1
|
Kamiya M, Carter H, Espindola MS, Doyle TJ, Lee JS, Merriam LT, Zhang F, Kawano-Dourado L, Sparks JA, Hogaboam CM, Moore BB, Oldham WM, Kim EY. Immune mechanisms in fibrotic interstitial lung disease. Cell 2024; 187:3506-3530. [PMID: 38996486 PMCID: PMC11246539 DOI: 10.1016/j.cell.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 07/14/2024]
Abstract
Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice. We first examine innate immunity, which is broadly involved across fILD subtypes. We illustrate how innate immunity in fILD involves a complex interplay of multiple cell subpopulations and molecular pathways. We then review the growing evidence for adaptive immunity in lung fibrosis to provoke a re-examination of its role in clinical fILD. We close with future directions to address key knowledge gaps in fILD pathobiology: (1) longitudinal studies emphasizing early-stage clinical disease, (2) immune mechanisms of acute exacerbations, and (3) next-generation immunophenotyping integrating spatial, genetic, and single-cell approaches. Advances in these areas are essential for the future of precision medicine and immunotherapy in fILD.
Collapse
Affiliation(s)
- Mari Kamiya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Carter
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milena S Espindola
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tracy J Doyle
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Joyce S Lee
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Louis T Merriam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fan Zhang
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Leticia Kawano-Dourado
- Hcor Research Institute, Hcor Hospital, Sao Paulo - SP 04004-030, Brazil; Pulmonary Division, Heart Institute (InCor), University of Sao Paulo, São Paulo - SP 05403-900, Brazil
| | - Jeffrey A Sparks
- Harvard Medical School, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Hagenstein J, Burkhardt S, Sprezyna P, Tasika E, Tiegs G, Diehl L. CD44 expression on murine hepatic stellate cells promotes the induction of monocytic and polymorphonuclear myeloid-derived suppressor cells. J Leukoc Biol 2024; 116:177-185. [PMID: 38484149 DOI: 10.1093/jleuko/qiae053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 06/30/2024] Open
Abstract
In chronic inflammation, regulatory immune cells, such as regulatory T cells and myeloid-derived suppressor cells, can develop. Local signals in the inflamed tissue, such as cytokines and eicosanoids, but also contact-dependent signals, can promote myeloid-derived suppressor cell development. In the liver, hepatic stellate cells may provide such signals via the expression of CD44. Myeloid-derived suppressor cells generated in the presence of hepatic stellate cells and anti-CD44 antibodies were functionally and phenotypically analyzed. We found that both monocytic and polymorphonuclear myeloid-derived suppressor cells generated in the presence of αCD44 antibodies were less suppressive toward T cells as measured by T-cell proliferation and cytokine production. Moreover, both monocytic and polymorphonuclear myeloid-derived suppressor cells were phenotypically altered. Monocytic myeloid-derived suppressor cells mainly changed their expression of CD80 and CD39, and polymorphonuclear myeloid-derived suppressor cells showed altered expression of CD80/86, PD-L1, and CCR2. Moreover, both polymorphonuclear and monocytic myeloid-derived suppressor cells lost expression of Nos2 messenger RNA, whereas monocytic myeloid-derived suppressor cells showed reduced expression of TGFb messenger RNA and polymorphonuclear myeloid-derived suppressor cells reduced expression of Il10 messenger RNA. In summary, the presence of CD44 in hepatic stellate cells promotes the induction of both monocytic and polymorphonuclear myeloid-derived suppressor cells, although the mechanisms by which these myeloid-derived suppressor cells may increase suppressive function due to interaction with CD44 are only partially overlapping.
Collapse
Affiliation(s)
- Julia Hagenstein
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center of Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Simon Burkhardt
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center of Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Paulina Sprezyna
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center of Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Elena Tasika
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center of Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center of Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Linda Diehl
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center of Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
3
|
Costa TFR, Catta-Preta CMC, Goundry A, Carvalho DB, Rodrigues NS, Vivarini AC, de Abreu MF, Reis FCG, Lima APCA. The ecotin-like peptidase inhibitor of Trypanosoma cruzi prevents TMPRSS2-PAR2-TLR4 crosstalk downmodulating infection and inflammation. FASEB J 2024; 38:e23566. [PMID: 38526868 DOI: 10.1096/fj.202302091rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.
Collapse
Affiliation(s)
- Tatiana F R Costa
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina M C Catta-Preta
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amy Goundry
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle B Carvalho
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia S Rodrigues
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aislan C Vivarini
- Departamento de Biologia Celular e Molecular, Insituto de Biologia, Universidade Federal Fluminense, Niteroi, Brazil
| | - Mayra Fonseca de Abreu
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia C G Reis
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula C A Lima
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Zhang C, Sui Y, Liu S, Yang M. The Roles of Myeloid-Derived Suppressor Cells in Liver Disease. Biomedicines 2024; 12:299. [PMID: 38397901 PMCID: PMC10886773 DOI: 10.3390/biomedicines12020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Liver disease-related mortality is a major cause of death worldwide. Hepatic innate and adaptive immune cells play diverse roles in liver homeostasis and disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells. MDSCs can be broadly divided into monocytic MDSCs and polymorphonuclear or granulocytic MDSCs, and they functionally interact with both liver parenchymal and nonparenchymal cells, such as hepatocytes and regulatory T cells, to impact liver disease progression. The infiltration and activation of MDSCs in liver disease can be regulated by inflammatory chemokines and cytokines, tumor-associated fibroblasts, epigenetic regulation factors, and gut microbiota during liver injury and cancer. Given the pivotal roles of MDSCs in advanced liver diseases, they can be targeted to treat primary and metastatic liver cancer, liver generation, alcoholic and nonalcoholic liver disease, and autoimmune hepatitis. Currently, several treatments such as the antioxidant and anti-inflammatory agent berberine are under preclinical and clinical investigation to evaluate their therapeutic efficacy on liver disease and their effect on MDSC infiltration and function. Phenotypic alteration of MDSCs in different liver diseases that are in a model-dependent manner and lack special markers for distinct MDSCs are challenges for targeting MDSCs to treat liver disease. Multi-omics study is an option to uncover the features of disease-specific MDSCs and potential gene or protein targets for liver disease treatment. In summary, MDSCs play important roles in the pathogenesis and progression of liver disease by regulating both intrahepatic innate and adaptive immune responses.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA;
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
5
|
Duggal S, Rawat S, Siddqui G, Vishwakarma P, Samal S, Banerjee A, Vrati S. Dengue virus infection in mice induces bone marrow myeloid cell differentiation and generates Ly6Glow immature neutrophils with modulated functions. J Leukoc Biol 2024; 115:130-148. [PMID: 37648666 DOI: 10.1093/jleuko/qiad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
While neutrophil activation during dengue virus infection is known, the effect of dengue virus infection on neutrophil biogenesis has not been studied. We demonstrate that dengue virus serotype 2 induces the differentiation of mice progenitor cells ex vivo toward the CD11b+Ly6C+Ly6G+ granulocyte population. We further observed an expansion of CD11b+Ly6CintLy6Glow myeloid cells in the bone marrow of dengue virus serotype 2-infected AG129 mice with low CXCR2 expression, implying an immature population. Additionally, dengue virus serotype 2 alone could induce the differentiation of promyelocyte cell line HL-60 into neutrophil-like cells, as evidenced by increased expression of CD10, CD66b, CD16, CD11b, and CD62L, corroborating the preferential shift toward neutrophil differentiation by dengue virus serotype 2 in the mouse model of dengue infection. The functional analysis showed that dengue virus serotype 2-induced neutrophil-like cells exhibited reduced phagocytic activity and enhanced NETosis, as evidenced by the increased production of myeloperoxidase, citrullinated histones, extracellular DNA, and superoxide. These neutrophil-like cells lose their ability to proliferate irreversibly and undergo arrest in the G0 to G1 phase of the cell cycle. Further studies show that myeloperoxidase-mediated signaling operating through the reactive oxygen species axis may be involved in dengue virus serotype 2-induced proliferation and differentiation of bone marrow cells as ABAH, a myeloperoxidase inhibitor, limits cell proliferation in vitro and ex vivo, affects the cell cycle, and reduces reactive oxygen species production. Additionally, myeloperoxidase inhibitor reduced NETosis and vascular leakage in dengue virus serotype 2-infected AG129 mice. Our study thus provides evidence that dengue virus serotype 2 can accelerate the differentiation of bone marrow progenitor cells into neutrophils through myeloperoxidase and modulate their functions.
Collapse
Affiliation(s)
- Shweta Duggal
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Surender Rawat
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Gazala Siddqui
- Influenza and Respiratory Virus Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Preeti Vishwakarma
- Influenza and Respiratory Virus Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Sweety Samal
- Influenza and Respiratory Virus Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Arup Banerjee
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Sudhanshu Vrati
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| |
Collapse
|
6
|
Sun Q, Dai H, Wang S, Chen Y, Shi H. Progress in research on the role played by myeloid-derived suppressor cells in liver diseases. Scand J Immunol 2023; 98:e13312. [PMID: 38441348 DOI: 10.1111/sji.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 03/07/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) refer to a group of immature myeloid cells with potent immunosuppressive capacity upon activation by pathological conditions. Because of their potent immunosuppressive ability, MDSCs have garnered extensive attention in the past few years in the fields of oncology, infection, chronic inflammation and autoimmune diseases. Research on MDSCs in liver diseases has gradually increased, and their potential therapeutic roles will be further explored. This review presents a summary of the involvement and the role played by MDSCs in liver diseases, thus identifying their potential targets for the treatment of liver diseases and providing new directions for liver disease-related research.
Collapse
Affiliation(s)
- Qianqian Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Heng Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Huilian Shi
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Kajihara N, Kobayashi T, Otsuka R, Nio-Kobayashi J, Oshino T, Takahashi M, Imanishi S, Hashimoto A, Wada H, Seino KI. Tumor-derived interleukin-34 creates an immunosuppressive and chemoresistant tumor microenvironment by modulating myeloid-derived suppressor cells in triple-negative breast cancer. Cancer Immunol Immunother 2023; 72:851-864. [PMID: 36104597 DOI: 10.1007/s00262-022-03293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype characterized by a lack of therapeutic targets. The paucity of effective treatment options motivated a number of studies to tackle this problem. Immunosuppressive cells infiltrated into the tumor microenvironment (TME) of TNBC are currently considered as candidates for new therapeutic targets. Myeloid-derived suppressor cells (MDSCs) have been reported to populate in the TME of TNBC, but their roles in the clinical and biological features of TNBC have not been clarified. This study identified that interleukin-34 (IL-34) released by TNBC cells is a crucial immunomodulator to regulate MDSCs accumulation in the TME. We provide evidence that IL-34 induces a differentiation of myeloid stem cells into monocytic MDSCs (M-MDSCs) that recruits regulatory T (Treg) cells, while suppressing a differentiation into polymorphonuclear MDSCs (PMN-MDSCs). As a result, the increase in M-MDSCs contributes to the creation of an immunosuppressive TME, and the decrease in PMN-MDSCs suppresses angiogenesis, leading to an acquisition of resistance to chemotherapy. Accordingly, blockade of M-MDSC differentiation with an estrogen receptor inhibitor or anti-IL-34 monoclonal antibody suppressed M-MDSCs accumulation causing retardation of tumor growth and restores chemosensitivity of the tumor by promoting PMN-MDSCs accumulation. This study demonstrates previously poorly understood mechanisms of MDSCs-mediated chemoresistance in the TME of TNBC, which is originated from the existence of IL-34, suggesting a new rationale for TNBC treatment.
Collapse
Affiliation(s)
- Nabeel Kajihara
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo city, Hokkaido, 060-0815, Japan
| | - Takuto Kobayashi
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo city, Hokkaido, 060-0815, Japan
| | - Ryo Otsuka
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo city, Hokkaido, 060-0815, Japan
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo city, Hokkaido, 060-8638, Japan
| | - Tomohiro Oshino
- Department of Breast Surgery, Hokkaido University Hospital, Kita-14 Nishi-5, Kita-ku, Sapporo city, Hokkaido, 060-8648, Japan
| | - Masato Takahashi
- Department of Breast Surgery, Hokkaido University Hospital, Kita-14 Nishi-5, Kita-ku, Sapporo city, Hokkaido, 060-8648, Japan
| | - Seiichi Imanishi
- Department of Breast Surgery, Osaka Rosai Hospital, Nagasone-cho 1179-3, Kita-ku, Sakai city, Osaka, 591-8025, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo city, Hokkaido, 060-8638, Japan
| | - Haruka Wada
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo city, Hokkaido, 060-0815, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo city, Hokkaido, 060-0815, Japan.
| |
Collapse
|
8
|
Ott LC, Cuenca AG. Innate immune cellular therapeutics in transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1067512. [PMID: 37994308 PMCID: PMC10664839 DOI: 10.3389/frtra.2023.1067512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Successful organ transplantation provides an opportunity to extend the lives of patients with end-stage organ failure. Selectively suppressing the donor-specific alloimmune response, however, remains challenging without the continuous use of non-specific immunosuppressive medications, which have multiple adverse effects including elevated risks of infection, chronic kidney injury, cardiovascular disease, and cancer. Efforts to promote allograft tolerance have focused on manipulating the adaptive immune response, but long-term allograft survival rates remain disappointing. In recent years, the innate immune system has become an attractive therapeutic target for the prevention and treatment of transplant organ rejection. Indeed, contemporary studies demonstrate that innate immune cells participate in both the initial alloimmune response and chronic allograft rejection and undergo non-permanent functional reprogramming in a phenomenon termed "trained immunity." Several types of innate immune cells are currently under investigation as potential therapeutics in transplantation, including myeloid-derived suppressor cells, dendritic cells, regulatory macrophages, natural killer cells, and innate lymphoid cells. In this review, we discuss the features and functions of these cell types, with a focus on their role in the alloimmune response. We examine their potential application as therapeutics to prevent or treat allograft rejection, as well as challenges in their clinical translation and future directions for investigation.
Collapse
Affiliation(s)
- Leah C Ott
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Alex G Cuenca
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
9
|
Cheuk YC, Niu X, Mao Y, Li J, Wang J, Xu S, Luo Y, Wang W, Wang X, Zhang Y, Rong R. Integration of transcriptomics and metabolomics reveals pathways involved in MDSC supernatant attenuation of TGF-β1-induced myofibroblastic differentiation of mesenchymal stem cells. Cell Tissue Res 2022; 390:465-489. [PMID: 36098854 DOI: 10.1007/s00441-022-03681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Overexposure to transforming growth factor b1 (TGF-β1) induces myofibroblastic differentiation of mesenchymal stem cells (MSCs), which could be attenuated by myeloid-derived suppressor cell (MDSC) supernatant. However, the promyofibroblastic effects of TGF-β1 and the antimyofibroblastic effects of MDSC supernatant in MSCs have not been fully elucidated. To further clarify the latent mechanism and identify underlying therapeutic targets, we used an integrative strategy combining transcriptomics and metabolomics. Bone marrow MSCs were collected 24 h following TGF-β1 and MDSC supernatant treatment for RNA sequencing and untargeted metabolomic analysis. The integrated data were then analyzed to identify significant gene-metabolite correlations. Differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) were assessed by Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for exploring the mechanisms of myofibroblastic differentiation of MSCs. The integration of transcriptomic and metabolomic data highlighted significantly coordinated changes in glycolysis/gluconeogenesis and purine metabolism following TGF-β1 and MDSC supernatant treatment. By combining transcriptomic and metabolomic analyses, this study showed that glycolysis/gluconeogenesis and purine metabolism were essential for the myofibroblastic differentiation of MSCs and may serve as promising targets for mechanistic research and clinical practice in the treatment of fibrosis by MDSC supernatant.
Collapse
Affiliation(s)
- Yin Celeste Cheuk
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xinhao Niu
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yongxin Mao
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Jiawei Li
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiyan Wang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shihao Xu
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yongsheng Luo
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weixi Wang
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuanchuan Wang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China. .,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yi Zhang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China. .,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ruiming Rong
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China. .,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Challenges and opportunities in achieving effective regulatory T cell therapy in autoimmune liver disease. Semin Immunopathol 2022; 44:461-474. [PMID: 35641679 PMCID: PMC9256571 DOI: 10.1007/s00281-022-00940-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/15/2022] [Indexed: 12/29/2022]
Abstract
Autoimmune liver diseases (AILD) include autoimmune hepatitis (AIH), primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). These immune-mediated liver diseases involve a break down in peripheral self-tolerance with largely unknown aetiology. Regulatory T cells (Treg) are crucial in maintaining immunological tolerance. Hence, Treg immunotherapy is an attractive therapeutic option in AILD. Currently, AILD do not have a curative treatment option and patients take life-long immunosuppression or bile acids to control hepatic or biliary inflammation. Clinical investigations using good manufacturing practice (GMP) Treg in autoimmune liver disease have thus far demonstrated that Treg therapy is safe and that Treg migrate to inflamed liver tissue. For Treg immunotherapy to achieve efficacy in AILD, Treg must be retained within the liver and maintain their suppressive phenotype to dampen ongoing immune responses to hepatocytes and biliary epithelium. Therefore, therapeutic Treg subsets should be selected for tissue residency markers and maximal functionality. Optimisation of dosing regime and understanding longevity of Treg in vivo are critical to successful Treg therapy. It is also essential to consider combination therapy options to complement infused Treg, for instance low-dose interleukin-2 (IL-2) to support pre-existing and infused Treg survival and suppressive function. Understanding the hepatic microenvironment in both early- and late-stage AILD presents significant opportunity to better tailor Treg therapy in different patient groups. Modification of a hostile microenvironment to a more favourable one either prior to or during Treg therapy could enhance the efficacy and longevity of infused GMP-Treg. Applying recent technology to discovery of autoantigen responses in AILD, T cell receptor (TCR) sequencing and use of chimeric antigen receptor (CAR) technology represents the next frontier for disease-specific CAR-Treg therapies. Consideration of all these aspects in future trials and discovery research would position GMP Treg immunotherapy as a viable personalised-medicine treatment option for effective control of autoimmune liver diseases.
Collapse
|
11
|
Cheuk YC, Xu S, Zhu D, Luo Y, Chen T, Chen J, Li J, Shi Y, Zhang Y, Rong R. Monocytic Myeloid-Derived Suppressor Cells Inhibit Myofibroblastic Differentiation in Mesenchymal Stem Cells Through IL-15 Secretion. Front Cell Dev Biol 2022; 10:817402. [DOI: 10.3389/fcell.2022.817402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023] Open
Abstract
Background: Accumulating evidence indicates that mesenchymal stem cells (MSCs) are precursors of myofibroblasts, which play a vital role in renal fibrosis. The close interaction between MSCs and other immune cells regulates the development of multiple fibrosis-related diseases. However, the effect of myeloid-derived suppressor cells (MDSCs) on MSCs remains unexplored. Here, we investigated the effect of MDSCs on the myofibroblastic differentiation of MSCs.Methods: MSCs were induced to undergo myofibroblastic differentiation with transforming growth factor beta 1 (TGF-β1). M-MDSCs and G-MDSCs were sorted by flow cytometry. Supernatants derived from MDSCs were administered to cultured bone marrow MSCs (BM-MSCs) undergoing TGF-β1-induced myofibroblastic differentiation. Myofibroblastic differentiation was evaluated by immunostaining. The expression of fibrosis-related genes was determined by quantitative PCR and western blot analysis. In vitro, M-MDSC supernatant or M-MDSC supernatant with interleukin (IL)-15 mAbs was administered following unilateral renal ischemia-reperfusion injury (IRI) to observe the myofibroblast differentiation of renal resident MSCs (RRMSCs) in a murine model.Results: Myofibroblastic differentiation of MSCs was hindered when the cells were treated with MDSC-derived supernatants, especially that from M-MDSCs. The inhibitory effect of M-MDSC supernatant on the myofibroblastic differentiation of MSCs was partially mediated by IL-15-Ras-Erk1/2-Smad2/3 signaling. Treatment with M-MDSC supernatant ameliorated renal fibrosis and myofibroblastic differentiation in RRMSCs through IL-15. Additionally, M-MDSC supernatant increased M-MDSC infiltration in the kidney in a mouse IRI model. M-MDSC supernatant downregulated the adhesion and migration marker CD44 on the cell membrane of MSCs via IL-15.Conclusion: M-MDSC-derived supernatant inhibited the TGF-β1-induced myofibroblastic differentiation of MSCs through IL-15. Our findings shed new light on the effect of MDSCs on myofibroblastic differentiation and adhesion of MSCs, which might provide a new perspective in the development of treatment strategies for renal fibrosis.
Collapse
|
12
|
Moeller MJ, Kramann R, Lammers T, Hoppe B, Latz E, Ludwig-Portugall I, Boor P, Floege J, Kurts C, Weiskirchen R, Ostendorf T. New Aspects of Kidney Fibrosis-From Mechanisms of Injury to Modulation of Disease. Front Med (Lausanne) 2022; 8:814497. [PMID: 35096904 PMCID: PMC8790098 DOI: 10.3389/fmed.2021.814497] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/20/2021] [Indexed: 02/02/2023] Open
Abstract
Organ fibrogenesis is characterized by a common pathophysiological final pathway independent of the underlying progressive disease of the respective organ. This makes it particularly suitable as a therapeutic target. The Transregional Collaborative Research Center “Organ Fibrosis: From Mechanisms of Injury to Modulation of Disease” (referred to as SFB/TRR57) was hosted from 2009 to 2021 by the Medical Faculties of RWTH Aachen University and the University of Bonn. This consortium had the ultimate goal of discovering new common but also different fibrosis pathways in the liver and kidneys. It finally successfully identified new mechanisms and established novel therapeutic approaches to interfere with hepatic and renal fibrosis. This review covers the consortium's key kidney-related findings, where three overarching questions were addressed: (i) What are new relevant mechanisms and signaling pathways triggering renal fibrosis? (ii) What are new immunological mechanisms, cells and molecules that contribute to renal fibrosis?, and finally (iii) How can renal fibrosis be modulated?
Collapse
Affiliation(s)
- Marcus J Moeller
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany.,Heisenberg Chair for Preventive and Translational Nephrology, Aachen, Germany
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Faculty of Medicine, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Bernd Hoppe
- Division of Pediatric Nephrology and Kidney Transplantation, University Hospital of Bonn, Bonn, Germany.,German Hyperoxaluria Center, Pediatric Kidney Care Center, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital of Bonn, Bonn, Germany
| | - Isis Ludwig-Portugall
- Institute for Molecular Medicine and Experimental Immunology, University Hospital of Bonn, Bonn, Germany
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany.,Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Kurts
- Institute for Molecular Medicine and Experimental Immunology, University Hospital of Bonn, Bonn, Germany.,Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Tammo Ostendorf
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
13
|
Soler DC, Kerstetter-Fogle A, Young AB, Rayman P, Finke JH, Debanne SM, Cooper KD, Barnholtz-Sloan J, Sloan AE, McCormick TS. Healthy myeloid-derived suppressor cells express the surface ectoenzyme Vanin-2 (VNN2). Mol Immunol 2022; 142:1-10. [PMID: 34953280 PMCID: PMC8800381 DOI: 10.1016/j.molimm.2021.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Study of human monocytic Myeloid-Derived Suppressor cells Mo-MDSC (CD14+ HLA-DRneg/low) has been hampered by the lack of positive cell-surface markers. In order to identify positive markers for Mo-MDSC, we performed microarray analysis comparing Mo-MDSC cells from healthy subjects versus CD14+ HLA-DRhigh monocytes. We have identified the surface ectoenzyme Vanin-2(VNN2) protein as a novel biomarker highly-enriched in healthy subjects Mo-MDSC. Indeed, healthy subjects Mo-MDSC cells expressed 68 % VNN2, whereas only 9% VNN2 expression was observed on CD14+ HLA-DRhigh cells (n = 4 p < 0.01). The top 10 percent positive VNN2 monocytes expressed CD33 and CD11b while being negative for HLA-DR, CD3, CD15, CD19 and CD56, consistent with a Mo-MDSC phenotype. CD14+VNN2high monocytes were able to inhibit CD8 T cell proliferation comparably to traditional Mo-MDSC at 51 % and 48 % respectively. However, VNN2 expression on CD14+ monocytes from glioma patients was inversely correlated to their grade. CD14+VNN2high monocytes thus appear to mark a monocytic population similar to Mo-MDSC only in healthy subjects, which may be useful for tumor diagnoses.
Collapse
Affiliation(s)
- David C. Soler
- The Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195.,Brain Tumor and Neuro-Oncology Center, and the Center of Excellence for Translational Neuro-Oncology, Cleveland Clinic Foundation, Cleveland, OH 44195.,University Hospitals-Seidman Center and the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Amber Kerstetter-Fogle
- The Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195.,Brain Tumor and Neuro-Oncology Center, and the Center of Excellence for Translational Neuro-Oncology, Cleveland Clinic Foundation, Cleveland, OH 44195.,University Hospitals-Seidman Center and the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Andrew B. Young
- Department of Dermatology, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA.,The Murdough Family Center for Psoriasis, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA
| | - Pat Rayman
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - James H. Finke
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sarah M. Debanne
- Epidemiology and Biostatistics, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA
| | - Kevin D. Cooper
- Department of Dermatology, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA.,The Murdough Family Center for Psoriasis, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA
| | - Jill Barnholtz-Sloan
- The Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195.,Brain Tumor and Neuro-Oncology Center, and the Center of Excellence for Translational Neuro-Oncology, Cleveland Clinic Foundation, Cleveland, OH 44195.,University Hospitals-Seidman Center and the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195.,Epidemiology and Biostatistics, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA
| | - Andrew E. Sloan
- The Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195.,Brain Tumor and Neuro-Oncology Center, and the Center of Excellence for Translational Neuro-Oncology, Cleveland Clinic Foundation, Cleveland, OH 44195.,University Hospitals-Seidman Center and the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Thomas S. McCormick
- Department of Dermatology, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA.,The Murdough Family Center for Psoriasis, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA
| |
Collapse
|
14
|
Ji J, Zhuang Y, Lin Z, Jiang Y, Wang W, Zhang X. Interferon-γ-Induced Myeloid-Derived Suppressor Cells Aggravate Kidney Ischemia-Reperfusion Injury by Regulating Innate Immune Cells. Nephron Clin Pract 2021; 146:99-109. [PMID: 34569551 DOI: 10.1159/000518876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Myeloid-derived suppressor cells (MDSCs) are heterogeneous cells which can suppress T-cell functionality. Herein, we evaluated the functional importance of MDSCs in the context of kidney ischemia-reperfusion injury (IRI) and explored their ability to regulate innate and adaptive immune cell function in this context. METHODS The differentiation of MDSCs was induced in vitro by treating cells with GM-CSF and interferon (IFN)-γ. In a murine model of renal IRI, serum creatinine and blood urea nitrogen values were measured to monitor kidney function, while histopathological and immunohistochemical approaches were used to assess kidney injury severity. In addition, flow cytometry was employed to assess the phenotypes and apoptosis of kidney cells in these mice. RESULTS MDSCs induced by treatment with GM-CSF + IFN-γ could suppress T-cell functionality in vitro. The adoptive transfer of these MDSCs into an IRI mouse model system enhanced kidney damage and impaired renal function following the recruitment of these cells to renal tissues in these mice. Following such adoptive transfer, the relative frequency of MDSCs with a CD11b+Ly6G-Ly6Chigh monocytic-MDSC phenotype decreased, whereas cells with a CD11b+Ly6G+Ly6Clow polymorphonuclear-MDSC phenotype become more prevalent within kidney tissues following IRI. Adoptive transfer also coincided with increased frequencies of macrophages and dendritic cells (DCs) in the kidney tissues. This suggested that M-MDSCs contributed to early-stage renal IRI damage by differentiating into these deleterious cell types. However, MDSC-induced suppression of CD4+ and CD8+ T-cell infiltration was not sufficient to prevent the deterioration of renal function in these mice. CONCLUSIONS Herein, we successfully developed a protocol wherein MDSCs were differentiated in vitro through combination GM-CSF/IFN-γ treatment. When these MDSCs were subsequently adoptively transferred into a murine model of renal IRI, they aggravated kidney damage, likely owing to the differentiation of M-MDSCs into deleterious macrophages and DCs.
Collapse
Affiliation(s)
- Jiawei Ji
- Capital Medical University, Beijing, China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhemin Lin
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Yihang Jiang
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Wei Wang
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Xiaodong Zhang
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
15
|
van Geffen C, Deißler A, Quante M, Renz H, Hartl D, Kolahian S. Regulatory Immune Cells in Idiopathic Pulmonary Fibrosis: Friends or Foes? Front Immunol 2021; 12:663203. [PMID: 33995390 PMCID: PMC8120991 DOI: 10.3389/fimmu.2021.663203] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The immune system is receiving increasing attention for interstitial lung diseases, as knowledge on its role in fibrosis development and response to therapies is expanding. Uncontrolled immune responses and unbalanced injury-inflammation-repair processes drive the initiation and progression of idiopathic pulmonary fibrosis. The regulatory immune system plays important roles in controlling pathogenic immune responses, regulating inflammation and modulating the transition of inflammation to fibrosis. This review aims to summarize and critically discuss the current knowledge on the potential role of regulatory immune cells, including mesenchymal stromal/stem cells, regulatory T cells, regulatory B cells, macrophages, dendritic cells and myeloid-derived suppressor cells in idiopathic pulmonary fibrosis. Furthermore, we review the emerging role of regulatory immune cells in anti-fibrotic therapy and lung transplantation. A comprehensive understanding of immune regulation could pave the way towards new therapeutic or preventive approaches in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Chiel van Geffen
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Astrid Deißler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Markus Quante
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Dominik Hartl
- Department of Pediatrics I, Eberhard Karls University of Tübingen, Tübingen, Germany.,Dominik Hartl, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
16
|
Oberholtzer N, Atkinson C, Nadig SN. Adoptive Transfer of Regulatory Immune Cells in Organ Transplantation. Front Immunol 2021; 12:631365. [PMID: 33737934 PMCID: PMC7960772 DOI: 10.3389/fimmu.2021.631365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic graft rejection remains a significant barrier to solid organ transplantation as a treatment for end-organ failure. Patients receiving organ transplants typically require systemic immunosuppression in the form of pharmacological immunosuppressants for the duration of their lives, leaving these patients vulnerable to opportunistic infections, malignancies, and other use-restricting side-effects. In recent years, a substantial amount of research has focused on the use of cell-based therapies for the induction of graft tolerance. Inducing or adoptively transferring regulatory cell types, including regulatory T cells, myeloid-derived suppressor cells, and IL-10 secreting B cells, has the potential to produce graft-specific tolerance in transplant recipients. Significant progress has been made in the optimization of these cell-based therapeutic strategies as our understanding of their underlying mechanisms increases and new immunoengineering technologies become more widely available. Still, many questions remain to be answered regarding optimal cell types to use, appropriate dosage and timing, and adjuvant therapies. In this review, we summarize what is known about the cellular mechanisms that underly the current cell-based therapies being developed for the prevention of allograft rejection, the different strategies being explored to optimize these therapies, and all of the completed and ongoing clinical trials involving these therapies.
Collapse
Affiliation(s)
- Nathaniel Oberholtzer
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Satish N Nadig
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
17
|
Ren Y, Dong X, Zhao H, Feng J, Chen B, Zhou Y, Peng Y, Zhang L, Zhou Q, Li Y, Wu M, He Y. Myeloid-derived suppressor cells improve corneal graft survival through suppressing angiogenesis and lymphangiogenesis. Am J Transplant 2021; 21:552-566. [PMID: 32892499 DOI: 10.1111/ajt.16291] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 01/25/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) are one of the major negative regulators of immune responses during many pathological conditions such as cancer and transplantation. Emerging evidence indicates that MDSC also contribute to tumor progression through their pro-angiogenic activity in addition to immunosuppressive function. However, virtually nothing is known about the role of MDSC in the regulation of neovascularization after transplantation. Here we showed that antibody-mediated depletion of MDSC in mice led to robust growth of blood and lymphatic neovessels and rapid allograft rejection after corneal penetrating keratoplasty. In contrast, adoptive transfer of ex vivo generated MDSC from cytokine-treated bone marrow cells (evMDSC) suppressed neovascularization and prolonged corneal allograft survival in an inducible nitric oxide synthase (iNOS)-dependent manner. Mechanistically, compared to naïve MDSC control, evMDSC have increased expression of an anti-angiogenic factor thrombospondin 1 (Tsp-1) and decreased expression of two critical pro-angiogenic factors, vascular endothelial growth factor A (VEGF-A), and VEGF-C. These findings demonstrate MDSC as a critical anti-angiogenic regulator during transplantation. Our study also indicates that evMDSC are a valuable candidate agent for development of novel cell therapy to improve allograft survival after transplantation.
Collapse
Affiliation(s)
- Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaonan Dong
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jianing Feng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yingqian Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Liwei Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Qinghua Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Mengbo Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
18
|
Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O'Neil A, Athan E, Carvalho A, Maes M, Walder K, Berk M. Preventing the development of severe COVID-19 by modifying immunothrombosis. Life Sci 2021; 264:118617. [PMID: 33096114 PMCID: PMC7574725 DOI: 10.1016/j.lfs.2020.118617] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND COVID-19-associated acute respiratory distress syndrome (ARDS) is associated with significant morbidity and high levels of mortality. This paper describes the processes involved in the pathophysiology of COVID-19 from the initial infection and subsequent destruction of type II alveolar epithelial cells by SARS-CoV-2 and culminating in the development of ARDS. MAIN BODY The activation of alveolar cells and alveolar macrophages leads to the release of large quantities of proinflammatory cytokines and chemokines and their translocation into the pulmonary vasculature. The presence of these inflammatory mediators in the vascular compartment leads to the activation of vascular endothelial cells platelets and neutrophils and the subsequent formation of platelet neutrophil complexes. These complexes in concert with activated endothelial cells interact to create a state of immunothrombosis. The consequence of immunothrombosis include hypercoagulation, accelerating inflammation, fibrin deposition, migration of neutrophil extracellular traps (NETs) producing neutrophils into the alveolar apace, activation of the NLRP3 inflammazome, increased alveolar macrophage destruction and massive tissue damage by pyroptosis and necroptosis Therapeutic combinations aimed at ameliorating immunothrombosis and preventing the development of severe COVID-19 are discussed in detail.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | | | - Lisa Olive
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; School of Psychology, Deakin University, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Melbourne School of Population and Global Health, Melbourne, Australia
| | - Eugene Athan
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Barwon Health, Geelong, Australia
| | - Andre Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
19
|
The Anti-Inflammatory Role of Bilirubin on "Two-Hit" Sepsis Animal Model. Int J Mol Sci 2020; 21:ijms21228650. [PMID: 33212789 PMCID: PMC7697656 DOI: 10.3390/ijms21228650] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction: Bilirubin is a product of the heme catabolism pathway, and it is excreted in bile and removed from the body through the urine. Bilirubin has potent antioxidant properties but also plays a role in anti-inflammation by protecting the body against endotoxin-induced lung inflammation, down-regulating the expression of adhesion molecules, and inhibiting the infiltration of inflammatory cells. Thus, bilirubin is a promising agent that could use in inflammation disease treatment. The application of bilirubin on the “two-hit” sepsis animal model has been, to date, unknown. Methods: we used lipopolysaccharide to induce initial insults in C57BL/6 mice. After 24 h, mice underwent cecal ligation and puncture to induce the “two-hit” sepsis model. Next, mice were administered 30 mg/kg bilirubin and we observed an improvement. Results: We observed that bilirubin inhibited the expression of pro-inflammatory cytokines, while the levels of anti-inflammatory cytokines were significantly augmented in the lung. Bilirubin improved the survival rate in the sepsis model. Furthermore, we suggest that bilirubin can modulate the accumulation of T-regulatory cells and myeloid-derived suppressor cells. Notably, bilirubin suppressed the activation and functions of T-cells. Conclusions: These results clarified that bilirubin might improve tissue injury in sepsis through anti-inflammatory mechanisms.
Collapse
|
20
|
Niitsuma S, Kudo H, Kikuchi A, Hayashi T, Kumakura S, Kobayashi S, Okuyama Y, Kumagai N, Niihori T, Aoki Y, So T, Funayama R, Nakayama K, Shirota M, Kondo S, Kagami S, Tsukaguchi H, Iijima K, Kure S, Ishii N. Biallelic variants/mutations of IL1RAP in patients with steroid-sensitive nephrotic syndrome. Int Immunol 2020; 32:283-292. [PMID: 31954058 DOI: 10.1093/intimm/dxz081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Nephrotic syndrome (NS) is a renal disease characterized by severe proteinuria and hypoproteinemia. Although several single-gene mutations have been associated with steroid-resistant NS, causative genes for steroid-sensitive NS (SSNS) have not been clarified. While seeking to identify causative genes associated with SSNS by whole-exome sequencing, we found compound heterozygous variants/mutations (c.524T>C; p.I175T and c.662G>A; p.R221H) of the interleukin-1 receptor accessory protein (IL1RAP) gene in two siblings with SSNS. The siblings' parents are healthy, and each parent carries a different heterozygous IL1RAP variant/mutation. Since IL1RAP is a critical subunit of the functional interleukin-1 receptor (IL-1R), we investigated the effect of these variants on IL-1R subunit function. When stimulated with IL-1β, peripheral blood mononuclear cells from the siblings with SSNS produced markedly lower levels of cytokines compared with cells from healthy family members. Moreover, IL-1R with a variant IL1RAP subunit, reconstituted on a hematopoietic cell line, had impaired binding ability and low reactivity to IL-1β. Thus, the amino acid substitutions in IL1RAP found in these NS patients are dysfunctional variants/mutations. Furthermore, in the kidney of Il1rap-/- mice, the number of myeloid-derived suppressor cells, which require IL-1β for their differentiation, was markedly reduced although these mice did not show significantly increased proteinuria in acute nephrotic injury with lipopolysaccharide treatment. Together, these results identify two IL1RAP variants/mutations in humans for the first time and suggest that IL1RAP might be a causative gene for familial NS.
Collapse
Affiliation(s)
- Sou Niitsuma
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan.,Department of Pediatrics, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Hiroki Kudo
- Department of Pediatrics, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Takaya Hayashi
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Satoshi Kumakura
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan.,Department of Nephrology, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Shuhei Kobayashi
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Yuko Okuyama
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Naonori Kumagai
- Department of Pediatrics, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuji Kondo
- Department of Pediatrics, Tokushima University Graduate School, Tokushima, Japan.,Department of Pediatrics, NHO Shikoku Medical Center for Children and Adults, Zentsuji, Japan
| | - Shoji Kagami
- Department of Pediatrics, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroyasu Tsukaguchi
- Second Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shigeo Kure
- Department of Pediatrics, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan
| |
Collapse
|
21
|
Li Y, Li N, Liu J, An X. Gr-1 highLy6G +Myeloid-derived suppressor cells and their role in a murine model of non-alcoholic steatohepatitis. Am J Transl Res 2020; 12:2827-2842. [PMID: 32655813 PMCID: PMC7344062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIM Myeloid-derived suppressor cells are a heterogeneous cell population that expand during several pathogenic conditions. However, their role in non-alcoholic steatohepatitis remains unclear. This study aimed to examine the systemic effects of myeloid-derived suppressor cells, to determine the role of Gr-1highLy6G+MDSCs and their correlation with the CXCL12/CXCR4 axis in non-alcoholic steatohepatitis. METHODS We established a non-alcoholic steatohepatitis model and detected inflammatory factors IL-6, PGE2, and INF-γ, using an enzyme-linked immunosorbent assay. Proportions of lymphocyte subsets in peripheral blood, CD11b+Gr-1+myeloid-derived suppressor cells and its subsets in the blood, spleen, liver, and bone marrow were identified using flow cytometry. Adoptive transfer and depletion experiments for MDSCs were performed. Immunohistochemistry, migration assays, and in vivo experiments were used to analyze the role of CXCL12/CXCR4 in non-alcoholic steatohepatitis. RESULTS The proportion of CD11b+Gr-1+MDSCs changed in the bone marrow, spleen, blood, and liver in the non-alcoholic steatohepatitis model. CD4+ and CD8+ T lymphocytes were significantly reduced in non-alcoholic steatohepatitis. Compared with control mice, a significant decrease in ALT and AST levels was observed in Gr-1highLy6G+MDSCs-treated model mice. The migration ability of AMD3100-treated MDSCs was significantly reduced, but was restored as CXCL12 levels increased. CXCL12 and CXCR4 protein levels increased significantly in the non-alcoholic steatohepatitis livers. CONCLUSIONS Exogenous Gr-1highLy6G+MDSCs improved liver function during non-alcoholic steatohepatitis. The CXCR4/CXCL12 axis could be the key pathway mediating the attraction of myeloid-derived suppressor cells into the non-alcoholic steatohepatitis environment in mice.
Collapse
Affiliation(s)
- Yue Li
- Department of Gastroenterology, First Hospital of Shanxi Medical UniversityTaiyuan, Shanxi, P. R. China
- Shanxi Medical UniversityTaiyuan, Shanxi, P. R. China
| | - Ning Li
- Department of Pathology, First Hospital of Shanxi Medical UniversityTaiyuan, Shanxi, P. R. China
| | - Jinchun Liu
- Department of Gastroenterology, First Hospital of Shanxi Medical UniversityTaiyuan, Shanxi, P. R. China
| | - Xiuqin An
- Shanxi Medical UniversityTaiyuan, Shanxi, P. R. China
| |
Collapse
|
22
|
Islam J, Lee HJ, Yang SH, Kim DK, Joo KW, Kim YS, Seo SU, Seong SY, Lee DS, Youn JI, Han SS. Expansion of Myeloid-Derived Suppressor Cells Correlates with Renal Progression in Type 2 Diabetic Nephropathy. Immune Netw 2020; 20:e18. [PMID: 32395370 PMCID: PMC7192828 DOI: 10.4110/in.2020.20.e18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 01/04/2023] Open
Abstract
Type 2 diabetic nephropathy (T2DN) progresses with an increasingly inflammatory milieu, wherein various immune cells are relevant. Herein, we investigated the levels of myeloid-derived suppressor cells (MDSCs) and their clinical implication in patients with T2DN. A total of 91 subjects (T2DN, n=80; healthy, n=11) were recruited and their PBMCs were used for flow cytometric analysis of polymorphonuclear (PMN-) and monocytic (M-) MDSCs, in addition to other immune cell subsets. The risk of renal progression was evaluated according to the quartiles of MDSC levels using the Cox model. The proportion of MDSCs in T2DN patients was higher than in healthy individuals (median, 6.7% vs. 2.5%). PMN-MDSCs accounted for 96% of MDSCs, and 78% of PMN-MDSCs expressed Lox-1. The expansion of PMN-MDSCs was not related to the stage of T2DN or other kidney disease parameters such as glomerular filtration rate and proteinuria. The production of ROS in PMN-MDSCs of patients was higher than in neutrophils of patients or in immune cells of healthy individuals, and this production was augmented under hyperglycemic conditions. The 4th quartile group of PMN-MDSCs had a higher risk of renal progression than the 1st quartile group, irrespective of adjusting for multiple clinical and laboratory variables. In conclusion, PMN-MDSCs are expanded in patients with T2DN, and may represent as an immunological biomarker of renal progression.
Collapse
Affiliation(s)
- Jahirul Islam
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hack June Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.,Kidney Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.,Kidney Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Yon Su Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.,Kidney Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Sang-Uk Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Korea
| | - Seung-Yong Seong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Je-In Youn
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Korea.,Research Institute, ProGen Inc., Seongnam 13488, Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.,Kidney Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
23
|
Chen SMY, Krinsky AL, Woolaver RA, Wang X, Chen Z, Wang JH. Tumor immune microenvironment in head and neck cancers. Mol Carcinog 2020; 59:766-774. [PMID: 32017286 DOI: 10.1002/mc.23162] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancers are a heterogeneous group of tumors that are highly aggressive and collectively represent the sixth most common cancer worldwide. Ninety percent of head and neck cancers are squamous cell carcinomas (HNSCCs). The tumor microenvironment (TME) of HNSCCs consists of many different subsets of cells that infiltrate the tumors and interact with the tumor cells or with each other through various networks. Both innate and adaptive immune cells play a crucial role in mediating immune surveillance and controlling tumor growth. Here, we discuss the different subsets of immune cells and how they contribute to an immunosuppressive TME of HNSCCs. We also briefly summarize recent advances in immunotherapeutic approaches for HNSCC treatment. A better understanding of the multiple factors that play pivotal roles in HNSCC tumorigenesis and tumor progression may help define novel targets to develop more effective immunotherapies for patients with HNSCC.
Collapse
Affiliation(s)
- Samantha M Y Chen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alexandra L Krinsky
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xiaoguang Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Zhangguo Chen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jing H Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
24
|
Jimenez RV, Kuznetsova V, Connelly AN, Hel Z, Szalai AJ. C-Reactive Protein Promotes the Expansion of Myeloid Derived Cells With Suppressor Functions. Front Immunol 2019; 10:2183. [PMID: 31620123 PMCID: PMC6759522 DOI: 10.3389/fimmu.2019.02183] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/29/2019] [Indexed: 01/18/2023] Open
Abstract
Previously we established that human C-reactive protein (CRP) exacerbates mouse acute kidney injury and that the effect was associated with heightened renal accumulation of myeloid derived cells with suppressor functions (MDSC). Herein we provide direct evidence that CRP modulates the development and suppressive actions of MDSCs in vitro. We demonstrate that CRP dose-dependently increases the generation of MDSC from wild type mouse bone marrow progenitors and enhances MDSC production of intracellular reactive oxygen species (iROS). When added to co-cultures, CRP significantly enhanced the ability of MDSCs to suppress CD3/CD28-stimulated T cell proliferation. Experiments using MDSCs from FcγRIIB deficient mice (FcγRIIB-/-) showed that CRP's ability to expand MDSCs and trigger their increased production of iROS was FcγRIIB-independent, whereas its ability to enhance the MDSC T cell suppressive action was FcγRIIB-dependent. Importantly, CRP also enabled freshly isolated primary human neutrophils to suppress proliferation of autologous T cells. These findings suggest that CRP might be an endogenous regulator of MDSC numbers and actions in vivo.
Collapse
Affiliation(s)
- Rachel V Jimenez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Valeriya Kuznetsova
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashley N Connelly
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander J Szalai
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
25
|
Perfilyeva YV, Abdolla N, Ostapchuk YO, Tleulieva R, Krasnoshtanov VC, Perfilyeva AV, Belyaev NN. Chronic Inflammation Contributes to Tumor Growth: Possible Role of L-Selectin-Expressing Myeloid-Derived Suppressor Cells (MDSCs). Inflammation 2019; 42:276-289. [PMID: 30251217 DOI: 10.1007/s10753-018-0892-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent data have demonstrated that chronic inflammation is a crucial component of tumor initiation and progression. We previously reported that immature myeloid-derived suppressor cells (MDSCs) with immunosuppressive activity toward effector T cells were expanded in experimental chronic inflammation. We hypothesized that elevated levels of MDSCs, induced by chronic inflammation, may contribute to the progression of tumor growth. Using the Ehrlich carcinoma animal model, we found increased tumor growth in mice with chronic adjuvant arthritis, which was accompanied by a persistent increase in the proportion of splenic monocytic and granulocytic MDSCs expressing CD62L (L-selectin), when compared to tumor mice without adjuvant arthritis. Depletion of inflammation-induced MDSCs resulted in decreased tumor growth. In vitro studies demonstrated that increased expression of CD62L by MDSCs was mediated by TNFα, elevated concentrations of which were found in tumor mice subjected to chronic inflammation. Moreover, the addition of exogenous TNFα markedly enhanced the suppressive activity of bone marrow-derived MDSCs, as revealed by the ability to impair the proliferation of CD8+ T cells in vitro. This study provides evidence that chronic inflammation may promote tumor growth via induction of CD62L expression by MDSCs that can facilitate their migration to tumor and lymph nodes and modulation of their suppressor activity.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan.
| | - Nurshat Abdolla
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan.,Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Yekaterina O Ostapchuk
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Raikhan Tleulieva
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | - Anastassiya V Perfilyeva
- Institute of General Genetics and Cytology, Laboratory of Molecular Genetics, Almaty, Kazakhstan
| | | |
Collapse
|
26
|
Liu Q, Wang X, Liu X, Kumar S, Gochman G, Ji Y, Liao YP, Chang CH, Situ W, Lu J, Jiang J, Mei KC, Meng H, Xia T, Nel AE. Use of Polymeric Nanoparticle Platform Targeting the Liver To Induce Treg-Mediated Antigen-Specific Immune Tolerance in a Pulmonary Allergen Sensitization Model. ACS NANO 2019; 13:4778-4794. [PMID: 30964276 PMCID: PMC6506187 DOI: 10.1021/acsnano.9b01444] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Nanoparticles (NPs) can be used to accomplish antigen-specific immune tolerance in allergic and autoimmune disease. The available options for custom-designing tolerogenic NPs include the use of nanocarriers that introduce antigens into natural tolerogenic environments, such as the liver, where antigen presentation promotes tolerance to self- or foreign antigens. Here, we demonstrate the engineering of a biodegradable polymeric poly(lactic- co-glycolic acid) (PLGA) nanocarrier for the selective delivery of the murine allergen, ovalbumin (OVA), to the liver. This was accomplished by developing a series of NPs in the 200-300 nm size range as well as decorating particle surfaces with ligands that target scavenger and mannose receptors on liver sinusoidal endothelial cells (LSECs). LSECs represent a major antigen-presenting cell type in the liver capable of generating regulatory T-cells (Tregs). In vitro exposure of LSECs to NPOVA induced abundant TGF-β, IL-4, and IL-10 production, which was further increased by surface ligands. Animal experiments showed that, in the chosen size range, NPOVA was almost exclusively delivered to the liver, where the colocalization of fluorescent-labeled particles with LSECs could be seen to increase by surface ligand decoration. Moreover, prophylactic treatment with NPOVA in OVA-sensitized and challenged animals (aerosolized inhalation) could be seen to significantly suppress anti-OVA IgE responses, airway eosinophilia, and TH2 cytokine production in the bronchoalveolar lavage fluid. The suppression of allergic airway inflammation was further enhanced by attachment of surface ligands, particularly for particles decorated with the ApoB peptide, which induced high levels of TGF-β production in the lung along with the appearance of Foxp3+ Tregs. The ApoB-peptide-coated NPs could also interfere in allergic airway inflammation when delivered postsensitization. The significance of these findings is that liver and LSEC targeting PLGA NPs could be used for therapy of allergic airway disease, in addition to the potential of using their tolerogenic effects for other disease applications.
Collapse
Affiliation(s)
- Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiangsheng Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Sanjan Kumar
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Grant Gochman
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Ying Ji
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Pei Liao
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Wesley Situ
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jianqin Lu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jinhong Jiang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Kuo-Ching Mei
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Huan Meng
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andre E. Nel
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol 2019; 15:144-158. [PMID: 30692665 DOI: 10.1038/s41581-019-0110-2] [Citation(s) in RCA: 550] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Macrophages have important roles in immune surveillance and in the maintenance of kidney homeostasis; their response to renal injury varies enormously depending on the nature and duration of the insult. Macrophages can adopt a variety of phenotypes: at one extreme, M1 pro-inflammatory cells contribute to infection clearance but can also promote renal injury; at the other extreme, M2 anti-inflammatory cells have a reparative phenotype and can contribute to the resolution phase of the response to injury. In addition, bone marrow monocytes can differentiate into myeloid-derived suppressor cells that can regulate T cell immunity in the kidney. However, macrophages can also promote renal fibrosis, a major driver of progression to end-stage renal disease, and the CD206+ subset of M2 macrophages is strongly associated with renal fibrosis in both human and experimental diseases. Myofibroblasts are important contributors to renal fibrosis and recent studies provide evidence that macrophages recruited from the bone marrow can transition directly into myofibroblasts within the injured kidney. This process is termed macrophage-to-myofibroblast transition (MMT) and is driven by transforming growth factor-β1 (TGFβ1)-Smad3 signalling via a Src-centric regulatory network. MMT may serve as a key checkpoint for the progression of chronic inflammation into pathogenic fibrosis.
Collapse
|
28
|
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immunosuppressive cells of the myeloid lineage upregulated by mediators of inflammation, such as IL-2, granulocyte colony-stimulating factor, and S100A8/A9. These cells have been studied extensively by tumor biologists. Because of their robust immunosuppressive potential, MDSCs have stirred recent interest among transplant immunologists as well. MDSCs inhibit T-cell responses through, among other mechanisms, the activity of arginase-1 and inducible nitric oxide synthase, and the expansion of T regulatory cells. In the context of transplantation, MDSCs have been studied in several animal models, and to a lesser degree in humans. Here, we will review the immunosuppressive qualities of this important cell type and discuss the relevant studies of MDSCs in transplantation. It may be possible to exploit the immunosuppressive capacity of MDSCs for the benefit of transplant patients.
Collapse
|
29
|
Sendo S, Saegusa J, Morinobu A. Myeloid-derived suppressor cells in non-neoplastic inflamed organs. Inflamm Regen 2018; 38:19. [PMID: 30237829 PMCID: PMC6139938 DOI: 10.1186/s41232-018-0076-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are a highly heterogeneous population of immature myeloid cells with immunosuppressive function. Although their function in tumor-bearing conditions is well studied, less is known about the role of MDSCs in various organs under non-neoplastic inflammatory conditions. MAIN BODY MDSCs are divided into two subpopulations, G-MDSCs and M-MDSCs, and their distribution varies between organs. MDSCs negatively control inflammation in inflamed organs such as the lungs, joints, liver, kidneys, intestines, central nervous system (CNS), and eyes by suppressing T cells and myeloid cells. MDSCs also regulate fibrosis in the lungs, liver, and kidneys and help repair CNS injuries. MDSCs in organs are plastic and can differentiate into osteoclasts and tolerogenic dendritic cells according to the microenvironment under non-neoplastic inflammatory conditions. CONCLUSION This article summarizes recent findings about MDSCs under inflammatory conditions, especially with respect to their function and differentiation in specific organs.
Collapse
Affiliation(s)
- Sho Sendo
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Jun Saegusa
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
- Division of Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Akio Morinobu
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| |
Collapse
|
30
|
Tammaro A, Florquin S, Brok M, Claessen N, Butter LM, Teske GJD, de Boer OJ, Vogl T, Leemans JC, Dessing MC. S100A8/A9 promotes parenchymal damage and renal fibrosis in obstructive nephropathy. Clin Exp Immunol 2018; 193:361-375. [PMID: 29746703 PMCID: PMC6150262 DOI: 10.1111/cei.13154] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Despite advances in our understanding of the mechanisms underlying the progression of chronic kidney disease and the development of fibrosis, only limited efficacious therapies exist. The calcium binding protein S100A8/A9 is a damage-associated molecular pattern which can activate Toll-like receptor (TLR)-4 or receptor for advanced glycation end-products (RAGE). Activation of these receptors is involved in the progression of renal fibrosis; however, the role of S100A8/A9 herein remains unknown. Therefore, we analysed S100A8/A9 expression in patients and mice with obstructive nephropathy and subjected wild-type and S100A9 knock-out mice lacking the heterodimer S100A8/A9 to unilateral ureteral obstruction (UUO). We found profound S100A8/A9 expression in granulocytes that infiltrated human and murine kidney, together with enhanced renal expression over time, following UUO. S100A9 KO mice were protected from UUO-induced renal fibrosis, independently of leucocyte infiltration and inflammation. Loss of S100A8/A9 protected tubular epithelial cells from UUO-induced apoptosis and critical epithelial-mesenchymal transition steps. In-vitro studies revealed S100A8/A9 as a novel mediator of epithelial cell injury through loss of cell polarity, cell cycle arrest and subsequent cell death. In conclusion, we demonstrate that S100A8/A9 mediates renal damage and fibrosis, presumably through loss of tubular epithelial cell contacts and irreversible damage. Suppression of S100A8/A9 could be a therapeutic strategy to halt renal fibrosis in patients with chronic kidney disease.
Collapse
Affiliation(s)
- A. Tammaro
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - S. Florquin
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - M. Brok
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - N. Claessen
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - L. M. Butter
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - G. J. D. Teske
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - O. J. de Boer
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - T. Vogl
- Institute of ImmunologyUniversity of MünsterMünsterGermany
| | - J. C. Leemans
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - M. C. Dessing
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
31
|
Mo JF, Wu JY, Zheng L, Yu YW, Zhang TX, Guo L, Bao Y. Therapeutic efficacy of polydatin for nonalcoholic fatty liver disease via regulating inflammatory response in obese mice. RSC Adv 2018; 8:31194-31200. [PMID: 35548751 PMCID: PMC9085635 DOI: 10.1039/c8ra05915b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022] Open
Abstract
Polydatin (PD), a natural precursor of resveratrol, has been used to treat several diseases, such as cardiovascular diseases, hepatic diseases and various cancers. In this study, we aimed to investigate the protective effects and underlying mechanisms of PD on non-alcoholic fatty liver disease (NAFLD) using a high fat induced obese mice model. The studied subjects were randomly divided into a lean group, a high fat diet (HFD) group, and a high fat diet with PD (HFD + PD) group. The results showed that PD reduced the body weights in HFD mice. PD also downregulated the serum levels of triglyceride (TG), low density lipoprotein (LDL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and upregulated high density lipoprotein (HDL). Moreover, PD significantly alleviated hepatocyte steatosis and reduced Gr-1+ cells in the liver tissues of HFD mice. The mRNA levels of pro-inflammatory factors, such as monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), S100A8 and S100A9 were significantly decreased in the liver tissues of HFD mice with PD treatment, and the downregulation of MCP-1 and S100A9 protein expressions was also observed. In conclusion, PD had beneficial roles in suppressing lipid accumulation in hepatocytes and anti-inflammatory responses in the liver tissue of obese associated NAFLD.
Collapse
Affiliation(s)
- Juan-Fen Mo
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| | - Jia-Yuan Wu
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| | - Li Zheng
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| | - Ya-Wei Yu
- Department of Pathology, The Second Affiliated Hospital of Jiaxing University Jiaxing Zhejiang 314000 China
| | - Tian-Xin Zhang
- Clinical Laboratory, The Second Affiliated Hospital of Jiaxing University Jiaxing Zhejiang 314000 China
| | - Li Guo
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| | - Yi Bao
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| |
Collapse
|
32
|
Salminen A, Kaarniranta K, Kauppinen A. Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): Impact on cancer and age-related chronic inflammatory disorders. Int Immunopharmacol 2018; 61:231-240. [DOI: 10.1016/j.intimp.2018.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
|
33
|
Song P, Zhang J, Zhang Y, Shu Z, Xu P, He L, Yang C, Zhang J, Wang H, Li Y, Li Q. Hepatic recruitment of CD11b+Ly6C+ inflammatory monocytes promotes hepatic ischemia/reperfusion injury. Int J Mol Med 2017; 41:935-945. [PMID: 29251315 PMCID: PMC5752159 DOI: 10.3892/ijmm.2017.3315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/24/2017] [Indexed: 01/09/2023] Open
Abstract
Monocytes infiltrate damaged liver tissue during noninfectious liver injury and often have dual roles, perpetuating inflammation and promoting resolution of inflammation and fibrosis. However, how monocyte subsets distribute and are differentially recruited in the liver remain unclear. In the current study, the subpopulations of infiltrating monocytes were examined following liver ischemia/reperfusion (I/R) injury in mice using flow cytometry. CD11b+Ly6C high (Ly6Chi) cells (inflammatory monocytes) and CD11b+Ly6C low cells (reparative monocytes) were recruited into the liver following I/R injury. Treatment with clodronate-loaded liposomes, which transiently deplete systemic macrophages, alleviated hepatic damage. Mice genetically deficient in C-C motif chemokine ligand 2 (CCL2), or its receptor C-C chemokine receptor 2 (CCR2), exhibited diminished hepatic damage compared with wild-type mice following I/R, by controlling intrahepatic inflammatory Ly6Chi monocyte accumulation. In addition, the CCR2 specific inhibitor RS504393 alleviated hepatic I/R injury. The results suggest that the CCR2/ CCL2 axis an important role in monocyte infiltration and may represent a novel target for the treatment of liver I/R injury.
Collapse
Affiliation(s)
- Peng Song
- Department of Vascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033 P.R. China
| | - Junbin Zhang
- Department of Emergency Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033 P.R. China
| | - Yunwei Zhang
- Department of Emergency Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033 P.R. China
| | - Zhiping Shu
- Department of Nuclear Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033 P.R. China
| | - Peng Xu
- Department of Emergency Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033 P.R. China
| | - Long He
- Department of Clinical Laboratory, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033 P.R. China
| | - Chao Yang
- Department of Vascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033 P.R. China
| | - Jinxiang Zhang
- Department of Emergency Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033 P.R. China
| | - Hui Wang
- Department of Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033 P.R. China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033 P.R. China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033 P.R. China
| |
Collapse
|
34
|
Dhana E, Ludwig-Portugall I, Kurts C. Role of immune cells in crystal-induced kidney fibrosis. Matrix Biol 2017; 68-69:280-292. [PMID: 29221812 DOI: 10.1016/j.matbio.2017.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
Chronic kidney diseases can lead to kidney fibrosis, which can be considered a futile attempt of tissue healing to replaces functional kidney tissue with connective tissue, basically forming a scar. Chronic inflammation is a frequent cause of kidney fibrosis. Classical as well as recently discovered immune cell subsets and their molecular mediators have been intensively investigated for their contribution to kidney fibrosis and their potential as therapeutic targets. Here we review the current knowledge about the role of immune cells in crystal-induced renal fibrosis.
Collapse
Affiliation(s)
- Ermanila Dhana
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
| | | | - Christian Kurts
- Institute of Experimental Immunology, University Bonn, Bonn, Germany.
| |
Collapse
|
35
|
Micewicz ED, Kim K, Iwamoto KS, Ratikan JA, Cheng G, Boxx GM, Damoiseaux RD, Whitelegge JP, Ruchala P, Nguyen C, Purbey P, Loo J, Deng G, Jung ME, Sayre JW, Norris AJ, Schaue D, McBride WH. 4-(Nitrophenylsulfonyl)piperazines mitigate radiation damage to multiple tissues. PLoS One 2017; 12:e0181577. [PMID: 28732024 PMCID: PMC5521796 DOI: 10.1371/journal.pone.0181577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/03/2017] [Indexed: 01/08/2023] Open
Abstract
Our ability to use ionizing radiation as an energy source, as a therapeutic agent, and, unfortunately, as a weapon, has evolved tremendously over the past 120 years, yet our tool box to handle the consequences of accidental and unwanted radiation exposure remains very limited. We have identified a novel group of small molecule compounds with a 4-nitrophenylsulfonamide (NPS) backbone in common that dramatically decrease mortality from the hematopoietic acute radiation syndrome (hARS). The group emerged from an in vitro high throughput screen (HTS) for inhibitors of radiation-induced apoptosis. The lead compound also mitigates against death after local abdominal irradiation and after local thoracic irradiation (LTI) in models of subacute radiation pneumonitis and late radiation fibrosis. Mitigation of hARS is through activation of radiation-induced CD11b+Ly6G+Ly6C+ immature myeloid cells. This is consistent with the notion that myeloerythroid-restricted progenitors protect against WBI-induced lethality and extends the possible involvement of the myeloid lineage in radiation effects. The lead compound was active if given to mice before or after WBI and had some anti-tumor action, suggesting that these compounds may find broader applications to cancer radiation therapy.
Collapse
Affiliation(s)
- Ewa D. Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Kwanghee Kim
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Josephine A. Ratikan
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Gayle M. Boxx
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Robert D. Damoiseaux
- Molecular Screening Shared Resource, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Piotr Ruchala
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Christine Nguyen
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Prabhat Purbey
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Joseph Loo
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Gang Deng
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Michael E. Jung
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - James W. Sayre
- School of Public Health, Biostatistics and Radiology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Andrew J. Norris
- BCN Biosciences, LLC, Pasadena, California, United States of America
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - William H. McBride
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
36
|
Tamadaho RSE, Hoerauf A, Layland LE. Immunomodulatory effects of myeloid-derived suppressor cells in diseases: Role in cancer and infections. Immunobiology 2017; 223:432-442. [PMID: 29246400 DOI: 10.1016/j.imbio.2017.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 06/05/2017] [Accepted: 07/02/2017] [Indexed: 01/05/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous cells capable of abrogating T and B cells responses and have been identified in numerous cancers. As with other regulatory cell populations, they aim to maintain balance between host-defence-associated inflammation and ensuing tissue pathology. MDSC accumulation and/or activation involve several growth factors and cytokines including Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) and Interleukin (IL)-6 and suppression has been linked to receptors such as IL-4Rα. Other immune pathways, such as Toll-like receptors (TLRs) have also been shown to interfere in MDSC activity adding to the complexity in clarifying their pathways. Monocytic- (Mo-MDSCs) and polymorphonuclear- (PMN-MDSCs) cells are two subsets of MDSCs that have been well characterized and have been shown to function through different mechanisms although both appear to require nitric oxide. In human and murine model settings, MDSCs have been shown to have inhibitory effects on T cell responses during bacterial, parasitic and viral pathologies and an increase of MDSC numbers has been associated with pathological conditions. Interestingly, the environment impacts on MDSC activity and regulatory T cells (Tregs), mast cells and a few cells that may help MDSC in order to regulate immune responses. Since the majority of pioneering data on MDSCs has stemmed from research on malignancies, this review will summarize MDSC biology and function in cancer and highlight current knowledge about these cells during infectious pathologies as well.
Collapse
Affiliation(s)
- Ruth S E Tamadaho
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| | - Laura E Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
37
|
Expansion of CD11b+Ly6Ghigh and CD11b+CD49d+ myeloid cells with suppressive potential in mice with chronic inflammation and light-at-night-induced circadian disruption. Inflamm Res 2017; 66:711-724. [DOI: 10.1007/s00011-017-1052-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/24/2017] [Accepted: 04/22/2017] [Indexed: 12/20/2022] Open
|
38
|
A Novel CD48-Based Analysis of Sepsis-Induced Mouse Myeloid-Derived Suppressor Cell Compartments. Mediators Inflamm 2017; 2017:7521701. [PMID: 28337051 PMCID: PMC5346402 DOI: 10.1155/2017/7521701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/10/2017] [Indexed: 12/27/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous subset of cells that expands dramatically in many disease states and can suppress T-cell responses. MDSCs mainly include monocytic and granulocytic subpopulations that can be distinguished in mice by the expression of Ly6G and Ly6C cell surface markers. This identification system has been validated in experimental tumor models, but not in models of inflammation-associated conditions such as sepsis. We challenged growth factor independent 1 transcription repressor green fluorescent protein (Gfi1:GFP) knock-in reporter mice with cecal ligation and puncture surgery and found that CD11b+Ly6GlowLy6Chigh MDSCs in this sepsis model comprised both monocytic and granulocytic MDSCs. The evidence that conventional Ly6G/Ly6C marker analysis may not be suited to study of inflammation-induced MDSCs led to the development of a novel strategy of distinguishing granulocytic MDSCs from monocytic MDSCs in septic mice by expression of CD48. Application of this novel model should help achieve a more accurate understanding of the inflammation-induced MDSC activity.
Collapse
|
39
|
Du Plessis N, Jacobs R, Gutschmidt A, Fang Z, van Helden PD, Lutz MB, Hesseling AC, Walzl G. Phenotypically resembling myeloid derived suppressor cells are increased in children with HIV and exposed/infected with Mycobacterium tuberculosis. Eur J Immunol 2017; 47:107-118. [PMID: 27861788 PMCID: PMC5233566 DOI: 10.1002/eji.201646658] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Increased disease susceptibility during early life has been linked to immune immaturity, regulatory T-cell/TH2 immune biasing and hyporesponsiveness. The contribution of myeloid derived suppressor cells (MDSCs) remains uninvestigated. Here, we assessed peripheral MDSC in HIV-infected and -uninfected children with tuberculosis (TB) disease before, during and after TB treatment, along with matched household contacts (HHCs), HIV-exposed, -infected and -uninfected children without recent TB exposure. Serum analytes and enzymes associated with MDSC accumulation/activation/function were measured by colorimetric- and fluorescence arrays. Peripheral frequencies of cells phenotypically resembling MDSCs were significantly increased in HIV-exposed uninfected (HEU) and M.tb-infected children, but peaked in children with TB disease and remained high following treatment. MDSC in HIV-infected (HI) children were similar to unexposed uninfected controls; however, HAART-mediated MDSC restoration to control levels could not be disregarded. Increased MDSC frequencies in HHC coincided with enhanced indoleamine-pyrrole-2,3-dioxygenase (IDO), whereas increased MDSC in TB cases were linked to heightened IDO and arginase-1. Increased MDSC were paralleled by reduced plasma IP-10 and thrombospondin-2 levels in HEU and significantly increased plasma IL-6 in HI HHC. Current investigations into MDSC-targeted treatment strategies, together with functional analyses of MDSCs, could endorse these cells as novel innate immune regulatory mechanism of infant HIV/TB susceptibility.
Collapse
Affiliation(s)
- Nelita Du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ruschca Jacobs
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Andrea Gutschmidt
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Zhuo Fang
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Paul D van Helden
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Manfred B Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
40
|
Perobelli SM, Mercadante ACT, Galvani RG, Gonçalves-Silva T, Alves APG, Pereira-Neves A, Benchimol M, Nóbrega A, Bonomo A. G-CSF-Induced Suppressor IL-10+ Neutrophils Promote Regulatory T Cells That Inhibit Graft-Versus-Host Disease in a Long-Lasting and Specific Way. THE JOURNAL OF IMMUNOLOGY 2016; 197:3725-3734. [PMID: 27707998 DOI: 10.4049/jimmunol.1502023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/06/2016] [Indexed: 01/13/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is the main complication of allogeneic hematopoietic stem cell transplantation, and many efforts have been made to overcome this important limitation. We showed previously that G-CSF treatment generates low-density splenic granulocytes that inhibit experimental aGVHD. In this article, we show that aGVHD protection relies on incoming IL-10+ neutrophils from G-CSF-treated donor spleen (G-Neutrophils). These G-Neutrophils have high phagocytic capacity, high peroxide production, low myeloperoxidase activity, and low cytoplasmic granule content, which accounts for their low density. Furthermore, they have low expression of MHC class II, costimulatory molecules, and low arginase1 expression. Also, they have low IFN-γ, IL-17F, IL-2, and IL-12 levels, with increased IL-10 production and NO synthase 2 expression. These features are in accordance with the modulatory capacity of G-Neutrophils on regulatory T cell (Treg) generation. In vivo, CD25+ Treg depletion shortly after transplantation with splenic cells from G-CSF-treated donors blocks suppression of aGVHD, suggesting Treg involvement in the protection induced by the G-Neutrophils. The immunocompetence and specificity of the semiallogeneic T cells, long-term after the bone marrow transplant using G-Neutrophils, were confirmed by third-party skin graft rejection; importantly, a graft-versus-leukemia assay showed that T cell activity was maintained, and all of the leukemic cells were eliminated. We conclude that G-CSF treatment generates a population of activated and suppressive G-Neutrophils that reduces aGVHD in an IL-10- and Treg-dependent manner, while maintaining immunocompetence and the graft versus leukemia effect.
Collapse
Affiliation(s)
- Suelen Martins Perobelli
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.,Divisão de Medicina Experimental, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.,Laboratório de Pesquisa Sobre o Timo, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | | | - Rômulo Gonçalves Galvani
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.,Divisão de Medicina Experimental, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.,Laboratório de Pesquisa Sobre o Timo, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Triciana Gonçalves-Silva
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.,Divisão de Medicina Experimental, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.,Laboratório de Pesquisa Sobre o Timo, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Ana Paula Gregório Alves
- Divisão de Medicina Experimental, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil
| | - Antonio Pereira-Neves
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.,Departamento de Microbiologia, FIOCRUZ Pernambuco, Pernambuco 50670-420, Brazil
| | - Marlene Benchimol
- Universidade do Grande, Rio de Janeiro 25071-202, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem da Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; and
| | - Alberto Nóbrega
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Adriana Bonomo
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; .,Divisão de Medicina Experimental, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.,Laboratório de Pesquisa Sobre o Timo, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil.,Programa FIOCancer, Vice Presidência de Pesquisa e Laboratórios de Referência/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
41
|
Pegues MA, McWilliams IL, Szalai AJ. C-reactive protein exacerbates renal ischemia-reperfusion injury: are myeloid-derived suppressor cells to blame? Am J Physiol Renal Physiol 2016; 311:F176-81. [PMID: 27053688 DOI: 10.1152/ajprenal.00107.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/30/2016] [Indexed: 01/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a CD11b(+)Gr1(+) population in mice that can be separated into granulocytic (g-MDSC) and monocytic (m-MDSC) subtypes based on their expression of Ly6G and Ly6C. Both MDSC subtypes are potent suppressors of T cell immunity, and their contribution has been investigated in a plethora of diseases including renal cancer, renal transplant, and chronic kidney disease. Whether MDSCs contribute to the pathogenesis of acute kidney injury (AKI) remains unknown. Herein, using human C-reactive protein (CRP) transgenic (CRPtg) and CRP-deficient mice (CRP(-/-)) subjected to bilateral renal ischemia-reperfusion injury (IRI), we confirm our earlier finding that CRP exacerbates renal IRI and show for the first time that this effect is accompanied in CRPtg mice by a shift in the balance of kidney-infiltrating MDSCs toward a suppressive Ly6G(+)Ly6C(low) g-MDSC subtype. In CRPtg mice, direct depletion of g-MDSCs (using an anti-Gr1 monoclonal antibody) reduced the albuminuria caused by renal IRI, confirming they play a deleterious role. Remarkably, treatment of CRPtg mice with an antisense oligonucleotide that specifically blocks the human CRP acute-phase response also led to a reduction in renal g-MDSC numbers and improved albuminuria after renal IRI. Our study in CRPtg mice provides new evidence that MDSCs participate in the pathogenesis of renal IRI and shows that their pharmacological depletion is beneficial. If ongoing investigations confirm that CRP is an endogenous regulator of MDSCs in CRPtg mice, and if this action is recapitulated in humans, then targeting CRP or/and MDSCs might offer a new approach for the treatment of AKI.
Collapse
Affiliation(s)
- Melissa A Pegues
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Ian L McWilliams
- Department of Cellular, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexander J Szalai
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
42
|
Yao L, Abe M, Kawasaki K, Akbar SMF, Matsuura B, Onji M, Hiasa Y. Characterization of Liver Monocytic Myeloid-Derived Suppressor Cells and Their Role in a Murine Model of Non-Alcoholic Fatty Liver Disease. PLoS One 2016; 11:e0149948. [PMID: 26901500 PMCID: PMC4762771 DOI: 10.1371/journal.pone.0149948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/08/2016] [Indexed: 02/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are potent suppressors of T cell immunity in tumors and inflammatory diseases. They are identified by surface expression of CD11b+Gr1+ in mice, and CD11b+Gr1+ cells accumulate in the livers of obese mice. However, many myeloid cells share these CD11b+Gr1+ markers. Accordingly, the aim of this study was to identify the authentic phenotype of MDSCs and investigate their functions in non-alcoholic fatty liver disease (NAFLD). C57BL/6J mice were divided into 2 diet groups: a normal control group and high-fat group to induce NAFLD. We demonstrated that monocytic CD11b+Gr1dim cells could be further divided into 2 populations based on side scatter (SSC) during flow cytometry. We found that SSClowCD11b+Gr1dim cells accumulated in the livers of NAFLD mice over time, and that these cells were recruited by the chemokine CCL2 and its receptor CCR2 and might expand in the liver via macrophage colony-stimulating factor stimulation. Furthermore, SSClowCD11b+Gr1dim cells had a strong suppressive ability on T cells; this effect was not observed for SSChighCD11b+Gr1dim cells, and was dependent on nitric oxide production by inducible nitric oxide synthase. Our findings demonstrate that SSClowCD11b+Gr1dim cells represent authentic MDSCs in NAFLD livers, and might serve an important negative feedback function in liver inflammation.
Collapse
Affiliation(s)
- Liying Yao
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
- * E-mail:
| | - Keitarou Kawasaki
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
| | | | - Bunzo Matsuura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
| | - Morikazu Onji
- Department of Internal Medicine, Imabari Saiseikai Medical-Welfare Center, Imabari, Ehime, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
| |
Collapse
|