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Evolutionary changes in the anatomy and physiology of the female reproductive system underlie the origins and diversification of pregnancy in Eutherian ('placental') mammals. This developmental and evolutionary history constrains normal physiological functions and biases the ways in which dysfunction contributes to reproductive trait diseases and adverse pregnancy outcomes. Here, we show that gene expression changes in the human endometrium during pregnancy are associated with the evolution of human-specific traits and pathologies of pregnancy. We found that hundreds of genes gained or lost endometrial expression in the human lineage. Among these are genes that may contribute to human-specific maternal-fetal communication (HTR2B) and maternal-fetal immunotolerance (PDCD1LG2) systems, as well as vascular remodeling and deep placental invasion (CORIN). These data suggest that explicit evolutionary studies of anatomical systems complement traditional methods for characterizing the genetic architecture of disease. We also anticipate our results will advance the emerging synthesis of evolution and medicine ('evolutionary medicine') and be a starting point for more sophisticated studies of the maternal-fetal interface. Furthermore, the gene expression changes we identified may contribute to the development of diagnostics and interventions for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Katelyn Mika
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, University of ChicagoChicagoUnited States
| | - Mirna Marinić
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, University of ChicagoChicagoUnited States
| | - Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell UniversityChicagoUnited States
| | - Joanne Muter
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & WarwickshireCoventryUnited Kingdom
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwic Medical School, University of WarwickBuffaloUnited States
| | - Jan Joris Brosens
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & WarwickshireCoventryUnited Kingdom
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwic Medical School, University of WarwickBuffaloUnited States
| | - Vincent J Lynch
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
2
|
Pan X, Zeng T, Yuan F, Zhang YH, Chen L, Zhu L, Wan S, Huang T, Cai YD. Screening of Methylation Signature and Gene Functions Associated With the Subtypes of Isocitrate Dehydrogenase-Mutation Gliomas. Front Bioeng Biotechnol 2019; 7:339. [PMID: 31803734 PMCID: PMC6871504 DOI: 10.3389/fbioe.2019.00339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) is an oncogene, and the expression of a mutated IDH promotes cell proliferation and inhibits cell differentiation. IDH exists in three different isoforms, whose mutation can cause many solid tumors, especially gliomas in adults. No effective method for classifying gliomas on genetic signatures is currently available. DNA methylation may be applied to distinguish cancer cells from normal tissues. In this study, we focused on three subtypes of IDH-mutation gliomas by examining methylation data. Several advanced computational methods were used, such as Monte Carlo feature selection (MCFS), incremental feature selection (IFS), support machine vector (SVM), etc. The MCFS method was adopted to analyze methylation features, resulting in a feature list. Then, the IFS method incorporating SVM was applied to the list to extract important methylation features and construct an optimal SVM classifier. As a result, several methylation features (sites) were found to relate to glioma subclasses, which are annotated onto multiple genes, such as FLJ37543, LCE3D, FAM89A, ADCY5, ESR1, C2orf67, REST, EPHA7, etc. These genes are enriched in biological functions, including cellular developmental process, neuron differentiation, cellular component morphogenesis, and G-protein-coupled receptor signaling pathway. Our results, which are supported by literature reports and independent dataset validation, showed that our identified genes and functions contributed to the detailed glioma subtypes. This study provided a basic research on IDH-mutation gliomas.
Collapse
Affiliation(s)
- XiaoYong Pan
- School of Life Sciences, Shanghai University, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education of China, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China.,IDLab, Department for Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Tao Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Fei Yuan
- Department of Science and Technology, Binzhou Medical University Hospital, Binzhou, China
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China
| | - LiuCun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - SiBao Wan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Guyatt AL, Brennan RR, Burrows K, Guthrie PAI, Ascione R, Ring SM, Gaunt TR, Pyle A, Cordell HJ, Lawlor DA, Chinnery PF, Hudson G, Rodriguez S. A genome-wide association study of mitochondrial DNA copy number in two population-based cohorts. Hum Genomics 2019; 13:6. [PMID: 30704525 PMCID: PMC6357493 DOI: 10.1186/s40246-018-0190-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/27/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Mitochondrial DNA copy number (mtDNA CN) exhibits interindividual and intercellular variation, but few genome-wide association studies (GWAS) of directly assayed mtDNA CN exist. We undertook a GWAS of qPCR-assayed mtDNA CN in the Avon Longitudinal Study of Parents and Children (ALSPAC) and the UK Blood Service (UKBS) cohort. After validating and harmonising data, 5461 ALSPAC mothers (16-43 years at mtDNA CN assay) and 1338 UKBS females (17-69 years) were included in a meta-analysis. Sensitivity analyses restricted to females with white cell-extracted DNA and adjusted for estimated or assayed cell proportions. Associations were also explored in ALSPAC children and UKBS males. RESULTS A neutrophil-associated locus approached genome-wide significance (rs709591 [MED24], β (change in SD units of mtDNA CN per allele) [SE] - 0.084 [0.016], p = 1.54e-07) in the main meta-analysis of adult females. This association was concordant in magnitude and direction in UKBS males and ALSPAC neonates. SNPs in and around ABHD8 were associated with mtDNA CN in ALSPAC neonates (rs10424198, β [SE] 0.262 [0.034], p = 1.40e-14), but not other study groups. In a meta-analysis of unrelated individuals (N = 11,253), we replicated a published association in TFAM (β [SE] 0.046 [0.017], p = 0.006), with an effect size much smaller than that observed in the replication analysis of a previous in silico GWAS. CONCLUSIONS In a hypothesis-generating GWAS, we confirm an association between TFAM and mtDNA CN and present putative loci requiring replication in much larger samples. We discuss the limitations of our work, in terms of measurement error and cellular heterogeneity, and highlight the need for larger studies to better understand nuclear genomic control of mtDNA copy number.
Collapse
Affiliation(s)
- Anna L. Guyatt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca R. Brennan
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Philip A. I. Guthrie
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Raimondo Ascione
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Susan M. Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom R. Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle, UK
| | | | - Debbie A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Patrick F. Chinnery
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Byars SG, Huang QQ, Gray LA, Bakshi A, Ripatti S, Abraham G, Stearns SC, Inouye M. Genetic loci associated with coronary artery disease harbor evidence of selection and antagonistic pleiotropy. PLoS Genet 2017; 13:e1006328. [PMID: 28640878 PMCID: PMC5480811 DOI: 10.1371/journal.pgen.1006328] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD.
Collapse
Affiliation(s)
- Sean G. Byars
- Centre for Systems Genomics, School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Qin Qin Huang
- Centre for Systems Genomics, School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Lesley-Ann Gray
- Centre for Systems Genomics, School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Bakshi
- Centre for Systems Genomics, School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Samuli Ripatti
- Institute of Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Gad Abraham
- Centre for Systems Genomics, School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Stephen C. Stearns
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Michael Inouye
- Centre for Systems Genomics, School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Mika KM, Lynch VJ. An Ancient Fecundability-Associated Polymorphism Switches a Repressor into an Enhancer of Endometrial TAP2 Expression. Am J Hum Genet 2016; 99:1059-1071. [PMID: 27745831 DOI: 10.1016/j.ajhg.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/02/2016] [Indexed: 12/25/2022] Open
Abstract
Variation in female reproductive traits, such as fertility, fecundity, and fecundability, is heritable in humans, but identifying and functionally characterizing genetic variants associated with these traits has been challenging. Here, we explore the functional significance and evolutionary history of a T/C polymorphism of SNP rs2071473, which we have previously shown is an eQTL for TAP2 and significantly associated with fecundability (time to pregnancy). We replicated the association between the rs2071473 genotype and TAP2 expression by using GTEx data and demonstrated that TAP2 is expressed by decidual stromal cells at the maternal-fetal interface. Next, we showed that rs2071473 is located within a progesterone-responsive cis-regulatory element that functions as a repressor with the T allele and an enhancer with the C allele. Remarkably, we found that this polymorphism arose before the divergence of modern and archaic humans, segregates at intermediate to high frequencies across human populations, and has genetic signatures of long-term balancing selection. This variant has also previously been identified in genome-wide association studies of immune-related disease, suggesting that both alleles are maintained as a result of antagonistic pleiotropy.
Collapse
|
6
|
Abstract
The genetic factors underlying female infertility in humans are only partially understood. Here, we performed a genome-wide association study of female infertility in 25 inbred mouse strains by using publicly available SNP data. As a result, a total of four SNPs were identified after chromosome-wise multiple test correction. The first SNP rs29972765 is located in a gene desert on chromosome 18, about 72 kb upstream of Skor2 (SKI family transcriptional corepressor 2). The second SNP rs30415957 resides in the intron of Plce1 (phospholipase C epsilon 1). The remaining two SNPs (rs30768258 and rs31216810) are close to each other on chromosome 19, in the vicinity of Sorbs1 (sorbin and SH3 domain containing 1). Using quantitative RT-PCR, we found that Sorbs1 is highly expressed in the mouse uterus during embryo implantation. Knockdown of Sorbs1 by siRNA attenuates the induction of differentiation marker gene Prl8a2 (decidual prolactin-related protein) in an in vitro model of decidualization using mouse endometrial stromal cells, suggesting that Sorbs1 may be a potential candidate gene for female infertility in mice. Our results may represent an opportunity to further understand female infertility in humans.
Collapse
|
7
|
Laisk-Podar T, Lindgren CM, Peters M, Tapanainen JS, Lambalk CB, Salumets A, Mägi R. Ovarian Physiology and GWAS: Biobanks, Biology, and Beyond. Trends Endocrinol Metab 2016; 27:516-528. [PMID: 27221566 PMCID: PMC7610559 DOI: 10.1016/j.tem.2016.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 12/17/2022]
Abstract
Ovarian function is central to female fertility, and several genome-wide association studies (GWAS) have been carried out to elucidate the genetic background of traits and disorders that reflect and affect ovarian physiology. While GWAS have been successful in reporting numerous genetic associations and highlighting involved pathways relevant to reproductive aging, for ovarian disorders, such as premature ovarian insufficiency and polycystic ovary syndrome, research has lagged behind due to insufficient study sample size. Novel approaches to study design and analysis methods that help to fit GWAS findings into biological context will improve our knowledge about genetics governing ovarian function in fertility and disease, and provide input for clinical tools and better patient management.
Collapse
Affiliation(s)
- Triin Laisk-Podar
- Women's Clinic, University of Tartu, Tartu 51014, Estonia; Competence Centre on Health Technologies, Tartu 50410, Estonia.
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Big Data Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Maire Peters
- Women's Clinic, University of Tartu, Tartu 51014, Estonia; Competence Centre on Health Technologies, Tartu 50410, Estonia
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland; Department of Obstetrics and Gynecology, University Hospital of Oulu, University of Oulu, Medical Research Center Oulu and PEDEGO Research Unit, Oulu 90029, Finland
| | - Cornelis B Lambalk
- Department of Obstetrics and Gynecology, VU University Medical Centre, Amsterdam 1007 MB, Netherlands
| | - Andres Salumets
- Women's Clinic, University of Tartu, Tartu 51014, Estonia; Competence Centre on Health Technologies, Tartu 50410, Estonia; Institute of Bio- and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| |
Collapse
|