1
|
Aerts R, Ricaño-Ponce I, Bruno M, Mercier T, Rosati D, Maertens J, Kumar V, Carvalho A, Netea MG, Hoenigl M. Circulatory Inflammatory Proteins as Early Diagnostic Biomarkers for Invasive Aspergillosis in Patients with Hematologic Malignancies-an Exploratory Study. Mycopathologia 2024; 189:24. [PMID: 38407673 PMCID: PMC10896822 DOI: 10.1007/s11046-024-00831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/09/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES Invasive aspergillosis (IA) is a major cause of mortality in immunocompromised patients and it is difficult to diagnose because of the lack of reliable highly sensitive diagnostics. We aimed to identify circulating immunological markers that could be useful for an early diagnosis of IA. METHODS We collected longitudinally serum samples from 33 cases with probable/proven IA and two matched control cohorts without IA (one with microbiological and clinical evidence of bacterial or viral non-fungal pneumonia and one without evidence of infection, all matched for neutropenia, primary underlying disease, and receipt of corticosteroids/other immunosuppressants) at a tertiary university hospital. In addition, samples from an independent cohort (n = 20 cases of proven/probable IA and 20 matched controls without infection) were obtained. A panel of 92 circulating proteins involved in inflammation was measured by proximity extension assay. A random forest model was used to predict the development of IA using biomarkers measured before diagnosis. RESULTS While no significant differences were observed between IA cases and infected controls, concentrations of 30 inflammatory biomarkers were different between cases and non-infected controls, of which nine were independently replicated: PD-L1, MMP-10, Interleukin(IL)-10, IL-15RA, IL-18, IL-18R1, CDCP1, CCL19 and IL-17C. From the differential abundance analysis of serum samples collected more than 10 days before diagnosis and at diagnosis, increased IL-17C concentrations in IA patients were replicated in the independent cohort. CONCLUSIONS An increased circulating concentration of IL-17C was detected both in the discovery and independent cohort, both at the time of diagnosis and in samples 10 days before the diagnosis of IA, suggesting it should be evaluated further as potential (early) biomarker of infection.
Collapse
Affiliation(s)
- Robina Aerts
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium.
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Isis Ricaño-Ponce
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Toine Mercier
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Johan Maertens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4806-909, Braga/Guimarães, Portugal
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Martin Hoenigl
- Biotech Med, Graz, Austria.
- Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria.
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| |
Collapse
|
2
|
Yan JY, Lin TH, Jong YT, Hsueh JW, Wu SH, Lo HJ, Chen YC, Pan CH. Microbiota signatures associated with invasive Candida albicans infection in the gastrointestinal tract of immunodeficient mice. Front Cell Infect Microbiol 2024; 13:1278600. [PMID: 38298919 PMCID: PMC10828038 DOI: 10.3389/fcimb.2023.1278600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Candida albicans is a commensal microorganism in the human gut but occasionally causes invasive C. albicans infection (ICA), especially in immunocompromised individuals. Early initiation of antifungal therapy is associated with reduced mortality of ICA, but rapid diagnosis remains a challenge. The ICA-associated changes in the gut microbiota can be used as diagnostic and therapeutic targets but have been poorly investigated. In this study, we utilized an immunodeficient Rag2γc (Rag2-/-il2γc-/-) mouse model to investigate the gut microbiota alterations caused by C. albicans throughout its cycle, from its introduction into the gastrointestinal tract to invasion, in the absence of antibiotics. We observed a significant increase in the abundance of Firmicutes, particularly Lachnospiraceae and Ruminococcaceae, as well as a significant decrease in the abundance of Candidatus Arthromitus in mice exposed to either the wild-type SC5314 strain or the filamentation-defective mutant (cph1/cph1 efg1/efg1) HLC54 strain of C. albicans. However, only the SC5314-infected mice developed ICA. A linear discriminate analysis of the temporal changes in the gut bacterial composition revealed Bacteroides vulgatus as a discriminative biomarker associated with SC5314-infected mice with ICA. Additionally, a positive correlation between the B. vulgatus abundance and fungal load was found, and the negative correlation between the Candidatus Arthromitus abundance and fungal load after exposure to C. albicans suggested that C. albicans might affect the differentiation of intestinal Th17 cells. Our findings reveal the influence of pathogenic C. albicans on the gut microbiota and identify the abundance of B. vulgatus as a microbiota signature associated with ICA in an immunodeficient mouse model.
Collapse
Affiliation(s)
- Jia-Ying Yan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Tsung-Han Lin
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Tang Jong
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jun-Wei Hsueh
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Sze-Hsien Wu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Yee-Chun Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Department of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Hsiung Pan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Sisto M, Lisi S. Targeting Interleukin-17 as a Novel Treatment Option for Fibrotic Diseases. J Clin Med 2023; 13:164. [PMID: 38202170 PMCID: PMC10780256 DOI: 10.3390/jcm13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrosis is the end result of persistent inflammatory responses induced by a variety of stimuli, including chronic infections, autoimmune reactions, and tissue injury. Fibrotic diseases affect all vital organs and are characterized by a high rate of morbidity and mortality in the developed world. Until recently, there were no approved antifibrotic therapies. In recent years, high levels of interleukin-17 (IL-17) have been associated with chronic inflammatory diseases with fibrotic complications that culminate in organ failure. In this review, we provide an update on the role of IL-17 in fibrotic diseases, with particular attention to the most recent lines of research in the therapeutic field represented by the epigenetic mechanisms that control IL-17 levels in fibrosis. A better knowledge of the IL-17 signaling pathway implications in fibrosis could design new strategies for therapeutic benefits.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | |
Collapse
|
4
|
Lu H, Hong T, Jiang Y, Whiteway M, Zhang S. Candidiasis: From cutaneous to systemic, new perspectives of potential targets and therapeutic strategies. Adv Drug Deliv Rev 2023; 199:114960. [PMID: 37307922 DOI: 10.1016/j.addr.2023.114960] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Candidiasis is an infection caused by fungi from a Candida species, most commonly Candida albicans. C. albicans is an opportunistic fungal pathogen typically residing on human skin and mucous membranes of the mouth, intestines or vagina. It can cause a wide variety of mucocutaneous barrier and systemic infections; and becomes a severe health problem in HIV/AIDS patients and in individuals who are immunocompromised following chemotherapy, treatment with immunosuppressive agents or after antibiotic-induced dysbiosis. However, the immune mechanism of host resistance to C. albicans infection is not fully understood, there are a limited number of therapeutic antifungal drugs for candidiasis, and these have disadvantages that limit their clinical application. Therefore, it is urgent to uncover the immune mechanisms of the host protecting against candidiasis and to develop new antifungal strategies. This review synthesizes current knowledge of host immune defense mechanisms from cutaneous candidiasis to invasive C. albicans infection and documents promising insights for treating candidiasis through inhibitors of potential antifungal target proteins.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ting Hong
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada.
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Chen J, Wu S, Wang M, Zhang H, Cui M. A review of autoimmunity and immune profiles in patients with primary ovarian insufficiency. Medicine (Baltimore) 2022; 101:e32500. [PMID: 36595863 PMCID: PMC9794221 DOI: 10.1097/md.0000000000032500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a complicated clinical syndrome characterized by progressive deterioration of ovarian function. Autoimmunity is one of the main pathogenic factors affecting approximately 10% to 55% of POI cases. This review mainly focuses on the role of autoimmunity in the pathophysiology of POI and the potential therapies for autoimmunity-related POI. This review concluded that various markers of ovarian reserve, principally anti-Müllerian hormone, could be negatively affected by autoimmune diseases. The presence of lymphocytic oophoritis, anti-ovarian autoantibodies, and concurrent autoimmune diseases, are the main characteristics of autoimmune POI. T lymphocytes play the most important role in the immune pathogenesis of POI, followed by disorders of other immune cells and the imbalance between pro-inflammatory and anti-inflammatory cytokines. A comprehensive understanding of immune characteristics of patients with autoimmune POI and the underlying mechanisms is essential for novel approaches of treatment and intervention for autoimmune POI.
Collapse
Affiliation(s)
- Junyu Chen
- Departments of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Shan Wu
- Departments of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Mengqi Wang
- Departments of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Haoxian Zhang
- Department of Pharmacy, Xuchang Central Hospital, Xuchang, China
| | - Manhua Cui
- Departments of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
- * Correspondence: Manhua Cui, Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130022, China (e-mail: )
| |
Collapse
|
6
|
Hao Y, Xu X, Wang Y, Jin F, Tang L, Zheng W, Zhang H, He Z. Comprehensive analysis of immune-related biomarkers and pathways in intracerebral hemorrhage using weighted gene co-expression network analysis and competing endogenous ribonucleic acid. Front Mol Neurosci 2022; 15:955818. [PMID: 36226317 PMCID: PMC9549172 DOI: 10.3389/fnmol.2022.955818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
The immune response is an important part of secondary brain injury following intracerebral hemorrhage (ICH), and is related to neurological deficits and prognosis. The mechanisms underlying the immune response and inflammation are of great significance for brain injury and potential functional restoration; however, the immune-related biomarkers and competing endogenous ribonucleic acid (RNA) (ceRNA) networks in the peripheral blood of ICH patients have not yet been constructed. We collected the peripheral blood from ICH patients and controls to assess their ceRNA profiles using LCHuman ceRNA microarray, and to verify their expression with qRT-PCR. Two-hundred-eleven DElncRNAs and one-hundred-one DEmRNAs were detected in the ceRNA microarray of ICH patients. The results of functional enrichment analysis showed that the immune response was an important part of the pathological process of ICH. Twelve lncRNAs, ten miRNAs, and seven mRNAs were present in our constructed immune-related ceRNA network, combining weighted gene co-expression network analysis (WGCNA). Our study was the first to establish the network of the immune-related ceRNAs derived from WGCNA, and to identify leukemia inhibitory factor (LIF) and B cell lymphoma 2-like 13 (BCL2L13) as pivotal immune-related biomarkers in the peripheral blood of ICH patients, which are likely associated with PI3K-Akt, the MAPK signaling pathway, and oxidative phosphorylation. The MOXD2P-miR-211-3p -LIF and LINC00299-miR-198-BCL2L13 axes were indicated to participate in the immune regulatory mechanism of ICH. The goal of our study was to offer innovative insights into the underlying immune regulatory mechanism and to identify possible immune intervention targets for ICH.
Collapse
Affiliation(s)
- Yuehan Hao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoxue Xu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuye Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling Tang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenxu Zheng
- Department of Geriatric, Dalian Friendship Hospital, Dalian, China
| | - Heyu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- *Correspondence: Heyu Zhang,
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Zhiyi He,
| |
Collapse
|
7
|
Zhou S, Yao Z. Roles of Infection in Psoriasis. Int J Mol Sci 2022; 23:ijms23136955. [PMID: 35805960 PMCID: PMC9266590 DOI: 10.3390/ijms23136955] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic, immune-mediated disorder with cutaneous and systemic manifestations. Genetic predisposition, environmental factors, and immune dysfunction all contribute to the pathogenesis of psoriasis with host-microbe interaction governing the progression of this disease. Emerging evidence has indicated that infection is an environmental trigger for psoriasis and plays multiple roles in its maintenance as evidenced by the frequent association between guttate psoriasis onset and acute streptococcal infection. Different infectious factors act on immune cells to produce inflammatory cytokines that can induce or aggravate psoriasis. In addition to bacterial infections, viral and fungal infections have also been shown to be strongly associated with the onset or exacerbation of psoriasis. Intervention of skin microbiota to treat psoriasis has become a hot research topic. In this review, we summarize the effects of different infectious factors (bacteria, viruses, and fungi) on psoriasis, thereby providing insights into the manipulation of pathogens to allow for the identification of improved therapeutic options for the treatment of this condition.
Collapse
Affiliation(s)
- Shihui Zhou
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China;
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China;
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Correspondence:
| |
Collapse
|
8
|
Nie YJ, Wu SH, Xuan YH, Yan G. Role of IL-17 family cytokines in the progression of IPF from inflammation to fibrosis. Mil Med Res 2022; 9:21. [PMID: 35550651 PMCID: PMC9102601 DOI: 10.1186/s40779-022-00382-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/12/2022] [Indexed: 01/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal chronic interstitial lung disease with no established treatment and is characterized by progressive scarring of the lung tissue and an irreversible decline in lung function. Chronic inflammation has been demonstrated to be the pathological basis of fibrosis. Emerging studies have revealed that most interleukin-17 (IL-17) isoforms are essential for the mediation of acute and chronic inflammation via innate and adaptive immunity. Overexpression or aberrant expression of IL-17 cytokines contributes to various pathological outcomes, including the initiation and exacerbation of IPF. Here, we aim to provide an overview of IL-17 family members in the pathogenesis of IPF.
Collapse
Affiliation(s)
- Yun-Juan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, Jiangsu, China
| | - Shuo-Hua Wu
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, 515000, Shandong, China
| | - Ying-Hua Xuan
- Department of Basic Medicine, Xiamen Medical College, Xiamen, 361000, Fujian, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, 361000, Fujian, China.
| |
Collapse
|
9
|
Chung SH, Ye XQ, Iwakura Y. Interleukin-17 family members in health and disease. Int Immunol 2021; 33:723-729. [PMID: 34611705 PMCID: PMC8633656 DOI: 10.1093/intimm/dxab075] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
The interleukin-17 (IL-17) family consists of six family members (IL-17A-IL-17F) and all the corresponding receptors have been identified recently. This family is mainly involved in the host defense mechanisms against bacteria, fungi and helminth infection by inducing cytokines and chemokines, recruiting neutrophils, inducing anti-microbial proteins and modifying T-helper cell differentiation. IL-17A and some other family cytokines are also involved in the development of psoriasis, psoriatic arthritis and ankylosing spondylitis by inducing inflammatory cytokines and chemokines, and antibodies against IL-17A as well as the receptor IL-17RA are being successfully used for the treatment of these diseases. Involvement in the development of inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis and tumors has also been suggested in animal disease models. In this review, we will briefly review the mechanisms by which IL-17 cytokines are involved in the development of these diseases and discuss possible treatment of inflammatory diseases by targeting IL-17 family members.
Collapse
Affiliation(s)
- Soo-Hyun Chung
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, Japan
| | - Xiao-Qi Ye
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, Japan
| |
Collapse
|
10
|
Agak GW, Mouton A, Teles RM, Weston T, Morselli M, Andrade PR, Pellegrini M, Modlin RL. Extracellular traps released by antimicrobial TH17 cells contribute to host defense. J Clin Invest 2021; 131:141594. [PMID: 33211671 DOI: 10.1172/jci141594] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
TH17 cell subpopulations have been defined that contribute to inflammation and homeostasis, yet the characteristics of TH17 cells that contribute to host defense against infection are not clear. To elucidate the antimicrobial machinery of the TH17 subset, we studied the response to Cutibacterium acnes, a skin commensal that is resistant to IL-26, the only known TH17-secreted protein with direct antimicrobial activity. We generated C. acnes-specific antimicrobial TH17 clones (AMTH17) with varying antimicrobial activity against C. acnes, which we correlated by RNA sequencing to the expression of transcripts encoding proteins that contribute to antimicrobial activity. Additionally, we validated that AMTH17-mediated killing of C. acnes and bacterial pathogens was dependent on the secretion of granulysin, granzyme B, perforin, and histone H2B. We found that AMTH17 cells can release fibrous structures composed of DNA decorated with histone H2B that entangle C. acnes that we call T cell extracellular traps (TETs). Within acne lesions, H2B and IL-17 colocalized in CD4+ T cells, in proximity to TETs in the extracellular space composed of DNA decorated with H2B. This study identifies a functionally distinct subpopulation of TH17 cells with an ability to form TETs containing secreted antimicrobial proteins that capture and kill bacteria.
Collapse
Affiliation(s)
- George W Agak
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Alice Mouton
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, USA
| | - Rosane Mb Teles
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Thomas Weston
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, and.,Institute for Quantitative and Computational Biosciences - The Collaboratory, UCLA, Los Angeles, California, USA
| | - Priscila R Andrade
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, and.,Institute for Quantitative and Computational Biosciences - The Collaboratory, UCLA, Los Angeles, California, USA
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
11
|
Jawale CV, Biswas PS. Local antifungal immunity in the kidney in disseminated candidiasis. Curr Opin Microbiol 2021; 62:1-7. [PMID: 33991758 DOI: 10.1016/j.mib.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
Disseminated candidiasis is a hospital-acquired infection that results in high degree of mortality despite antifungal treatment. Autopsy studies revealed that kidneys are the major target organs in disseminated candidiasis and death due to kidney damage is a frequent outcome in these patients. Thus, the need for effective therapeutic strategies to mitigate kidney damage in disseminated candidiasis is compelling. Recent studies have highlighted the essential contribution of kidney-specific immune response in host defense against systemic infection. Crosstalk between kidney-resident and infiltrating immune cells aid in the clearance of fungi and prevent tissue damage in disseminated candidiasis. In this review, we provide our recent understanding on antifungal immunity in the kidney with an emphasis on IL-17-mediated renal defense in disseminated candidiasis.
Collapse
Affiliation(s)
- Chetan V Jawale
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
12
|
Brevi A, Cogrossi LL, Grazia G, Masciovecchio D, Impellizzieri D, Lacanfora L, Grioni M, Bellone M. Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer. Front Immunol 2020; 11:565470. [PMID: 33244315 PMCID: PMC7683804 DOI: 10.3389/fimmu.2020.565470] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The interleukin-(IL-)17 family of cytokines is composed of six members named IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F. IL-17A is the prototype of this family, and it was the first to be discovered and targeted in the clinic. IL-17A is essential for modulating the interplay between commensal microbes and epithelial cells at our borders (i.e., skin and mucosae), and yet, for protecting us from microbial invaders, thus preserving mucosal and skin integrity. Interactions between the microbiota and cells producing IL-17A have also been implicated in the pathogenesis of immune mediated inflammatory diseases and cancer. While interactions between microbiota and IL-17B-to-F have only partially been investigated, they are by no means less relevant. The cellular source of IL-17B-to-F, their main targets, and their function in homeostasis and disease distinguish IL-17B-to-F from IL-17A. Here, we intentionally overlook IL-17A, and we focus instead on the role of the other cytokines of the IL-17 family in the interplay between microbiota and epithelial cells that may contribute to cancer pathogenesis and immune surveillance. We also underscore differences and similarities between IL-17A and IL-17B-to-F in the microbiota-immunity-cancer axis, and we highlight therapeutic strategies that directly or indirectly target IL-17 cytokines in diseases.
Collapse
Affiliation(s)
- Arianna Brevi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Laura Lucia Cogrossi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy.,Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Grazia
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Desirée Masciovecchio
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Daniela Impellizzieri
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Lucrezia Lacanfora
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Grioni
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
13
|
Washington A, Varki N, Valderrama JA, Nizet V, Bui JD. Evaluation of IL-17D in Host Immunity to Group A Streptococcus Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:3122-3129. [PMID: 33077643 DOI: 10.4049/jimmunol.1901482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
IL-17D is a cytokine that belongs to the IL-17 family and is conserved in vertebrates and invertebrates. In contrast to IL-17A and IL-17F, which are expressed in Th17 cells, IL-17D is expressed broadly in nonimmune cells. IL-17D can promote immune responses to cancer and viruses in part by inducing chemokines and recruiting innate immune cells such as NK cells. Although bacterial infection can induce IL-17D in fish and invertebrates, the role of mammalian IL-17D in antibacterial immunity has not been established. To determine whether IL-17D has a role in mediating host defense against bacterial infections, we studied i.p. infection by group A Streptococcus (GAS) in wild-type (WT) and Il17d -/- mice. Compared with WT animals, mice deficient in IL-17D experienced decreased survival, had greater weight loss, and showed increased bacterial burden in the kidney and peritoneal cavity following GAS challenge. In WT animals, IL-17D transcript was induced by GAS infection and correlated to increased levels of chemokine CCL2 and greater neutrophil recruitment. Of note, GAS-mediated IL-17D induction in nonimmune cells required live bacteria, suggesting that processes beyond recognition of pathogen-associated molecular patterns were required for IL-17D induction. Based on our results, we propose a model in which nonimmune cells can discriminate between nonviable and viable GAS cells, responding only to the latter by inducing IL-17D.
Collapse
Affiliation(s)
- Allen Washington
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| | - Nissi Varki
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - J Andrés Valderrama
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92161; and
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92161; and.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093;
| |
Collapse
|
14
|
Dos Santos AR, Fraga-Silva TF, Almeida DDF, Dos Santos RF, Finato AC, Amorim BC, Andrade MI, Soares CT, Lara VS, Almeida NL, de Arruda OS, de Arruda MS, Venturini J. Rhizopus-host interplay of disseminated mucormycosis in immunocompetent mice. Future Microbiol 2020; 15:739-752. [PMID: 32686962 DOI: 10.2217/fmb-2019-0246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: To investigate the immune response of disseminated Ryzopus oryzae infection in immunocompetent mice. Methods: C57Bl/6, BALB/c and Swiss wild-type mice were intravenously infected with R. oryzae; the parameters of infection and immune response were determined. Transcriptional signature of Th17 immune response and infection in Il17ra-/- mice were also evaluated. Results: All mouse strains showed an initial spread of R. oryzae in the target tissues; however, after 30 days, C57Bl/6 and BALB/c mice showed an effective fungal clearance associated with specific production of IL-17 and IL-2. We also observed that 60% of Il17ra-/- mice succumbed to infection within 16 days. Conclusion: This study has established an immunocompetent model for disseminated mucormycosis and highlighted the role of IL-17 signaling in immunity against R. oryzae.
Collapse
Affiliation(s)
- Amanda R Dos Santos
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru, SP, 17033-360, Brazil
| | - Thais F Fraga-Silva
- Universidade Estadual Paulista (Unesp), Instituto de Biociências, Botucatu, SP 18618-689, Brazil
| | - Débora de F Almeida
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru, SP, 17033-360, Brazil
| | - Rodolfo F Dos Santos
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru, SP, 17033-360, Brazil
| | - Angela C Finato
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru, SP, 17033-360, Brazil
| | - Bárbara C Amorim
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru, SP, 17033-360, Brazil
| | | | | | - Vanessa S Lara
- Universidade de São Paulo (USP), Faculdade de Odontologia de Bauru (FOB), Bauru, SP 17012-901, Brazil
| | - Nara Lm Almeida
- Universidade de São Paulo (USP), Faculdade de Odontologia de Bauru (FOB), Bauru, SP 17012-901, Brazil
| | - Olavo S de Arruda
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru, SP, 17033-360, Brazil
| | - Maria Sp de Arruda
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru, SP, 17033-360, Brazil
| | - James Venturini
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru, SP, 17033-360, Brazil.,Universidade Federal de Mato Grosso do Sul (UFMS), Faculdade de Medicina, Campo Grande, MS 79070-900, Brazil
| |
Collapse
|
15
|
Zhou C, Monin L, Gordon R, Aggor FEY, Bechara R, Edwards TN, Kaplan DH, Gingras S, Gaffen SL. An IL-17F.S65L Knock-In Mouse Reveals Similarities and Differences in IL-17F Function in Oral Candidiasis: A New Tool to Understand IL-17F. THE JOURNAL OF IMMUNOLOGY 2020; 205:720-730. [PMID: 32601099 DOI: 10.4049/jimmunol.2000394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
Oropharyngeal candidiasis (OPC) is an opportunistic infection of the oral mucosa caused by the commensal fungus Candida albicans IL-17R signaling is essential to prevent OPC in mice and humans, but the individual roles of its ligands, IL-17A, IL-17F, and IL-17AF, are less clear. A homozygous IL-17F deficiency in mice does not cause OPC susceptibility, whereas mice lacking IL-17A are moderately susceptible. In humans, a rare heterozygous mutation in IL-17F (IL-17F.S65L) was identified that causes chronic mucocutaneous candidiasis, suggesting the existence of essential antifungal pathways mediated by IL-17F and/or IL-17AF. To investigate the role of IL-17F and IL-17AF in more detail, we exploited this "experiment of nature" by creating a mouse line bearing the homologous mutation in IL-17F (Ser65Leu) by CRISPR/Cas9. Unlike Il17f-/- mice that are resistant to OPC, Il17fS65L/S65L mice showed increased oral fungal burdens similar to Il17a -/- mice. In contrast to humans, however, disease was only evident in homozygous, not heterozygous, mutant mice. The mutation was linked to modestly impaired CXC chemokine expression and neutrophil recruitment to the infected tongue but not to alterations in oral antimicrobial peptide expression. These findings suggest mechanisms by which the enigmatic cytokine IL-17F contributes to host defense against fungi. Moreover, because these mice do not phenocopy Il17f-/- mice, they may provide a valuable tool to interrogate IL-17F and IL-17AF function in vivo in other settings.
Collapse
Affiliation(s)
- Chunsheng Zhou
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Leticia Monin
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Rachael Gordon
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Felix E Y Aggor
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Rami Bechara
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Tara N Edwards
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261;
| |
Collapse
|
16
|
Lauffer F, Jargosch M, Baghin V, Krause L, Kempf W, Absmaier‐Kijak M, Morelli M, Madonna S, Marsais F, Lepescheux L, Albanesi C, Müller N, Theis F, Schmidt‐Weber C, Eyerich S, Biedermann T, Vandeghinste N, Steidl S, Eyerich K. IL‐17C amplifies epithelial inflammation in human psoriasis and atopic eczema. J Eur Acad Dermatol Venereol 2020; 34:800-809. [DOI: 10.1111/jdv.16126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022]
Affiliation(s)
- F. Lauffer
- Department of Dermatology and Allergy Technical University of Munich Munich Germany
| | - M. Jargosch
- Department of Dermatology and Allergy Technical University of Munich Munich Germany
| | - V. Baghin
- Department of Dermatology and Allergy Technical University of Munich Munich Germany
| | - L. Krause
- Institute of Computational Biology Helmholtz Center Munich Neuherberg Germany
| | - W. Kempf
- Department of Dermatology and Allergy Technical University of Munich Munich Germany
| | - M. Absmaier‐Kijak
- Department of Dermatology and Allergy Technical University of Munich Munich Germany
| | - M. Morelli
- Laboratory of Experimental Immunology IDI‐IRCCS Rome Italy
| | - S. Madonna
- Laboratory of Experimental Immunology IDI‐IRCCS Rome Italy
| | | | | | - C. Albanesi
- Laboratory of Experimental Immunology IDI‐IRCCS Rome Italy
| | - N.S. Müller
- Institute of Computational Biology Helmholtz Center Munich Neuherberg Germany
| | - F.J. Theis
- Institute of Computational Biology Helmholtz Center Munich Neuherberg Germany
- Department of Mathematics Technical University of Munich Garching Germany
| | - C. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) Helmholtzzentrum Munich Technical University of Munich Munich Germany
- German Center of Lung Research (DZL) Gießen Germany
| | - S. Eyerich
- Center of Allergy and Environment (ZAUM) Helmholtzzentrum Munich Technical University of Munich Munich Germany
| | - T. Biedermann
- Department of Dermatology and Allergy Technical University of Munich Munich Germany
| | | | | | - K. Eyerich
- Department of Dermatology and Allergy Technical University of Munich Munich Germany
| |
Collapse
|
17
|
Jamieson KC, Wiehler S, Michi AN, Proud D. Rhinovirus Induces Basolateral Release of IL-17C in Highly Differentiated Airway Epithelial Cells. Front Cell Infect Microbiol 2020; 10:103. [PMID: 32232015 PMCID: PMC7082745 DOI: 10.3389/fcimb.2020.00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/26/2020] [Indexed: 11/24/2022] Open
Abstract
Human rhinovirus (HRV) is a major trigger of acute exacerbations of both asthma and chronic obstructive pulmonary disease. The airway epithelium is the primary site of HRV infection, and responds by releasing proinflammatory and antimicrobial cytokines. Epithelial cells release IL-17C in response to exposure to bacterial, viral, and fungal pathogens. We previously demonstrated a role for HRV in IL-17C production from undifferentiated epithelial cells, and showed that IL-17C could play a role in neutrophil recruitment. To extend these observations, highly differentiated human bronchial epithelial cells (HBE) were infected apically with HRV to assess the effect of dose, time, viral replication, and strain on the IL-17C response. Cellular lysates, and basolateral and apical secretions were analyzed for IL-17C and CXCL1 protein release following HRV or IL-17C stimulation. Upon HRV infection, IL-17C protein was exclusively released basolaterally in a dose-, time-, and viral replication-dependent manner. Several strains of rhinovirus were capable of inducing IL-17C release. Enriched columnar epithelial cell populations contained significantly higher viral titer, and expressed significantly more IL-17C mRNA than enriched basal cell populations. In addition, the kinetic profile of IL-17C release following HRV treatment closely mimics viral shedding kinetics, further implicating the role of rhinovirus replication in IL-17C production. Basolateral treatment of HBEs with IL-17C resulted in a dose-dependent increase in basolateral CXCL1 production. In summary, replicating rhinovirus drives basolateral IL-17C protein release from both apical and basal epithelial cells, which may then act in an autocrine/paracrine manner to promote basolateral CXCL1 protein release.
Collapse
Affiliation(s)
- Kyla C Jamieson
- Department of Physiology & Pharmacology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Shahina Wiehler
- Department of Physiology & Pharmacology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Aubrey N Michi
- Department of Physiology & Pharmacology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - David Proud
- Department of Physiology & Pharmacology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Pellon A, Sadeghi Nasab SD, Moyes DL. New Insights in Candida albicans Innate Immunity at the Mucosa: Toxins, Epithelium, Metabolism, and Beyond. Front Cell Infect Microbiol 2020; 10:81. [PMID: 32195196 PMCID: PMC7062647 DOI: 10.3389/fcimb.2020.00081] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
The mucosal surfaces of the human body are challenged by millions of microbes on a daily basis. Co-evolution with these microbes has led to the development of plastic mechanisms in both host and microorganisms that regulate the balance between preserving beneficial microbes and clearing pathogens. Candida albicans is a fungal pathobiont present in most healthy individuals that, under certain circumstances, can become pathogenic and cause everything from mild mucosal infections to life-threatening systemic diseases. As an essential part of the innate immunity in mucosae, epithelial cells elaborate complex immune responses that discriminate between commensal and pathogenic microbes, including C. albicans. Recently, several significant advances have been made identifying new pieces in the puzzle of host-microbe interactions. This review will summarize these advances in the context of our current knowledge of anti-Candida mucosal immunity, and their impact on epithelial immune responses to this fungal pathogen.
Collapse
Affiliation(s)
- Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Shervin Dokht Sadeghi Nasab
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Nies JF, Panzer U. IL-17C/IL-17RE: Emergence of a Unique Axis in T H17 Biology. Front Immunol 2020; 11:341. [PMID: 32174926 PMCID: PMC7054382 DOI: 10.3389/fimmu.2020.00341] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Therapeutic targeting of IL-17A and its receptor IL-17RA with antibodies has turned out to be a tremendous success in the treatment of several autoimmune conditions. As the IL-17 cytokine family consists of six members (IL-17A to F), it is intriguing to elucidate the biological function of these five other molecules to identify more potential targets. In the past decade, IL-17C has emerged as quite a unique member of this pro-inflammatory cytokine group. In contrast to the well-described IL-17A and IL-17F, IL-17C is upregulated at very early timepoints of several disease settings. Also, the cellular source of the homodimeric cytokine differs from the other members of the family: Epithelial rather than hematopoietic cells were identified as the producers of IL-17C, while its receptor IL-17RE is expressed on TH17 cells as well as the epithelial cells themselves. Numerous investigations led to the current understanding that IL-17C (a) maintains an autocrine loop in the epithelium reinforcing innate immune barriers and (b) stimulates highly inflammatory TH17 cells. Functionally, the IL-17C/RE axis has been described to be involved in the pathogenesis of several diseases ranging from infectious and autoimmune conditions to cancer development and progression. This body of evidence has paved the way for the first clinical trials attempting to neutralize IL-17C in patients. Here, we review the latest knowledge about identification, regulation, and function of the IL-17C/IL-17receptor E pathway in inflammation and immunity, with a focus on the mechanisms underlying tissue injury. We also discuss the rationale for the translation of these findings into new therapeutic approaches in patients with immune-mediated disease.
Collapse
Affiliation(s)
- Jasper F Nies
- Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf Hamburg, Hamburg, Germany
| | - Ulf Panzer
- Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf Hamburg, Hamburg, Germany.,Hamburg Center of Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Liu J, Huang X, Cao X, Feng X, Wang X. Serum biomarker analysis in patients with premature ovarian insufficiency. Cytokine 2020; 126:154876. [PMID: 31629109 DOI: 10.1016/j.cyto.2019.154876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/26/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Premature ovarian insufficiency (POI) is a primary ovarian defect characterized by premature depletion of ovarian follicles before 40 years of age. The disorder has been attributed to various causes, but the study of altered proteins in serum levels as the cause is rare. Additionally, identifying novel biomarkers can contribute to more accurate diagnosis or prognosis of POI. In the present study, a solid-phase antibody array simultaneously detecting multiple proteins was used to analyze POI serum with menopausal and healthy fertile subjects as control groups. As a result, compared to the menopause and healthy fertile groups, eleven proteins, including Neurturin, Frizzled-5, Serpin D1, MMP-7, ICAM-3, IL-17F, IFN-gamma R1, IL-29, IL-17R, IL-17C and Soggy-1, were uniquely down-regulated, and Afamin was particularly up-regulated in POI serum. More importantly, all of these factors were firstly found to be associated with POI in this study, suggesting that these proteins may participate in the pathogenesis of POI and may be novel serum biomarkers for POI.
Collapse
Affiliation(s)
- Jian Liu
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Xunchun Huang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Xiaojing Cao
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Xuan Feng
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Xiaoyun Wang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| |
Collapse
|
21
|
Gaffen SL, Moutsopoulos NM. Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity. Sci Immunol 2020; 5:eaau4594. [PMID: 31901072 PMCID: PMC7068849 DOI: 10.1126/sciimmunol.aau4594] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022]
Abstract
The oral mucosa is a primary barrier site and a portal for entry of microbes, food, and airborne particles into the gastrointestinal tract. Nonetheless, mucosal immunity at this barrier remains understudied compared with other anatomical barrier sites. Here, we review basic aspects of oral mucosal histology, the oral microbiome, and common and clinically significant diseases that present at oral mucosal barriers. We particularly focus on the role of interleukin-17 (IL-17)/T helper 17 (TH17) responses in protective immunity and inflammation in the oral mucosa. IL-17/TH17 responses are highly relevant to maintaining barrier integrity and preventing pathogenic infections by the oral commensal fungus Candida albicans On the other hand, aberrant IL-17/TH17 responses are implicated in driving the pathogenesis of periodontitis and consequent bone and tooth loss. We discuss distinct IL-17-secreting T cell subsets, emphasizing their regulation and function in oropharyngeal candidiasis and periodontitis.
Collapse
Affiliation(s)
- Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Niki M Moutsopoulos
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Hong BY, Sobue T, Choquette L, Dupuy AK, Thompson A, Burleson JA, Salner AL, Schauer PK, Joshi P, Fox E, Shin DG, Weinstock GM, Strausbaugh LD, Dongari-Bagtzoglou A, Peterson DE, Diaz PI. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. MICROBIOME 2019; 7:66. [PMID: 31018870 PMCID: PMC6482518 DOI: 10.1186/s40168-019-0679-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/02/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Gastrointestinal mucosal injury (mucositis), commonly affecting the oral cavity, is a clinically significant yet incompletely understood complication of cancer chemotherapy. Although antineoplastic cytotoxicity constitutes the primary injury trigger, the interaction of oral microbial commensals with mucosal tissues could modify the response. It is not clear, however, whether chemotherapy and its associated treatments affect oral microbial communities disrupting the homeostatic balance between resident microorganisms and the adjacent mucosa and if such alterations are associated with mucositis. To gain knowledge on the pathophysiology of oral mucositis, 49 subjects receiving 5-fluorouracil (5-FU) or doxorubicin-based chemotherapy were evaluated longitudinally during one cycle, assessing clinical outcomes, bacterial and fungal oral microbiome changes, and epithelial transcriptome responses. As a control for microbiome stability, 30 non-cancer subjects were longitudinally assessed. Through complementary in vitro assays, we also evaluated the antibacterial potential of 5-FU on oral microorganisms and the interaction of commensals with oral epithelial tissues. RESULTS Oral mucositis severity was associated with 5-FU, increased salivary flow, and higher oral granulocyte counts. The oral bacteriome was disrupted during chemotherapy and while antibiotic and acid inhibitor intake contributed to these changes, bacteriome disruptions were also correlated with antineoplastics and independently and strongly associated with oral mucositis severity. Mucositis-associated bacteriome shifts included depletion of common health-associated commensals from the genera Streptococcus, Actinomyces, Gemella, Granulicatella, and Veillonella and enrichment of Gram-negative bacteria such as Fusobacterium nucleatum and Prevotella oris. Shifts could not be explained by a direct antibacterial effect of 5-FU, but rather resembled the inflammation-associated dysbiotic shifts seen in other oral conditions. Epithelial transcriptional responses during chemotherapy included upregulation of genes involved in innate immunity and apoptosis. Using a multilayer epithelial construct, we show mucositis-associated dysbiotic shifts may contribute to aggravate mucosal damage since the mucositis-depleted Streptococcus salivarius was tolerated as a commensal, while the mucositis-enriched F. nucleatum displayed pro-inflammatory and pro-apoptotic capacity. CONCLUSIONS Altogether, our work reveals that chemotherapy-induced oral mucositis is associated with bacterial dysbiosis and demonstrates the potential for dysbiotic shifts to aggravate antineoplastic-induced epithelial injury. These findings suggest that control of oral bacterial dysbiosis could represent a novel preventive approach to ameliorate oral mucositis.
Collapse
Affiliation(s)
- Bo-Young Hong
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Takanori Sobue
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
| | - Linda Choquette
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Amanda K Dupuy
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Angela Thompson
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
| | - Joseph A Burleson
- Department of Community Medicine and Health Care, UConn Health, Farmington, CT, USA
| | | | | | - Pujan Joshi
- Department of Computer Science, University of Connecticut, Storrs, CT, USA
| | - Evan Fox
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
| | - Dong-Guk Shin
- Department of Computer Science, University of Connecticut, Storrs, CT, USA
| | | | - Linda D Strausbaugh
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
| | - Douglas E Peterson
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
| | - Patricia I Diaz
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA.
| |
Collapse
|
23
|
Shields BE, Rosenbach M, Brown-Joel Z, Berger AP, Ford BA, Wanat KA. Angioinvasive fungal infections impacting the skin. J Am Acad Dermatol 2019; 80:869-880.e5. [DOI: 10.1016/j.jaad.2018.04.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 01/19/2023]
|
24
|
Jamieson KC, Traves SL, Kooi C, Wiehler S, Dumonceaux CJ, Maciejewski BA, Arnason JW, Michi AN, Leigh R, Proud D. Rhinovirus and Bacteria Synergistically Induce IL-17C Release from Human Airway Epithelial Cells To Promote Neutrophil Recruitment. THE JOURNAL OF IMMUNOLOGY 2018; 202:160-170. [PMID: 30504421 DOI: 10.4049/jimmunol.1800547] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/30/2018] [Indexed: 11/19/2022]
Abstract
Virus-bacteria coinfections are associated with more severe exacerbations and increased risk of hospital readmission in patients with chronic obstructive pulmonary disease (COPD). The airway epithelium responds to such infections by releasing proinflammatory and antimicrobial cytokines, including IL-17C. However, the regulation and role of IL-17C is not well understood. In this study, we examine the mechanisms regulating IL-17C production and its potential role in COPD exacerbations. Human bronchial epithelial cells (HBE) obtained from normal, nontransplanted lungs or from brushings of nonsmokers, healthy smokers, or COPD patients were exposed to bacteria and/or human rhinovirus (HRV). RNA and protein were collected for analysis, and signaling pathways were assessed with pharmacological agonists, inhibitors, or small interfering RNAs. HBE were also stimulated with IL-17C to assess function. HRV-bacterial coinfections synergistically induced IL-17C expression. This induction was dependent on HRV replication and required NF-κB-mediated signaling. Synergy was lost in the presence of an inhibitor of the p38 MAP kinase pathway. HBE exposed to IL-17C show increased gene expression of CXCL1, CXCL2, NFKBIZ, and TFRC, and release CXCL1 protein, a neutrophil chemoattractant. Knockdown of IL-17C significantly reduced induction of CXCL1 in response to HRV-bacterial coinfection as well as neutrophil chemotaxis. HBE from healthy smokers release less IL-17C than cells from nonsmokers, but cells from COPD patients release significantly more IL-17C compared with either nonsmokers or healthy smokers. These data suggest that IL-17C may contribute to microbial-induced COPD exacerbations by promoting neutrophil recruitment.
Collapse
Affiliation(s)
- Kyla C Jamieson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Suzanne L Traves
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Cora Kooi
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Shahina Wiehler
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Curtis J Dumonceaux
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Barbara A Maciejewski
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Jason W Arnason
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Aubrey N Michi
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Richard Leigh
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - David Proud
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| |
Collapse
|
25
|
The roles of IL-17C in T cell-dependent and -independent inflammatory diseases. Sci Rep 2018; 8:15750. [PMID: 30356086 PMCID: PMC6200819 DOI: 10.1038/s41598-018-34054-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
IL-17C, which is a member of the IL-17 family of cytokines, is preferentially produced by epithelial cells in the lung, skin and colon, suggesting that IL-17C may be involved in not only host defense but also inflammatory diseases in those tissues. In support of that, IL-17C was demonstrated to contribute to development of T cell-dependent imiquimod-induced psoriatic dermatitis and T cell-independent dextran sodium sulfate-induced acute colitis using mice deficient in IL-17C and/or IL-17RE, which is a component of the receptor for IL-17C. However, the roles of IL-17C in other inflammatory diseases remain poorly understood. Therefore, we investigated the contributions of IL-17C to development of certain disease models using Il17c−/− mice, which we newly generated. Those mice showed normal development of T cell-dependent inflammatory diseases such as FITC- and DNFB-induced contact dermatitis/contact hypersensitivity (CHS) and concanavalin A-induced hepatitis, and T cell-independent inflammatory diseases such as bleomycin-induced pulmonary fibrosis, papain-induced airway eosinophilia and LPS-induced airway neutrophilia. On the other hand, those mice were highly resistant to LPS-induced endotoxin shock, indicating that IL-17C is crucial for protection against that immunological reaction. Therefore, IL-17C neutralization may represent a novel therapeutic approach for sepsis, in addition to psoriasis and acute colitis.
Collapse
|
26
|
Matsuzaki G, Umemura M. Interleukin-17 family cytokines in protective immunity against infections: role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17s. Microbiol Immunol 2018; 62:1-13. [PMID: 29205464 DOI: 10.1111/1348-0421.12560] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 11/27/2022]
Abstract
Interleukin-17 family cytokines, consisting of six members, participate in immune response in infections and autoimmune and inflammatory diseases. The prototype cytokine of the family, IL-17A, was originally identified from CD4+ T cells which are now termed Th17 cells. Later, IL-17A-producing cells were expanded to include various hematopoietic cells, namely CD8+ T cells (Tc17), invariant NKT cells, γδ T cells, non-T non-B lymphocytes (termed type 3 innate lymphoid cells) and neutrophils. Some IL-17 family cytokines other than IL-17A are also expressed by CD4+ T cells: IL-17E by Th2 cells and IL-17F by Th17 cells. IL-17A and IL-17F induce expression of pro-inflammatory cytokines to induce inflammation and anti-microbial peptides to kill pathogens, whereas IL-17E induces allergic inflammation. However, the functions of other IL-17 family cytokines have been unclear. Recent studies have shown that IL-17B and IL-17C are expressed by epithelial rather than hematopoietic cells. Interestingly, expression of IL-17E and IL-17F by epithelial cells has also been reported and epithelial cell-derived IL-17 family cytokines shown to play important roles in immune responses to infections at epithelial sites. In this review, we summarize current information on hematopoietic cell-derived IL-17A and non-hematopoietic cell-derived IL-17B, IL-17C, IL-17D, IL-17E and IL-17F in infections and propose functional differences between these two categories of IL-17 family cytokines.
Collapse
Affiliation(s)
- Goro Matsuzaki
- Molecular Microbiology Group, Tropical Biosphere Research Center and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Masayuki Umemura
- Molecular Microbiology Group, Tropical Biosphere Research Center and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
27
|
Ramani K, Jawale CV, Verma AH, Coleman BM, Kolls JK, Biswas PS. Unexpected kidney-restricted role for IL-17 receptor signaling in defense against systemic Candida albicans infection. JCI Insight 2018; 3:98241. [PMID: 29720566 DOI: 10.1172/jci.insight.98241] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Kidney injury is a frequent outcome in patients with disseminated Candida albicans fungal infections. IL-17 receptor (IL-17R) signaling is critical for renal protection against disseminated candidiasis, but the identity and function of IL-17-responsive cells in mediating renal defense remains an active area of debate. Using BM chimeras, we found that IL-17R signaling is required only in nonhematopoietic cells for immunity to systemic C. albicans infection. Since renal tubular epithelial cells (RTEC) are highly responsive to IL-17 in vitro, we hypothesized that RTEC might be the dominant target of IL-17 activity in the infected kidney. We generated mice with a conditional deletion of IL-17 receptor A (Il17ra) in RTEC (Il17raΔRTEC). Strikingly, Il17raΔRTEC mice showed enhanced kidney damage and early mortality following systemic infection, very similar to Il17ra-/- animals. Increased susceptibility to candidiasis in Il17raΔRTEC mice was associated with diminished activation of the renal protective Kallikrein-kinin system (KKS), resulting in reduced apoptosis of kidney-resident cells during hyphal invasion. Moreover, protection was restored by treatment with bradykinin, the major end-product of KKS activation, which was mediated dominantly via bradykinin receptor b1. These data show that IL-17R signaling in RTEC is necessary and likely sufficient for IL-17-mediated renal defense against fatal systemic C. albicans infection.
Collapse
Affiliation(s)
- Kritika Ramani
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chetan V Jawale
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Akash H Verma
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bianca M Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jay K Kolls
- Richard King Mellon Foundation for Pediatric Research, Children's Hospital of UPMC, Pittsburgh, Pennsylvania, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Monin L, Gaffen SL. Interleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic Implications. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028522. [PMID: 28620097 DOI: 10.1101/cshperspect.a028522] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cytokines of the interleukin 17 (IL-17) family play a central role in the control of infections, especially extracellular fungi. Conversely, if unrestrained, these inflammatory cytokines contribute to the pathology of numerous autoimmune and chronic inflammatory conditions. Recent advances have led to the approval of IL-17A-blocking biologics for the treatment of moderate to severe plaque psoriasis, but much remains to be understood about the biological functions, regulation, and signaling pathways downstream of these factors. In this review, we outline the current knowledge of signal transduction and known physiological activities of IL-17 family cytokines. We will highlight in particular the current understanding of these cytokines in the context of skin manifestations of disease.
Collapse
Affiliation(s)
- Leticia Monin
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
29
|
Yonashiro Marcelino M, Azevedo Borges F, Martins Costa AF, de Lacorte Singulani J, Ribeiro NV, Barcelos Costa-Orlandi C, Garms BC, Soares Mendes-Giannini MJ, Herculano RD, Fusco-Almeida AM. Antifungal activity of fluconazole-loaded natural rubber latex against Candida albicans. Future Microbiol 2018; 13:359-367. [DOI: 10.2217/fmb-2017-0154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: This work aimed to produce a membrane based on fluconazole-loaded natural rubber latex (NRL), and study their interaction, drug release and antifungal susceptibility against Candida albicans. Materials & methods: Fluconazole-loaded NRL membrane was obtained by casting method. Results: The Fourier Transform Infrared Spectroscopy showed no modifications either in NRL or fluconazole after the incorporation. Mechanical test presented low Young's modulus and high strain, indicating the membranes have sufficient elasticity for biomedical application. The bio-membrane was able to release the drug and inhibit the growth of C. albicans as demonstrated by disk diffusion and macrodilution assays. Conclusion: The biomembrane was able to release fluconazole and inhibit the growth of C. albicans, representing a promising biomaterial for skin application.
Collapse
Affiliation(s)
- Mônica Yonashiro Marcelino
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Clinical Analysis, Rodovia Araraquara Jaú, Km 01 - s/, Araraquara, São Paulo, Brazil
| | - Felipe Azevedo Borges
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Biochemistry & Chemical Technology, Araraquara, São Paulo, Brazil
| | - Ana Flávia Martins Costa
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Bioprocesses & Biotechnology, Araraquara, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Clinical Analysis, Rodovia Araraquara Jaú, Km 01 - s/, Araraquara, São Paulo, Brazil
| | - Nathan Vinícius Ribeiro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Bioprocesses & Biotechnology, Araraquara, São Paulo, Brazil
| | - Caroline Barcelos Costa-Orlandi
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Clinical Analysis, Rodovia Araraquara Jaú, Km 01 - s/, Araraquara, São Paulo, Brazil
| | - Bruna Cambraia Garms
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Biochemistry & Chemical Technology, Araraquara, São Paulo, Brazil
| | - Maria José Soares Mendes-Giannini
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Clinical Analysis, Rodovia Araraquara Jaú, Km 01 - s/, Araraquara, São Paulo, Brazil
| | - Rondinelli Donizetti Herculano
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Bioprocesses & Biotechnology, Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Clinical Analysis, Rodovia Araraquara Jaú, Km 01 - s/, Araraquara, São Paulo, Brazil
| |
Collapse
|
30
|
Interaction of Candida Species with the Skin. Microorganisms 2017; 5:microorganisms5020032. [PMID: 28590443 PMCID: PMC5488103 DOI: 10.3390/microorganisms5020032] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
The human skin is commonly colonized by diverse fungal species. Some Candida species, especially C. albicans, do not only reside on the skin surface as commensals, but also cause infections by growing into the colonized tissue. However, defense mechanisms at the skin barrier level are very efficient, involving residential non-immune and immune cells as well as immune cells specifically recruited to the site of infection. Therefore, the skin is an effective barrier against fungal infection. While most studies about commensal and pathogenic interaction of Candida species with host epithelia focus on the interaction with mucosal surfaces such as the vaginal and gastrointestinal epithelia, less is known about the mechanisms underlying Candida interaction with the skin. In this review, we focus on the ecology and molecular pathogenesis of Candida species on the skin and give an overview of defense mechanisms against C. albicans in this context. We also discuss new research avenues in dermal infection, including the involvement of neurons, fibroblasts, and commensal bacteria in both mouse and human model systems.
Collapse
|
31
|
Kawakami Y, Yamamoto T. Candida albicans-induced pustular lesions in mice. J Dermatol 2017; 44:596-597. [PMID: 28447353 DOI: 10.1111/1346-8138.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Yoshio Kawakami
- Department of Dermatology, Fukushima Medical University, Fukushima, Japan.,Department of Dermatology, Okayama City Hospital, Okayama, Japan
| | - Toshiyuki Yamamoto
- Department of Dermatology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
32
|
Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs 2017; 77:521-546. [PMID: 28255960 PMCID: PMC7102286 DOI: 10.1007/s40265-017-0701-9] [Citation(s) in RCA: 736] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Janus kinase/signal transduction and activator of transcription (JAK-STAT) signaling pathway is implicated in the pathogenesis of inflammatory and autoimmune diseases including rheumatoid arthritis, psoriasis, and inflammatory bowel disease. Many cytokines involved in the pathogenesis of autoimmune and inflammatory diseases use JAKs and STATs to transduce intracellular signals. Mutations in JAK and STAT genes cause a number of immunodeficiency syndromes, and polymorphisms in these genes are associated with autoimmune diseases. The success of small-molecule JAK inhibitors (Jakinibs) in the treatment of rheumatologic disease demonstrates that intracellular signaling pathways can be targeted therapeutically to treat autoimmunity. Tofacitinib, the first rheumatologic Jakinib, is US Food and Drug Administration (FDA) approved for rheumatoid arthritis and is currently under investigation for other autoimmune diseases. Many other Jakinibs are in preclinical development or in various phases of clinical trials. This review describes the JAK-STAT pathway, outlines its role in autoimmunity, and explains the rationale/pre-clinical evidence for targeting JAK-STAT signaling. The safety and clinical efficacy of the Jakinibs are reviewed, starting with the FDA-approved Jakinib tofacitinib, and continuing on to next-generation Jakinibs. Recent and ongoing studies are emphasized, with a focus on emerging indications for JAK inhibition and novel mechanisms of JAK-STAT signaling blockade.
Collapse
Affiliation(s)
- Shubhasree Banerjee
- Rheumatology Fellowship and Training Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - Ann Biehl
- Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis Musculoskeletal and Skin diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- Lupus Clinical Research Program, National Institute of Arthritis Musculoskeletal and Skin diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniella M Schwartz
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis Musculoskeletal and Skin diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Reddy RCJ, Jeelani S, Duraiselvi P, Kandasamy M, Kumar GS, Pandian RAV. Assessment of Effectiveness of Fluconazole and Clotrimazole in Treating Oral Candidiasis Patients: A Comparative Study. J Int Soc Prev Community Dent 2017; 7:90-94. [PMID: 28462176 PMCID: PMC5390584 DOI: 10.4103/jispcd.jispcd_34_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/28/2017] [Indexed: 11/29/2022] Open
Abstract
Aims: One of the most common fungal infections infecting humans is Candidiasis. Belonging to the group of opportunistic infections, it often affects individuals with various debilitating diseases. Fluconazole and clotrimazole are two of the commonly used anti-fungal agents for the treatment of oral candidiasis. Hence, we planned this study to evaluate the effectiveness of fluconazole and clotrimazole in the treatment of patients suffering from candidiasis. Materials and Methods: A total of 180 participants were enrolled in the present study. All the patients of candidiasis were divided broadly into two study groups. Group I included patients who were treated with fluconazole mouthrinse whereas group II included patients who were treated with clotrimazole mouth paint. Grading of patient discomfort was done as noted from readings given by the patients. Specimen was collection by a swab from the lesional area of the oral cavity from the patients and were incubated in Sabouraud's dextrose agar medium and assessed. All the patients were treated with medication as give to their respective groups. Patients were recalled as assessed. All the readings were recorded and analyzed. Results: For group I patients, the fungal eradication was 89.5%, whereas for group II patients, the fungal eradication was 86.7%. No significant results were obtained while comparing the mycological eradiation in patients of the two study groups. Conclusion: Approximately similar effectiveness in terms of treatment was noted with fluconazole and clotrimazole in treating patients with candidiasis.
Collapse
Affiliation(s)
- R C Jagat Reddy
- Department of Oral Medicine and Radiology, Chettinad Dental College and Research Institute, Kelambakkam, Tamil Nadu, India
| | - S Jeelani
- Department of Oral Medicine and Radiology, Sri Venkateshwaraa Dental College, Puducherry, India
| | - P Duraiselvi
- Department of Oral Medicine and Radiology, Sri Venkateshwaraa Dental College, Puducherry, India
| | - M Kandasamy
- Department of Oral Medicine and Radiology, Rajas Dental College and Hospital, Tirunelveli, Tamil Nadu, India
| | - G Suresh Kumar
- Department of Oral and Maxillofacial Surgery, Adthiparasakthi Dental College and Hospital, Melmaruvathur, Tamil Nadu, India
| | - R Azhal Vel Pandian
- Department of Oral Medicine and Radiology, Sri Venkateshwaraa Dental College, Puducherry, India
| |
Collapse
|
34
|
Aoun G, Berberi A. Prevalence of Chronic Erythematous Candidiasis in Lebanese Denture Wearers: a Clinico-microbiological Study. Mater Sociomed 2017; 29:26-29. [PMID: 28484350 PMCID: PMC5402384 DOI: 10.5455/msm.2017.29.26-29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective: Chronic erythematous candidiasis also known as denture-related stomatitis refers to inflammatory changes of the denture-bearing mucosa. The aim of this study was to evaluate the prevalence of chronic erythematous candidiasis in a Lebanese population using clinical and microbiological examinations. Materials and Methods: Ninety-eight patients wearing full acrylic maxillary denture (50 women and 48 men) were included in this study. A clinical oral assessment and a microbiological exam using swab samples collected from the palate of these patients were performed and the data obtained were analyzed statistically. Results: Sixty-nine point thirty-eight per cent (69.38%) of the patients examined, (68 out of 98; 25 men and 43 women), presented chronic erythematous candidiasis. The statistical analysis showed that patient’s gender was a significant predictor of the disease while no statistically significant relationship with the patient’s age was found. Conclusion: Within the limits of this study, the prevalence of chronic erythematous candidiasis is estimated to be high in Lebanon. Women were more affected than men.
Collapse
Affiliation(s)
- Georges Aoun
- Department of Oral Pathology and Diagnosis, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Antoine Berberi
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| |
Collapse
|
35
|
Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A 2016; 113:E8277-E8285. [PMID: 27930337 DOI: 10.1073/pnas.1618300114] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is defined as recurrent or persistent infection of the skin, nails, and/or mucosae with commensal Candida species. The first genetic etiology of isolated CMC-autosomal recessive (AR) IL-17 receptor A (IL-17RA) deficiency-was reported in 2011, in a single patient. We report here 21 patients with complete AR IL-17RA deficiency, including this first patient. Each patient is homozygous for 1 of 12 different IL-17RA alleles, 8 of which create a premature stop codon upstream from the transmembrane domain and have been predicted and/or shown to prevent expression of the receptor on the surface of circulating leukocytes and dermal fibroblasts. Three other mutant alleles create a premature stop codon downstream from the transmembrane domain, one of which encodes a surface-expressed receptor. Finally, the only known missense allele (p.D387N) also encodes a surface-expressed receptor. All of the alleles tested abolish cellular responses to IL-17A and -17F homodimers and heterodimers in fibroblasts and to IL-17E/IL-25 in leukocytes. The patients are currently aged from 2 to 35 y and originate from 12 unrelated kindreds. All had their first CMC episode by 6 mo of age. Fourteen patients presented various forms of staphylococcal skin disease. Eight were also prone to various bacterial infections of the respiratory tract. Human IL-17RA is, thus, essential for mucocutaneous immunity to Candida and Staphylococcus, but otherwise largely redundant. A diagnosis of AR IL-17RA deficiency should be considered in children or adults with CMC, cutaneous staphylococcal disease, or both, even if IL-17RA is detected on the cell surface.
Collapse
|
36
|
Chen K, Eddens T, Trevejo-Nunez G, Way EE, Elsegeiny W, Ricks DM, Garg AV, Erb CJ, Bo M, Wang T, Chen W, Lee JS, Gaffen SL, Kolls JK. IL-17 Receptor Signaling in the Lung Epithelium Is Required for Mucosal Chemokine Gradients and Pulmonary Host Defense against K. pneumoniae. Cell Host Microbe 2016; 20:596-605. [PMID: 27923703 DOI: 10.1016/j.chom.2016.10.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/17/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
The cytokine IL-17, and signaling via its heterodimeric IL-17RA/IL-17RC receptor, is critical for host defense against extracellular bacterial and fungal pathogens. Polarized lung epithelial cells express IL-17RA and IL-17RC basolaterally. However, their contribution to IL-17-dependent pulmonary defenses in vivo remains to be determined. To address this, we generated mice with conditional deletion of Il17ra or Il17rc in Scgb1a1-expressing club cells, a major component of the murine bronchiolar epithelium. These mice displayed an impaired ability to recruit neutrophils into the airway lumen in response to IL-17, a defect in bacterial clearance upon mucosal challenge with the pulmonary pathogen Klebsiella pneumoniae, and substantially reduced epithelial expression of the chemokine Cxcl5. Neutrophil recruitment and bacterial clearance were restored by intranasal administration of recombinant CXCL5. Our data show that IL-17R signaling in the lung epithelium plays a critical role in establishing chemokine gradients that are essential for mucosal immunity against pulmonary bacterial pathogens.
Collapse
Affiliation(s)
- Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Taylor Eddens
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Giraldina Trevejo-Nunez
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Emily E Way
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Waleed Elsegeiny
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - David M Ricks
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Abhishek V Garg
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Carla J Erb
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Meihua Bo
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ting Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Wei Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Janet S Lee
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| |
Collapse
|
37
|
Conti HR, Bruno VM, Childs EE, Daugherty S, Hunter JP, Mengesha BG, Saevig DL, Hendricks MR, Coleman BM, Brane L, Solis N, Cruz JA, Verma AH, Garg AV, Hise AG, Richardson JP, Naglik JR, Filler SG, Kolls JK, Sinha S, Gaffen SL. IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis. Cell Host Microbe 2016; 20:606-617. [PMID: 27923704 DOI: 10.1016/j.chom.2016.10.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 08/16/2016] [Accepted: 09/21/2016] [Indexed: 12/19/2022]
Abstract
Signaling through the IL-17 receptor (IL-17R) is required to prevent oropharyngeal candidiasis (OPC) in mice and humans. However, the IL-17-responsive cell type(s) that mediate protection are unknown. Using radiation chimeras, we were able to rule out a requirement for IL-17RA in the hematopoietic compartment. We saw remarkable concordance of IL-17-controlled gene expression in C. albicans-infected human oral epithelial cells (OECs) and in tongue tissue from mice with OPC. To interrogate the role of the IL-17R in OECs, we generated mice with conditional deletion of IL-17RA in superficial oral and esophageal epithelial cells (Il17raΔK13). Following oral Candida infection, Il17raΔK13 mice exhibited fungal loads and weight loss indistinguishable from Il17ra-/- mice. Susceptibility in Il17raΔK13 mice correlated with expression of the antimicrobial peptide β-defensin 3 (BD3, Defb3). Consistently, Defb3-/- mice were susceptible to OPC. Thus, OECs dominantly control IL-17R-dependent responses to OPC through regulation of BD3 expression.
Collapse
Affiliation(s)
- Heather R Conti
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA.
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erin E Childs
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sean Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph P Hunter
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Bemnet G Mengesha
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Danielle L Saevig
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Matthew R Hendricks
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bianca M Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lucas Brane
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Norma Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - J Agustin Cruz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Akash H Verma
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Abhishek V Garg
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amy G Hise
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Jonathan P Richardson
- Department of Mucosal and Salivary Biology, King's College London, London SE1 1UL, UK
| | - Julian R Naglik
- Department of Mucosal and Salivary Biology, King's College London, London SE1 1UL, UK
| | - Scott G Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jay K Kolls
- Richard King Mellon Foundation for Pediatric Research, Children's Hospital of UPMC, Pittsburgh, PA 15224, USA
| | - Satrajit Sinha
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Mucosal and Salivary Biology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
38
|
Mortaz E, Tabarsi P, Mansouri D, Khosravi A, Garssen J, Velayati A, Adcock IM. Cancers Related to Immunodeficiencies: Update and Perspectives. Front Immunol 2016; 7:365. [PMID: 27703456 PMCID: PMC5028721 DOI: 10.3389/fimmu.2016.00365] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/05/2016] [Indexed: 01/12/2023] Open
Abstract
The life span of patients with primary and secondary immunodeficiency is increasing due to recent improvements in therapeutic strategies. While the incidence of primary immunodeficiencies (PIDs) is 1:10,000 births, that of secondary immunodeficiencies are more common and are associated with posttransplantation immune dysfunction, with immunosuppressive medication for human immunodeficiency virus or with human T-cell lymphotropic virus infection. After infection, malignancy is the most prevalent cause of death in both children and adults with (PIDs). PIDs more often associated with cancer include common variable immunodeficiency (CVID), Wiskott-Aldrich syndrome, ataxia-telangiectasia, and severe combined immunodeficiency. This suggests that a protective immune response against both infectious non-self-(pathogens) and malignant self-challenges (cancer) exists. The increased incidence of cancer has been attributed to defective elimination of altered or "transformed" cells and/or defective immunity towards cancer cells. The concept of aberrant immune surveillance occurring in PIDs is supported by evidence in mice and from patients undergoing immunosuppression after transplantation. Here, we discuss the importance of PID defects in the development of malignancies and the current limitations associated with molecular pathogenesis of these diseases and emphasize the need for further knowledge of how specific mutations can modulate the immune system to alter immunosurveillance and thereby play a key role in the etiology of malignancies in PID patients.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Chronic Respiratory Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davod Mansouri
- Chronic Respiratory Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adnan Khosravi
- Chronic Respiratory Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Nutricia Research Centre for Specialized Nutrition, Utrecht, Netherlands
| | - Aliakbar Velayati
- Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M. Adcock
- Cell and Molecular Biology Group, Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
39
|
Collaborative Interferon-γ and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2337-52. [PMID: 27470712 DOI: 10.1016/j.ajpath.2016.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Infections with Staphylococcus aureus are a continuing and growing problem in community and hospital settings. Preclinical animal modeling of S. aureus relies on experimental infection, which carries some limitations. We describe here a novel, spontaneous model of oral staphylococcal infection in double knockout mice, deficient in the receptors for IL-17 (IL-17RA) and interferon (IFN)-γ (IFNγRI), beginning at 6 to 8 weeks of age. IFNγRI(-/-)IL17RA(-/-) (GRAKO) mice developed progressive oral abscesses. Cytometric methods revealed extensive neutrophilic infiltration of oral tissues in GRAKO mice; further investigation evidenced that IL-17 predominated neutrophil defects in these mice. To investigate the contribution of IFN-γ signaling to this native host defense to S. aureus, we observed perturbations of monocyte recruitment and macrophage differentiation in the oral tissues of GRAKO mice, and CXCL9/chemokine ligand receptor (CXCR)3-driven recruitment of T-cell oral tissues and draining lymph nodes. To address the former finding, we depleted macrophages and monocytes in vivo from IL17RA(-/-) mice using liposomes loaded with clodronate. This treatment elicited oral abscesses, recapitulating the phenotype of GRAKO mice. From these findings, we propose novel collaborative functions of IL-17 and IFN-γ, acting through neutrophils and macrophages, respectively, in native mucocutaneous host defenses to S. aureus.
Collapse
|
40
|
Whibley N, Tritto E, Traggiai E, Kolbinger F, Moulin P, Brees D, Coleman BM, Mamo AJ, Garg AV, Jaycox JR, Siebenlist U, Kammüller M, Gaffen SL. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis. J Leukoc Biol 2016; 99:1153-64. [PMID: 26729813 PMCID: PMC4952011 DOI: 10.1189/jlb.4a0915-428r] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/16/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Antibodies targeting IL-17A or its receptor, IL-17RA, are approved to treat psoriasis and are being evaluated for other autoimmune conditions. Conversely, IL-17 signaling is critical for immunity to opportunistic mucosal infections caused by the commensal fungus Candida albicans, as mice and humans lacking the IL-17R experience chronic mucosal candidiasis. IL-17A, IL-17F, and IL-17AF bind the IL-17RA-IL-17RC heterodimeric complex and deliver qualitatively similar signals through the adaptor Act1. Here, we used a mouse model of acute oropharyngeal candidiasis to assess the impact of blocking IL-17 family cytokines compared with specific IL-17 cytokine gene knockout mice. Anti-IL-17A antibodies, which neutralize IL-17A and IL-17AF, caused elevated oral fungal loads, whereas anti-IL-17AF and anti-IL-17F antibodies did not. Notably, there was a cooperative effect of blocking IL-17A, IL-17AF, and IL-17F together. Termination of anti-IL-17A treatment was associated with rapid C. albicans clearance. IL-17F-deficient mice were fully resistant to oropharyngeal candidiasis, consistent with antibody blockade. However, IL-17A-deficient mice had lower fungal burdens than anti-IL-17A-treated mice. Act1-deficient mice were much more susceptible to oropharyngeal candidiasis than anti-IL-17A antibody-treated mice, yet anti-IL-17A and anti-IL-17RA treatment caused equivalent susceptibilities. Based on microarray analyses of the oral mucosa during infection, only a limited number of genes were associated with oropharyngeal candidiasis susceptibility. In sum, we conclude that IL-17A is the main cytokine mediator of immunity in murine oropharyngeal candidiasis, but a cooperative relationship among IL-17A, IL-17AF, and IL-17F exists in vivo. Susceptibility displays the following hierarchy: IL-17RA- or Act1-deficiency > anti-IL-17A + anti-IL-17F antibodies > anti-IL-17A or anti-IL-17RA antibodies > IL-17A deficiency.
Collapse
Affiliation(s)
- Natasha Whibley
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elaine Tritto
- Novartis Institutes for Biomedical Research, Basel, Switzerland; and
| | | | - Frank Kolbinger
- Novartis Institutes for Biomedical Research, Basel, Switzerland; and
| | - Pierre Moulin
- Novartis Institutes for Biomedical Research, Basel, Switzerland; and
| | - Dominique Brees
- Novartis Institutes for Biomedical Research, Basel, Switzerland; and
| | - Bianca M Coleman
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna J Mamo
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Abhishek V Garg
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jillian R Jaycox
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ulrich Siebenlist
- National Institute of Allergy and Infectious Disease, Laboratory of Molecular Immunology, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Kammüller
- Novartis Institutes for Biomedical Research, Basel, Switzerland; and
| | - Sarah L Gaffen
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
41
|
Kashem SW, Kaplan DH. Skin Immunity to Candida albicans. Trends Immunol 2016; 37:440-450. [PMID: 27178391 DOI: 10.1016/j.it.2016.04.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/20/2022]
Abstract
Candida albicans is a dimorphic commensal fungus that colonizes healthy human skin, mucosa, and the reproductive tract. C. albicans is also a predominantly opportunistic fungal pathogen, leading to disease manifestations such as disseminated candidiasis and chronic mucocutaneous candidiasis (CMC). The differing host susceptibilities for the sites of C. albicans infection have revealed tissue compartmentalization with tailoring of immune responses based on the site of infection. Furthermore, extensive studies of host genetics in rare cases of CMC have identified conserved genetic pathways involved in immune recognition and the response to the extracellular pathogen. We focus here on human and mouse skin as a site of C. albicans infection, and we review established and newly discovered insights into the cellular pathways that promote cutaneous antifungal immunity.
Collapse
Affiliation(s)
- Sakeen W Kashem
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
42
|
Yoshikawa FSY, Yabe R, Iwakura Y, de Almeida SR, Saijo S. Dectin-1 and Dectin-2 promote control of the fungal pathogen Trichophyton rubrum independently of IL-17 and adaptive immunity in experimental deep dermatophytosis. Innate Immun 2016; 22:316-24. [DOI: 10.1177/1753425916645392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022] Open
Abstract
Dermatophytoses are chronic fungal infections, the main causative agent of which is Trichophyton rubrum (T. rubrum). Despite their high occurrence worldwide, the immunological mechanisms underlying these diseases remain largely unknown. Here, we uncovered the C-type lectin receptors, Dectin-1 and Dectin-2, as key elements in the immune response to T. rubrum infection in a model of deep dermatophytosis . In vitro, we observed that deficiency in Dectin-1 and Dectin-2 severely compromised cytokine production by dendritic cells. In vivo, mice lacking Dectin-1 and/or Dectin-2 showed an inadequate pro-inflammatory cytokine production in response to T. rubrum infection, impairing its resolution. Strikingly, neither adaptive immunity nor IL-17 response were required for fungal clearance, highlighting innate immunity as the main checkpoint in the pathogenesis of T. rubrum infection.
Collapse
Affiliation(s)
- Fabio SY Yoshikawa
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rikio Yabe
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Sandro R de Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
43
|
The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol 2016; 13:418-31. [PMID: 27018218 DOI: 10.1038/cmi.2015.105] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/21/2015] [Accepted: 11/21/2015] [Indexed: 01/12/2023] Open
Abstract
The mucosal immune system serves as our front-line defense against pathogens. It also tightly maintains immune tolerance to self-symbiotic bacteria, which are usually called commensals. Sensing both types of microorganisms is modulated by signalling primarily through various pattern-recognition receptors (PRRs) on barrier epithelial cells or immune cells. After sensing, proinflammatory molecules such as cytokines are released by these cells to mediate either defensive or tolerant responses. The interleukin-17 (IL-17) family members belong to a newly characterized cytokine subset that is critical for the maintenance of mucosal homeostasis. In this review, we will summarize recent progress on the diverse functions and signals of this family of cytokines at different mucosal edges.
Collapse
|
44
|
Sparber F, LeibundGut-Landmann S. Interleukin 17-Mediated Host Defense against Candida albicans. Pathogens 2015; 4:606-19. [PMID: 26274976 PMCID: PMC4584276 DOI: 10.3390/pathogens4030606] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
Candida albicans is part of the normal microbiota in most healthy individuals. However, it can cause opportunistic infections if host defenses are breached, with symptoms ranging from superficial lesions to severe systemic disease. The study of rare congenital defects in patients with chronic mucocutaneous candidiasis led to the identification of interleukin-17 (IL-17) as a key factor in host defense against mucosal fungal infection. Experimental infections in mice confirmed the critical role of IL-17 in mucocutaneous immunity against C. albicans. Research on mouse models has also contributed importantly to our current understanding of the regulation of IL-17 production by different cellular sources and its effector functions in distinct tissues. In this review, we highlight recent findings on IL-17-mediated immunity against C. albicans in mouse and man.
Collapse
Affiliation(s)
- Florian Sparber
- Section of Immunology, Institute of Virology, University of Zürich, Winterthurerstrasse 266a, Zürich, CH-8057, Switzerland.
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Institute of Virology, University of Zürich, Winterthurerstrasse 266a, Zürich, CH-8057, Switzerland.
| |
Collapse
|
45
|
Conti HR, Gaffen SL. IL-17-Mediated Immunity to the Opportunistic Fungal Pathogen Candida albicans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:780-8. [PMID: 26188072 PMCID: PMC4507294 DOI: 10.4049/jimmunol.1500909] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IL-17 (IL-17A) has emerged as a key mediator of protection against extracellular microbes, but this cytokine also drives pathology in various autoimmune diseases. Overwhelming data in both humans and mice reveal a clear and surprisingly specific role for IL-17 in protection against the fungus Candida albicans, a commensal microbe of the human oral cavity, gastrointestinal tract, and reproductive mucosa. The IL-17 pathway regulates antifungal immunity through upregulation of proinflammatory cytokines, including IL-6, neutrophil-recruiting chemokines (e.g., CXCL1 and CXCL5), and antimicrobial peptides (e.g., defensins), which act in concert to limit fungal overgrowth. This review focuses on diseases caused by C. albicans, the role of IL-17-mediated immunity in candidiasis, and the implications for clinical therapies for both autoimmune conditions and fungal infections.
Collapse
Affiliation(s)
- Heather R Conti
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|