1
|
Youn DH, Lee Y, Han SW, Kim JT, Jung H, Han GS, Yoon JI, Lee JJ, Jeon JP. Therapeutic Effect of Donepezil on Neuroinflammation and Cognitive Impairment after Moderate Traumatic Brain Injury. Life (Basel) 2024; 14:839. [PMID: 39063593 PMCID: PMC11278464 DOI: 10.3390/life14070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Despite the important clinical issue of cognitive impairment after moderate traumatic brain injury (TBI), there is currently no suitable treatment. Here, we used in vitro and in vivo models to investigate the effect of Donepezil-an acetylcholinesterase (AChE) inhibitor-on cognitive impairment in the acute period following injury, while focusing on neuroinflammation and autophagy- and mitophagy-related markers. METHODS The purpose of the in vitro study was to investigate potential neuroprotective effects in TBI-induced cells after donepezil treatment, and the in vivo study, the purpose was to investigate therapeutic effects on cognitive impairment in the acute period after injury by analyzing neuroinflammation and autophagy- and mitophagy-related markers. The in vitro TBI model involved injuring SH-SY5Y cells using a cell-injury controller and then investigating the effect of donepezil at a concentration of 80 μM. The in vivo TBI model was made using a stereotaxic impactor for male C57BL/6J mice. Immuno-histochemical markers and cognitive functions were compared after 7 days of donepezil treatment (1 mg/kg/day). Mice were divided into four groups: sham operation with saline treatment, sham operation with donepezil treatment, TBI with saline treatment, and TBI with donepezil treatment (18 mice in each group). Donepezil treatment was administered within 4 h post-TBI. RESULTS In vitro, donepezil was found to lead to increased cell viability and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1), along with decreased reactive oxygen species (ROS), lactate-dehydrogenase (LDH), 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA)-positive cells, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. The mRNA and protein expressions of neuroinflammation (Cyclooxygenase-2, COX-2; NOD-like receptor protein 3, NLRP3; Caspase-1; and Interleukin-1 beta, IL-1β), as well as autophagy- and mitophagy-related markers (death-associated protein kinase 1, DAPK1; PTEN-induced kinase 1, PINK1; BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like, BNIP3L; Beclin-1, BECN1; BCL2-associated X protein, BAX; microtubule-associated protein 1A/1B-light chain 3B (LC3B); Sequestosome-1; and p62) were all found to decrease after donepezil treatment. The in vivo study also showed that donepezil treatment resulted in decreased levels of cortical tissue losses and brain swelling in TBI compared to the TBI group without donepezil treatment. Donepezil treatment was also shown to decrease the mRNA and Western blotting expressions of all markers, and especially COX-2 and BNIP3L, which showed the most significant decreases. Moreover, TBI mice showed an decreased escape latency, increased alteration rate, and improved preference index, altogether pointing to better cognitive performance after donepezil treatment. CONCLUSIONS Donepezil treatment may be beneficial in improving cognitive impairment in the early phase of moderate traumatic brain injury by ameliorating neuroinflammation, as well as autophagy and mitophagy.
Collapse
Affiliation(s)
- Dong Hyuk Youn
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (D.H.Y.); (Y.L.); (S.W.H.); (J.-T.K.); (H.J.)
| | - Younghyurk Lee
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (D.H.Y.); (Y.L.); (S.W.H.); (J.-T.K.); (H.J.)
| | - Sung Woo Han
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (D.H.Y.); (Y.L.); (S.W.H.); (J.-T.K.); (H.J.)
| | - Jong-Tae Kim
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (D.H.Y.); (Y.L.); (S.W.H.); (J.-T.K.); (H.J.)
| | - Harry Jung
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (D.H.Y.); (Y.L.); (S.W.H.); (J.-T.K.); (H.J.)
| | - Gui Seung Han
- Life Genomics Co., Ltd., Research & Development Center, Suwon 16417, Republic of Korea;
| | - Jung In Yoon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea;
| | - Jae Jun Lee
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (D.H.Y.); (Y.L.); (S.W.H.); (J.-T.K.); (H.J.)
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jin Pyeong Jeon
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (D.H.Y.); (Y.L.); (S.W.H.); (J.-T.K.); (H.J.)
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
2
|
Youn DH, Han SW, Kim JT, Choi H, Lee A, Kim N, Jung H, Hong EP, Park CH, Lee Y, Cho SM, Jeon JP. Oxiracetam alleviates anti-inflammatory activity and ameliorates cognitive impairment in the early phase of traumatic brain injury. Acta Neurochir (Wien) 2023; 165:2201-2210. [PMID: 37380907 DOI: 10.1007/s00701-023-05674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND We aimed to investigate the effects of oxiracetam on cognitive impairment in the early phase of traumatic brain injury (TBI), for which no specific treatment is currently available. METHODS The in vitro study used a cell injury controller to damage SH-SY5Y cells and evaluate the effect of oxiracetam at a dosage of 100 nM. The in vivo study used a stereotaxic impactor to induce a TBI model in C57BL/6 J mice and analyzed immunohistochemical changes and cognitive function after an intraperitoneal injection of oxiracetam (30 mg/kg/day) for 5 days. The number of mice used in this study was 60. They were divided into three groups (sham, TBI, and TBI with oxiracetam treatment) (20 mice in each group). RESULTS The in vitro study showed that oxiracetam treatment resulted in increased superoxide dismutase (SOD)1 and SOD2 mRNA expression. The mRNA and protein expression of COX-2, NLRP3, caspase-1, and interleukin (IL)-1 β were decreased after oxiracetam treatment, along with decreases in intracellular reactive oxygen species production and apoptotic effects. TBI mice treated with oxiracetam exhibited the loss of fewer cortical damaged lesions, less brain edema, and fewer Fluoro-Jade B (FJB)-positive and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL)-positive cells compared to those without oxiracetam treatment. The mRNA and protein expression of COX-2, NLRP3, caspase-1, and IL-1β were decreased significantly after oxiracetam treatment. These inflammation-related markers, which colocalized with Iba-1-positive or GFAP-positive cells after TBI, were also decreased after oxiracetam treatment. TBI mice treated with oxiracetam had a smaller decrease in preference and more latency time than those not treated with oxiracetam, suggesting the amelioration of impaired cognitive impairment. CONCLUSIONS Oxiracetam may be helpful in restoring cognitive impairment by ameliorating neuroinflammation in the early phase of TBI.
Collapse
MESH Headings
- Rats
- Mice
- Humans
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein
- Rats, Sprague-Dawley
- Cyclooxygenase 2
- Mice, Inbred C57BL
- Neuroblastoma
- Brain Injuries, Traumatic/complications
- Brain Injuries, Traumatic/drug therapy
- Brain Injuries, Traumatic/metabolism
- Anti-Inflammatory Agents/therapeutic use
- Cognitive Dysfunction/drug therapy
- Cognitive Dysfunction/etiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/therapeutic use
- Caspases/therapeutic use
- Disease Models, Animal
Collapse
Affiliation(s)
- Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Haesuk Choi
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Aran Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Nayoung Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Chan Hum Park
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Younghyurk Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Sung Min Cho
- Department of Neurosurgery, Yonsei University Wonju College of Medicine, 20, Ilsan-RoGangwon-Do, Wonju, 26426, Korea.
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, 77 Sakju-Ro, Chuncheon, 24253, Korea.
| |
Collapse
|
3
|
Kim JH, Kang RJ, Hyeon SJ, Ryu H, Joo H, Bu Y, Kim JH, Suk K. Lipocalin-2 Is a Key Regulator of Neuroinflammation in Secondary Traumatic and Ischemic Brain Injury. Neurotherapeutics 2023; 20:803-821. [PMID: 36508119 PMCID: PMC10275845 DOI: 10.1007/s13311-022-01333-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Reactive glial cells are hallmarks of brain injury. However, whether these cells contribute to secondary inflammatory pathology and neurological deficits remains poorly understood. Lipocalin-2 (LCN2) has inflammatory and neurotoxic effects in various disease models; however, its pathogenic role in traumatic brain injury remains unknown. The aim of the present study was to investigate the expression of LCN2 and its role in neuroinflammation following brain injury. LCN2 expression was high in the mouse brain after controlled cortical impact (CCI) and photothrombotic stroke (PTS) injury. Brain levels of LCN2 mRNA and protein were also significantly higher in patients with chronic traumatic encephalopathy (CTE) than in normal subjects. RT-PCR and immunofluorescence analyses revealed that astrocytes were the major cellular source of LCN2 in the injured brain. Lcn2 deficiency or intracisternal injection of an LCN2 neutralizing antibody reduced CCI- and PTS-induced brain lesions, behavioral deficits, and neuroinflammation. Mechanistically, in cultured glial cells, recombinant LCN2 protein enhanced scratch injury-induced proinflammatory cytokine gene expression and inhibited Gdnf gene expression, whereas Lcn2 deficiency exerted opposite effects. Together, our results from CTE patients, rodent brain injury models, and cultured glial cells suggest that LCN2 mediates secondary damage response to traumatic and ischemic brain injury by promoting neuroinflammation and suppressing the expression of neurotropic factors.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ri Jin Kang
- Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Jae Hyeon
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Veterans Affairs Boston Healthcare System, Boston, MA USA
- Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA USA
| | - Hyejin Joo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Present Address: Pharmacological Research Division, Toxicological Evaluation and Research Department, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, Chungju, Republic of Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Heon Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Influence of Sex and Muscarinic Activity on Memory Retrieval in Mouse Model of Traumatic Brain Injury. Brain Sci 2023; 13:brainsci13010108. [PMID: 36672089 PMCID: PMC9857320 DOI: 10.3390/brainsci13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury (TBI) is a serious global risk factor leading to the onset of cognitive impairment and neurodegenerative diseases. Cognitive and memory impairment following a TBI is associated with the dysregulation of cholinergic neurotransmission in the brains of subjects. The extent of memory impairment following a TBI is linked with the sex of the subject. This study aimed to identify the sex-dimorphic role of muscarinic cholinergic modulation in neurological functioning and episodic memory retrieval in a mouse model of TBI. Balb/c mice were divided into four groups of males and four groups of females (i.e., Sham, TBI, TBI + Scopolamine 1 mg/kg, and TBI + Donepezil 1 mg/kg). After training with the Morris water maze test and fear conditioning, all groups were subjected to brain injury (7.84 × 10-5 J impact force) except for the Sham mice. Following brain injury, scopolamine or donepezil was administered to the respective groups for 5 days. Acute scopolamine immediately after brain trauma showed a neuroprotective effect in the males only, while subchronic donepezil significantly impaired neurological functioning in both sexes. Subchronic scopolamine and donepezil treatment reversed the TBI-induced retrograde amnesia for spatial memory in male mice. Contextual fear memory retrieval was not affected by the TBI and treatments in both sexes. Thus, we concluded that the sex-dimorphic response of the muscarinic receptors in TBI-induced memory impairment depends on the type of memory. This study highlights the potential for therapeutic modalities in TBI subjects.
Collapse
|
5
|
Pooladgar P, Sakhabakhsh M, Taghva A, Soleiman-Meigooni S. Donepezil Beyond Alzheimer's Disease? A Narrative Review of Therapeutic Potentials of Donepezil in Different Diseases. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e128408. [PMID: 36942075 PMCID: PMC10024338 DOI: 10.5812/ijpr-128408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Donepezil hydrochloride is an acetylcholine esterase inhibitor studied and approved to treat Alzheimer's disease (AD). However, this drug can have positive therapeutic potential in treating different conditions, including various neurodegenerative disorders such as other types of dementia, multiple sclerosis, Parkinson's disease, psychiatric and mood disorders, and even infectious diseases. Hence, this study reviewed the therapeutic potential of this drug in treating Alzheimer's and other diseases by reviewing the articles from databases including Web of Science, Scopus, PubMed, Cochrane, and Science Direct. It was shown that donepezil could affect the pathophysiology of these diseases via mechanisms such as increasing the concentration of acetylcholine, modulating local and systemic inflammatory processes, affecting acetylcholine receptors like nicotinic and muscarinic receptors, and activating various cellular signaling via receptors like sigma-1 receptors. Despite many therapeutic potentials, this drug has not yet been approved for treating non-Alzheimer's diseases, and more comprehensive studies are needed.
Collapse
Affiliation(s)
- Parham Pooladgar
- Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Sakhabakhsh
- Head of Department of Neurology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Arsia Taghva
- Department of Psychiatry, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Dienel A, Veettil RA, Matsumura K, Savarraj JPJ, Choi HA, Kumar T P, Aronowski J, Dash P, Blackburn SL, McBride DW. α 7-Acetylcholine Receptor Signaling Reduces Neuroinflammation After Subarachnoid Hemorrhage in Mice. Neurotherapeutics 2021; 18:1891-1904. [PMID: 33970466 PMCID: PMC8609090 DOI: 10.1007/s13311-021-01052-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) causes a robust inflammatory response which leads worse brain injury and poor outcomes. We investigated if stimulation of nicotinic acetylcholine α7 receptors (α7-AChR) (receptors shown to have anti-inflammatory effects) would reduce inflammation and improve outcomes. To investigate the level of peripheral inflammation after aSAH, inflammatory markers were measured in plasma samples collected in a cohort of aSAH patients. To study the effect of α7-AChR stimulation, SAH was induced in adult mice which were then treated with a α7-AChR agonist, galantamine, or vehicle. A battery of motor and cognitive tests were performed 24 h after subarachnoid hemorrhage. Mice were euthanized and tissue collected for analysis of markers of inflammation or activation of α7-AChR-mediated transduction cascades. A separate cohort of mice was allowed to survive for 28 days to assess long-term neurological deficits and histological outcome. Microglia cell culture subjected to hemoglobin toxicity was used to assess the effects of α7-AChR agonism. Analysis of eighty-two patient plasma samples confirmed enhanced systemic inflammation after aSAH. α7-AChR agonism reduced neuroinflammation at 24 h after SAH in male and female mice, which was associated with improved outcomes. This coincided with JAK2/STAT3 and IRAK-M activity modulations and a robust improvement in neurological/cognitive status that was effectively reversed by interfering with various components of these signaling pathways. Pharmacologic inhibition partially reversed the α7-AChR agonist's benefits, supporting α7-AChR as a target of the agonist's therapeutic effect. The cell culture experiment showed that α7-AChR agonism is directly beneficial to microglia. Our results demonstrate that activation of α7-AChR represents an attractive target for treatment of SAH. Our findings suggest that α7-AChR agonists, and specifically galantamine, might provide therapeutic benefit to aSAH patients.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Remya A Veettil
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Kanako Matsumura
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Jude P J Savarraj
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - H Alex Choi
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Peeyush Kumar T
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Pramod Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Spiros L Blackburn
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Devin W McBride
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA.
| |
Collapse
|
7
|
Agonism of the α 7-acetylcholine receptor/PI3K/Akt pathway promotes neuronal survival after subarachnoid hemorrhage in mice. Exp Neurol 2021; 344:113792. [PMID: 34181928 DOI: 10.1016/j.expneurol.2021.113792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022]
Abstract
Subarachnoid hemorrhage (SAH) results in severe neuronal dysfunction and degeneration. Since the nicotinic acetylcholine α7 receptors (α7-AChR) are involved in neuronal function and survival, we investigated if stimulation of α7-AChR would promote neuronal survival and improve behavioral outcome following SAH in mice. Male mice subjected to SAH were treated with either galantamine (α7-AChR agonist) or vehicle. Neurobehavioral testing was performed 24 h after SAH, and mice were euthanized for analysis of neuronal cell death or a cell survival (PI3K/Akt) signaling pathway. Neuron cell cultures were subjected to hemoglobin toxicity to assess the direct effects of α7-AChR agonism independent of other cells. Treatment with the α7-AChR agonist promoted neuronal survival and improved functional outcomes 24 h post-SAH. The improved outcomes corresponded with increased PI3K/Akt activity. Antagonism of α7-AChR or PI3K effectively reversed galantamine's beneficial effects. Tissue from α7-AChR knockout mice confirmed α7-AChR's role in neuronal survival after SAH. Data from the neuronal cell culture experiment supported a direct effect of α7-AChR agonism in promoting cell survival. Our findings indicate that α7-AChR is a therapeutic target following SAH which can promote neuronal survival, thereby improving neurobehavioral outcome. Thus, the clinically relevant α7-AChR agonist, galantamine, might be a potential candidate for human use to improve outcome after SAH.
Collapse
|
8
|
Brawman-Mintzer O, Tang XC, Bizien M, Harvey PD, Horner MD, Arciniegas DB, Raskind M, Johnson-Greene L, Martineau RJ, Hamner M, Rodriguez-Suarez M, Jorge RE, McGarity S, Wortzel HS, Wei Y, Sindowski T, Mintzer J, Kindy AZ, Donovan K, Reda D. Rivastigmine Transdermal Patch Treatment for Moderate to Severe Cognitive Impairment in Veterans with Traumatic Brain Injury (RiVET Study): A Randomized Clinical Trial. J Neurotrauma 2021; 38:1943-1952. [PMID: 33514274 DOI: 10.1089/neu.2020.7146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cognitive impairment is common in veterans with histories of traumatic brain injury (TBI). Cholinergic deficits have been hypothesized as contributors to this impairment. We report the effects of cholinesterase inhibitor rivastigmine transdermal patch treatment in veterans with TBI and post-traumatic memory impairment. Our objective was to evaluate the efficacy and safety of a 9.5 mg/24 h (10 cm2) rivastigmine patch in veterans of military conflicts with persistent moderate to severe memory impairment at least 12 weeks after TBI. This randomized, outpatient, double-blind, placebo-controlled 12-week trial with an exploratory double-blind phase of an additional 14 weeks was conducted at 5 VA Medical Centers, among veterans with closed, non-penetrating TBI who met or exceeded modified American Congress of Rehabilitation Medicine criteria for mild TBI with verbal memory deficits, as assessed by the Hopkins Verbal Learning Test, Revised (HVLT-R). Patients were randomized 1:1 to rivastigmine or matching placebo patches after a 1-week single-blind, placebo run-in phase. At randomization, patients received 4.6 mg/24 h rivastigmine patches or matching placebo increased to a 9.5 mg/24 h patch after 4 weeks. The primary efficacy outcome measure was the proportion of participants who had at least a five-word improvement on the HVLT-R Total Recall Index (Trials 1-3). A total of 3671 participants were pre-screened, of whom 257 (7.0%) were screened; 96 (37%) randomized, and 94 included in study analyses. Responder rates were 40.8% (20 of 49) and 51.1% (23 of 45) in the rivastigmine and placebo groups, respectively (p = 0.41). A mixed-effect model including treatment, time, and treatment-by-time interaction indicated no significant difference in treatment effect over time between the groups (p = 0.24). Overall, there were no significant differences in changes for all secondary outcomes between the rivastigmine and placebo groups. The most commonly observed adverse events were application site reactions. This trial provides the largest sample to date of veterans with TBI and post-traumatic memory deficits enrolled in a pharmacological trial. Trial Registration: clinicaltrials.gov Identifier: NCT01670526.
Collapse
Affiliation(s)
- Olga Brawman-Mintzer
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA.,Medical University of South Carolina, Charleston, South Carolina, USA
| | - X Charlene Tang
- Edward Hines Junior VA Hospital Cooperative Studies Program, Hines, Illinois, USA
| | - Marcel Bizien
- Cooperative Studies Program Clinical Research Pharmacy Coordinating Center, Albuquerque, New Mexico, USA
| | | | - Michael D Horner
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA.,Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Murray Raskind
- VA Puget Sound Healthcare System, Seattle, Washington, USA
| | | | | | - Mark Hamner
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA.,Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | - Hal S Wortzel
- Rocky Mountain MIRECC for Suicide Prevention, Denver, Colorado, USA
| | - Yongliang Wei
- Edward Hines Junior VA Hospital Cooperative Studies Program, Hines, Illinois, USA
| | - Tom Sindowski
- Edward Hines Junior VA Hospital Cooperative Studies Program, Hines, Illinois, USA
| | - Jacobo Mintzer
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Arianne Z Kindy
- Roper St. Francis Healthcare, Charleston, South Carolina, USA
| | - Keaveny Donovan
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Domenic Reda
- Edward Hines Junior VA Hospital Cooperative Studies Program, Hines, Illinois, USA
| |
Collapse
|
9
|
Lengel D, Sevilla C, Romm ZL, Huh JW, Raghupathi R. Stem Cell Therapy for Pediatric Traumatic Brain Injury. Front Neurol 2020; 11:601286. [PMID: 33343501 PMCID: PMC7738475 DOI: 10.3389/fneur.2020.601286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
There has been a growing interest in the potential of stem cell transplantation as therapy for pediatric brain injuries. Studies in pre-clinical models of pediatric brain injury such as Traumatic Brain Injury (TBI) and neonatal hypoxia-ischemia (HI) have contributed to our understanding of the roles of endogenous stem cells in repair processes and functional recovery following brain injury, and the effects of exogenous stem cell transplantation on recovery from brain injury. Although only a handful of studies have evaluated these effects in models of pediatric TBI, many studies have evaluated stem cell transplantation therapy in models of neonatal HI which has a considerable overlap of injury pathology with pediatric TBI. In this review, we have summarized data on the effects of stem cell treatments on histopathological and functional outcomes in models of pediatric brain injury. Importantly, we have outlined evidence supporting the potential for stem cell transplantation to mitigate pathology of pediatric TBI including neuroinflammation and white matter injury, and challenges that will need to be addressed to incorporate these therapies to improve functional outcomes following pediatric TBI.
Collapse
Affiliation(s)
- Dana Lengel
- Graduate Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cruz Sevilla
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Zoe L Romm
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ramesh Raghupathi
- Graduate Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
10
|
de Farias BX, Costa AB, Engel NA, de Souza Goldim MP, da Rosa Turatti C, Cargnin-Cavalho A, Fortunato JJ, Petronilho F, Jeremias IC, Rezin GT. Donepezil Prevents Inhibition of Cerebral Energetic Metabolism Without Altering Behavioral Parameters in Animal Model of Obesity. Neurochem Res 2020; 45:2487-2498. [DOI: 10.1007/s11064-020-03107-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
|
11
|
The cholinesterase inhibitor donepezil has antidepressant-like properties in the mouse forced swim test. Transl Psychiatry 2020; 10:255. [PMID: 32712627 PMCID: PMC7382650 DOI: 10.1038/s41398-020-00928-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 11/08/2022] Open
Abstract
Finding new antidepressant agents is of high clinical priority given that many cases of major depressive disorder (MDD) do not respond to conventional monoaminergic antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants, and monoamine oxidase inhibitors. Recent findings of effective fast-acting antidepressants indicate that there are biological substrates to be taken advantage of for fast relief of depression and that we may find further treatments in this category. In this vein, the cholinergic system may be a relatively overlooked target for antidepressant medications, given its major role in motivation and attention. Furthermore, the classically engaged monoaminergic neurotransmitter systems in depression treatment-serotonin, norepinephrine, and dopamine-interact directly at times with cholinergic signaling. Here we investigate in greater detail how the cholinergic system may impact depression-related behavior, by administering widely ranging doses of the cholinesterase inhibitor drug, donepezil, to C57BL/6J mice in the forced swim test. First, we confirm prior findings that this drug, which is thought to boost synaptic acetylcholine, promotes depression-like behavior at a high dose (2.0 mg/kg, i.p.). But we also find paradoxically that it has an antidepressant-like effect at lower doses (0.02 and 0.2 mg/kg). Further this antidepressant-like effect is not due to generalized hyperactivity, since we did not observe increased locomotor activity in the open field test. These data support a novel antidepressant-like role for donepezil at lower doses as part of an overall u-shaped dose-response curve. This raises the possibility that donepezil could have antidepressant properties in humans suffering from MDD.
Collapse
|
12
|
Positive allosteric modulation of the α7 nicotinic acetylcholine receptor as a treatment for cognitive deficits after traumatic brain injury. PLoS One 2019; 14:e0223180. [PMID: 31581202 PMCID: PMC6776323 DOI: 10.1371/journal.pone.0223180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022] Open
Abstract
Cognitive impairments are a common consequence of traumatic brain injury (TBI). The hippocampus is a subcortical structure that plays a key role in the formation of declarative memories and is highly vulnerable to TBI. The α7 nicotinic acetylcholine receptor (nAChR) is highly expressed in the hippocampus and reduced expression and function of this receptor are linked with cognitive impairments in Alzheimer's disease and schizophrenia. Positive allosteric modulation of α7 nAChRs with AVL-3288 enhances receptor currents and improves cognitive functioning in naïve animals and healthy human subjects. Therefore, we hypothesized that targeting the α7 nAChR with the positive allosteric modulator AVL-3288 would enhance cognitive functioning in the chronic recovery period of TBI. To test this hypothesis, adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery. At 3 months after recovery, animals were treated with vehicle or AVL-3288 at 30 min prior to cue and contextual fear conditioning and the water maze task. Treatment of TBI animals with AVL-3288 rescued learning and memory deficits in water maze retention and working memory. AVL-3288 treatment also improved cue and contextual fear memory when tested at 24 hr and 1 month after training, when TBI animals were treated acutely just during fear conditioning at 3 months post-TBI. Hippocampal atrophy but not cortical atrophy was reduced with AVL-3288 treatment in the chronic recovery phase of TBI. AVL-3288 application to acute hippocampal slices from animals at 3 months after TBI rescued basal synaptic transmission deficits and long-term potentiation (LTP) in area CA1. Our results demonstrate that AVL-3288 improves hippocampal synaptic plasticity, and learning and memory performance after TBI in the chronic recovery period. Enhancing cholinergic transmission through positive allosteric modulation of the α7 nAChR may be a novel therapeutic to improve cognition after TBI.
Collapse
|
13
|
Chronic treatment with galantamine rescues reversal learning in an attentional set-shifting test after experimental brain trauma. Exp Neurol 2019; 315:32-41. [PMID: 30711647 DOI: 10.1016/j.expneurol.2019.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/12/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Abstract
Approximately 10 million new cases of traumatic brain injury (TBI) are reported each year worldwide with many of these injuries resulting in higher order cognitive impairments. Galantamine (GAL), an acetylcholine esterase inhibitor (AChEI) and positive allosteric modulator of nicotinic acetylcholine receptors (nAChRs), has been reported to ameliorate cognitive deficits after clinical TBI. Previously, we demonstrated that controlled cortical impact (CCI) injury to rats resulted in significant executive function impairments as measured by the attentional set-shifting test (AST), a complex cognitive task analogous to the Wisconsin Card Sorting Test (WCST). We hypothesized that chronic administration of GAL would normalize performance on the AST post-TBI. Isoflurane-anesthetized adult male rats were subjected to moderate CCI (2.8 mm tissue deformation at 4 m/s) or sham injury. Rats were then randomized into one of three treatment groups (i.e., 1 mg/kg GAL, 2 mg/kg GAL, or 1 mL/kg saline vehicle; VEH) or their respective sham controls. GAL or VEH was administered intraperitoneally daily commencing 24 hours post-surgery and until AST testing at 4 weeks post-injury. The AST data revealed significant impairments in the first reversal stage after TBI, seen as increased trials to reach criterion and elevated total errors (p < 0.05). These behavioral flexibility deficits were equally normalized by the administration of both doses of GAL (p < 0.05). Additionally, the higher dose of GAL (2 mg/kg) also significantly reduced cortical lesion volume compared to TBI + VEH controls (p < 0.05). In summary, daily GAL administration provides an efficacious treatment for cognitive deficits and histological recovery after experimental brain trauma. Clinically, these findings are promising considering robust results were attained using a pharmacotherapy already used in the clinic to treat mild dementia.
Collapse
|
14
|
Wang Y, Xia J, Shen M, Zhou Y, Wu Z, Shi Y, Xu J, Hou L, Zhang R, Qiu Z, Xie Q, Chen H, Zhang Y, Wang H. Effects of BIS-MEP on Reversing Amyloid Plaque Deposition and Spatial Learning and Memory Impairments in a Mouse Model of β-Amyloid Peptide- and Ibotenic Acid-Induced Alzheimer's Disease. Front Aging Neurosci 2019; 11:3. [PMID: 30723404 PMCID: PMC6349730 DOI: 10.3389/fnagi.2019.00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/08/2019] [Indexed: 12/29/2022] Open
Abstract
Alzheimer’s disease (AD) is the main type of dementia and is characterized by progressive memory loss and a notable decrease in cholinergic neuron activity. As classic drugs currently used in the clinic, acetylcholinesterase inhibitors (AChEIs) restore acetylcholine levels and relieve the symptoms of AD, but are insufficient at delaying the onset of AD. Based on the multi-target-directed ligand (MTDL) strategy, bis-(-)-nor-meptazinol (BIS-MEP) was developed as a multi-target AChEI that mainly targets AChE catalysis and the β-amyloid (Aβ) aggregation process. In this study, we bilaterally injected Aβ oligomers and ibotenic acid (IBO) into the hippocampus of ICR mice and then subcutaneously injected mice with BIS-MEP to investigate its therapeutic effects and underlying mechanisms. According to the results from the Morris water maze test, BIS-MEP significantly improved the spatial learning and memory impairments in AD model mice. Compared with the vehicle control, the BIS-MEP treatment obviously inhibited the AChE activity in the mouse brain, consistent with the findings from the behavioral tests. The BIS-MEP treatment also significantly reduced the Aβ plaque area in both the hippocampus and cortex, suggesting that BIS-MEP represents a direct intervention for AD pathology. Additionally, the immunohistochemistry and ELISA results revealed that microglia (ionized calcium-binding adapter molecule 1, IBA1) and astrocyte (Glial fibrillary acidic protein, GFAP) activation and the secretion of relevant inflammatory factors (TNFα and IL-6) induced by Aβ were decreased by the BIS-MEP treatment. Furthermore, BIS-MEP showed more advantages than donepezil (an approved AChEI) as an Aβ intervention. Based on our findings, BIS-MEP improved spatial learning and memory deficits in AD mice by regulating acetylcholinesterase activity, Aβ deposition and the inflammatory response in the brain.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Xia
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjun Shen
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Zhou
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Wu
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhuan Shi
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lina Hou
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Zheng H, Niu S, Zhao H, Li S, Jiao J. Donepezil improves the cognitive impairment in a tree shrew model of Alzheimer's disease induced by amyloid-β 1-40 via activating the BDNF/TrkB signal pathway. Metab Brain Dis 2018; 33:1961-1974. [PMID: 30105614 DOI: 10.1007/s11011-018-0303-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder which can contribute to memory loss and cognitive damage in the elderly; moreover, evidence from clinical and animal studies demonstrated that AD always exhibit severe cognitive deficits. However, the effects of donepezil medications on cognition are controversial. Additionally, it is unclear whether donepezil can protect neurons to improve cognitive function through the brain-derived neurotropic factor (BDNF)/tyrosine receptor kinase B (TrkB) signalling pathway in the tree shrew (TS), which has a closer evolutionary relationship to primates than rodents. Here, we designed a study on an amyloid-β1-40 (Aβ1-40)-induced TS model of AD and investigated the molecular mechanism by which donepezil protects neurons and improves cognitive function through activating the BDNF/TrkB signalling pathway. The results showed that donepezil could rescue Aβ1-40-induced spatial cognition deficits, and reverse Aβ1-40-induced temporal horn along with ADC enlargement in the TS brain. Meanwhile, it suppressed Aβ1-40-induced neuronal damage and loss of body weight. Intriguingly, donepezil could increase the choline acetyl transferase (ChAT) expression level and reduce the fibrillary acid protein (GFAP) expression level in the hippocampus and cortex of TS. Additionally, donepezil significantly upregulated the expression level of BDNF, as well as the phosphorylated level of TrkB. These results suggested that donepezil could protect neurocytes from senility and ameliorate learning and memory impairment in the TS model of AD, which appeared to be through regulating the cholinergic system and inhibiting the BDNF/TrkB-dependent signalling pathway. Moreover, the study underlines the potency of TS to be a novel animal model for research on AD, and it deserves intensive attention.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, 650500, China
| | - Shiwei Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Hongbin Zhao
- Department of Emergency Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China.
| | - Jianlin Jiao
- Technology Transfer Center, Kunming Medical University, Kunming, 650031, China.
| |
Collapse
|
16
|
Bondi CO, Yelleswarapu NK, Day-Cooney J, Memarzadeh K, Folweiler KA, Bou-Abboud CE, Leary JB, Cheng JP, Tehranian-DePasquale R, Kline AE. Systemic administration of donepezil attenuates the efficacy of environmental enrichment on neurobehavioral outcome after experimental traumatic brain injury. Restor Neurol Neurosci 2018; 36:45-57. [PMID: 29439368 DOI: 10.3233/rnn-170781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The acetylcholinesterase inhibitor (AChEI) donepezil (DON) is recommended as a potential treatment for cognition after clinical traumatic brain injury (TBI) and therefore may be prescribed as an adjunct therapy during rehabilitation. However, a dose-response study evaluating DON after a controlled cortical impact (CCI) injury in rats did not reveal cognitive benefits. OBJECTIVE The aim of this study was to determine the effect of DON on behavioral and histological outcome when combined with environmental enrichment (EE), a preclinical model of neurorehabilitation. It was hypothesized that the combined treatments would produce a synergistic effect yielding improved recovery over neurorehabilitation alone. METHODS Isoflurane-anesthetized adult male rats received a CCI or sham injury and then were randomly assigned to EE or standard (STD) housing plus systemic injections of DON (0.25 mg/kg) or vehicle (VEH; 1.0 mL/kg saline) once daily for 19 days beginning 24 hr after injury. Function was assessed by established motor and cognitive tests on post-injury days 1-5 and 14-19, respectively. Cortical lesion volume was quantified on day 19. RESULTS DON was ineffective when administered alone. In contrast, EE conferred significant motor and cognitive benefits, and reduced cortical lesion volume vs. STD (p < 0.05). Combining the therapies weakened the efficacy of rehabilitation as revealed by diminished motor and cognitive recovery in the TBI+EE+DON group vs. the TBI+EE+VEH group (p < 0.05). CONCLUSION These data replicate previous findings showing that EE is beneficial and DON is ineffective after CCI and add to the literature a novel and unpredicted finding that supports neither the hypothesis nor the use of DON for TBI. Investigation of other AChEIs after CCI injury is necessary to gain further insight into the value of this therapeutic strategy.
Collapse
Affiliation(s)
- Corina O Bondi
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.,Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Narayana K Yelleswarapu
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julian Day-Cooney
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimiya Memarzadeh
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaitlin A Folweiler
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carine E Bou-Abboud
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob B Leary
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey P Cheng
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roya Tehranian-DePasquale
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony E Kline
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.,Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Zhao J, Hylin MJ, Kobori N, Hood KN, Moore AN, Dash PK. Post-Injury Administration of Galantamine Reduces Traumatic Brain Injury Pathology and Improves Outcome. J Neurotrauma 2017; 35:362-374. [PMID: 29088998 DOI: 10.1089/neu.2017.5102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acetylcholine is an excitatory neurotransmitter in the central nervous system that plays a key role in cognitive function, including learning and memory. Previous studies have shown that experimental traumatic brain injury (TBI) reduces cholinergic neurotransmission, decreases evoked release of acetylcholine, and alters cholinergic receptor levels. Galantamine (U.S. Food and Drug Administration approved for the treatment of vascular dementia and Alzheimer's disease) has been shown to inhibit acetylcholinesterase activity and allosterically potentiate nicotinic receptor signaling. We investigated whether acute administration of galantamine can reduce TBI pathology and improve cognitive function tested days after the termination of the drug treatment. Post-injury administration of galantamine was found to decrease TBI-triggered blood-brain barrier (BBB) permeability (tested 24 h post-injury), attenuate the loss of both GABAergic and newborn neurons in the ipsilateral hippocampus, and improve hippocampal function (tested 10 days after termination of the drug treatment). Specifically, significant improvements in the Morris water maze, novel object recognition, and context-specific fear memory tasks were observed in injured animals treated with galantamine. Although messenger RNAs for both M1 (Nos2, TLR4, and IL-12ß) and M2 (Arg1, CCL17, and Mcr1) microglial phenotypes were elevated post-TBI, galantamine treatment did not alter microglial polarization tested 24 h and 6 days post-injury. Taken together, these findings support the further investigation of galantamine as a treatment for TBI.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School , Houston, Texas
| | - Michael J Hylin
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School , Houston, Texas
| | - Nobuhide Kobori
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School , Houston, Texas
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School , Houston, Texas
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School , Houston, Texas
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School , Houston, Texas
| |
Collapse
|
18
|
Yu T, Tensaouti Y, Bagha ZM, Davidson R, Kim A, Kernie SG. Adult newborn neurons interfere with fear discrimination in a protocol-dependent manner. Brain Behav 2017; 7:e00796. [PMID: 28948089 PMCID: PMC5607558 DOI: 10.1002/brb3.796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Significant enhancement of neurogenesis is known to occur in response to a variety of brain insults such as traumatic brain injury. Previous studies have demonstrated that injury-induced newborn neurons are required for hippocampus-dependent spatial learning and memory tasks like the Morris water maze, but not in contextual fear conditioning that requires both the hippocampus and amygdala. Recently, the dentate gyrus, where adult hippocampal neurogenesis occurs, has been implicated in processing information to form specific memory under specific environmental stimuli in a process known as pattern separation. METHODS To test whether injury-induced newborn neurons facilitate pattern separation, hippocampus-dependent contextual fear discrimination was performed using delta-HSV-TK transgenic mice, which can temporally inhibit injury-induced neurogenesis under the control of ganciclovir. RESULTS We observed that impaired neurogenesis enhanced the ability to distinguish aversive from naïve environments. In addition, this occurs most significantly following injury, but only in a context-dependent manner whereby the sequence of introducing the naïve environment from the aversive one affected the performance differentially. CONCLUSIONS Temporal impairment of both baseline and injury-induced adult neurogenesis enhances performance in fear discrimination in a context-dependent manner.
Collapse
Affiliation(s)
- Tzong‐Shiue Yu
- Department of PediatricsColumbia University College of Physicians and SurgeonsNew YorkNYUSA
| | - Yacine Tensaouti
- Department of PediatricsColumbia University College of Physicians and SurgeonsNew YorkNYUSA
| | - Zohaib M. Bagha
- Department of PediatricsColumbia University College of Physicians and SurgeonsNew YorkNYUSA
| | - Rina Davidson
- Department of PediatricsColumbia University College of Physicians and SurgeonsNew YorkNYUSA
| | - Ahleum Kim
- Department of PediatricsColumbia University College of Physicians and SurgeonsNew YorkNYUSA
| | - Steven G. Kernie
- Department of PediatricsColumbia University College of Physicians and SurgeonsNew YorkNYUSA
| |
Collapse
|
19
|
Ahmed S, Mahmood Z, Javed A, Hashmi SN, Zerr I, Zafar S, Zahid S. Effect of Metformin on Adult Hippocampal Neurogenesis: Comparison with Donepezil and Links to Cognition. J Mol Neurosci 2017; 62:88-98. [PMID: 28378260 DOI: 10.1007/s12031-017-0915-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/29/2017] [Indexed: 01/02/2023]
Abstract
Recent studies have uncovered evidence suggesting that interference with hippocampal adult neurogenesis contributes to neurodegeneration in Alzheimer's disease (AD). Evidence supporting that AD is a metabolic disease with derangements in brain glucose utilization implies the use of anti-diabetics as an alternate therapeutic strategy. The present study drew comparison between the pro-neurogenic potential of metformin and donepezil in AlCl3-induced mouse model of neurodegeneration. Morris water maze task and subsequent immunohistochemical evaluation for NeuN was conducted. Expression of neurogenesis markers and hippocampal proteome analysis was determined by qRT-PCR and SDS-PAGE, respectively, followed by ESI-QTOFF MS/MS identification. The results demonstrated impaired spatial memory and differential expression of eight proteins in the AlCl3 group as compared to the controls. Interestingly, treatment with metformin normalized the proteome profile and expression levels of neurogenesis markers along with improvement in the spatial memory. Moreover, as compared to donepezil, metformin-treated mice exhibited an enhanced number of post-mitotic NeuN-positive neurons. It is suggested that underlying molecular mechanisms of metformin-mediated adult hippocampal neurogenesis may have implications in treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sara Ahmed
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zahra Mahmood
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aneela Javed
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Shoaib Naiyer Hashmi
- Department of Histopathology, Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
20
|
de la Tremblaye PB, Bondi CO, Lajud N, Cheng JP, Radabaugh HL, Kline AE. Galantamine and Environmental Enrichment Enhance Cognitive Recovery after Experimental Traumatic Brain Injury But Do Not Confer Additional Benefits When Combined. J Neurotrauma 2016; 34:1610-1622. [PMID: 27806662 DOI: 10.1089/neu.2016.4790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Environmental enrichment (EE) enhances cognition after traumatic brain injury (TBI). Galantamine (GAL) is an acetylcholinesterase inhibitor that also may promote benefits. Hence, the aims of this study were to assess the efficacy of GAL alone (standard [STD] housing) and in combination with EE in adult male rats after TBI. The hypothesis was that both therapies would confer motor, cognitive, and histological benefits when provided singly, but that their combination would be more efficacious. Anesthetized rats received a controlled cortical impact or sham injury, then were randomly assigned to receive GAL (1, 2, or 3 mg/kg; intraperitoneally [i.p.]) or saline vehicle (VEH; 1 mL/kg; i.p.) beginning 24 h after surgery and once daily for 21 days (experiment 1). Motor (beam-balance/walk) and cognitive (Morris water maze [MWM]) assessments were conducted on post-operative Days 1-5 and 14-19, respectively. Cortical lesion volumes were quantified on Day 21. Sham controls were better versus all TBI groups. No differences in motor function or lesion volumes were observed among the TBI groups (p > 0.05). In contrast, GAL (2 mg/kg) enhanced MWM performance versus VEH and GAL (1 and 3 mg/kg; p < 0.05). In experiment 2, GAL (2 mg/kg) or VEH was combined with EE and the data were compared with the STD-housed groups from experiment 1. EE alone enhanced motor performance over the VEH-treated and GAL-treated (2 mg/kg) STD-housed groups (p < 0.05). Moreover, both EE groups (VEH or GAL) facilitated spatial learning and reduced lesion size versus STD + VEH controls (p < 0.05). No additional benefits were observed with the combination paradigm, which does not support the hypothesis. Overall, the data demonstrate that EE and once daily GAL (2 mg/kg) promote cognitive recovery after TBI. Importantly, the combined therapies did not negatively affect outcome and thus this therapeutic protocol may have clinical utility.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Corina O Bondi
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Neurobiology, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Center for the Neural Basis of Cognition, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Naima Lajud
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,6 Division of Neuroscience, Biomedical Research Center of Michoacán, Mexican Social Security Institute , Morelia, Mexico
| | - Jeffrey P Cheng
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Hannah L Radabaugh
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Anthony E Kline
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Center for the Neural Basis of Cognition, University of Pittsburgh , Pittsburgh, Pennsylvania.,7 Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,8 Department of Psychology, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Tweedie D, Rachmany L, Kim DS, Rubovitch V, Lehrmann E, Zhang Y, Becker KG, Perez E, Pick CG, Greig NH. Mild traumatic brain injury-induced hippocampal gene expressions: The identification of target cellular processes for drug development. J Neurosci Methods 2016; 272:4-18. [PMID: 26868732 PMCID: PMC4977213 DOI: 10.1016/j.jneumeth.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Neurological dysfunction after traumatic brain injury (TBI) poses short-term or long-lasting health issues for family members and health care providers. Presently there are no approved medicines to treat TBI. Epidemiological evidence suggests that TBI may cause neurodegenerative disease later in life. In an effort to illuminate target cellular processes for drug development, we examined the effects of a mild TBI on hippocampal gene expression in mouse. METHODS mTBI was induced in a closed head, weight drop-system in mice (ICR). Animals were anesthetized and subjected to mTBI (30g). Fourteen days after injury the ipsilateral hippocampus was utilized for cDNA gene array studies. mTBI animals were compared with sham-operated animals. Genes regulated by TBI were identified to define TBI-induced physiological/pathological processes. mTBI regulated genes were divided into functional groupings to provide gene ontologies. Genes were further divided to identify molecular/cellular pathways regulated by mTBI. RESULTS Numerous genes were regulated after a single mTBI event that mapped to many ontologies and molecular pathways related to inflammation and neurological physiology/pathology, including neurodegenerative disease. CONCLUSIONS These data illustrate diverse transcriptional changes in hippocampal tissues triggered by a single mild injury. The systematic analysis of individual genes that lead to the identification of functional categories, such as gene ontologies and then molecular pathways, illustrate target processes of relevance to TBI pathology. These processes may be further dissected to identify key factors that can be evaluated at the protein level to highlight possible treatments for TBI in human disease and potential biomarkers of neurodegenerative processes.
Collapse
Affiliation(s)
- David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Lital Rachmany
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Dong Seok Kim
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Peptron Inc., 37-24, Yuseong-daero 1628 beon-gil, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Elin Lehrmann
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Evelyn Perez
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
22
|
Lee Y, Lee B, Jeong S, Park JW, Han IO, Lee CJ. Increased cell proliferation and neural activity by physostigmine in the telencephalon of adult zebrafish. Neurosci Lett 2016; 629:189-195. [DOI: 10.1016/j.neulet.2016.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/20/2016] [Accepted: 07/01/2016] [Indexed: 11/25/2022]
|
23
|
MAHMOUDVAND H, SHEIBANI V, KESHAVARZ H, SHOJAEE S, ESMAEELPOUR K, ZIAALI N. Acetylcholinesterase Inhibitor Improves Learning and Memory Impairment Induced by Toxoplasma gondii Infection. IRANIAN JOURNAL OF PARASITOLOGY 2016; 11:177-185. [PMID: 28096851 PMCID: PMC5236094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Here, we established the mouse models of chronic toxoplasmosis by T. gondii Tehran strain to provide a good understanding about defining the possible association between T. gondii exposure and learning and memory impairments. Moreover, as secondary objective of the present study, we hypothesized whether administration of an acetylcholinesterase (AChE) inhibitor could reduce learning and memory impairments induced by T. gondii infection. METHODS Twenty-four male BALB/c mice were used to establishment of latent toxoplasmosis. The animal model of Toxoplasma infection was established by the intraperitoneal inoculation of 20-25 tissue cysts from Tehran strain of T. gondii. Donepezil (2 mg/kg) an AChE inhibitor to treat Alzheimer disease was injected intraperitoneally once a day for two weeks starting from post-infection day 90. Morris water maze (MWM) task was used to assay spatial learning and short term spatial memory in all groups. One-way ANOVA with Tukey's post-hoc test was used to assess differences between experimental groups. P<0.05 was considered statistically significant. RESULTS Toxoplasma infection impaired spatial leaning and short term spatial memory of the infected BALB/c mice, whereas donepezil, an AChE inhibitor, improved impairments induced by Toxoplasma infection. CONCLUSION T. gondii infection through increasing AChE reduces the level of Acetylcholine (Ach) and consequently affects learning and memory activity in infected hosts, whereas, donepezil as an AChE inhibitor improves these impairments by restoring ACh levels at synapses of neurons in brain.
Collapse
Affiliation(s)
- Hossein MAHMOUDVAND
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahid SHEIBANI
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein KESHAVARZ
- Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh SHOJAEE
- Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh ESMAEELPOUR
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Naser ZIAALI
- Department of Medical Parasitology and Mycology, Kerman University of Medical Sciences, Kerman, Iran,Correspondence
| |
Collapse
|