1
|
Wu M, Jia BB, Li MF. Complement C3 and Activated Fragment C3a Are Involved in Complement Activation and Anti-Bacterial Immunity. Front Immunol 2022; 13:813173. [PMID: 35281048 PMCID: PMC8913944 DOI: 10.3389/fimmu.2022.813173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
In the complement system, C3 is a central component in complement activation, immune defense and immune regulation. In all pathways of complement activation, the pivotal step is conversion of the component C3 to C3b and C3a, which is responsible to eliminate the pathogen and opsonization. In this study, we examined the immunological properties of C3 and its activated fragment C3a from Japanese flounder (Paralichthys olivaceus) (PoC3 and PoC3a), a teleost species with important economic value. PoC3 is composed of 1655 amino acid residues, contains the six domains and highly conserved GCGEQ sequence of the C3 family. We found that PoC3 expression occurred in nine different tissues and was upregulated by bacterial challenge. In serum, PoC3 was able to bind to a broad-spectrum of bacteria, and purified native PoC3 could directly kill specific pathogen. When PoC3 expression in Japanese flounder was knocked down by siRNA, serum complement activity was significantly decreased, and bacterial replication in fish tissues was significantly increased. Recombinant PoC3a (rPoC3a) exhibited apparent binding capacities to bacteria and Japanese flounder peripheral blood leukocytes (PBL) and induce chemotaxis of PBL. Japanese flounder administered rPoC3a exhibited enhanced resistance against bacterial infection. Taken together, these results indicate that PoC3 is likely a key factor of complement activation, and PoC3 and PoC3a are required for optimal defense against bacterial infection in teleost.
Collapse
Affiliation(s)
- Meng Wu
- Chinese Academy of Sciences (CAS) & Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bei-bei Jia
- Chinese Academy of Sciences (CAS) & Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mo-fei Li
- Chinese Academy of Sciences (CAS) & Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Mo-fei Li,
| |
Collapse
|
2
|
Johan CAC, Zainathan SC. Megalocytiviruses in ornamental fish: A review. Vet World 2020; 13:2565-2577. [PMID: 33363355 PMCID: PMC7750215 DOI: 10.14202/vetworld.2020.2565-2577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Iridoviruses, especially megalocytiviruses, are related to severe disease resulting in high economic losses in the aquaculture industry worldwide. The ornamental fish industry has been affected severely due to Megalocytivirus infections. Megalocytivirus is a DNA virus that has three genera; including red sea bream iridovirus, infectious spleen and kidney necrosis virus, and turbot reddish body iridovirus. Megalocytivirus causes non-specific clinical signs in ornamental fish. Cell culture, histology, immunofluorescence test, polymerase chain reaction (PCR) assay, and loop-mediated isothermal amplification assay have been used to diagnose megalocytiviruses. Risk factors such as temperature, transportation (export and import), and life stages of ornamental fish have been reported for the previous cases due to Megalocytivirus infections. In addition, other prevention and control methods also have been practiced in farms to prevent Megalocytivirus outbreaks. This is the first review of megalocytiviruses in ornamental fish since its first detection in 1989. This review discusses the occurrences of Megalocytivirus in ornamental fish, including the history, clinical signs, detection method, risk factors, and prevention measures.
Collapse
Affiliation(s)
- Che Azarulzaman Che Johan
- Department of Fisheries and Aquaculture, Faculty of Fisheries and Food Science, University Malaysia Terengganu, Terengganu, Malaysia
| | - Sandra Catherine Zainathan
- Department of Fisheries and Aquaculture, Faculty of Fisheries and Food Science, University Malaysia Terengganu, Terengganu, Malaysia
| |
Collapse
|
3
|
Phosphatase and Tensin Homolog (PTEN) of Japanese Flounder-Its Regulation by miRNA and Role in Autophagy, Apoptosis and Pathogen Infection. Int J Mol Sci 2020; 21:ijms21207725. [PMID: 33086544 PMCID: PMC7589652 DOI: 10.3390/ijms21207725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with important roles in diverse biological processes including immunity. Japanese flounder (Paralichthys olivaceus) is an aquaculture fish species susceptible to the infection of bacterial and viral pathogens including Edwardsiella tarda. In a previous study, pol-miR-novel_547, a novel miRNA of flounder with unknown function, was found to be induced by E. tarda. In the present study, we investigated the regulation and function of pol-miR-novel_547 and its target gene. We found that pol-miR-novel_547 was regulated differently by E. tarda and the viral pathogen megalocytivirus, and pol-miR-novel_547 repressed the expression of PTEN (phosphatase and tensin homolog) of flounder (PoPTEN). PoPTEN is ubiquitously expressed in multiple tissues of flounder and responded to bacterial and viral infections. Interference with PoPTEN expression in flounder cells directly or via pol-miR-novel_547 promoted E. tarda invasion. Consistently, in vivo knockdown of PoPTEN enhanced E. tarda dissemination in flounder tissues, whereas in vivo overexpression of PoPTEN attenuated E. tarda dissemination but facilitated megalocytivirus replication. Further in vitro and in vivo studies showed that PoPTEN affected autophagy activation via the AKT/mTOR pathway and also modulated the process of apoptosis. Together these results reveal for the first time a critical role of fish PTEN and its regulatory miRNA in pathogen infection, autophagy, and apoptosis.
Collapse
|
4
|
Huo X, Fan C, Ai T, Su J. The Combination of Molecular Adjuvant CCL35.2 and DNA Vaccine Significantly Enhances the Immune Protection of Carassius auratus gibelio against CyHV-2 Infection. Vaccines (Basel) 2020; 8:vaccines8040567. [PMID: 33019519 PMCID: PMC7712643 DOI: 10.3390/vaccines8040567] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) infection results in huge economic losses in gibel carp (Carassius auratus gibelio) industry. In this study, we first constructed recombinant plasmids pcORF25 and pcCCL35.2 as DNA vaccine and molecular adjuvant against CyHV-2, respectively, and confirmed that both recombinant plasmids could be effectively expressed in vitro and in vivo. Then, the vaccination and infection experiments (n = 50) were set as seven groups. The survival rate (70%) in ORF25/CCL35.2 group was highest. The highest specific antibody levels were found in ORF25/CCL35.2 group in major immune tissues by qRT-PCR, and confirmed in serum by ELISA assay, antibody neutralization titer, and serum incubation-infection experiments. Three crucial innate immune indices, namely C3 content, lysozyme, and total superoxide dismutase (TSOD) activities, were highest in ORF25/CCL35.2 group in serum. pcORF25/pcCCL35.2 can effectively up-regulate mRNA expressions of some important immune genes (IL-1β, IL-2, IFN-γ2, and viperin), and significantly suppress CyHV-2 replication in head kidney and spleen tissues. The minimal tissue lesions can be seen in ORF25/CCL35.2 group in gill, spleen, and trunk kidney tissues by histopathological examination. The results indicated that the combination of DNA vaccine pcORF25 and molecular adjuvant pcCCL35.2 is an effective method against CyHV-2 infection, suggesting a feasible strategy for the control of fish viral diseases.
Collapse
Affiliation(s)
- Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.H.); (C.F.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Chengjian Fan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.H.); (C.F.)
| | - Taoshan Ai
- Wuhan Chopper Fishery Bio-Tech Co., Ltd., Wuhan Academy of Agricultural Science, Wuhan 430207, China;
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.H.); (C.F.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-2227
| |
Collapse
|
5
|
Xing J, Xu H, Tang X, Sheng X, Zhan W. A DNA Vaccine Encoding the VAA Gene of Vibrio anguillarum Induces a Protective Immune Response in Flounder. Front Immunol 2019; 10:499. [PMID: 30941134 PMCID: PMC6435001 DOI: 10.3389/fimmu.2019.00499] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/25/2019] [Indexed: 11/15/2022] Open
Abstract
Vibrio anguillarum is a pathogenic bacterium that infects flounder resulting in significant losses in the aquaculture industry. The VAA protein previously identified in flounder is associated with a role in immune protection within these fish. In the present study, a recombinant DNA plasmid encoding the VAA gene of V. anguillarum was constructed and its potential as a DNA vaccine, to prevent the infection of V. anguillarum in flounder fish, investigated. We verified the expression of the VAA protein both in vitro in cell lines and in vivo in flounder fish. The protective effects of pcDNA3.1-VAA (pVAA) were analyzed by determination of the percentage of sIgM+, CD4-1+, CD4-2+, CD8β+ lymphocytes, and the production of VAA-specific antibodies in flounder following their immunization with the DNA vaccine. Histopathological changes in immune related tissues, bacterial load, and relative percentage survival rates of flounder post-challenge with V. anguillarum, were all investigated to assess the efficacy of the pVAA DNA vaccine candidate. Fish intramuscularly immunized with pVAA showed a significant increase in CD4-1+, CD4-2+, and CD8β+ T lymphocytes at days 9, 11, and 14 post-vaccination, reaching peak T-cell levels at days 11 or 14 post-immunization. The percentage of sIgM+ lymphocytes reached peak levels at weeks 4–5 post-immunization. Specific anti-V. anguillarum or anti-rVAA antibodies were induced in inoculated fish at days 28–35 post-immunization. The liver of vaccinated flounder exhibited only slight histopathological changes compared with a significant pathology observed in control immunized fish. Additionally, a lower bacterial burden in the liver, spleen, and kidney were observed in pVAA protected fish in response to bacterial challenge, compared with pcDNA3.1 vector control injected fish. Moreover, the pVAA vaccine confers a relative percentage survival of 50.00% following V. anguillarum infection. In summary, this is the first study indicating an initial induction of the T lymphocyte response, followed by B lymphocyte induction of specific antibodies as a result of DNA immunization of flounder. This signifies the important potential of pVAA as a DNA vaccine candidate for the control of V. anguillarum infection.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hongsen Xu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Zhang J, Sun L. Transcriptome analysis reveals temperature-regulated antiviral response in turbot Scophthalmus maximus. FISH & SHELLFISH IMMUNOLOGY 2017; 68:359-367. [PMID: 28735862 DOI: 10.1016/j.fsi.2017.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/19/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Megalocytivirus is a severe pathogen to turbot (Scophthalmus maximus), a popular aquaculture species in many countries. In this study, we investigated the effect of temperature on the antiviral response of turbot at transcriptome level. We found that when turbot were infected with megalocytivirus RBIV-C1 at low temperatures (14 °C, 16 °C, and 18 °C), viral replication was undetectable or moderate and no fish mortality occurred; in contrast, when turbot were infected with RBIV-C1 at high temperatures (20 °C, 22 °C, and 24 °C), viral replication was robust and 100% host mortality was observed. During the course of viral infection, downward temperature shift curbed viral replication and augmented host survival, whereas upward temperature shift promoted viral replication and reduced host survival. Comparative transcriptome analyses were conducted to examine the whole-genome transcription of turbot infected with RBIV-C1 at 16 °C and 22 °C for 4 days (samples S16-4d and S22-4d, respectively) and 8 days (samples S16-8d and S22-8d, respectively). The results showed that compared to S22-4d and S22-8d, 1600 and 5927 upregulated unigenes of various functional categories were identified in S16-4d and S16-8d, respectively. Of these genes, 22 were immune-related, most of which were detected in S16-8d and exhibited more genetic subtypes in S16-8d than in S16-4d. In addition, upregulated genes associated with cell junctions and cell membrane were also identified. These results indicate that temperature had a profound effect on the global transcription of turbot, which consequently affects the immune as well as physical resistance of the fish against viral infection.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Li MF, Li J, Sun L. CsMAP34, a teleost MAP with dual role: A promoter of MASP-assisted complement activation and a regulator of immune cell activity. Sci Rep 2016; 6:39287. [PMID: 28008939 PMCID: PMC5180248 DOI: 10.1038/srep39287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/22/2016] [Indexed: 01/28/2023] Open
Abstract
In teleost fish, the immune functions of mannan-binding lectin (MBL) associated protein (MAP) and MBL associated serine protease (MASP) are scarcely investigated. In the present study, we examined the biological properties both MAP (CsMAP34) and MASP (CsMASP1) molecules from tongue sole (Cynoglossus semilaevis). We found that CsMAP34 and CsMASP1 expressions occurred in nine different tissues and were upregulated by bacterial challenge. CsMAP34 protein was detected in blood, especially during bacterial infection. Recombinant CsMAP34 (rCsMAP34) bound C. semilaevis MBL (rCsBML) when the latter was activated by bacteria, while recombinant CsMASP1 (rCsMASP1) bound activated rCsBML only in the presence of rCsMAP34. rCsMAP34 stimulated the hemolytic and bactericidal activities of serum complement, whereas anti-CsMAP34 antibody blocked complement activities. Knockdown of CsMASP1 in C. semilaevis resulted in significant inhibition of complement activities. Furthermore, rCsMAP34 interacted directly with peripheral blood leukocytes (PBL) and enhanced the respiratory burst, acid phosphatase activity, chemotactic activity, and gene expression of PBL. These results indicate for the first time that a teleost MAP acts one hand as a regulator that promotes the lectin pathway of complement activation via its ability to recruit MBL to MASP, and other hand as a modulator of immune cell activity.
Collapse
Affiliation(s)
- Mo-Fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- School of Biological Sciences, Lake Superior State University, Sault Ste Marie, MI, USA
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Li MF, Hu YH. C5a of Cynoglossus semilaevis has anaphylatoxin-like properties and promotes antibacterial and antiviral defense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:139-148. [PMID: 26934108 DOI: 10.1016/j.dci.2016.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Activation of the complement system leads to the cleavage of component factor C5 into C5a and C5b. C5a can induce chemotaxis and inflammatory responses in mammals. The function of C5a in fish is poorly understood. In this study, we report the identification and analysis of a C5 homologue, CsC5, from tongue sole (Cynoglossus semilaevis). CsC5 is composed of 1683 amino acid residues that include an anaphylatoxin homologous domain. Expression of CsC5 could be detected in a variety of tissues and was up-regulated by bacterial or viral pathogen infection. Purified recombinant CsC5a (rCsC5a) could bind to peripheral blood leukocytes (PBL) and stimulate PBL chemotaxis, proliferation, respiratory burst, acid phosphatase activity, and phagocytosis. Tongue sole administered rCsC5a exhibited enhanced resistance against bacterial and viral infections. These results indicate that CsC5a is an anaphylatoxin with a role in innate immune defense against bacterial and viral infections.
Collapse
Affiliation(s)
- Mo-fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yong-hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
9
|
Chi H, Bøgwald J, Dalmo RA, Zhang W, Hu YH. Th17 master transcription factors RORα and RORγ regulate the expression of IL-17C, IL-17D and IL-17F in Cynoglossus semilaevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:169-178. [PMID: 26547017 DOI: 10.1016/j.dci.2015.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/01/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
The RAR-related orphan receptors (RORs) are members of the nuclear receptor family of intracellular transcription factors. In this study, we examined the regulatory properties of RORα (CsRORα) and RORγ (CsRORγ) in tongue sole (Cynoglossus semilaevis). CsRORα and CsRORγ expression was detected in major lymphoid organs and altered to significant extents after bacterial and viral infection. CsRORα enhanced the activities of CsIL-17C, CsIL-17D, and CsIL-17F promoters, which contain CsRORα and CsRORγ binding sites. CsRORγ also upregulated the promoter activities of CsIL-17D and CsIL-17F but not CsIL-17C. CsRORα and CsRORγ proteins were detected in the nucleus, and overexpression of CsRORα in tongue sole significantly increased the expression of CsIL-17C, CsIL-17D, and CsIL-17F, whereas overexpression of CsRORγ significantly increased the expression of CsIL-17C and CsIL-17F but no CsIL-17D. These results indicate that RORα and RORγ in teleost regulate the expression of IL-17 members in different manners.
Collapse
Affiliation(s)
- Heng Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jarl Bøgwald
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Tromsø N-9037, Norway
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Tromsø N-9037, Norway
| | - Wenjie Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yong-hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
10
|
Wang MQ, Chi H, Li MF. A CCL21 chemokine of tongue sole (Cynoglossus semilaevis) promotes host resistance against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2015; 47:461-469. [PMID: 26416599 DOI: 10.1016/j.fsi.2015.09.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/13/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Chemokines are a large family of chemotactic cytokines. Based on the arrangement of the first two cysteine residues, chemokines are divided into four groups, one of which is the CC chemokine group. In this study, we characterized a CC chemokine, CsCCL21, from half-smooth tongue sole (Cynoglossus semilaevis), and analyzed its activity. CsCCL21 contains two conserved N-terminal cysteine residues in a NCCL motif and is phylogenetically related to the CCL19/21/25 subgroup of CC chemokines. CsCCL21 was constitutively expressed in nine tissues and significantly upregulated by bacterial and viral infection. The recombinant CsCCL21 (rCsCCL21) induced migration of peripheral blood leukocytes. When the two conserved cysteine residues in the NCCL motif were mutated, the chemotactic activity of rCsCCL21 was abolished. rCsCCL21 enhanced the resistance of tongue sole against bacterial infection, but the mutant protein with NCCL mutation lacked this antibacterial effect. Taken together, these results suggest that CsCCL21 is a functional CC chemokine with the ability to recruit leukocytes and is involved in antibacterial immunity in a manner that requires the conserved NCCL motif.
Collapse
Affiliation(s)
- Ming-qing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mo-fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
11
|
Li XP, Sun L. TLR7 is required for optimal immune defense against bacterial infection in tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2015; 47:93-99. [PMID: 26327112 DOI: 10.1016/j.fsi.2015.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/28/2015] [Accepted: 08/26/2015] [Indexed: 06/04/2023]
Abstract
In mammals as well as in teleost, toll-like receptor 7 (TLR7) is known to be involved in antiviral immunity by recognizing viral RNA. However, the antibacterial potential of fish TLR7 is unclear. In this study, we analyzed the TLR7 of tongue sole (Cynoglossus semilaevis), CsTLR7, and examined its potential involvement in antibacterial immunity. CsTLR7 is composed of 1052 amino acid residues and shares 64.0%-75.9% overall sequence identities with known teleost TLR7. CsTLR7 possesses a toll/interleukin-1 receptor domain and six leucine-rich repeats. Constitutive expression of CsTLR7 occurred in relatively high levels in kidney, spleen and liver. Bacterial infection upregulated CsTLR7 expression, whereas viral infection downregulated CsTLR7 expression. Knockdown of CsTLR7 significantly enhanced bacterial dissemination in the tissues of tongue sole. Treatment of tongue sole with the imidazoquinoline compound R848 (TLR7 activator) and the endosomal acidification inhibitor chloroquine (TLR7 inhibitor) caused enhanced and reduced resistance against bacterial infection respectively. These results indicate that CsTLR7 plays an essential role in the antibacterial immunity of tongue sole.
Collapse
Affiliation(s)
- Xue-peng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Oceanography Laboratory, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Oceanography Laboratory, Qingdao, China.
| |
Collapse
|