1
|
Shumba MN, Nakamura Y, Nakanishi T. Cigarette smoke-induced attenuation of the prostaglandin transporter SLCO2A1 expression through aryl hydrocarbon receptor. Prostaglandins Other Lipid Mediat 2025; 176:106935. [PMID: 39608564 DOI: 10.1016/j.prostaglandins.2024.106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/20/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
SLCO2A1 is a prostaglandin transporter and contributes to regulating local concentration of an inflammatory mediator, PGE2. Since we previously found that cigarette smoke extracts (CSE) reduced Slco2a1 mRNA expression in rat alveolar epithelial cells, the current study aimed to investigate the effect of CSE on human SLCO2A1 mRNA expression across cell lines from organs that are susceptible to tobacco smoking-induced inflammation. 5'-Flanking regions of SLCO2A1 up to 3673 bp upstream of the transcription start site (+1) was sub-cloned into a luciferase (LUC) expression vector, and promoter activity was evaluated by a reporter assay. CSE significantly reduced SLCO2A1 mRNA expression and LUC activity driven by the construct of -3673/+4 in colon epithelial LoVo and Caco-2 and lung mucoepidermoid NCI-H292 cells, but not in liver epithelial-like HepG2 cells. Long-term exposure of LoVo cells to CSE completely suppressed SLCO2A1 protein expression. The CSE-mediated effect on LUC activity was restored by an AHR antagonist PD98059 and a known AHR ligand β-naphthoflavone significantly reduced SLCO2A1 mRNA expression in cells. Concomitantly, the CSE-mediated negative regulation of SLCO2A1 was abolished in cells transfected with the construct of -3673/+4 with mutated xenobiotic response element. Furthermore, PD98059 and an AHR inhibitor perillaldehyde diminished the negative effect of CSE on SLCO2A1 mRNA expression in Lovo, NCI-H292 and Caco-2 cells. These results demonstrate that CSE negatively modulates SLCO2A1 transcription through AHR activation, providing a toxicological implication of tobacco smoke-induced inflammation.
Collapse
Affiliation(s)
- Melody N Shumba
- Laboratory of Membrane Transport and Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, 370-0033, Japan
| | - Yoshinobu Nakamura
- Laboratory of Membrane Transport and Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, 370-0033, Japan
| | - Takeo Nakanishi
- Laboratory of Membrane Transport and Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, 370-0033, Japan.
| |
Collapse
|
2
|
Nakamura Y, Ito MA, Hoshino Y, Matsuoka I, Okada T, Okada Y, Nakanishi T. Modulation of prostaglandin transport activity of SLCO2A1 by annexin A2 and S100A10. Am J Physiol Cell Physiol 2024; 326:C1042-C1053. [PMID: 38372137 DOI: 10.1152/ajpcell.00701.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
Solute carrier organic anion transporter family member 2A1 (SLCO2A1) is a prostaglandin (PG) transporter and serves as the osmosensitive ATP-permeable maxi-anion channel (Maxi-Cl). Since a heterotetrameric complex of annexin A2 (ANXA2) and S100A10 is obligatory for the channel activity, the present study aimed to determine if they regulate SLCO2A1-mediated PG transport. This study examined PGE2 uptake and ATP release in Anxa2 and/or S100a10 knockout (KO) murine breast C127 cells. Deletion of Slco2a1 decreased PGE2-d4 uptake by wild-type (WT) cells in an isotonic medium (290 mosmol/kgH2O). Decreased osmolarity (135 mosmol/kgH2O) stimulated ATP release but did not affect PGE2 uptake kinetics, showing Km (1,280 nM) and Vmax (10.38 pmol/15 s/mg protein) similar to those in isotonic medium (1,227 nM and 10.65 pmol/15 s/mg protein), respectively, in WT cells. Deletion of Anxa2 associated with loss of S100a10 diminished SLCO2A1-mediated ATP release and uncompetitively inhibited PGE2 uptake with lowered Km (376 nM) and Vmax (2.59 pmol/15 s/mg protein). Moreover, the immunoprecipitation assay confirmed the physical interaction of ANXA2 with SLCO2A1 in WT cells. Enforcement of ANXA2 expression to Anxa2 KO cells partially restored PGE2 uptake and increased Km (744.3 nM) and Vmax (9.07 pmol/15 s/mg protein), whereas the uptake clearance (Vmax/Km) did not change much regardless of ANXA2 expression. These results suggest that an ANXA2/S100A10 complex modulates PG transport activity but osmolality has little effect on it; therefore, the bound form of SLCO2A1, which functions as a PG transporter and Maxi-Cl, may exist regardless of changes in the cell volume.NEW & NOTEWORTHY A previous study indicated that the ANXA2/S100A10 complex represents the regulatory component of SLCO2A1-mediated Maxi-Cl channel activity. The present study showed that apparent PGE2 uptake by C127 cells was osmoinsensitive and uncompetitively inhibited by loss of ANXA2 expression, demonstrating that ANXA2 is a regulatory factor of SLCO2A1-mediated PG transport activity.
Collapse
Affiliation(s)
- Yoshinobu Nakamura
- Laboratory for Membrane Transport and Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Masa-Aki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yukino Hoshino
- Laboratory for Membrane Transport and Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | | | - Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
| | - Takeo Nakanishi
- Laboratory for Membrane Transport and Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| |
Collapse
|
3
|
Nakamura Y, Aizawa C, Kawata H, Nakanishi T. N-glycosylation modifies prostaglandin E 2 uptake by reducing cell surface expression of SLCO2A1. Prostaglandins Other Lipid Mediat 2023; 165:106714. [PMID: 36706979 DOI: 10.1016/j.prostaglandins.2023.106714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
SLCO2A1 functions as a prostaglandin (PG) influx transporter to facilitate intracellular oxidation of PGs and its defect causes dysregulation of PG signaling and metabolism. This study aimed to clarify effects of N-glycosylation on functional SLCO2A1 expression. Putative N-glycosylation site(s) (N134, N478, and/or N491) of human SLCO2A1 were mutated to Q and wild-type (WT) and mutant forms were expressed in HEK293 and human epithelial cells. Molecular weight of WT decreased to nearly 55 kDa by PNGase F treatment and was identical to that of triple mutant (TM, i.e., N134Q/N478Q/N491Q). Transport affinity of TM for PGE2 (Km of 392.7 nM) was comparable to that of WT (Km of 328.5 nM); however, immunoassays showed that TM cell surface expression remained at 24% of WT in HEK293 cells, resulting in a reduced cellular PGE2 uptake. These results suggest N-glycosylation modifies cellular PGE2 uptake by decreasing SLCO2A1 localization to the plasma membrane.
Collapse
Affiliation(s)
- Yoshinobu Nakamura
- Laboratory of Membrane Transport for Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Chisato Aizawa
- Laboratory of Membrane Transport for Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Hinako Kawata
- Laboratory of Membrane Transport for Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Takeo Nakanishi
- Laboratory of Membrane Transport for Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan.
| |
Collapse
|
4
|
Yan P, Li K, Cao Y, Wu D, Li J, Qian J, Zhou W, Li J. What is the appropriate treatment strategy for cryptogenic multifocal ulcerative stenosing enteritis? A single-center experience from China. Front Med (Lausanne) 2022; 9:926800. [PMID: 36035430 PMCID: PMC9405664 DOI: 10.3389/fmed.2022.926800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThere are few reports on standard treatment and long-term prognosis in patients with cryptogenic multifocal ulcerative stenosing enteritis (CMUSE), particularly in patients in whom remission could not be induced by steroids. The aim of this study was to evaluate the treatment response and progression-free periods of patients with CMUSE and to identify the factors predictive of steroid resistance.MethodsThis was a retrospective cohort study that included 25 patients with clinically confirmed CMUSE between 1984 and 2021 from the enteropathy clinic of a tertiary care center. For statistical analyses, chi-square test or Fisher’s exact test were used for categorical variables. Survival curves were plotted using the Kaplan–Meier method.ResultsThe overall median progression-free period was 48 months (range, 1–108 months) after comprehensive therapy, and initial manifestation with severe bleeding rather than ileus was associated with the long-term efficacy. Patients with steroid resistance (N = 10, 55.6%) had poor prognosis, and non-responders had more favorable baseline clinical characteristics, with a higher percentage of female patients (60% vs. 12.5%), earlier disease onset (26.5 years vs. 39 years), rapid progression (42 vs. 108 months), severe anemia (80% vs. 50%), and hypoalbuminemia (50% vs. 0%), in accord with lymphangiectasia or angioectasia identified in pathology.ConclusionThere is no guaranteed treatment strategy in the maintenance of long-term clinical remission for CMUSE patients, particularly in whom with steroid resistance. Female patients with early symptoms onset, severe gastrointestinal hemorrhage and hypoalbuminemia seem to have poor long-term prognosis.
Collapse
Affiliation(s)
- Pengguang Yan
- Key Laboratory of Gut Microbiota Translational Medicine Research, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Kemin Li
- Key Laboratory of Gut Microbiota Translational Medicine Research, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Cao
- Peking Union Medical College, Beijing, China
| | - Dong Wu
- Key Laboratory of Gut Microbiota Translational Medicine Research, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Li
- Key Laboratory of Gut Microbiota Translational Medicine Research, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaming Qian
- Key Laboratory of Gut Microbiota Translational Medicine Research, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Jingnan Li
- Key Laboratory of Gut Microbiota Translational Medicine Research, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jingnan Li,
| |
Collapse
|
5
|
Yagasaki H, Takekoshi S, Kitatani K, Kato C, Yamasaki H, Shioyama K, Tsuboi T, Matsuzaki T, Inagaki Y, Masuda R, Iwazaki M. Protective effect of ebselen on bleomycin-induced lung fibrosis: analysis of the molecular mechanism of lung fibrosis mediated by oxidized diacylglycerol. Free Radic Res 2022; 56:473-482. [PMID: 36562703 DOI: 10.1080/10715762.2022.2092477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The molecular mechanisms underlying the development of pulmonary fibrosis remain unknown, and effective treatments have not yet been developed. It has been shown that oxidative stress is involved in lung fibrosis. Oxidized diacylglycerol (DAG) produced by oxidative stress is thought to play an important role in lung fibrosis. This study assessed the effect of oxidized DAG in an animal model of pulmonary fibrosis induced by aspiration of bleomycin (BLM) into the lungs. The inhibitory effect of ebselen on pulmonary fibrosis was also investigated. In lung fibrotic tissue induced by BLM, an increase in lipid peroxides and collagen accumulation was observed. Moreover, the levels of oxidized DAG, which has strong protein kinase C (PKC) activation activity, were significantly increased over time following the administration of BLM. Western blotting showed that phosphorylation of PKCα and δ isoforms was increased by BLM. Oral administration of ebselen significantly suppressed the increase in oxidized DAG induced by BLM and improved lung fibrosis. PKCα and δ phosphorylation were also significantly inhibited. The mRNA expression of α-smooth muscle actin and collagen I (marker molecules for fibrosis), as well as the production of transforming growth factor-β and tumor necrosis factor-α(a potentially important factor in the fibrotic process), were increased by BLM and significantly decreased by ebselen. The administration of BLM may induce lipid peroxidation in lung tissue, while the oxidized DAG produced by BLM may induce overactivation of PKCα and δ, resulting in the induction of lung fibrosis.
Collapse
Affiliation(s)
- Hidehiko Yagasaki
- Division of Thoracic Surgery, Department of Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Susumu Takekoshi
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| | - Kanae Kitatani
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan.,Medical science college office, Tokai University School of Medicine, Isehara, Japan
| | - Chikara Kato
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| | - Hiroyuki Yamasaki
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| | - Kie Shioyama
- Division of Thoracic Surgery, Department of Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Takaaki Tsuboi
- Division of Thoracic Surgery, Department of Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Tomohiko Matsuzaki
- Division of Thoracic Surgery, Department of Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Yutaka Inagaki
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Ryota Masuda
- Division of Thoracic Surgery, Department of Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Masayuki Iwazaki
- Division of Thoracic Surgery, Department of Surgery, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
6
|
Assessment of hepatic prostaglandin E 2 level in carbamazepine induced liver injury. Endocr Regul 2022; 56:22-30. [PMID: 35180822 DOI: 10.2478/enr-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective. Carbamazepine (CBZ), a widely used antiepileptic drug, is one major cause of the idiosyncratic liver injury along with immune reactions. Conversely, prostaglandin E2 (PGE2) demonstrates a hepatoprotective effect by regulating immune reactions and promoting liver repair in various types of liver injury. However, the amount of hepatic PGE2 during CBZ-induced liver injury remains elusive. In this study, we aimed to evaluate the hepatic PGE2 levels during CBZ-induced liver injury using a mouse model. Methods. Mice were orally administered with CBZ at a dose of 400 mg/kg for 4 days, and 800 mg/kg on the 5th day. Results. Plasma alanine transaminase (ALT) level increased in some of mice 24 h after the last CBZ administration. Although median value of hepatic PGE2 amount in the CBZ-treated mice showed same extent as vehicle-treated control mice, it exhibited significant elevated level in mice with severe liver injury presented by a plasma ALT level >1000 IU/L. According to these results, mice had a plasma ALT level >1000 IU/L were defined as responders and the others as non-responders in this study. Even though, the hepatic PGE2 levels increased in responders, the hepatic expression and enzyme activity related to PGE2 production were not upregulated when compared with vehicle-treated control mice. However, the hepatic 15-hydroxyprostaglandin dehydrogenase (15-PGDH) expression and activity decreased significantly in responders when compared with control mice. Conclusions. These results indicate that elevated hepatic PGE2 levels can be attributed to the downregulation of 15-PGDH expression under CBZ-induced liver injury.
Collapse
|
7
|
Nakamura Y, Kozakai H, Nishio T, Yoshida K, Nakanishi T. Phenolsulfonphthalein as a surrogate substrate to assess altered function of the prostaglandin transporter SLCO2A1. Drug Metab Pharmacokinet 2022; 44:100452. [DOI: 10.1016/j.dmpk.2022.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/27/2022]
|
8
|
Okada Y, Sabirov RZ, Merzlyak PG, Numata T, Sato-Numata K. Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010's. Front Physiol 2022; 12:805148. [PMID: 35002778 PMCID: PMC8733619 DOI: 10.3389/fphys.2021.805148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Molecular identification was, at last, successfully accomplished for three types of anion channels that are all implicated in cell volume regulation/dysregulation. LRRC8A plus LRRC8C/D/E, SLCO2A1, and TMEM206 were shown to be the core or pore-forming molecules of the volume-sensitive outwardly rectifying anion channel (VSOR) also called the volume-regulated anion channel (VRAC), the large-conductance maxi-anion channel (Maxi-Cl), and the acid-sensitive outwardly rectifying anion channel (ASOR) also called the proton-activated anion channel (PAC) in 2014, 2017, and 2019, respectively. More recently in 2020 and 2021, we have identified the S100A10-annexin A2 complex and TRPM7 as the regulatory proteins for Maxi-Cl and VSOR/VRAC, respectively. In this review article, we summarize their biophysical and structural properties as well as their physiological roles by comparing with each other on the basis of their molecular insights. We also point out unsolved important issues to be elucidated soon in the future.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan.,Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.,Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Ravshan Z Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Petr G Merzlyak
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
9
|
Sriram K, Insel MB, Insel PA. Inhaled β2 Adrenergic Agonists and Other cAMP-Elevating Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? Pharmacol Rev 2021; 73:488-526. [PMID: 34795026 DOI: 10.1124/pharmrev.121.000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Collapse
Affiliation(s)
- Krishna Sriram
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Michael B Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Paul A Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| |
Collapse
|
10
|
Nakanishi T, Nakamura Y, Umeno J. Recent advances in studies of SLCO2A1 as a key regulator of the delivery of prostaglandins to their sites of action. Pharmacol Ther 2021; 223:107803. [PMID: 33465398 DOI: 10.1016/j.pharmthera.2021.107803] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
Solute carrier organic anion transporter family member 2A1 (SLCO2A1, also known as PGT, OATP2A1, PHOAR2, or SLC21A2) is a plasma membrane transporter consisting of 12 transmembrane domains. It is ubiquitously expressed in tissues, and mediates the membrane transport of prostaglandins (PGs, mainly PGE2, PGF2α, PGD2) and thromboxanes (e.g., TxB2). SLCO2A1-mediated transport is electrogenic and is facilitated by an outwardly directed gradient of lactate. PGs imported by SLCO2A1 are rapidly oxidized by cytoplasmic 15-hydroxyprostaglandin dehydrogenase (15-PGDH, encoded by HPGD). Accumulated evidence suggests that SLCO2A1 plays critical roles in many physiological processes in mammals, and it is considered a potential pharmacological target for diabetic foot ulcer treatment, antipyresis, and non-hormonal contraception. Furthermore, whole-exome analyses suggest that recessive inheritance of SLCO2A1 mutations is associated with two refractory diseases, primary hypertrophic osteoarthropathy (PHO) and chronic enteropathy associated with SLCO2A1 (CEAS). Intriguingly, SLCO2A1 is also a key component of the Maxi-Cl channel, which regulates fluxes of inorganic and organic anions, including ATP. Further study of the bimodal function of SLCO2A1 as a transporter and ion channel is expected to throw new light on the complex pathology of human diseases. Here, we review and summarize recent information on the molecular functions of SLCO2A1, and we discuss its pathophysiological significance.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan.
| | - Yoshinobu Nakamura
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
11
|
p53: A Key Protein That Regulates Pulmonary Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6635794. [PMID: 33312337 PMCID: PMC7721501 DOI: 10.1155/2020/6635794] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis is a progressively aggravating lethal disease that is a serious public health concern. Although the incidence of this disease is increasing, there is a lack of effective therapies. In recent years, the pathogenesis of pulmonary fibrosis has become a research hotspot. p53 is a tumor suppressor gene with crucial roles in cell cycle, apoptosis, tumorigenesis, and malignant transformation. Previous studies on p53 have predominantly focused on its role in neoplastic disease. Following in-depth investigation, several studies have linked it to pulmonary fibrosis. This review covers the association between p53 and pulmonary fibrosis, with the aim of providing novel ideas to improve the clinical diagnosis, treatment, and prognosis of pulmonary fibrosis.
Collapse
|
12
|
A novel mutation in the SLCO2A1 gene, encoding a prostaglandin transporter, induces chronic enteropathy. PLoS One 2020; 15:e0241869. [PMID: 33166338 PMCID: PMC7652309 DOI: 10.1371/journal.pone.0241869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic enteropathy associated with SLCO2A1 gene (CEAS) is caused by loss-of-function mutations in SLCO2A1, which encodes a prostaglandin (PG) transporter. In this study, we report a sibling case of CEAS with a novel pathogenic variant of the SLCO2A1 gene. Compound heterozygous variants in SLCO2A1 were identified in an 8-year-old boy and 12-year-old girl, and multiple chronic nonspecific ulcers were observed in the patients using capsule endoscopy. The splice site mutation (c.940 + 1G>A) of the paternal allele was previously reported to be pathogenic, whereas the missense variant (c.1688T>C) of the maternal allele was novel and had not yet been reported. The affected residue (p.Leu563Pro) is located in the 11th transmembrane domain (helix 11) of SLCO2A1. Because SLCO2A1 mediates the uptake and clearance of PGs, the urinary PG metabolites were measured by liquid chromatography coupled to tandem mass spectrometry. The urinary tetranor-prostaglandin E metabolite levels in the patients were significantly higher than those in unaffected individuals. We established cell lines with doxycycline-inducible expression of wild type SLCO2A1 (WT-SLCO2A1) and the L563P mutant. Immunofluorescence staining showed that WT-SLCO2A1 and the L563P mutant were dominantly expressed on the plasma membranes of these cells. Cells expressing WT-SLCO2A1 exhibited time- and dose-dependent uptake of PGE2, while the mutant did not show any uptake activity. Residue L563 is very close to the putative substrate-binding site in SLCO2A1, R561 in helix 11. However, in a molecular model of SLCO2A1, the side chain of L563 projected outside of helix 11, indicating that L563 is likely not directly involved in substrate binding. Instead, the substitution of Pro may twist the helix and impair the transporter function. In summary, we identified a novel pathogenic variant of SLCO2A1 that caused loss-of-function and induced CEAS.
Collapse
|
13
|
Nakanishi T, Sakiyama S, Takashima H, Honda R, Shumba MN, Nakamura Y, Kasahara K, Tamai I. Toxicological implication of prostaglandin transporter SLCO2A1 inhibition by cigarette smoke in exacerbation of lung inflammation. Toxicol Appl Pharmacol 2020; 405:115201. [PMID: 32828905 DOI: 10.1016/j.taap.2020.115201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
Abstract
We reported that bleomycin (BLM)-induced pulmonary fibrosis was exacerbated in the prostaglandin transporter gene (Slco2a1)-deficient mice (Slco2a1(-/-)). Because cigarette smoke (CS) contributes to creating a profibrotic milieu in the respiratory region, the present study aimed to investigate the impact of CS on SLCO2A1-associated pathogenesis in the lungs of BLM-instilled mice. Bronchoalveolar lavage (BAL) fluid cell analysis indicated more severe inflammation in Slco2a1(-/-) on day 5 after BLM intratracheal instillation, and Slco2a1 deletion increased mRNA expression of pro-inflammatory cytokines (Tnf-α and Il-1β) and chemokine (Ccl5) in BAL cells. Male Slco2a1(-/-) exhibited significantly higher amounts of released Il-1β in BAL fluid, compared with female Slco2a1(-/-), male or female Slco2a1(+/+) group. The amount of PGE2 collected in BAL fluid tended to increase in Slco2a1(-/-) compared with Slco2a1(+/+) group, whereas the PGE2 concentrations in lung tissues were comparable between both groups. Besides, PGE2 accumulated more in BAL fluid of male than that of female mice. Therefore, Slco2a1-deficient male mice were found to be more susceptible to BLM-treatment. Moreover, CS extracts (CSE) significantly reduced initial PGE2 uptake by rat type1 alveolar epithelial cell-like (AT1-L) cells and human SLCO2A1-transfected cells. Exposure of AT1-L cells to CSE resulted in decreased mRNA expression of Slco2a1, suggesting that CS modulates SLCO2A1 function. These results indicate that exacerbated lung inflammation is attributed to an increase in Il-1β peptide and PGE2 accumulation in the alveolar space, which exhibits a male predominance. SLCO2A1 inhibition by CSE is considered to be a new rationale for the lung toxicity of CS.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Japan.
| | - Shiori Sakiyama
- School of Pharmaceutical Sciences, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroki Takashima
- School of Pharmaceutical Sciences, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ryokichi Honda
- School of Pharmaceutical Sciences, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Melody N Shumba
- Depatiment of Nutrition, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yoshinobu Nakamura
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Japan
| | - Kazuo Kasahara
- School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-0934, Japan
| | - Ikumi Tamai
- School of Pharmaceutical Sciences, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
14
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|
15
|
Inagaki M, Nishimura T, Nakanishi T, Shimada H, Noguchi S, Akanuma SI, Tachikawa M, Hosoya KI, Tamai I, Nakashima E, Tomi M. Contribution of Prostaglandin Transporter OATP2A1/SLCO2A1 to Placenta-to-Maternal Hormone Signaling and Labor Induction. iScience 2020; 23:101098. [PMID: 32408168 PMCID: PMC7225742 DOI: 10.1016/j.isci.2020.101098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/22/2020] [Accepted: 04/21/2020] [Indexed: 01/09/2023] Open
Abstract
We evaluated the contribution of organic anion transporting polypeptide 2A1 (OATP2A1/SLCO2A1), a high-affinity carrier for prostaglandins (PGs), to the parturition process. At gestational day (GD) 15.5, OATP2A1 is co-localized with 15-hydroxy-PG dehydrogenase in the mouse placental junctional zone and facilitates PG degradation by delivering PGs to the cytoplasm. Slco2a1 (+/-) females mated with Slco2a1 (-/-) males frequently showed elevated circulating progesterone at GD18.5 and delayed parturition. Progesterone receptor inhibition by RU486 treatment at GD18.5 blocked the delay of parturition. In the junctional zone, PGE2 stimulated placental lactogen II (PL-II) production, resulting in higher expression of PL-II in Slco2a1 (-/-) placenta at GD18.5. Indomethacin treatment at GD15.5 suppressed the PL-II overproduction at GD18.5 in Slco2a1 (-/-) embryo-bearing dams, which promoted progesterone withdrawal and corrected the delayed parturition. These results suggest that extracellular PGE2 reduction by OATP2A1 at mid-pregnancy would be associated with progesterone withdrawal by suppressing PL-II production, triggering parturition onset.
Collapse
Affiliation(s)
- Mai Inagaki
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | | | - Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan; Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Shimada
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Saki Noguchi
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Shin-Ichi Akanuma
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Masanori Tachikawa
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Ken-Ichi Hosoya
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Emi Nakashima
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
16
|
Wang J, Sun L, Nie Y, Duan S, Zhang T, Wang W, Ye RD, Hou S, Qian F. Protein Kinase C δ (PKCδ) Attenuates Bleomycin Induced Pulmonary Fibrosis via Inhibiting NF-κB Signaling Pathway. Front Physiol 2020; 11:367. [PMID: 32390869 PMCID: PMC7188947 DOI: 10.3389/fphys.2020.00367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and lethal interstitial lung disease characterized by consistent pulmonary inflammation. Although protein kinase C delta (PKCδ) is involved in broad scope cellular response, the role of PKCδ in IPF is complicated and has not been fully defined yet. Here, we reported that PKCδ deficiency (PKCδ-/-) aggravated bleomycin (BLM)-induced pulmonary fibrosis and inflammation. Upon challenge with BLM, the pulmonary capillary permeability, immune cell infiltration, inflammatory cytokine production, and collagen deposition were enhanced in PKCδ-/- mice compared to that in PKCδ+/+ mice. In response to poly(I:C) stimulation, PKCδ deficient macrophages displayed an increased production of IL-1β, IL-6, TNF-α, and IL-33, which were associated with an enhanced NF-κB activation. Furthermore, we found that PKCδ could directly bind to and phosphorylate A20, an inhibitory protein of NF-κB signal. These results suggested that PKCδ may inhibit the NF-κB signaling pathway via enhancing the stability and activity of A20, which in turn attenuates pulmonary fibrosis, suggesting that PKCδ is a promising target for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Jun Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shixin Duan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Wang
- College of Pharmacy and Chemistry, Dali University, Dali, China
| | - Richard D Ye
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Shangwei Hou
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
17
|
Shimada H, Hashimoto R, Aoki A, Yamada S, Oba KI, Kawase A, Nakanishi T, Iwaki M. The regulatory mechanism involved in the prostaglandin E 2 disposition in carbon tetrachloride-induced liver injury. Prostaglandins Leukot Essent Fatty Acids 2020; 155:102081. [PMID: 32155568 DOI: 10.1016/j.plefa.2020.102081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
Abstract
Prostaglandin E2 (PGE2) exhibits hepatoprotective effects against various types of liver injury. However, there is little information on the disposition of endogenous PGE2 during liver injury. In the present study, we attempted to elucidate the mechanism involved in regulating PGE2 distribution during liver injury. Carbon tetrachloride (CCl4) was used to establish a liver injury mouse model. PGE2 was measured by LC-MS/MS. The plasma and hepatic PGE2 levels were significantly increased at 6 to 48 h after CCl4 treatment. The ratio of plasma levels of 13,14-dihydro-15-ketoPGE2 (PGEM), a major PGE2 metabolite, to PGE2 decreased significantly after CCl4 treatment. PGE2 synthesis and expression of enzymes related to PGE2 production were not induced, while the activity and mRNA expression of 15-prostaglandin dehydrogenase (15-PGDH/Hpgd), a major enzyme for PGE2 inactivation, decreased significantly in the liver of CCl4-treated mice compared to that of vehicle-treated control. The plasma and hepatic PGE2 levels were negatively correlated with the hepatic mRNA expression levels of Hpgd. Although the mRNA expression of organic anion transporting polypeptide 2A1 (OATP2A1/Slco2a1), a major PGE2 transporter, was upregulated, other hepatic OATPs decreased significantly at 24 h after CCl4 treatment. Immunohistochemical analysis indicated that 15-PGDH was mainly expressed in endothelial cells and that OATP2A1 was expressed at least in endothelial cells and Kupffer cells in the liver. These results suggest that the decreased 15-PGDH expression in hepatic endothelial cells is the principal mechanism for the increase in hepatic and plasma PGE2 levels due to the CCl4-induced liver injury.
Collapse
Affiliation(s)
- Hiroaki Shimada
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Ryota Hashimoto
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Aya Aoki
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Saya Yamada
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Ken-Ichi Oba
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Atsushi Kawase
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan
| | - Masahiro Iwaki
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; Pharmaceutical Research and Technology Institute, Kindai University, Osaka 577-8502, Japan; Antiaging Center, Kindai University, Osaka 577-8502, Japan.
| |
Collapse
|
18
|
Slco2a1 deficiency exacerbates experimental colitis via inflammasome activation in macrophages: a possible mechanism of chronic enteropathy associated with SLCO2A1 gene. Sci Rep 2020; 10:4883. [PMID: 32184453 PMCID: PMC7078201 DOI: 10.1038/s41598-020-61775-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Loss-of-function mutations in the solute carrier organic anion transporter family, member 2a1 gene (SLCO2A1), which encodes a prostaglandin (PG) transporter, have been identified as causes of chronic nonspecific multiple ulcers in the small intestine; however, the underlying mechanisms have not been revealed. We, therefore, evaluated the effects of systemic knockout of Slco2a1 (Slco2a1−/−) and conditional knockout in intestinal epithelial cells (Slco2a1ΔIEC) and macrophages (Slco2a1ΔMP) in mice with dextran sodium sulphate (DSS)-induced acute colitis. Slco2a−/− mice were more susceptible to DSS-induced colitis than wild-type (WT) mice, but did not spontaneously develop enteritis or colitis. The nucleotide-binding domain, leucine-rich repeats containing family, pyrin domain-containing-3 (NLRP3) inflammasome was more strongly upregulated in colon tissues of Slco2a−/− mice administered DSS and in macrophages isolated from Slco2a1−/− mice than in the WT counterparts. Slco2a1ΔMP, but not Slco2a1ΔIEC mice, were more susceptible to DSS-induced colitis than WT mice, partly phenocopying Slco2a−/− mice. Concentrations of PGE2 in colon tissues and macrophages from Slco2a1−/− mice were significantly higher than those of WT mice. Blockade of inflammasome activation suppressed the exacerbation of colitis. These results indicated that Slco2a1-deficiency increases the PGE2 concentration, resulting in NLRP3 inflammasome activation in macrophages, thus exacerbating intestinal inflammation.
Collapse
|
19
|
Jones RS, Parker MD, Morris ME. Monocarboxylate Transporter 6-Mediated Interactions with Prostaglandin F 2α: In Vitro and In Vivo Evidence Utilizing a Knockout Mouse Model. Pharmaceutics 2020; 12:pharmaceutics12030201. [PMID: 32110957 PMCID: PMC7150767 DOI: 10.3390/pharmaceutics12030201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Monocarboxylate transporter 6 (MCT6; SLC16A5) is a recently studied drug transporter that currently has no annotated endogenous function. Currently, only a handful of compounds have been characterized as substrates for MCT6 (e.g., bumetanide, nateglinide, probenecid, and prostaglandin F2α (PGF2α)). The objective of our research was to characterize the MCT6-specific transporter kinetic parameters and MCT6-specific in vitro and in vivo interactions of PGF2α. Murine and human MCT6-mediated transport of PGF2α was assessed in MCT6-transfected oocytes. Additionally, endogenous PGF2α and a primary PGF2α metabolite (PGFM) were measured in plasma and urine in Mct6 knockout (Mct6−/−) and wild-type (Mct6+/+) mice. Results demonstrated that the affinity was approximately 40.1 and 246 µM respectively, for mouse and human, at pH 7.4. In vivo, plasma PGF2α concentrations in Mct6−/− mice were significantly decreased, compared to Mct6+/+ mice (3.3-fold). Mct6-/- mice demonstrated a significant increase in urinary PGF2α concentrations (1.7-fold). A similar trend was observed with plasma PGFM concentrations. However, overnight fasting resulted in significantly increased plasma PGF2α concentrations, suggesting a diet-dependent role of Mct6 regulation on the homeostasis of systemic PGF2α. Overall, these results are the first to suggest the potential regulatory role of MCT6 in PGF2α homeostasis, and potentially other PGs, in distribution and metabolism.
Collapse
Affiliation(s)
- Robert S. Jones
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA;
- Current Address Is Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA;
| | - Marilyn E. Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA;
- Correspondence: ; Tel.: +1-(716)-645-4839
| |
Collapse
|
20
|
Nakamura Y, Sakaguchi T, Tamai I, Nakanishi T. Quantification of Prostaglandin E 2 Concentration in Interstitial Fluid from the Hypothalamic Region of Free-moving Mice. Bio Protoc 2019; 9:e3324. [PMID: 33654831 DOI: 10.21769/bioprotoc.3324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/28/2019] [Accepted: 07/28/2019] [Indexed: 01/01/2023] Open
Abstract
Prostaglandin E2 (PGE2) is a well-established chemical mediator for the generation of the fever at the hypothalamus of the brain. PGE2 mediates fever generation via PGE receptor 3 (i.e., EP3) on neurons in the preoptic area. The role of PGE2 has been analyzed by measuring PGE2 concentration in cerebrospinal fluid (Ccsf); however, local PGE2 concentration at the hypothalamus may not necessarily be consistent with Ccsf. In this protocol, we introduce our method to measure directly the alteration in PGE2 concentration in interstitial fluid in the hypothalamus (Cisf) of awake (free-moving) mice using a microdialysis technique. Male mice (c57BL/6J) were anesthetized and fixed in the stereotaxic instrument, and a microdialysis probe was inserted into the hypothalamus through a guide cannula. On the fifth postoperative day, Cisf was monitored in free-moving mice that were intraperitoneally (i.p.) injected with lipopolysaccharide (LPS). PGE2 and other eicosanoids recovered in Krebs-Ringer phosphate buffer and defused through a microdialysis probe were extracted into ethyl acetate/formic acid and then quantified with LC-MS/MS. Our method is useful to understand the role of key regulators of prostaglandin concentration such as those of transporters, which have been unappreciated in inflammation-based brain diseases.
Collapse
Affiliation(s)
- Yoshinobu Nakamura
- Faculty of Pharmaceutical Sciences, Institute of Medical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takatoshi Sakaguchi
- Faculty of Pharmaceutical Sciences, Institute of Medical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
21
|
Mamazhakypov A, Schermuly RT, Schaefer L, Wygrecka M. Lipids - two sides of the same coin in lung fibrosis. Cell Signal 2019; 60:65-80. [PMID: 30998969 DOI: 10.1016/j.cellsig.2019.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive extracellular matrix deposition in the lung parenchyma leading to the destruction of lung structure, respiratory failure and premature death. Recent studies revealed that the pathogenesis of IPF is associated with alterations in the synthesis and the activity of lipids, lipid regulating proteins and cell membrane lipid transporters and receptors in different lung cells. Furthermore, deregulated lipid metabolism was found to contribute to the profibrotic phenotypes of lung fibroblasts and alveolar epithelial cells. Consequently, several pharmacological agents, targeting lipids, lipid mediators, and lipoprotein receptors, was successfully tested in the animal models of lung fibrosis and entered early phase clinical trials. In this review, we highlight new therapeutic options to counteract disturbed lipid hemostasis in the maladaptive lung remodeling.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | - Ralph T Schermuly
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | - Liliana Schaefer
- Goethe University School of Medicine, Frankfurt am Main, Germany.
| | - Malgorzata Wygrecka
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| |
Collapse
|
22
|
Nakanishi T, Takashima H, Uetoko Y, Komori H, Tamai I. Experimental Evidence for Resecretion of PGE2 across Rat Alveolar Epithelium by OATP2A1/SLCO2A1-Mediated Transcellular Transport. J Pharmacol Exp Ther 2018; 368:317-325. [DOI: 10.1124/jpet.118.249789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/08/2018] [Indexed: 11/22/2022] Open
|
23
|
Nakamura Y, Nakanishi T, Tamai I. Membrane Transporters Contributing to PGE 2 Distribution in Central Nervous System. Biol Pharm Bull 2018; 41:1337-1347. [DOI: 10.1248/bpb.b18-00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshinobu Nakamura
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
24
|
Affiliation(s)
- Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | | |
Collapse
|
25
|
Prostaglandin Transporter OATP2A1/ SLCO2A1 Is Essential for Body Temperature Regulation during Fever. J Neurosci 2018; 38:5584-5595. [PMID: 29899035 DOI: 10.1523/jneurosci.3276-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 01/24/2023] Open
Abstract
Prostaglandin E2 (PGE2) in the hypothalamus is a principal mediator of the febrile response. However, the role of organic anion transporting polypeptide 2A1 (OATP2A1/SLCO2A1), a prostaglandin transporter, in facilitating this response is unknown. Here, we investigated the effect of Slco2a1 deficiency on the body core temperature (Tc) and on the PGE2 concentration in hypothalamus interstitial fluid (Cisf) and CSF (Ccsf) of lipopolysaccharide (LPS; 100 μg/kg, i.p.)-treated mice of both sexes. Slco2a1-/- mice did not develop a febrile response. Ccsf was increased in Slco2a1+/+ and Slco2a1-/- mice, and Ccsf of Slco2a1-/- mice was well maintained at 5 h after LPS injection (1160 pg/ml) compared with Slco2a1+/+ mice (316 pg/ml). A microdialysis study revealed that Cisf peaked at 2 h after LPS injection in Slco2a1+/+ mice (841 pg/ml), whereas the increase in Cisf was negligible in Slco2a1-/- mice. The PGE2 plasma concentration in Slco2a1-/- mice (201 pg/ml) was significantly higher than that in Slco2a1+/+ mice (54 pg/ml) at 1 h after LPS injection, whereas the two groups showed similar PGE2 concentrations in the hypothalamus. Strong Oatp2a1 immunoreactivity was observed in F4/80-positive microglia and perivascular cells and in brain capillary endothelial cells. The changes in Tc and Cisf seen in LPS-injected Slco2a1+/+ mice were partially attenuated in monocyte-/macrophage-specific Slco2a1-/- (Slco2a1Fl/Fl/LysMCre/+) mice. Thus, OATP2A1 facilitates the LPS-induced febrile response by maintaining a high level of Cisf, possibly by regulating PGE2 secretion from F4/80-positive glial cells and/or facilitating PGE2 transport across the blood-brain barrier. These findings suggest that OATP2A1 is a useful therapeutic target for neuroinflammation.SIGNIFICANCE STATEMENT Fever is a physiological response caused by pyrogen-induced release of prostaglandin E2 (PGE2) in the hypothalamus, which plays a central role in regulating the set-point of body temperature. However, it is unclear whether the prostaglandin transporter OATP2A1/SLCO2A1 is involved in this response. We show here that LPS-induced fever is associated with increased PGE2 concentration in hypothalamus interstitial fluid (Cisf), but not in CSF (Ccsf), by means of a microdialysis study in global Slco2a1-knock-out mice and monocyte-/macrophage-specific Slco2a1-knock-out mice. The results suggest that OATP2A1 serves as a regulator of Cisf in F4/80-positive glial cells. OATP2A1 was detected immunohistochemically in brain capillary endothelial cells and, therefore, may also play a role in PGE2 transport across the blood-brain barrier.
Collapse
|
26
|
Nakanishi T, Tamai I. Roles of Organic Anion Transporting Polypeptide 2A1 (OATP2A1/SLCO2A1) in Regulating the Pathophysiological Actions of Prostaglandins. AAPS JOURNAL 2017; 20:13. [PMID: 29204966 DOI: 10.1208/s12248-017-0163-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023]
Abstract
Solute carrier organic anion transporter family member 2A1 (OATP2A1, encoded by the SLCO2A1 gene), which was initially identified as prostaglandin transporter (PGT), is expressed ubiquitously in tissues and mediates the distribution of prostanoids, such as PGE2, PGF2α, PGD2 and TxB2. It is well known to play a key role in the metabolic clearance of prostaglandins, which are taken up into the cell by OATP2A1 and then oxidatively inactivated by 15-ketoprostaglandin dehydrogenase (encoded by HPGD); indeed, OATP2A1-mediated uptake is the rate-limiting step of PGE2 catabolism. Consequently, since OATP2A1 activity is required for termination of prostaglandin signaling via prostanoid receptors, its inhibition can enhance such signaling. On the other hand, OATP2A1 can also function as an organic anion exchanger, mediating efflux of prostaglandins in exchange for import of anions such as lactate, and in this context, it plays a role in the release of newly synthesized prostaglandins from cells. These different functions likely operate in different compartments within the cell. OATP2A1 is reported to function at cytoplasmic vesicle/organelle membranes. As a regulator of the levels of physiologically active prostaglandins, OATP2A1 is implicated in diverse physiological and pathophysiological processes in many organs. Recently, whole exome analysis has revealed that recessive mutations in SLCO2A1 cause refractory diseases in humans, including primary hypertrophic osteoarthropathy (PHO) and chronic non-specific ulcers in small intestine (CNSU). Here, we review and summarize recent information on the molecular functions of OATP2A1 and on its physiological and pathological significance.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
27
|
Ehrhardt C, Bäckman P, Couet W, Edwards C, Forbes B, Fridén M, Gumbleton M, Hosoya KI, Kato Y, Nakanishi T, Takano M, Terasaki T, Yumoto R. Current Progress Toward a Better Understanding of Drug Disposition Within the Lungs: Summary Proceedings of the First Workshop on Drug Transporters in the Lungs. J Pharm Sci 2017; 106:2234-2244. [DOI: 10.1016/j.xphs.2017.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
28
|
Association of miR-145 With Statin-Induced Skeletal Muscle Toxicity in Human Rhabdomyosarcoma RD Cells. J Pharm Sci 2017; 106:2873-2880. [DOI: 10.1016/j.xphs.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022]
|
29
|
Kamo S, Nakanishi T, Aotani R, Nakamura Y, Gose T, Tamai I. Impact of FDA-Approved Drugs on the Prostaglandin Transporter OATP2A1/SLCO2A1. J Pharm Sci 2017; 106:2483-2490. [PMID: 28479361 DOI: 10.1016/j.xphs.2017.04.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 01/25/2023]
Abstract
To understand interaction of drugs with the prostaglandin transporter OATP2A1/SLCO2A1 that regulates disposition of prostaglandins, we explored the impact of 636 drugs in an FDA-approved drug library on 6-carboxyfluorescein (6-CF) uptake by OATP2A1-expressing HEK293 cells (HEK/2A1). Fifty-one and 10 drugs were found to inhibit and enhance 6-CF uptake by more than 50%, respectively. Effect of the 51 drugs on 6-CF uptake was positively correlated with that on PGE2 uptake (r = 0.64, p < 0.001). Among those, 5 drugs not structurally related to prostaglandins, suramin, pranlukast, zafirlukast, olmesartan medoxomil, and losartan potassium, exhibited more than 90% PGE2 uptake inhibition. Inhibitory affinity of suramin to OATP2A1 was the highest (IC50,2A1 of 0.17 μM), and its IC50 values to MRP4-mediated PGE2 transport (IC50,MRP4) and PGE2 synthesis in human U-937 cells treated with phorbol 12-myristate 13-acetate (IC50,Syn) were 73.6 and 336.7 times higher than IC50,2A1, respectively. Moreover, structure-activity relationship study in 29 nonsteroidal anti-inflammatory drugs contained in the library displayed inhibitory activities of anthranilic acid derivatives, but enhancing effects of propionic acid derivatives. These results demonstrate that suramin is a potent selective inhibitor of OATP2A1, providing a comprehensive information about drugs in clinical use that interact with OATP2A1.
Collapse
Affiliation(s)
- Shunsuke Kamo
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Rika Aotani
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshinobu Nakamura
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tomoka Gose
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
30
|
Kovacsics D, Patik I, Özvegy-Laczka C. The role of organic anion transporting polypeptides in drug absorption, distribution, excretion and drug-drug interactions. Expert Opin Drug Metab Toxicol 2016; 13:409-424. [PMID: 27783531 DOI: 10.1080/17425255.2017.1253679] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The in vivo fate and effectiveness of a drug depends highly on its absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Organic anion transporting polypeptides (OATPs) are membrane proteins involved in the cellular uptake of various organic compounds, including clinically used drugs. Since OATPs are significant players in drug absorption and distribution, modulation of OATP function via pharmacotherapy with OATP substrates/inhibitors, or modulation of their expression, affects drug pharmacokinetics. Given their cancer-specific expression, OATPs may also be considered anticancer drug targets. Areas covered: We describe the human OATP family, discussing clinically relevant consequences of altered OATP function. We offer a critical analysis of published data on the role of OATPs in ADME and in drug-drug interactions, especially focusing on OATP1A2, 1B1, 1B3 and 2B1. Expert opinion: Four members of the OATP family, 1A2, 1B1, 1B3 and 2B1, have been characterized in detail. As biochemical and pharmacological knowledge on the other OATPs is lacking, it seems timely to direct research efforts towards developing the experimental framework needed to investigate the transport mechanism and substrate specificity of the poorly described OATPs. In addition, elucidating the role of OATPs in tumor development and therapy response are critical avenues for further research.
Collapse
Affiliation(s)
- Daniella Kovacsics
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Izabel Patik
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Csilla Özvegy-Laczka
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
31
|
Kasai T, Nakanishi T, Ohno Y, Shimada H, Nakamura Y, Arakawa H, Tamai I. Role of OATP2A1 in PGE(2) secretion from human colorectal cancer cells via exocytosis in response to oxidative stress. Exp Cell Res 2016; 341:123-31. [PMID: 26850138 DOI: 10.1016/j.yexcr.2016.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/30/2022]
Abstract
Chronic inflammation induced by reactive oxygen species is associated with increased risk of developing colorectal cancer (CRC), and prostaglandin E2 (PGE2), which serves as a key mediator of inflammatory responses, plays an important role in CRC initiation and progression. Therefore, in the present study, we aimed to investigate the role of prostaglandin transporter OATP2A1/SLCO2A1 in the changes of PGE2 disposition in CRC cells in response to oxidative stress. H2O2 induced translocation of cytoplasmic OATP2A1 to plasma membranes in LoVo and COLO 320DM cells, but not in Caco-2 cells. The shift of subcellular OATP2A1 was abolished in the presence of anti-oxidant N-acetyl-L-cysteine or an inhibitor of protein kinase C, which evokes exocytosis. Exposure of LoVo cells to H2O2 caused an increase in the amount of extracellular PGE2 without changing the sum of intra- and extracellular PGE2. OATP2A1 knockdown decreased extracellular PGE2 in LoVo cells. In addition, extracellular PGE2 was significantly reduced by exocytosis inhibitor cytochalasin D, suggesting that H2O2-induced PGE2 release occurs in an exocytotic manner. Furthermore, mRNA expression of vascular endothelial growth factor (VEGF) was significantly reduced in LoVo cells by knockdown of OATP2A1. These results suggest that cytoplasmic OATP2A1 likely facilitates PGE2 loading into suitable intracellular compartment(s) for efficient exocytotic PGE2 release from CRC cells exposed to oxidative stress.
Collapse
Affiliation(s)
- Taku Kasai
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yasuhiro Ohno
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroaki Shimada
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshinobu Nakamura
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
32
|
Gose T, Nakanishi T, Kamo S, Shimada H, Otake K, Tamai I. Prostaglandin transporter (OATP2A1/SLCO2A1) contributes to local disposition of eicosapentaenoic acid-derived PGE3. Prostaglandins Other Lipid Mediat 2015; 122:10-7. [PMID: 26692285 DOI: 10.1016/j.prostaglandins.2015.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/12/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022]
Abstract
Eicosapentaenoic acid (EPA)-derived prostaglandin E3 (PGE3) possesses an anti-inflammatory effect; however, information for transporters that regulate its peri-cellular concentration is limited. The present study, therefore, aimed to clarify transporters involved in local disposition of PGE3. PGE3 uptake was assessed in HEK293 cells transfected with OATP2A1/SLCO2A1, OATP1B1/SLCO1B1, OATP2B1/SLCO2B1, OAT1/SLC22A6, OCT1/SLC22A1 or OCT2/SLC22A2 genes, compared with HEK293 cells transfected with plasmid vector alone (Mock). PGE3 uptake by OATP2A1-expressing HEK293 cells (HEK/2A1) was the highest and followed by HEK/1B1, while no significantly higher uptake of PGE3 than Mock cells was detected by other transporters. Saturation kinetics in PGE3 uptake by HEK/2A1 estimated the Km as 7.202 ± 0.595 μM, which was 22 times higher than that of PGE2 (Km=0.331 ± 0.131 μM). Furthermore, tissue disposition of PGE3 was examined in wild-type (WT) and Slco2a1-deficient (Slco2a1(-/-)) mice after oral administration of EPA ethyl ester (EPA-E) when they underwent intraperitoneal injection of endotoxin (e.g., lipopolysaccharide). PGE3 concentration was significantly higher in the lung, and tended to increase in the colon, stomach, and kidney of Slco2a1(-/-), compared to WT mice. Ratio of PGE2 metabolite 15-keto PGE2 over PGE2 concentration was significantly lower in the lung and colon of Slco2a1(-/-) than that of WT mice, suggesting that PGE3 metabolism is downregulated in Slco2a1(-/-) mice. In conclusion, PGE3 was found to be a substrate of OATP2A1, and local disposition of PGE3 could be regulated by OATP2A1 at least in the lung.
Collapse
Affiliation(s)
- Tomoka Gose
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Shunsuke Kamo
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroaki Shimada
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Katsumasa Otake
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
33
|
Shimada H, Nakamura Y, Nakanishi T, Tamai I. OATP2A1/SLCO2A1-mediated prostaglandin E2 loading into intracellular acidic compartments of macrophages contributes to exocytotic secretion. Biochem Pharmacol 2015; 98:629-38. [PMID: 26474801 DOI: 10.1016/j.bcp.2015.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022]
Abstract
There is significant evidence that the inducible cyclooxygenase isoform (COX-2) regulates the pericellular concentration of PGE2; however, the mechanism of the secretory process remains unclear. The present study, therefore, aimed to evaluate the role of prostaglandin transporter (OATP2A1) in PGE2 secretion from macrophages. Immunofluorescence staining for Oatp2a1 (Slco2a1) was primarily detected in cytoplasmic domains, and was partially co-localized with anti-PGE2 antibody, LysoTracker®, and anti-lysosome-associated membrane protein (Lamp) 1 antibody in murine macrophage-derived RAW264 cells and peritoneal macrophages (PMs). PGE2 uptake by subcellular fraction containing light lysosomes was reduced significantly in the presence of an OATP inhibitor and in Slco2a1(+/-) PMs. Secretion of PGE2 and lysosome-specific N-acetyl-β-d-glucosaminidase was enhanced in activated macrophagic cells, and diminished significantly under the Ca(2+)-depleted condition. The amount of PGE2 secreted from lipopolysaccharide-activated Slco2a1(-/-) PMs was significantly lower than that from PMs from wild type (WT) mice. Expression of Cox-2 and 15-hydroxyprostaglandin dehydrogenase (15-Pgdh) was unchanged between PMs from Slco2a1(-/-) and WT mice. These results suggest that OATP2A1 is involved in PGE2-loading into intracellular acidic compartments, including light lysosomes. Thus, OATP2A1 contributes to PGE2 secretion by macrophages via exocytosis induced by Ca(2+) influx, independently of PGE2 synthesis and metabolism.
Collapse
Affiliation(s)
- Hiroaki Shimada
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshinobu Nakamura
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|