1
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
2
|
McDermott G, Walsh A, Crispie F, Frost S, Greally P, Cotter PD, O’Sullivan O, Renwick J. Insights into the Adolescent Cystic Fibrosis Airway Microbiome Using Shotgun Metagenomics. Int J Mol Sci 2024; 25:3893. [PMID: 38612702 PMCID: PMC11011389 DOI: 10.3390/ijms25073893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Cystic fibrosis (CF) is an inherited genetic disorder which manifests primarily in airway disease. Recent advances in molecular technologies have unearthed the diverse polymicrobial nature of the CF airway. Numerous studies have characterised the genus-level composition of this airway community using targeted 16S rDNA sequencing. Here, we employed whole-genome shotgun metagenomics to provide a more comprehensive understanding of the early CF airway microbiome. We collected 48 sputum samples from 11 adolescents and children with CF over a 12-month period and performed shotgun metagenomics on the Illumina NextSeq platform. We carried out functional and taxonomic analysis of the lung microbiome at the species and strain levels. Correlations between microbial diversity measures and independent demographic and clinical variables were performed. Shotgun metagenomics detected a greater diversity of bacteria than culture-based methods. A large proportion of the top 25 most-dominant species were anaerobes. Samples dominated by Staphylococcus aureus and Prevotella melaninogenica had significantly higher microbiome diversity, while no CF pathogen was associated with reduced microbial diversity. There was a diverse resistome present in all samples in this study, with 57.8% agreement between shotgun metagenomics and culture-based methods for detection of resistance. Pathogenic sequence types (STs) of S. aureus, Pseudomonas aeruginosa, Haemophilus influenzae and Stenotrophomonas maltophilia were observed to persist in young CF patients, while STs of S. aureus were both persistent and shared between patients. This study provides new insight into the temporal changes in strain level composition of the microbiome and the landscape of the resistome in young people with CF. Shotgun metagenomics could provide a very useful one-stop assay for detecting pathogens, emergence of resistance and conversion to persistent colonisation in early CF disease.
Collapse
Affiliation(s)
- Gillian McDermott
- Trinity Centre for Health Science, Clinical Microbiology Department, School of Medicine, Faculty of Health Science, Trinity College Dublin, Tallaght University Hospital, D24 NR0A Dublin, Ireland;
| | - Aaron Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co Cork, Ireland; (A.W.); (F.C.); (P.D.C.); (O.O.)
- APC Microbiome Ireland, University College Cork, T12 R229 Co Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co Cork, Ireland; (A.W.); (F.C.); (P.D.C.); (O.O.)
- APC Microbiome Ireland, University College Cork, T12 R229 Co Cork, Ireland
| | - Susanna Frost
- Tallaght University Hospital, Tallaght, D24 NR0 Dublin, Ireland (P.G.)
| | - Peter Greally
- Tallaght University Hospital, Tallaght, D24 NR0 Dublin, Ireland (P.G.)
- Hermitage Medical Clinic, Lucan, D20 W722 Dublin, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co Cork, Ireland; (A.W.); (F.C.); (P.D.C.); (O.O.)
- APC Microbiome Ireland, University College Cork, T12 R229 Co Cork, Ireland
| | - Orla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co Cork, Ireland; (A.W.); (F.C.); (P.D.C.); (O.O.)
- APC Microbiome Ireland, University College Cork, T12 R229 Co Cork, Ireland
| | - Julie Renwick
- Trinity Centre for Health Science, Clinical Microbiology Department, School of Medicine, Faculty of Health Science, Trinity College Dublin, Tallaght University Hospital, D24 NR0A Dublin, Ireland;
| |
Collapse
|
3
|
Taylor SL, Crabbé A, Hoffman LR, Chalmers JD, Rogers GB. Understanding the clinical implications of the "non-classical" microbiome in chronic lung disease: a viewpoint. Eur Respir J 2024; 63:2302281. [PMID: 38387999 DOI: 10.1183/13993003.02281-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Affiliation(s)
- Steven L Taylor
- Microbiome and Host Health, South Australia Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Luke R Hoffman
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Geraint B Rogers
- Microbiome and Host Health, South Australia Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| |
Collapse
|
4
|
Perikleous EP, Gkentzi D, Bertzouanis A, Paraskakis E, Sovtic A, Fouzas S. Antibiotic Resistance in Patients with Cystic Fibrosis: Past, Present, and Future. Antibiotics (Basel) 2023; 12:217. [PMID: 36830128 PMCID: PMC9951886 DOI: 10.3390/antibiotics12020217] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Patients with cystic fibrosis (CF) are repeatedly exposed to antibiotics, especially during the pulmonary exacerbations of the disease. However, the available therapeutic strategies are frequently inadequate to eradicate the involved pathogens and most importantly, facilitate the development of antimicrobial resistance (AMR). The evaluation of AMR is demanding; conventional culture-based susceptibility-testing techniques cannot account for the lung microenvironment and/or the adaptive mechanisms developed by the pathogens, such as biofilm formation. Moreover, features linked to modified pharmaco-kinetics and pulmonary parenchyma penetration make the dosing of antibiotics even more challenging. In this review, we present the existing knowledge regarding AMR in CF, we shortly review the existing therapeutic strategies, and we discuss the future directions of antimicrobial stewardship. Due to the increasing difficulty in eradicating strains that develop AMR, the appropriate management should rely on targeting the underlying resistance mechanisms; thus, the interest in novel, molecular-based diagnostic tools, such as metagenomic sequencing and next-generation transcriptomics, has increased exponentially. Moreover, since the development of new antibiotics has a slow pace, the design of effective treatment strategies to eradicate persistent infections represents an urgency that requires consorted work. In this regard, both the management and monitoring of antibiotics usage are obligatory and more relevant than ever.
Collapse
Affiliation(s)
| | - Despoina Gkentzi
- Department of Pediatrics, University of Patras Medical School, 26504 Patras, Greece
| | - Aris Bertzouanis
- Department of Pediatrics, University of Patras Medical School, 26504 Patras, Greece
- Pediatric Respiratory Unit, University Hospital of Patras, 26504 Patras, Greece
| | - Emmanouil Paraskakis
- Pediatric Respiratory Unit, Department of Pediatrics, University of Crete, 71500 Heraklion, Greece
| | - Aleksandar Sovtic
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Pulmonology, Mother and Child Health Institute of Serbia, 11070 Belgrade, Serbia
| | - Sotirios Fouzas
- Department of Pediatrics, University of Patras Medical School, 26504 Patras, Greece
- Pediatric Respiratory Unit, University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Wilson LM, Potter A, Maher C, Ellis MJ, Lane RL, Wilson JW, Keating DT, Jaberzadeh S, Button BM. Feasibility of the A-STEP for the assessment of exercise capacity in people with cystic fibrosis. Pediatr Pulmonol 2022; 57:2524-2532. [PMID: 35811327 PMCID: PMC9796135 DOI: 10.1002/ppul.26069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To evaluate feasibility of the Alfred Step Test Exercise Protocol (A-STEP) for the assessment of exercise capacity in adults and children with cystic fibrosis (CF); in adults to test whether demographics and/or lung function correlated with exercise capacity. METHODS Adults and children with stable CF from two centres completed the A-STEP (a recently developed incremental maximal-effort step test). Feasibility was evaluated by: usefulness for exercise capacity assessment (measures of exercise capacity were: level reached, exercise-induced desaturation, and achievement of at least one maximal effort criteria); safety; operational factors; time to complete; floor and/or ceiling effects. We used multiple linear regression to test whether demographics and/or lung function correlated with exercise capacity. RESULTS A total of 49 participants: 38 adults (18 male), percent predicted (pp) forced expiration in one second (FEV1 ) 29-109, aged 22-48 years and 11 children (6 male), ppFEV1 68-107, aged 10-15 years were included. Levels reached (mean (SD) [range]) were 10.2 (2.4) [6-15] (adults), 10.1 (2.5) [7-14] (children); desaturation (change between baseline and peak-exercise SpO2 ): was 8.4 (3.8 [0-15]% (adults), 2.0 (2.0) [0-7]% (children). A total of 8 (21%) adults and no children desaturated <90% SpO2 . At least one criterion for maximal effort was reached by 33 (84%) adults and 10 (91%) children. There were no adverse events. The A-STEP was straightforward to use and carried out by one operator. A total of 26 (68.4%) adults and 7 (63.6%) children completed the test within the recommended 8-12 min. All participants completed a minimum of 6 levels, and completed the test before the final 16th level. In adults, ppFEV1 and ppFVC correlated with the level reached (r = 0.55; p = <0.001 and r = 0.66, p = <0.0001) and desaturation (r = 0.55, p = <0.001 and r = 0.45, p = <0.005). CONCLUSION In adults and children with stable CF, the A-STEP was feasible, safe, and operationally easy to use for the assessment of exercise capacity, without floor or ceiling effects. In adults, lung function correlated with exercise capacity.
Collapse
Affiliation(s)
- Lisa M Wilson
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.,Department of Physiotherapy, Alfred Health, Melbourne, Victoria, Australia.,Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Angela Potter
- Department of Physiotherapy, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Carol Maher
- Department of Allied Health and Human Performance, Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, University of South Australia, Adelaide, Australia
| | - Matthew J Ellis
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Rebecca L Lane
- Department of Physiotherapy, Victoria University, Melbourne, Victoria, Australia
| | - John W Wilson
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia.,Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Dominic T Keating
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia.,Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Brenda M Button
- Department of Physiotherapy, Alfred Health, Melbourne, Victoria, Australia.,Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia.,Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Kussek P, Mesa D, Vasconcelos TM, Rodrigues LS, Krul D, Ibanez H, Faoro H, Palmeiro JK, Dalla Costa LM. Lower airway microbiota and decreasing lung function in young Brazilian cystic fibrosis patients with pulmonary Staphylococcus and Pseudomonas infection. PLoS One 2022; 17:e0273453. [PMID: 36006942 PMCID: PMC9409528 DOI: 10.1371/journal.pone.0273453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene that leads to respiratory complications and mortality. Studies have shown shifts in the respiratory microbiota during disease progression in individuals with CF. In addition, CF patients experience short cycles of acute intermittent aggravations of symptoms called pulmonary exacerbations, which may be characterized by a decrease in lung function and weight loss. The resident microbiota become imbalanced, promoting biofilm formation, and reducing the effectiveness of therapy. The aim of this study was to monitor patients aged 8–23 years with CF to evaluate their lower respiratory microbiota using 16S rRNA sequencing. The most predominant pathogens observed in microbiota, Staphylococcus (Staph) and Pseudomonas (Pseud) were correlated with clinical variables, and the in vitro capacity of biofilm formation for these pathogens was tested. A group of 34 patients was followed up for 84 days, and 306 sputum samples were collected and sequenced. Clustering of microbiota by predominant pathogen showed that children with more Staph had reduced forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) compared to children with Pseud. Furthermore, the patients’ clinical condition was consistent with the results of pulmonary function. More patients with pulmonary exacerbation were observed in the Staph group than in the Pseud group, as confirmed by lower body mass index and pulmonary function. Additionally, prediction of bacterial functional profiles identified genes encoding key enzymes involved in virulence pathways in the Pseud group. Importantly, this study is the first Brazilian study to assess the lower respiratory microbiota in a significant group of young CF patients. In this sense, the data collected for this study on the microbiota of children in Brazil with CF provide a valuable contribution to the knowledge in the field.
Collapse
Affiliation(s)
- Paulo Kussek
- Hospital Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Dany Mesa
- Big Data Center, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
- * E-mail: (LMDC); (DM)
| | | | | | - Damaris Krul
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Humberto Ibanez
- Big Data Center, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | - Jussara Kasuko Palmeiro
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | |
Collapse
|
7
|
Fedotov VD, Zhestkov A, Lyamin AV, Zaslavskaya M, Dobrotina I, Tulichev A. Microbiota in the pathogenesis of COPD and its impact on the course of the disease. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.3.202-212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a serious problem for global health. Infectious agents play a main role in the development of COPD exacerbations. Bacterial colonization of the lower respiratory tract is common in patients with stable COPD. The role of microbiota and host immune response to potential pathogens is not well studied. Microbiota composition disorders in respiratory tract are found in patients with COPD and associated with maladaptive changes in the immune system of the lungs and increased level of inflammation. This review investigates role of microbiota in the pathogenesis of COPD and its impact on the course of the disease. Some important issues such as pneumococcal vaccination and antimicrobial resistance of respiratory pathogens are also discussed.
Collapse
Affiliation(s)
| | | | | | - M.I. Zaslavskaya
- Privolzhskiy Research Medical University (Nizhny Novgorod, Russia)
| | - I.S. Dobrotina
- Privolzhskiy Research Medical University (Nizhny Novgorod, Russia)
| | - A.A. Tulichev
- Privolzhskiy Research Medical University (Nizhny Novgorod, Russia)
| |
Collapse
|
8
|
O’Connor JB, Mottlowitz MM, Wagner BD, Boyne KL, Stevens MJ, Robertson CE, Harris JK, Laguna TA. Divergence of bacterial communities in the lower airways of CF patients in early childhood. PLoS One 2021; 16:e0257838. [PMID: 34613995 PMCID: PMC8494354 DOI: 10.1371/journal.pone.0257838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
Rationale Chronic airway infection and inflammation resulting in progressive, obstructive lung disease is the leading cause of morbidity and mortality in cystic fibrosis. Understanding the lower airway microbiota across the ages can provide valuable insight and potential therapeutic targets. Objectives To characterize and compare the lower airway microbiota in cystic fibrosis and disease control subjects across the pediatric age spectrum. Methods Bronchoalveolar lavage fluid samples from 191 subjects (63 with cystic fibrosis) aged 0 to 21 years were collected along with relevant clinical data. We measured total bacterial load using quantitative polymerase chain reaction and performed 16S rRNA gene sequencing to characterize bacterial communities with species-level sensitivity for select genera. Clinical comparisons were investigated. Measurements and main results Cystic fibrosis samples had higher total bacterial load and lower microbial diversity, with a divergence from disease controls around 2–5 years of age, as well as higher neutrophilic inflammation relative to bacterial burden. Cystic fibrosis samples had increased abundance of traditional cystic fibrosis pathogens and decreased abundance of the Streptococcus mitis species group in older subjects. Interestingly, increased diversity in the heterogeneous disease controls was independent of diagnosis and indication. Sequencing was more sensitive than culture, and antibiotic exposure was more common in disease controls, which showed a negative relationship with load and neutrophilic inflammation. Conclusions Analysis of lower airway samples from people with cystic fibrosis and disease controls across the ages revealed key differences in airway microbiota and inflammation. The divergence in subjects during early childhood may represent a window of opportunity for intervention and additional study.
Collapse
Affiliation(s)
- John B. O’Connor
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Madison M. Mottlowitz
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
| | - Brandie D. Wagner
- Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kathleen L. Boyne
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Mark J. Stevens
- Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Charles E. Robertson
- Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jonathan K. Harris
- Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Theresa A. Laguna
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
9
|
Effects of inflammatory stimuli on responses of macrophages to Mycoplasma bovis infection. Vet Microbiol 2021; 262:109235. [PMID: 34530231 DOI: 10.1016/j.vetmic.2021.109235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/05/2021] [Indexed: 11/20/2022]
Abstract
Inflammation in the respiratory tract is thought to worsen the disease response to Mycoplasma bovis infection. This study investigated the cells involved in this response with a focus on proteases and cytokines as harmful effector mechanisms. By immunohistochemistry, Mac387-positive macrophages were the main cell type comprising the foci of caseous necrosis in cattle with M. bovis pneumonia. Thus, the study evaluated how priming of different types of macrophages with bacterial lysate (or pro-inflammatory cytokines induced by the bacterial lysate) affected their responses to M. bovis infection. Inducible responses were detected in monocyte-derived macrophages (M1-MDMs and M2-MDMs), whereas pulmonary alveolar macrophages (PAMs) were minimally affected by priming or infection. M. bovis-infected MDMs secreted MMP-12 and SPLA2, and priming with pro-inflammatory cytokines increased the secretion of cathepsin B in response to M. bovis infection. Of these, there were higher concentrations of cathepsin B and SPLA2 in lungs with M. bovis pneumonia compared to healthy lungs, and these are potential mechanisms for macrophage-induced lung damage in M. bovis infection. Priming of MDMs with either bacterial lysate or with pro-inflammatory cytokines caused an enhanced response to M. bovis infection with respect to IL-8 and IL-1β secretion. The findings of this study suggest proteases, lipases and cytokines derived from monocyte-derived macrophages as possible mediators by which prior inflammation in the respiratory tract worsen disease outcomes from M. bovis infection.
Collapse
|
10
|
Francis F, Enaud R, Soret P, Lussac-Sorton F, Avalos-Fernandez M, Bui S, Fayon M, Thiébaut R, Delhaes L. New Insights in Microbial Species Predicting Lung Function Decline in CF: Lessons from the MucoFong Project. J Clin Med 2021; 10:jcm10163725. [PMID: 34442021 PMCID: PMC8396880 DOI: 10.3390/jcm10163725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Several predictive models have been proposed to understand the microbial risk factors associated with cystic fibrosis (CF) progression. Very few have integrated fungal airways colonisation, which is increasingly recognized as a key player regarding CF progression. To assess the association between the percent predicted forced expiratory volume in 1 s (ppFEV1) change and the fungi or bacteria identified in the sputum, 299 CF patients from the “MucoFong” project were included and followed-up with over two years. The relationship between the microorganisms identified in the sputum and ppFEV1 course of patients was longitudinally analysed. An adjusted linear mixed model analysis was performed to evaluate the effect of a transient or chronic bacterial and/or fungal colonisation at inclusion on the ppFEV1 change over a two-year period. Pseudomonas aeruginosa, Achromobacter xylosoxidans, Stenotrophomonas maltophilia, and Candida albicans were associated with a significant ppFEV1 decrease. No significant association was found with other fungal colonisations. In addition, the ppFEV1 outcome in our model was 11.26% lower in patients presenting with a transient colonisation with non-pneumoniae Streptococcus species compared to other patients. These results confirm recently published data and provide new insights into bacterial and fungal colonisation as key factors for the assessment of lung function decline in CF patients.
Collapse
Affiliation(s)
- Florence Francis
- CHU de Bordeaux, Department of Public Health, F-33000 Bordeaux, France; (F.F.); (R.T.)
- Bordeaux Population Health Research Center, Univ. Bordeaux, Inserm, UMR 1219, F-33000 Bordeaux, France; (P.S.); (M.A.-F.)
| | - Raphael Enaud
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33000 Bordeaux, France; (R.E.); (F.L.-S.); (S.B.); (M.F.)
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, F-33000 Bordeaux, France
- CHU de Bordeaux, CRCM Pédiatrique, CIC 1401, F-33000 Bordeaux, France
| | - Perrine Soret
- Bordeaux Population Health Research Center, Univ. Bordeaux, Inserm, UMR 1219, F-33000 Bordeaux, France; (P.S.); (M.A.-F.)
- INRIA SISTM Team, F-33405 Talence, France
- Laboratoire Servier, 50 Rue Carnot, 92284 Suresnes, France
| | - Florian Lussac-Sorton
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33000 Bordeaux, France; (R.E.); (F.L.-S.); (S.B.); (M.F.)
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, F-33000 Bordeaux, France
- CHU de Bordeaux, Service de Parasitologie-Mycologie, F-33000 Bordeaux, France
| | - Marta Avalos-Fernandez
- Bordeaux Population Health Research Center, Univ. Bordeaux, Inserm, UMR 1219, F-33000 Bordeaux, France; (P.S.); (M.A.-F.)
- INRIA SISTM Team, F-33405 Talence, France
| | | | - Stéphanie Bui
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33000 Bordeaux, France; (R.E.); (F.L.-S.); (S.B.); (M.F.)
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, F-33000 Bordeaux, France
- CHU de Bordeaux, CRCM Pédiatrique, CIC 1401, F-33000 Bordeaux, France
| | - Michael Fayon
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33000 Bordeaux, France; (R.E.); (F.L.-S.); (S.B.); (M.F.)
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, F-33000 Bordeaux, France
- CHU de Bordeaux, CRCM Pédiatrique, CIC 1401, F-33000 Bordeaux, France
| | - Rodolphe Thiébaut
- CHU de Bordeaux, Department of Public Health, F-33000 Bordeaux, France; (F.F.); (R.T.)
- Bordeaux Population Health Research Center, Univ. Bordeaux, Inserm, UMR 1219, F-33000 Bordeaux, France; (P.S.); (M.A.-F.)
- INRIA SISTM Team, F-33405 Talence, France
| | - Laurence Delhaes
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33000 Bordeaux, France; (R.E.); (F.L.-S.); (S.B.); (M.F.)
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, F-33000 Bordeaux, France
- CHU de Bordeaux, Service de Parasitologie-Mycologie, F-33000 Bordeaux, France
- Correspondence: ; Tel.: +33-05-47-30-27-50
| |
Collapse
|
11
|
Mucus, Microbiomes and Pulmonary Disease. Biomedicines 2021; 9:biomedicines9060675. [PMID: 34199312 PMCID: PMC8232003 DOI: 10.3390/biomedicines9060675] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
The respiratory tract harbors a stable and diverse microbial population within an extracellular mucus layer. Mucus provides a formidable defense against infection and maintaining healthy mucus is essential to normal pulmonary physiology, promoting immune tolerance and facilitating a healthy, commensal lung microbiome that can be altered in association with chronic respiratory disease. How one maintains a specialized (healthy) microbiome that resists significant fluctuation remains unknown, although smoking, diet, antimicrobial therapy, and infection have all been observed to influence microbial lung homeostasis. In this review, we outline the specific role of polymerizing mucin, a key functional component of the mucus layer that changes during pulmonary disease. We discuss strategies by which mucin feed and spatial orientation directly influence microbial behavior and highlight how a compromised mucus layer gives rise to inflammation and microbial dysbiosis. This emerging field of respiratory research provides fresh opportunities to examine mucus, and its function as predictors of infection risk or disease progression and severity across a range of chronic pulmonary disease states and consider new perspectives in the development of mucolytic treatments.
Collapse
|
12
|
Willis JR, Saus E, Iraola-Guzmán S, Cabello-Yeves E, Ksiezopolska E, Cozzuto L, Bejarano LA, Andreu-Somavilla N, Alloza-Trabado M, Blanco A, Puig-Sola A, Broglio E, Carolis C, Ponomarenko J, Hecht J, Gabaldón T. Citizen-science based study of the oral microbiome in Cystic fibrosis and matched controls reveals major differences in diversity and abundance of bacterial and fungal species. J Oral Microbiol 2021; 13:1897328. [PMID: 34104346 PMCID: PMC8143623 DOI: 10.1080/20002297.2021.1897328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction: Cystic fibrosis (CF) is an autosomal genetic disease, associated with the production of excessively thick mucosa and with life-threatening chronic lung infections. The microbiota of the oral cavity can act as a reservoir or as a barrier for infectious microorganisms that can colonize the lungs. However, the specific composition of the oral microbiome in CF is poorly understood.Methods: In collaboration with CF associations in Spain, we collected oral rinse samples from 31 CF persons (age range 7-47) and matched controls, and then performed 16S rRNA metabarcoding and high-throughput sequencing, combined with culture and proteomics-based identification of fungi to survey the bacterial and fungal oral microbiome.Results: We found that CF is associated with less diverse oral microbiomes, which were characterized by higher prevalence of Candida albicans and differential abundances of a number of bacterial taxa that have implications in both the connection to lung infections in CF, as well as potential oral health concerns, particularly periodontitis and dental caries.Conclusion: Overall, our study provides a first global snapshot of the oral microbiome in CF. Future studies are required to establish the relationships between the composition of the oral and lung microbiomes in CF.
Collapse
Affiliation(s)
- Jesse R Willis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Cabello-Yeves
- Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luis A Bejarano
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria Andreu-Somavilla
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miriam Alloza-Trabado
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andrea Blanco
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Puig-Sola
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elisabetta Broglio
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
13
|
Lamoureux C, Guilloux CA, Beauruelle C, Gouriou S, Ramel S, Dirou A, Le Bihan J, Revert K, Ropars T, Lagrafeuille R, Vallet S, Le Berre R, Nowak E, Héry-Arnaud G. An observational study of anaerobic bacteria in cystic fibrosis lung using culture dependant and independent approaches. Sci Rep 2021; 11:6845. [PMID: 33767218 PMCID: PMC7994387 DOI: 10.1038/s41598-021-85592-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Strict anaerobes are undeniably important residents of the cystic fibrosis (CF) lung but are still unknowns. The main objectives of this study were to describe anaerobic bacteria diversity in CF airway microbiota and to evaluate the association with lung function. An observational study was conducted during eight months. A hundred and one patients were enrolled in the study, and 150 sputum samples were collected using a sterile sample kit designed to preserve anaerobic conditions. An extended-culture approach on 112 sputa and a molecular approach (quantitative PCR targeting three of the main anaerobic genera in CF lung: Prevotella, Veillonella, and Fusobacterium) on 141 sputa were developed. On culture, 91.1% of sputa were positive for at least one anaerobic bacterial species, with an average of six anaerobic species detected per sputum. Thirty-one anaerobic genera and 69 species were found, which is the largest anaerobe diversity ever reported in CF lungs. Better lung function (defined as Forced Expiratory Volume in one second > 70%) was significantly associated with higher quantification of Veillonella. These results raise the question of the potential impact of anaerobes on lung function.
Collapse
Affiliation(s)
- Claudie Lamoureux
- INSERM, EFS, Univ Brest, UMR 1078, GGB, 29200, Brest, France.,Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Boulevard Tanguy Prigent, 29200, Brest, France
| | | | - Clémence Beauruelle
- INSERM, EFS, Univ Brest, UMR 1078, GGB, 29200, Brest, France.,Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Boulevard Tanguy Prigent, 29200, Brest, France
| | | | - Sophie Ramel
- Cystic Fibrosis Center of Roscoff, Fondation Ildys, Roscoff, France
| | - Anne Dirou
- Cystic Fibrosis Center of Roscoff, Fondation Ildys, Roscoff, France
| | - Jean Le Bihan
- Cystic Fibrosis Center of Roscoff, Fondation Ildys, Roscoff, France
| | - Krista Revert
- Cystic Fibrosis Center of Roscoff, Fondation Ildys, Roscoff, France
| | - Thomas Ropars
- Cystic Fibrosis Center of Roscoff, Fondation Ildys, Roscoff, France
| | | | - Sophie Vallet
- INSERM, EFS, Univ Brest, UMR 1078, GGB, 29200, Brest, France.,Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Boulevard Tanguy Prigent, 29200, Brest, France
| | - Rozenn Le Berre
- INSERM, EFS, Univ Brest, UMR 1078, GGB, 29200, Brest, France.,Department of Pulmonary and Internal Medicine, Brest University Hospital, Brest, France
| | - Emmanuel Nowak
- INSERM CIC 1412, Brest University Hospital, Brest, France
| | - Geneviève Héry-Arnaud
- INSERM, EFS, Univ Brest, UMR 1078, GGB, 29200, Brest, France. .,Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Boulevard Tanguy Prigent, 29200, Brest, France.
| |
Collapse
|
14
|
Wang BX, Wu CM, Ribbeck K. Home, sweet home: how mucus accommodates our microbiota. FEBS J 2021; 288:1789-1799. [PMID: 32755014 PMCID: PMC8739745 DOI: 10.1111/febs.15504] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
As a natural environment for human-microbiota interactions, healthy mucus houses a remarkably stable and diverse microbial community. Maintaining this microbiota is essential to human health, both to support the commensal bacteria that perform a wide array of beneficial functions and to prevent the outgrowth of pathogens. However, how the host selects and maintains a specialized microbiota remains largely unknown. In this viewpoint, we propose several strategies by which mucus may regulate the composition and function of the human microbiota and discuss how compromised mucus barriers in disease can give rise to microbial dysbiosis.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chloe M Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
Margalit A, Carolan JC, Kavanagh K. Bacterial Interactions with Aspergillus fumigatus in the Immunocompromised Lung. Microorganisms 2021; 9:microorganisms9020435. [PMID: 33669831 PMCID: PMC7923216 DOI: 10.3390/microorganisms9020435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The immunocompromised airways are susceptible to infections caused by a range of pathogens which increases the opportunity for polymicrobial interactions to occur. Pseudomonas aeruginosa and Staphylococcus aureus are the predominant causes of pulmonary infection for individuals with respiratory disorders such as cystic fibrosis (CF). The spore-forming fungus Aspergillus fumigatus, is most frequently isolated with P. aeruginosa, and co-infection results in poor outcomes for patients. It is therefore clinically important to understand how these pathogens interact with each other and how such interactions may contribute to disease progression so that appropriate therapeutic strategies may be developed. Despite its persistence in the airways throughout the life of a patient, A. fumigatus rarely becomes the dominant pathogen. In vitro interaction studies have revealed remarkable insights into the molecular mechanisms that drive agonistic and antagonistic interactions that occur between A. fumigatus and pulmonary bacterial pathogens such as P. aeruginosa. Crucially, these studies demonstrate that although bacteria may predominate in a competitive environment, A. fumigatus has the capacity to persist and contribute to disease.
Collapse
Affiliation(s)
| | | | - Kevin Kavanagh
- Correspondence: ; Tel.: +353-1-708-3859; Fax: +353-1-708-3845
| |
Collapse
|
16
|
Maestrali F, Pilan R, Athanazio R, Sparvoli L, Cortez R, Taddei C, Voegels R. Cystic fibrosis microbiome: analysis of nasal middle meatus and sputum in different lung disease stages. RHINOLOGY ONLINE 2020. [DOI: 10.4193/rhinol/20.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND: Culture independent methods of molecular detection of microbiome have shown the polymicrobial nature of respiratory infections in cystic fibrosis, with pathogenic agents undetectable in conventional culture methods. Composition and diversity of the airway microbiome are still poorly understood. METHODOLOGY: This study evaluated the airway microbiome in 31 adult cystic fibrosis patients via the analysis of 16S rRNA se- quences by next generation sequencing. RESULTS: Staphylococcus, Streptococcus and Corynebacterium were the most abundant genera in the middle meatus, and Pseudo- monas, Haemophilus and Prevotella were the most abundant in sputum. In patients with advanced disease (FEV1< 50%), there was an increase in the prevalence of Pseudomonas in both sample types when studied separately. In each patient, in a paired analysis, the sputum and middle meatus showed similar microbiome composition in mild or moderate disease (FEV1≥ 50%). In patients with severe lung disease, the relative abundance of Pseudomonas had a positive correlation in both collection sites. CONCLUSIONS: This is the first Brazilian study to evaluate the airway microbiome in cystic fibrosis patients. Our findings agree with those in the international literature and indicate the role of Pseudomonas in the sputum and middle meatus in patients with advanced disease.
Collapse
|
17
|
Static Growth Promotes PrrF and 2-Alkyl-4(1 H)-Quinolone Regulation of Type VI Secretion Protein Expression in Pseudomonas aeruginosa. J Bacteriol 2020; 202:JB.00416-20. [PMID: 33020221 DOI: 10.1128/jb.00416-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is frequently associated with both acute and chronic infections. P. aeruginosa possesses a complex regulatory network that modulates nutrient acquisition and virulence, but our knowledge of these networks is largely based on studies with shaking cultures, which are not likely representative of conditions during infection. Here, we provide proteomic, metabolic, and genetic evidence that regulation by iron, a critical metallonutrient, is altered in static P. aeruginosa cultures. Specifically, we observed a loss of iron-induced expression of proteins for oxidative phosphorylation, tricarboxylic acid (TCA) cycle metabolism under static conditions. Moreover, we identified type VI secretion as a target of iron regulation in P. aeruginosa cells under static but not shaking conditions, and we present evidence that this regulation occurs via PrrF small regulatory RNA (sRNA)-dependent production of 2-alkyl-4(1H)-quinolone metabolites. These results yield new iron regulation paradigms in an important opportunistic pathogen and highlight the need to redefine iron homeostasis in static microbial communities.IMPORTANCE Host-mediated iron starvation is a broadly conserved signal for microbial pathogens to upregulate expression of virulence traits required for successful infection. Historically, global iron regulatory studies in microorganisms have been conducted in shaking cultures to ensure culture homogeneity, yet these conditions are likely not reflective of growth during infection. Pseudomonas aeruginosa is a well-studied opportunistic pathogen and model organism for iron regulatory studies. Iron homeostasis is maintained through the Fur protein and PrrF small regulatory sRNAs, the functions of which are highly conserved in many other bacterial species. In the current study, we examined how static growth affects the known iron and PrrF regulons of P. aeruginosa, leading to the discovery of novel PrrF-regulated virulence processes. This study demonstrates how the utilization of distinct growth models can enhance our understanding of basic physiological processes that may also affect pathogenesis.
Collapse
|
18
|
de Almeida OGG, Capizzani CPDC, Tonani L, Grizante Barião PH, da Cunha AF, De Martinis ECP, Torres LAGMM, von Zeska Kress MR. The Lung Microbiome of Three Young Brazilian Patients With Cystic Fibrosis Colonized by Fungi. Front Cell Infect Microbiol 2020; 10:598938. [PMID: 33262957 PMCID: PMC7686462 DOI: 10.3389/fcimb.2020.598938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/09/2020] [Indexed: 12/29/2022] Open
Abstract
Microbial communities infiltrate the respiratory tract of cystic fibrosis patients, where chronic colonization and infection lead to clinical decline. This report aims to provide an overview of the diversity of bacterial and fungal species from the airway secretion of three young CF patients with severe pulmonary disease. The bacterial and fungal microbiomes were investigated by culture isolation, metataxonomics, and metagenomics shotgun. Virulence factors and antibiotic resistance genes were also explored. A. fumigatus was isolated from cultures and identified in high incidence from patient sputum samples. Candida albicans, Penicillium sp., Hanseniaspora sp., Torulaspora delbrueckii, and Talaromyces amestolkiae were isolated sporadically. Metataxonomics and metagenomics detected fungal reads (Saccharomyces cerevisiae, A. fumigatus, and Schizophyllum sp.) in one sputum sample. The main pathogenic bacteria identified were Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia complex, and Achromobacter xylosoxidans. The canonical core CF microbiome is composed of species from the genera Streptococcus, Neisseria, Rothia, Prevotella, and Haemophilus. Thus, the airways of the three young CF patients presented dominant bacterial genera and interindividual variability in microbial community composition and diversity. Additionally, a wide diversity of virulence factors and antibiotic resistance genes were identified in the CF lung microbiomes, which may be linked to the clinical condition of the CF patients. Understanding the microbial community is crucial to improve therapy because it may have the opposite effect, restructuring the pathogenic microbiota. Future studies focusing on the influence of fungi on bacterial diversity and microbial interactions in CF microbiomes will be welcome to fulfill this huge gap of fungal influence on CF physiopathology.
Collapse
Affiliation(s)
- Otávio Guilherme Gonçalves de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carolina Paulino da Costa Capizzani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ludmilla Tonani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Helena Grizante Barião
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Elaine Cristina Pereira De Martinis
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Marcia Regina von Zeska Kress
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
19
|
Xue Y, Chu J, Li Y, Kong X. The influence of air pollution on respiratory microbiome: A link to respiratory disease. Toxicol Lett 2020; 334:14-20. [DOI: 10.1016/j.toxlet.2020.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023]
|
20
|
State of the Art in the Culture of the Human Microbiota: New Interests and Strategies. Clin Microbiol Rev 2020; 34:34/1/e00129-19. [PMID: 33115723 DOI: 10.1128/cmr.00129-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The last 5 years have seen a turning point in the study of the gut microbiota with a rebirth of culture-dependent approaches to study the gut microbiota. High-throughput methods have been developed to study bacterial diversity with culture conditions aimed at mimicking the gut environment by using rich media such as YCFA (yeast extract, casein hydrolysate, fatty acids) and Gifu anaerobic medium in an anaerobic workstation, as well as media enriched with rumen and blood and coculture, to mimic the symbiosis of the gut microbiota. Other culture conditions target phenotypic and metabolic features of bacterial species to facilitate their isolation. Preexisting technologies such as next-generation sequencing and flow cytometry have also been utilized to develop innovative methods to isolate previously uncultured bacteria or explore viability in samples of interest. These techniques have been applied to isolate CPR (Candidate Phyla Radiation) among other, more classic approaches. Methanogenic archaeal and fungal cultures present different challenges than bacterial cultures. Efforts to improve the available systems to grow archaea have been successful through coculture systems. For fungi that are more easily isolated from the human microbiota, the challenge resides in the identification of the isolates, which has been approached by applying matrix-assisted laser desorption ionization-time of flight mass spectrometry technology to fungi. Bacteriotherapy represents a nonnegligible avenue in the future of medicine to correct dysbiosis and improve health or response to therapy. Although great strides have been achieved in the last 5 years, efforts in bacterial culture need to be sustained to continue deciphering the dark matter of metagenomics, particularly CPR, and extend these methods to archaea and fungi.
Collapse
|
21
|
Untargeted Metagenomic Investigation of the Airway Microbiome of Cystic Fibrosis Patients with Moderate-Severe Lung Disease. Microorganisms 2020; 8:microorganisms8071003. [PMID: 32635564 PMCID: PMC7409339 DOI: 10.3390/microorganisms8071003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Although the cystic fibrosis (CF) lung microbiota has been characterized in several studies, little is still known about the temporal changes occurring at the whole microbiome level using untargeted metagenomic analysis. The aim of this study was to investigate the taxonomic and functional temporal dynamics of the lower airway microbiome in a cohort of CF patients. Multiple sputum samples were collected over 15 months from 22 patients with advanced lung disease regularly attending three Italian CF Centers, given a total of 79 samples. DNA extracted from samples was subjected to shotgun metagenomic sequencing allowing both strain-level taxonomic profiling and assessment of the functional metagenomic repertoire. High inter-patient taxonomic heterogeneity was found with short-term compositional changes across clinical status. Each patient exhibited distinct sputum microbial communities at the taxonomic level, and strain-specific colonization of both traditional and atypical CF pathogens. A large core set of genes, including antibiotic resistance genes, were shared across patients despite observed differences in clinical status, and consistently detected in the lung microbiome of all subjects independently from known antibiotic exposure. In conclusion, an overall stability in the microbiome-associated genes was found despite taxonomic fluctuations of the communities.
Collapse
|
22
|
Iwahashi J, Kamei K, Watanabe H. Disruption of Aspergillus fumigatus biofilm by Streptococcus pneumoniae: Mycelial fragmentation by hydrogen peroxide. J Infect Chemother 2020; 26:831-837. [PMID: 32414689 DOI: 10.1016/j.jiac.2020.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Biofilm is a complex structure consisting of microorganisms such as bacteria, fungi and an extracellular matrix (ECM). Biofilms are involved in most microbial infections and show persistent resistance to antibiotic treatment and immune response. Both Aspergillus fumigatus and Streptococcus pneumoniae are colonizers that can form biofilms in the respiratory tract. These pathogens have been simultaneously isolated from the same patient, but their interaction is poorly understood. We observed morphological changes in single- and mixed-species biofilms prepared for confocal laser scanning microscopy and scanning electron microscopy (SEM). Pneumococci suppressed the development of a fungal biofilm, and it even disrupted a preformed fungal biofilm. When a preformed fungal biofilm was treated with pneumococci, the mycelial network was fragmented, and only bacteria could develop. SEM revealed that the fragmented mycelium was further disrupted into fine filaments as treatment time progressed, and that the ECM of the preformed fungal biofilm had disappeared. The pneumococcal culture supernatant contained mycelial fragmentation activity that was heat-sensitive. The culture supernatant of a mutant pneumococcal strain deficient in pneumolysin (Δply) also exhibited the mycelial fragmentation activity. Enolase and lactate oxidase, which are involved in glycolysis and hydrogen peroxide production, were identified in the culture supernatant of the Δply mutant. Neither the wild type nor the mutant strain could fragment the mycelium in the presence of catalase. These data suggest that hydrogen peroxide could fragment the mycelium and would terminate the co-existence of A. fumigatus and S. pneumoniae in biofilm.
Collapse
Affiliation(s)
- Jun Iwahashi
- Department of Infection Control and Prevention, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka 830-0011, Japan.
| | - Katsuhiko Kamei
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8673, Japan
| | - Hiroshi Watanabe
- Department of Infection Control and Prevention, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka 830-0011, Japan
| |
Collapse
|
23
|
Scoffone VC, Barbieri G, Buroni S, Scarselli M, Pizza M, Rappuoli R, Riccardi G. Vaccines to Overcome Antibiotic Resistance: The Challenge of Burkholderia cenocepacia. Trends Microbiol 2020; 28:315-326. [DOI: 10.1016/j.tim.2019.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022]
|
24
|
Development and bioanalytical method validation of an LC-MS/MS assay for simultaneous quantitation of 2-alkyl-4(1H)-quinolones for application in bacterial cell culture and lung tissue. Anal Bioanal Chem 2020; 412:1521-1534. [PMID: 31993728 PMCID: PMC7223165 DOI: 10.1007/s00216-019-02374-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that produces numerous exoproducts during infection that help it evade the host immune system and procure nutrients from the host environment. Among these products are a family of secreted 2-alkyl-4(1H)-quinolone metabolites (AQs), which exhibit a range of biological activities. Here, we describe the validation of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for quantifying multiple AQ congeners in complex biological matrices. The assay was validated for selectivity, sensitivity, linearity, accuracy, precision, carryover, dilution integrity, recovery, matrix effects, and various aspects of stability (freeze-thaw, bench-top, long-term storage, and autosampler/post-preparative). Using authentic standards for 6 distinct AQ congeners, we report accurate quantitation within a linear range between 25 and 1000 nmol/L for all of the validated AQ standards. This method was successfully applied to quantify AQ concentrations in P. aeruginosa cell culture and in the lungs of mice infected with P. aeruginosa. Further, we confirmed the presence of unsaturated forms of several AQ congeners in cell culture. Graphical abstract ![]()
Collapse
|
25
|
Kirst ME, Baker D, Li E, Abu-Hasan M, Wang GP. Upper versus lower airway microbiome and metagenome in children with cystic fibrosis and their correlation with lung inflammation. PLoS One 2019; 14:e0222323. [PMID: 31536536 PMCID: PMC6752789 DOI: 10.1371/journal.pone.0222323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Objective Airways of children with cystic fibrosis (CF) harbor complex polymicrobial communities which correlates with pulmonary disease progression and use of antibiotics. Throat swabs are widely used in young CF children as a surrogate to detect potentially pathogenic microorganisms in lower airways. However, the relationship between upper and lower airway microbial communities remains poorly understood. This study aims to determine (1) to what extent oropharyngeal microbiome resembles the lung microbiome in CF children and (2) if lung microbiome composition correlates with airway inflammation. Method Throat swabs and bronchoalveolar lavage (BAL) were obtained concurrently from 21 CF children and 26 disease controls. Oropharyngeal and lung microbiota were analyzed using 16S rRNA deep sequencing and correlated with neutrophil counts in BAL and antibiotic exposure. Results Oropharyngeal microbial communities clustered separately from lung communities and had higher microbial diversity (p < 0.001). CF microbiome differed significantly from non-CF controls, with a higher abundance of Proteobacteria in both upper and lower CF airways. Neutrophil count in the BAL correlated negatively with the diversity but not richness of the lung microbiome. In CF children, microbial genes involved in bacterial motility proteins, two-component system, flagella assembly, and secretion system were enriched in both oropharyngeal and lung microbiome, whereas genes associated with synthesis and metabolism of nucleic acids and protein dominated the non-CF controls. Conclusions This study identified a unique microbial profile with altered microbial diversity and metabolic functions in CF airways which is significantly affected by airway inflammation. These results highlight the limitations of using throat swabs as a surrogate to study lower airway microbiome and metagenome in CF children.
Collapse
Affiliation(s)
- Mariana E. Kirst
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Dawn Baker
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Eric Li
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Mutasim Abu-Hasan
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Gary P. Wang
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
- Medical Service, Infectious Disease Section, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
26
|
Bevivino A, Bacci G, Drevinek P, Nelson MT, Hoffman L, Mengoni A. Deciphering the Ecology of Cystic Fibrosis Bacterial Communities: Towards Systems-Level Integration. Trends Mol Med 2019; 25:1110-1122. [PMID: 31439509 DOI: 10.1016/j.molmed.2019.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Despite over a decade of cystic fibrosis (CF) microbiome research, much remains to be learned about the overall composition, metabolic activities, and pathogenicity of the microbes in CF airways, limiting our understanding of the respiratory microbiome's relation to disease. Systems-level integration and modeling of host-microbiome interactions may allow us to better define the relationships between microbiological characteristics, disease status, and treatment response. In this way, modeling could pave the way for microbiome-based development of predictive models, individualized treatment plans, and novel therapeutic approaches, potentially serving as a paradigm for approaching other chronic infections. In this review, we describe the challenges facing this effort and propose research priorities for a systems biology approach to CF lung disease.
Collapse
Affiliation(s)
- Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| | - Giovanni Bacci
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Pavel Drevinek
- Department of Medical Microbiology, Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Maria T Nelson
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Lucas Hoffman
- Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Microbiology, University of Washington, Seattle, WA, USA; Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
27
|
A longitudinal characterization of the Non-Cystic Fibrosis Bronchiectasis airway microbiome. Sci Rep 2019; 9:6871. [PMID: 31053725 PMCID: PMC6499777 DOI: 10.1038/s41598-019-42862-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
A diverse microbiota exists within the airways of individuals with non-cystic fibrosis bronchiectasis (nCFB). How the lung microbiome evolves over time, and whether changes within the microbiome correlate with future disease progression is not yet known. We assessed the microbial community structure of 133 serial sputa and subsequent disease course of 29 nCFB patients collected over a span of 4–16 years using 16S rRNA paired-end sequencing. Interestingly, no significant shifts in the microbial community of individuals were observed during extended follow-up suggesting the microbiome remains relatively stable over prolonged periods. Samples that were Pseudomonas aeruginosa culture positive displayed markedly different microbial community structures compared to those that were positive for Haemophilus influenzae. Importantly, patients with sputum of lower microbial community diversity were more likely to experience subsequent lung function decline as defined by annual change in ≥−1 FEV1% predicted. Shannon diversity values <1 were more prevalent in patients with FEV1 decline (P = 0.002). However, the relative abundance of particular core microbiota constituents did not associate with risk of decline. Here we present data confirming that the microbiome of nCFB individuals is generally stable, and that microbiome-based measurements may have a prognostic role as biomarkers for nCFB.
Collapse
|
28
|
Microbiome networks and change-point analysis reveal key community changes associated with cystic fibrosis pulmonary exacerbations. NPJ Biofilms Microbiomes 2019; 5:4. [PMID: 30675371 PMCID: PMC6341074 DOI: 10.1038/s41522-018-0077-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/18/2018] [Indexed: 01/13/2023] Open
Abstract
Over 90% of cystic fibrosis (CF) patients die due to chronic lung infections leading to respiratory failure. The decline in CF lung function is greatly accelerated by intermittent and progressively severe acute pulmonary exacerbations (PEs). Despite their clinical impact, surprisingly few microbiological signals associated with PEs have been identified. Here we introduce an unsupervised, systems-oriented approach to identify key members of the microbiota. We used two CF sputum microbiome data sets that were longitudinally collected through periods spanning baseline health and PEs. Key taxa were defined based on three strategies: overall relative abundance, prevalence, and co-occurrence network interconnectedness. We measured the association between changes in the abundance of the key taxa and changes in patient clinical status over time via change-point detection, and found that taxa with the highest level of network interconnectedness tracked changes in patient health significantly better than taxa with the highest abundance or prevalence. We also cross-sectionally stratified all samples into the clinical states and identified key taxa associated with each state. We found that network interconnectedness most strongly delineated the taxa among clinical states, and that anaerobic bacteria were over-represented during PEs. Many of these anaerobes are oropharyngeal bacteria that have been previously isolated from the respiratory tract, and/or have been studied for their role in CF. The observed shift in community structure, and the association of anaerobic taxa and PEs lends further support to the growing consensus that anoxic conditions and the subsequent growth of anaerobic microbes are important predictors of PEs. Episodes of significant worsening of cystic fibrosis symptoms, known as pulmonary exacerbations (PEs), are associated with oxygen-deficient (anoxic) conditions and increased activity of ‘anaerobic’ bacteria, which thrive in the absence of oxygen. Researchers in Canada, led by David Guttman at the University of Toronto, compared genetic data on microbial populations in sputum samples collected during PEs and at times of better health. The study revealed a strong correlation between the activity and interactions among anaerobic bacteria and the onset of PEs. Investigating the significance of these changes in the lung environment and its microbial populations may help design treatment strategies to reduce the frequency of PEs and their potentially fatal consequences. The authors suggest that antibiotics that specifically target anaerobic bacteria may prove beneficial, as may hyperbaric oxygen therapy, which oxygenates the lung tissue.
Collapse
|
29
|
Cooney AL, Abou Alaiwa MH, Shah VS, Bouzek DC, Stroik MR, Powers LS, Gansemer ND, Meyerholz DK, Welsh MJ, Stoltz DA, Sinn PL, McCray PB. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight 2018; 1:88730. [PMID: 27656681 DOI: 10.1172/jci.insight.88730] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in CF transmembrane conductance regulator (CFTR), resulting in defective anion transport. Regardless of the disease-causing mutation, gene therapy is a strategy to restore anion transport to airway epithelia. Indeed, viral vector-delivered CFTR can complement the anion channel defect. In this proof-of-principle study, functional in vivo CFTR channel activity was restored in the airways of CF pigs using a feline immunodeficiency virus-based (FIV-based) lentiviral vector pseudotyped with the GP64 envelope. Three newborn CF pigs received aerosolized FIV-CFTR to the nose and lung. Two weeks after viral vector delivery, epithelial tissues were analyzed for functional correction. In freshly excised tracheal and bronchus tissues and cultured ethmoid sinus cells, we observed a significant increase in transepithelial cAMP-stimulated current, evidence of functional CFTR. In addition, we observed increases in tracheal airway surface liquid pH and bacterial killing in CFTR vector-treated animals. Together, these data provide the first evidence to our knowledge that lentiviral delivery of CFTR can partially correct the anion channel defect in a large-animal CF model and validate a translational strategy to treat or prevent CF lung disease.
Collapse
Affiliation(s)
- Ashley L Cooney
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Departments of Microbiology
| | - Mahmoud H Abou Alaiwa
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Viral S Shah
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine.,Molecular Physiology and Biophysics
| | - Drake C Bouzek
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Mallory R Stroik
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Linda S Powers
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Nick D Gansemer
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - David K Meyerholz
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Pathology
| | - Michael J Welsh
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine.,Howard Hughes Medical Institute.,Molecular Physiology and Biophysics
| | - David A Stoltz
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Patrick L Sinn
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| | - Paul B McCray
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Departments of Microbiology.,Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
30
|
Caverly LJ, LiPuma JJ. Cystic fibrosis respiratory microbiota: unraveling complexity to inform clinical practice. Expert Rev Respir Med 2018; 12:857-865. [PMID: 30118374 DOI: 10.1080/17476348.2018.1513331] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) lung disease is characterized by chronic cycles of pulmonary infection, inflammation, and mucus obstruction, beginning early in life, and eventually leading to progressive lung damage and early mortality. During the past ~15 years, culture-independent analyses of CF respiratory samples have identified diverse bacterial communities in CF airways, and relationships between respiratory microbiota and clinical outcomes. Areas covered: This paper reviews recent advances in our understanding of the relationships between respiratory microbiota and CF lung disease. The paper focuses on measures of airway bacterial community diversity and estimates of the relative abundance of anaerobic species. Finally, this paper will review the opportunities for advancing patient care suggested by these studies and highlight some of the ongoing challenges and unmet needs in translating this knowledge into clinical practice. Expert commentary: Culture-independent analyses of respiratory microbiota have suggested new strategies for advancing CF care, but have also highlighted challenges in understanding the complexity of CF respiratory infections. Development of more sophisticated models and analytic approaches to better account for this complexity are needed to elucidate mechanistic links between CF respiratory microbiota and clinical outcomes, and to ultimately translate this knowledge into better patient care.
Collapse
Affiliation(s)
- Lindsay J Caverly
- a Department of Pediatrics and Communicable Diseases , University of Michigan , Ann Arbor , MI , USA
| | - John J LiPuma
- a Department of Pediatrics and Communicable Diseases , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
31
|
Huang Q, Wang Y, Xia Y, Li L, Luo J, Xia S, Sun Y, Miao Y, Wang K, Chen Y. Testing the neutral theory of biodiversity with the microbiome dataset from cystic fibrosis patients. Medicine (Baltimore) 2018; 97:e12248. [PMID: 30212959 PMCID: PMC6156045 DOI: 10.1097/md.0000000000012248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cystic fibrosis (CF) is a hereditary disease that is characterized by defective mucociliary clearance, airway obstruction, chronic infection, and persistent inflammation. Cystic fibrosis pulmonary exacerbation (CFPE) majorly causes the morbidity of CF patients. Although CF has been demonstrated to change the composition of lung microbial community, previous studies have not made efforts to study the differences in the mechanism of assembly and diversity maintenance of lung microbial community in CF patients. In this study, we applied the neutral theory of biodiversity to comparatively investigate the assembly and diversity maintenance of the lung microbial community before and after the antibiotic treatment by reanalyzing the dataset from Fodor et al's study. We found that no one sample in the lung microbial communities of the sputum samples of Exacerbation group, nor those of End-of-treatment group satisfied the predictions of neutral model, suggesting that the neutral-process does not dominate in CF patients before and after antibiotic treatments. By comparing the biodiversity parameter between Exacerbation and End-of-treatment group, we found that the former had the significantly higher biodiversity, but the change in diversity parameter is slight and the P value is close to.05 (P value = .41). Therefore, our second finding is that although CFPE may increase the biodiversity of lung microbial community, the change is not essential.
Collapse
Affiliation(s)
- Qi Huang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Guangdong Gastrointestinal Disease Research Center, Nanfang Hospital, Southern Medical University, Guangzhou
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming
| | - Yaqiang Wang
- Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi
| | - Yao Xia
- Computational Biology and Medical Ecology Lab, State Key Lab of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences
| | - Lianwei Li
- Computational Biology and Medical Ecology Lab, State Key Lab of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences
| | - Juan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming
| | - Shuxian Xia
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Guangdong Gastrointestinal Disease Research Center, Nanfang Hospital, Southern Medical University, Guangzhou
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming
| | - Kunhua Wang
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of digestive disease, Kunming, China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Guangdong Gastrointestinal Disease Research Center, Nanfang Hospital, Southern Medical University, Guangzhou
| |
Collapse
|
32
|
Association of Antibiotics, Airway Microbiome, and Inflammation in Infants with Cystic Fibrosis. Ann Am Thorac Soc 2018; 14:1548-1555. [PMID: 28708417 DOI: 10.1513/annalsats.201702-121oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE The underlying defect in the cystic fibrosis (CF) airway leads to defective mucociliary clearance and impaired bacterial killing, resulting in endobronchial infection and inflammation that contributes to progressive lung disease. Little is known about the respiratory microbiota in the early CF airway and its relationship to inflammation. OBJECTIVES To examine the bacterial microbiota and inflammatory profiles in bronchoalveolar lavage fluid and oropharyngeal secretions in infants with CF. METHODS Infants with CF from U.S. and Australian centers were enrolled in a prospective, observational study examining the bacterial microbiota and inflammatory profiles of the respiratory tract. Bacterial diversity and density (load) were measured. Lavage samples were analyzed for inflammatory markers (interleukin 8, unbound neutrophil elastase, and absolute neutrophil count) in the epithelial lining fluid. RESULTS Thirty-two infants (mean age, 4.7 months) underwent bronchoalveolar lavage and oropharyngeal sampling. Shannon diversity strongly correlated between upper and lower airway samples from a given subject, although community compositions differed. Microbial diversity was lower in younger subjects and in those receiving daily antistaphylococcal antibiotic prophylaxis. In lavage samples, reduced diversity correlated with lower interleukin 8 concentration and absolute neutrophil count. CONCLUSIONS In infants with CF, reduced bacterial diversity in the upper and lower airways was strongly associated with the use of prophylactic antibiotics and younger age at the time of sampling; less diversity in the lower airway correlated with lower inflammation on bronchoalveolar lavage. Our findings suggest modification of the respiratory microbiome in infants with CF may influence airway inflammation.
Collapse
|
33
|
Wang L, Hao K, Yang T, Wang C. Role of the Lung Microbiome in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Chin Med J (Engl) 2018; 130:2107-2111. [PMID: 28741603 PMCID: PMC5586181 DOI: 10.4103/0366-6999.211452] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The development of culture-independent techniques for microbiological analysis shows that bronchial tree is not sterile in either healthy or chronic obstructive pulmonary disease (COPD) individuals. With the advance of sequencing technologies, lung microbiome has become a new frontier for pulmonary disease research, and such advance has led to better understanding of the lung microbiome in COPD. This review aimed to summarize the recent advances in lung microbiome, its relationships with COPD, and the possible mechanisms that microbiome contributed to COPD pathogenesis. DATA SOURCES Literature search was conducted using PubMed to collect all available studies concerning lung microbiome in COPD. The search terms were "microbiome" and "chronic obstructive pulmonary disease", or "microbiome" and "lung/pulmonary". STUDY SELECTION The papers in English about lung microbiome or lung microbiome in COPD were selected, and the type of articles was not limited. RESULTS The lung is a complex microbial ecosystem; the microbiome in lung is a collection of viable and nonviable microbiota (bacteria, viruses, and fungi) residing in the bronchial tree and parenchymal tissues, which is important for health. The following types of respiratory samples are often used to detect the lung microbiome: sputum, bronchial aspirate, bronchoalveolar lavage, and bronchial mucosa. Disordered bacterial microbiome is participated in pathogenesis of COPD; there are also dynamic changes in microbiota during COPD exacerbations. Lung microbiome may contribute to the pathogenesis of COPD by manipulating inflammatory and/or immune process. CONCLUSIONS Normal lung microbiome could be useful for prophylactic or therapeutic management in COPD, and the changes of lung microbiome could also serve as biomarkers for the evaluation of COPD.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York 10001, USA
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Progression of lung disease in cystic fibrosis (CF) is punctuated by Pseudomonas aeruginosa infection and recurrent pulmonary exacerbations, and is the major determinant of a patient's life expectancy. With the advent of novel deep-sequencing techniques, polymicrobial bacterial assemblages rather than single pathogens seem to be responsible for the deterioration of pulmonary function. This review summarizes recent insights into the development of the CF respiratory tract microbiome, with its determinants and its relations to clinical parameters. RECENT FINDINGS Research has moved from microbiota snapshots to intensive sampling over time, in an attempt to identify biomarkers of progression of CF lung disease. The developing respiratory tract microbiota in CF is perturbed by various endogenous and exogenous factors from the first months of life on. This work has revealed that both major pathogens such as P. aeruginosa and newly discovered players such as anaerobic species seem to contribute to CF lung disease. However, their interrelations remain to be unraveled. SUMMARY Long-term follow-up of microbiome development and alterations in relation to progression of lung disease and treatment is recommended. Moreover, integrating this information with other systems such as the metabolome, genome, mycome and virome is likely to contribute significantly to insights into host-microbiome interactions and thereby CF lung disease pathogenesis.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Anaerobic bacteria are not only normal commensals, but are also considered opportunistic pathogens and have been identified as persistent members of the lower airway community in people with cystic fibrosis of all ages and stages of disease. Currently, the role of anaerobic bacteria in cystic fibrosis lower airway disease is not well understood. Therefore, this review describes the recent studies relating to the potential pathophysiological role(s) of anaerobes within the cystic fibrosis lungs. RECENT FINDINGS The most frequently identified anaerobic bacteria in the lower airways are common to both cystic fibrosis and healthy lungs. Studies have shown that in cystic fibrosis, the relative abundance of anaerobes fluctuates in the lower airways with reduced lung function and increased inflammation associated with a decreased anaerobic load. However, anaerobes found within the lower airways also produce virulence factors, may cause a host inflammatory response and interact synergistically with recognized pathogens. SUMMARY Anaerobic bacteria are potentially members of the airway microbiota in health but could also contribute to the pathogenesis of lower airway disease in cystic fibrosis via both direct and indirect mechanisms. A personalized treatment strategy that maintains a normal microbial community may be possible in the future.
Collapse
|
36
|
Reemergence of Lower-Airway Microbiota in Lung Transplant Patients with Cystic Fibrosis. Ann Am Thorac Soc 2018; 13:2132-2142. [PMID: 27925791 DOI: 10.1513/annalsats.201606-431oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE Chronic lung infections are a hallmark of cystic fibrosis; they are responsible for progressive airway destruction and ultimately lead to respiratory death or the requirement for life-saving bilateral lung transplant. Furthermore, recurrent isolation of airway pathogens such as Pseudomonas aeruginosa in the allograft after transplant is associated with adverse outcomes, including bronchiolitis obliterans syndrome and acute infections. Little information exists on the impact of bilateral lung transplant on the lower-airway microbiota. OBJECTIVES To compare, at a microbiome and single-pathogen level (P. aeruginosa), the bacterial communities in pre- and post-transplant samples. METHODS We retrospectively accessed our biobank of sputum samples and sputum-derived bacterial pathogens for patients who had matched samples, including those who were clinically stable before transplant, those who had a pulmonary exacerbation before transplant, and those who had pulmonary exacerbation after transplant. We used 16S ribosomal RNA gene sequencing to characterize the lower-airway microbiome of 14 adult transplant patients with cystic fibrosis. Genotyping and phenotyping of P. aeruginosa isolates from 12 of these patients with matched isolates was performed. MEASUREMENTS AND MAIN RESULTS Although α-diversity (richness and evenness) of patient microbiomes was similar before and after transplant, β- diversity (core microbiome composition) measures stratified patients evenly into two groups with more similar and more dissimilar communities. P. aeruginosa strains isolated before transplant were found to reemerge in 11 of 12 patients; however, phenotypic variation was observed. CONCLUSIONS These findings indicate that recolonization by P. aeruginosa after transplant is almost always strain specific, suggesting a within-host source. The polymicrobial colonization of the airways after transplant does not always reflect the pretransplant sputum microbiota.
Collapse
|
37
|
Zemanick ET, Wagner BD, Robertson CE, Ahrens RC, Chmiel JF, Clancy JP, Gibson RL, Harris WT, Kurland G, Laguna TA, McColley SA, McCoy K, Retsch-Bogart G, Sobush KT, Zeitlin PL, Stevens MJ, Accurso FJ, Sagel SD, Harris JK. Airway microbiota across age and disease spectrum in cystic fibrosis. Eur Respir J 2017; 50:50/5/1700832. [PMID: 29146601 DOI: 10.1183/13993003.00832-2017] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/10/2017] [Indexed: 01/20/2023]
Abstract
Our objectives were to characterise the microbiota in cystic fibrosis (CF) bronchoalveolar lavage fluid (BALF), and determine its relationship to inflammation and disease status.BALF from paediatric and adult CF patients and paediatric disease controls undergoing clinically indicated bronchoscopy was analysed for total bacterial load and for microbiota by 16S rDNA sequencing.We examined 191 BALF samples (146 CF and 45 disease controls) from 13 CF centres. In CF patients aged <2 years, nontraditional taxa (e.gStreptococcus, Prevotella and Veillonella) constituted ∼50% of the microbiota, whereas in CF patients aged ≥6 years, traditional CF taxa (e.gPseudomonas, Staphylococcus and Stenotrophomonas) predominated. Sequencing detected a dominant taxon not traditionally associated with CF (e.gStreptococcus or Prevotella) in 20% of CF BALF and identified bacteria in 24% of culture-negative BALF. Microbial diversity and relative abundance of Streptococcus, Prevotella and Veillonella were inversely associated with airway inflammation. Microbiota communities were distinct in CF compared with disease controls, but did not differ based on pulmonary exacerbation status in CF.The CF microbiota detected in BALF differs with age. In CF patients aged <2 years, Streptococcus predominates, whereas classic CF pathogens predominate in most older children and adults.
Collapse
Affiliation(s)
| | - Brandie D Wagner
- University of Colorado School of Medicine, Aurora, CO, USA.,Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | | | | | - James F Chmiel
- Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - John P Clancy
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ronald L Gibson
- University of Washington, Seattle Children's Hospital, Seattle, WA, USA
| | | | | | | | - Susanna A McColley
- Ann and Robert H. Lurie Children's Hospital of Chicago and Northwestern University, Chicago, IL, USA
| | - Karen McCoy
- Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | - Mark J Stevens
- University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Scott D Sagel
- University of Colorado School of Medicine, Aurora, CO, USA
| | - J Kirk Harris
- University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
38
|
Ronan NJ, Einarsson GG, Twomey M, Mooney D, Mullane D, NiChroinin M, O'Callaghan G, Shanahan F, Murphy DM, O'Connor OJ, Shortt CA, Tunney MM, Eustace JA, Maher MM, Elborn JS, Plant BJ. CORK Study in Cystic Fibrosis: Sustained Improvements in Ultra-Low-Dose Chest CT Scores After CFTR Modulation With Ivacaftor. Chest 2017; 153:395-403. [PMID: 29037527 DOI: 10.1016/j.chest.2017.10.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/16/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ivacaftor produces significant clinical benefit in patients with cystic fibrosis (CF) with the G551D mutation. Prevalence of this mutation at the Cork CF Centre is 23%. This study assessed the impact of cystic fibrosis transmembrane conductance regulator modulation on multiple modalities of patient assessment. METHODS Thirty-three patients with the G551D mutation were assessed at baseline and prospectively every 3 months for 1 year after initiation of ivacaftor. Change in ultra-low-dose chest CT scans, blood inflammatory mediators, and the sputum microbiome were assessed. RESULTS Significant improvements in FEV1, BMI, and sweat chloride levels were observed post-ivacaftor treatment. Improvement in ultra-low-dose CT imaging scores were observed after treatment, with significant mean reductions in total Bhalla score (P < .01), peribronchial thickening (P = .035), and extent of mucous plugging (P < .001). Reductions in circulating inflammatory markers, including interleukin (IL)-1β, IL-6, and IL-8 were demonstrated. There was a 30% reduction in the relative abundance of Pseudomonas species and an increase in the relative abundance of bacteria associated with more stable community structures. Posttreatment community richness increased significantly (P = .03). CONCLUSIONS Early and sustained improvements on ultra-low-dose CT scores suggest it may be a useful method of evaluating treatment response. It paralleled improvement in symptoms, circulating inflammatory markers, and changes in the lung microbiota.
Collapse
Affiliation(s)
- Nicola J Ronan
- Cork Cystic Fibrosis Centre, Cork University Hospital, University College Cork, Cork, Ireland; HRB Clinical Research Facility, Cork University Hospital, University College Cork, Cork, Ireland
| | - Gisli G Einarsson
- CF & Airways Microbiology Research Group, Queen's University Belfast, Belfast, Northern Ireland
| | - Maria Twomey
- Department of Radiology, Cork University Hospital, University College Cork, Cork, Ireland
| | - Denver Mooney
- CF & Airways Microbiology Research Group, Queen's University Belfast, Belfast, Northern Ireland
| | - David Mullane
- Cork Cystic Fibrosis Centre, Cork University Hospital, University College Cork, Cork, Ireland
| | - Muireann NiChroinin
- Cork Cystic Fibrosis Centre, Cork University Hospital, University College Cork, Cork, Ireland
| | - Grace O'Callaghan
- Cork Cystic Fibrosis Centre, Cork University Hospital, University College Cork, Cork, Ireland; HRB Clinical Research Facility, Cork University Hospital, University College Cork, Cork, Ireland
| | | | - Desmond M Murphy
- Cork Cystic Fibrosis Centre, Cork University Hospital, University College Cork, Cork, Ireland; HRB Clinical Research Facility, Cork University Hospital, University College Cork, Cork, Ireland
| | - Owen J O'Connor
- Department of Radiology, Cork University Hospital, University College Cork, Cork, Ireland
| | - Cathy A Shortt
- Cork Cystic Fibrosis Centre, Cork University Hospital, University College Cork, Cork, Ireland
| | - Michael M Tunney
- CF & Airways Microbiology Research Group, Queen's University Belfast, Belfast, Northern Ireland
| | - Joseph A Eustace
- HRB Clinical Research Facility, Cork University Hospital, University College Cork, Cork, Ireland
| | - Michael M Maher
- Department of Radiology, Cork University Hospital, University College Cork, Cork, Ireland
| | - J Stuart Elborn
- CF & Airways Microbiology Research Group, Queen's University Belfast, Belfast, Northern Ireland; Imperial College and Royal Brompton Hospital, London, England
| | - Barry J Plant
- Cork Cystic Fibrosis Centre, Cork University Hospital, University College Cork, Cork, Ireland; HRB Clinical Research Facility, Cork University Hospital, University College Cork, Cork, Ireland.
| |
Collapse
|
39
|
Bacci G, Mengoni A, Fiscarelli E, Segata N, Taccetti G, Dolce D, Paganin P, Morelli P, Tuccio V, De Alessandri A, Lucidi V, Bevivino A. A Different Microbiome Gene Repertoire in the Airways of Cystic Fibrosis Patients with Severe Lung Disease. Int J Mol Sci 2017; 18:E1654. [PMID: 28758937 PMCID: PMC5578044 DOI: 10.3390/ijms18081654] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
In recent years, next-generation sequencing (NGS) was employed to decipher the structure and composition of the microbiota of the airways in cystic fibrosis (CF) patients. However, little is still known about the overall gene functions harbored by the resident microbial populations and which specific genes are associated with various stages of CF lung disease. In the present study, we aimed to identify the microbial gene repertoire of CF microbiota in twelve patients with severe and normal/mild lung disease by performing sputum shotgun metagenome sequencing. The abundance of metabolic pathways encoded by microbes inhabiting CF airways was reconstructed from the metagenome. We identified a set of metabolic pathways differently distributed in patients with different pulmonary function; namely, pathways related to bacterial chemotaxis and flagellar assembly, as well as genes encoding efflux-mediated antibiotic resistance mechanisms and virulence-related genes. The results indicated that the microbiome of CF patients with low pulmonary function is enriched in virulence-related genes and in genes encoding efflux-mediated antibiotic resistance mechanisms. Overall, the microbiome of severely affected adults with CF seems to encode different mechanisms for the facilitation of microbial colonization and persistence in the lung, consistent with the characteristics of multidrug-resistant microbial communities that are commonly observed in patients with severe lung disease.
Collapse
Affiliation(s)
- Giovanni Bacci
- Department of Biology, University of Florence, Florence 50019, Italy.
| | - Alessio Mengoni
- Department of Biology, University of Florence, Florence 50019, Italy.
| | - Ersilia Fiscarelli
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, "Bambino Gesù" Children's Hospital and Research Institute, Rome 00165, Italy.
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Trento 38123, Italy.
| | - Giovanni Taccetti
- Department of Pediatric Medicine, Cystic Fibrosis Center, Anna Meyer Children's University Hospital, Florence 50139, Italy.
| | - Daniela Dolce
- Department of Pediatric Medicine, Cystic Fibrosis Center, Anna Meyer Children's University Hospital, Florence 50139, Italy.
| | - Patrizia Paganin
- Territorial and Production Systems Sustainability Department, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome 00123, Italy.
| | - Patrizia Morelli
- Cystic Fibrosis Center, IRCCS G. Gaslini Institute, Genoa 16146, Italy.
| | - Vanessa Tuccio
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, "Bambino Gesù" Children's Hospital and Research Institute, Rome 00165, Italy.
| | | | - Vincenzina Lucidi
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, "Bambino Gesù" Children's Hospital and Research Institute, Rome 00165, Italy.
| | - Annamaria Bevivino
- Territorial and Production Systems Sustainability Department, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome 00123, Italy.
| |
Collapse
|
40
|
Muldoon EG, Strek ME, Patterson KC. Allergic and Noninvasive Infectious Pulmonary Aspergillosis Syndromes. Clin Chest Med 2017; 38:521-534. [PMID: 28797493 DOI: 10.1016/j.ccm.2017.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aspergillus spp are ubiquitous in the environment, and inhalation of Aspergillus spores is unavoidable. An intact immune system, with normal airway function, protects most people from disease. Globally, however, the toll from aspergillosis is high. The literature has largely focused on invasive aspergillosis, yet the burden in terms of chronicity and prevalence is higher for noninvasive Aspergillus conditions. This article discusses allergic aspergilloses and provides an update on the diagnosis and management of allergic bronchopulmonary aspergillosis, including in patients with cystic fibrosis, and an update on severe asthma with fungal sensitization. In addition, the presentation, investigation, and management of noninvasive infectious aspergilloses are reviewed.
Collapse
Affiliation(s)
- Eavan G Muldoon
- National Aspergillosis Centre, University Hospital of South Manchester, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK; Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK.
| | - Mary E Strek
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, 5481 South Maryland Avenue, Chicago, IL 60637, USA
| | - Karen C Patterson
- Division of Pulmonary, Allergy and Critical Care, University of Pennsylvania, 3400 Spruce Street, 828 West Gates Building, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Scoffield JA, Duan D, Zhu F, Wu H. A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation. PLoS Pathog 2017; 13:e1006300. [PMID: 28448633 PMCID: PMC5407764 DOI: 10.1371/journal.ppat.1006300] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/16/2017] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa causes devastating chronic pulmonary infections in cystic fibrosis (CF) patients. Although the CF airway is inhabited by diverse species of microorganisms interlaced within a biofilm, many studies focus on the sole contribution of P. aeruginosa pathogenesis in CF morbidity. More recently, oral commensal streptococci have been identified as cohabitants of the CF lung, but few studies have explored the role these bacteria play within the CF biofilm. We examined the interaction between P. aeruginosa and oral commensal streptococci within a dual species biofilm. Here we report that the CF P. aeruginosa isolate, FRD1, enhances biofilm formation and colonization of Drosophila melanogaster by the oral commensal Streptococcus parasanguinis. Moreover, production of the P. aeruginosa exopolysaccharide, alginate, is required for the promotion of S. parasanguinis biofilm formation and colonization. However, P. aeruginosa is not promoted in the dual species biofilm. Furthermore, we show that the streptococcal adhesin, BapA1, mediates alginate-dependent enhancement of the S. parasanguinis biofilm in vitro, and BapA1 along with another adhesin, Fap1, are required for the in vivo colonization of S. parasanguinis in the presence of FRD1. Taken together, our study highlights a new association between streptococcal adhesins and P. aeruginosa alginate, and reveals a mechanism by which S. parasanguinis potentially colonizes the CF lung and interferes with the pathogenesis of P. aeruginosa.
Collapse
Affiliation(s)
- Jessica A. Scoffield
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dingyu Duan
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- State Key Laboratory of Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Zhu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hui Wu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
42
|
Wijers CD, Chmiel JF, Gaston BM. Bacterial infections in patients with primary ciliary dyskinesia: Comparison with cystic fibrosis. Chron Respir Dis 2017; 14:392-406. [PMID: 29081265 PMCID: PMC5729729 DOI: 10.1177/1479972317694621] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder associated with severely impaired mucociliary clearance caused by defects in ciliary structure and function. Although recurrent bacterial infection of the respiratory tract is one of the major clinical features of this disease, PCD airway microbiology is understudied. Despite the differences in pathophysiology, assumptions about respiratory tract infections in patients with PCD are often extrapolated from cystic fibrosis (CF) airway microbiology. This review aims to summarize the current understanding of bacterial infections in patients with PCD, including infections with Pseudomonas aeruginosa, Staphylococcus aureus, and Moraxella catarrhalis, as it relates to bacterial infections in patients with CF. Further, we will discuss current and potential future treatment strategies aimed at improving the care of patients with PCD suffering from recurring bacterial infections.
Collapse
Affiliation(s)
- Christiaan Dm Wijers
- 1 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James F Chmiel
- 1 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Benjamin M Gaston
- 1 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
43
|
Phan J, Meinardi S, Barletta B, Blake DR, Whiteson K. Stable isotope profiles reveal active production of VOCs from human-associated microbes. J Breath Res 2017; 11:017101. [PMID: 28070022 DOI: 10.1088/1752-7163/aa5833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Volatile organic compounds (VOCs) measured from exhaled breath have great promise for the diagnosis of bacterial infections. However, determining human or microbial origin of VOCs detected in breath remains a great challenge. For example, the microbial fermentation product 2,3-butanedione was recently found in the breath of Cystic Fibrosis (CF) patients; parallel culture-independent metagenomic sequencing of the same samples revealed that Streptococcus and Rothia spp. have the genetic capacity to produce 2,3-butanedione. To investigate whether the genetic capacity found in metagenomes translates to bacterial production of a VOC of interest such as 2,3-butanedione, we fed stable isotopes to three bacterial strains isolated from patients: two gram-positive bacteria, Rothia mucilaginosa and Streptococcus salivarius, and a dominant opportunistic gram-negative pathogen, Pseudomonas aeruginosa. Culture headspaces were collected and analyzed using a gas chromatographic system to quantify the abundance of VOCs of interest; mass spectroscopy was used to determine whether the stable isotope label had been incorporated. Our results show that R. mucilaginosa and S. salivarius consumed D-Glucose-13C6 to produce labeled 2,3-butanedione. R. mucilaginosa and S. salivarius also produced labeled acetaldehyde and ethanol when grown with 2H2O. Additionally, we find that P. aeruginosa growth and dimethyl sulfide production are increased when exposed to lactic acid in culture. These results highlight the importance VOCs produced by P. aeruginosa, R. mucilaginosa, and S. salivarius as nutrients and signals in microbial communities, and as potential biomarkers in a CF infection.
Collapse
Affiliation(s)
- Joann Phan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | | | | | | | | |
Collapse
|
44
|
Laguna TA, Wagner BD, Williams CB, Stevens MJ, Robertson CE, Welchlin CW, Moen CE, Zemanick ET, Harris JK. Airway Microbiota in Bronchoalveolar Lavage Fluid from Clinically Well Infants with Cystic Fibrosis. PLoS One 2016; 11:e0167649. [PMID: 27930727 PMCID: PMC5145204 DOI: 10.1371/journal.pone.0167649] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
Background Upper airway cultures guide the identification and treatment of lung pathogens in infants with cystic fibrosis (CF); however, this may not fully reflect the spectrum of bacteria present in the lower airway. Our objectives were to characterize the airway microbiota using bronchoalveolar lavage fluid (BALF) from asymptomatic CF infants during the first year of life and to investigate the relationship between BALF microbiota, standard culture and clinical characteristics. Methods BALF, nasopharyngeal (NP) culture and infant pulmonary function testing data were collected at 6 months and one year of age during periods of clinical stability from infants diagnosed with CF by newborn screening. BALF was analyzed for total bacterial load by qPCR and for bacterial community composition by 16S ribosomal RNA sequencing. Clinical characteristics and standard BALF and NP culture results were recorded over five years of longitudinal follow-up. Results 12 BALF samples were collected from 8 infants with CF. Streptococcus, Burkholderia, Prevotella, Haemophilus, Porphyromonas, and Veillonella had the highest median relative abundance in infant CF BALF. Two of the 3 infants with repeat BALF had changes in their microbial communities over six months (Morisita-Horn diversity index 0.36, 0.38). Although there was excellent percent agreement between standard NP and BALF cultures, these techniques did not routinely detect all bacteria identified by sequencing. Conclusions BALF in asymptomatic CF infants contains complex microbiota, often missed by traditional culture of airway secretions. Anaerobic bacteria are commonly found in the lower airways of CF infants.
Collapse
Affiliation(s)
- Theresa A. Laguna
- Department of Pediatrics, University of Minnesota School of Medicine and the Masonic Children’s Hospital, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Brandie D. Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Cynthia B. Williams
- Department of Pediatrics, University of Minnesota School of Medicine and the Masonic Children’s Hospital, Minneapolis, Minnesota, United States of America
| | - Mark J. Stevens
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Charles E. Robertson
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Cole W. Welchlin
- Department of Pediatrics, University of Minnesota School of Medicine and the Masonic Children’s Hospital, Minneapolis, Minnesota, United States of America
| | - Catherine E. Moen
- Department of Pediatrics, University of Minnesota School of Medicine and the Masonic Children’s Hospital, Minneapolis, Minnesota, United States of America
| | - Edith T. Zemanick
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jonathan K. Harris
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
45
|
Abstract
For a long time, the microbiology of cystic fibrosis has been focussed on Pseudomonas aeruginosa and associated Gram-negative pathogens. An increasing body of evidence has been compiled demonstrating an important role for moulds and yeasts within this complex patient group. Whether or not fungi are active participants, spectators or transient passersby remain to be elucidated. However, functionally, they do appear to play a contributory role in pathogenesis, albeit we do not know if this is a direct or indirect effect. The following review examines some of the key evidence for the role of fungi in CF pathogenesis.
Collapse
|
46
|
Abstract
Cystic fibrosis is a common life-limiting autosomal recessive genetic disorder, with highest prevalence in Europe, North America, and Australia. The disease is caused by mutation of a gene that encodes a chloride-conducting transmembrane channel called the cystic fibrosis transmembrane conductance regulator (CFTR), which regulates anion transport and mucociliary clearance in the airways. Functional failure of CFTR results in mucus retention and chronic infection and subsequently in local airway inflammation that is harmful to the lungs. CFTR dysfunction mainly affects epithelial cells, although there is evidence of a role in immune cells. Cystic fibrosis affects several body systems, and morbidity and mortality is mostly caused by bronchiectasis, small airways obstruction, and progressive respiratory impairment. Important comorbidities caused by epithelial cell dysfunction occur in the pancreas (malabsorption), liver (biliary cirrhosis), sweat glands (heat shock), and vas deferens (infertility). The development and delivery of drugs that improve the clearance of mucus from the lungs and treat the consequent infection, in combination with correction of pancreatic insufficiency and undernutrition by multidisciplinary teams, have resulted in remarkable improvements in quality of life and clinical outcomes in patients with cystic fibrosis, with median life expectancy now older than 40 years. Innovative and transformational therapies that target the basic defect in cystic fibrosis have recently been developed and are effective in improving lung function and reducing pulmonary exacerbations. Further small molecule and gene-based therapies are being developed to restore CFTR function; these therapies promise to be disease modifying and to improve the lives of people with cystic fibrosis.
Collapse
Affiliation(s)
- J Stuart Elborn
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, and Belfast City Hospital, Belfast, UK.
| |
Collapse
|
47
|
Hauptmann M, Schaible UE. Linking microbiota and respiratory disease. FEBS Lett 2016; 590:3721-3738. [PMID: 27637588 DOI: 10.1002/1873-3468.12421] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
An increasing body of evidence indicates the relevance of microbiota for pulmonary health and disease. Independent investigations recently demonstrated that the lung harbors a resident microbiota. Therefore, it is intriguing that a lung microbiota can shape pulmonary immunity and epithelial barrier functions. Here, we discuss the ways how the composition of the microbial community in the lung may influence pulmonary health and vice versa, factors that determine community composition. Prominent microbiota at other body sites such as the intestinal one may also contribute to pulmonary health and disease. However, it is difficult to discriminate between influences of lung vs. gut microbiota due to systemic mutuality between both communities. With focuses on asthma and respiratory infections, we discuss how microbiota of lung and gut can determine pulmonary immunity and barrier functions.
Collapse
Affiliation(s)
- Matthias Hauptmann
- Priority Program Infections, Cellular Microbiology, Research Center Borstel, Germany
| | - Ulrich E Schaible
- Priority Program Infections, Cellular Microbiology, Research Center Borstel, Germany.,German Centre for Infection Research, TTU-TB, Borstel, Germany
| |
Collapse
|
48
|
Bacci G, Paganin P, Lopez L, Vanni C, Dalmastri C, Cantale C, Daddiego L, Perrotta G, Dolce D, Morelli P, Tuccio V, De Alessandri A, Fiscarelli EV, Taccetti G, Lucidi V, Bevivino A, Mengoni A. Pyrosequencing Unveils Cystic Fibrosis Lung Microbiome Differences Associated with a Severe Lung Function Decline. PLoS One 2016; 11:e0156807. [PMID: 27355625 PMCID: PMC4927098 DOI: 10.1371/journal.pone.0156807] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic airway infection is a hallmark feature of cystic fibrosis (CF) disease. In the present study, sputum samples from CF patients were collected and characterized by 16S rRNA gene-targeted approach, to assess how lung microbiota composition changes following a severe decline in lung function. In particular, we compared the airway microbiota of two groups of patients with CF, i.e. patients with a substantial decline in their lung function (SD) and patients with a stable lung function (S). The two groups showed a different bacterial composition, with SD patients reporting a more heterogeneous community than the S ones. Pseudomonas was the dominant genus in both S and SD patients followed by Staphylococcus and Prevotella. Other than the classical CF pathogens and the most commonly identified non-classical genera in CF, we found the presence of the unusual anaerobic genus Sneathia. Moreover, the oligotyping analysis revealed the presence of other minor genera described in CF, highlighting the polymicrobial nature of CF infection. Finally, the analysis of correlation and anti-correlation networks showed the presence of antagonism and ecological independence between members of Pseudomonas genus and the rest of CF airways microbiota, with S patients showing a more interconnected community in S patients than in SD ones. This population structure suggests a higher resilience of S microbiota with respect to SD, which in turn may hinder the potential adverse impact of aggressive pathogens (e.g. Pseudomonas). In conclusion, our findings shed a new light on CF airway microbiota ecology, improving current knowledge about its composition and polymicrobial interactions in patients with CF.
Collapse
Affiliation(s)
- Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | - Patrizia Paganin
- Department for Sustainability of Production and Territorial Systems, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Loredana Lopez
- Department of Energy Technologies, Bioenergy, Biorefinery and Green Chemistry Division, ENEA Trisaia Research Center, Rotondella (MT), Italy
| | - Chiara Vanni
- Department of Biology, University of Florence, Florence, Italy
| | - Claudia Dalmastri
- Department for Sustainability of Production and Territorial Systems, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Cristina Cantale
- Department for Sustainability of Production and Territorial Systems, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Loretta Daddiego
- Department of Energy Technologies, Bioenergy, Biorefinery and Green Chemistry Division, ENEA Trisaia Research Center, Rotondella (MT), Italy
| | - Gaetano Perrotta
- Department of Energy Technologies, Bioenergy, Biorefinery and Green Chemistry Division, ENEA Trisaia Research Center, Rotondella (MT), Italy
| | - Daniela Dolce
- Department of Pediatrics, Cystic Fibrosis Center, Meyer Hospital, Florence, Italy
| | - Patrizia Morelli
- Department of Pediatrics, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - Vanessa Tuccio
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, Children's Hospital and Research Institute Bambino Gesù, Rome, Italy
| | | | - Ersilia Vita Fiscarelli
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, Children's Hospital and Research Institute Bambino Gesù, Rome, Italy
| | - Giovanni Taccetti
- Department of Pediatrics, Cystic Fibrosis Center, Meyer Hospital, Florence, Italy
| | - Vincenzina Lucidi
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, Children's Hospital and Research Institute Bambino Gesù, Rome, Italy
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
49
|
Long-Term Evolution of Burkholderia multivorans during a Chronic Cystic Fibrosis Infection Reveals Shifting Forces of Selection. mSystems 2016; 1:mSystems00029-16. [PMID: 27822534 PMCID: PMC5069766 DOI: 10.1128/msystems.00029-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/25/2016] [Indexed: 11/20/2022] Open
Abstract
Burkholderia multivorans is an opportunistic pathogen capable of causing severe disease in patients with cystic fibrosis (CF). Patients may be chronically infected for years, during which the bacterial population evolves in response to unknown forces. Here we analyze the genomic and functional evolution of a B. multivorans infection that was sequentially sampled from a CF patient over 20 years. The population diversified into at least four primary, coexisting clades with distinct evolutionary dynamics. The average substitution rate was only 2.4 mutations/year, but notably, some lineages evolved more slowly, whereas one diversified more rapidly by mostly nonsynonymous mutations. Ten loci, mostly involved in gene expression regulation and lipid metabolism, acquired three or more independent mutations and define likely targets of selection. Further, a broad range of phenotypes changed in association with the evolved mutations; they included antimicrobial resistance, biofilm regulation, and the presentation of lipopolysaccharide O-antigen repeats, which was directly caused by evolved mutations. Additionally, early isolates acquired mutations in genes involved in cyclic di-GMP (c-di-GMP) metabolism that associated with increased c-di-GMP intracellular levels. Accordingly, these isolates showed lower motility and increased biofilm formation and adhesion to CFBE41o- epithelial cells than the initial isolate, and each of these phenotypes is an important trait for bacterial persistence. The timing of the emergence of this clade of more adherent genotypes correlated with the period of greatest decline in the patient's lung function. All together, our observations suggest that selection on B. multivorans populations during long-term colonization of CF patient lungs either directly or indirectly targets adherence, metabolism, and changes in the cell envelope related to adaptation to the biofilm lifestyle. IMPORTANCE Bacteria may become genetically and phenotypically diverse during long-term colonization of cystic fibrosis (CF) patient lungs, yet our understanding of within-host evolutionary processes during these infections is lacking. Here we combined current genome sequencing technologies and detailed phenotypic profiling of the opportunistic pathogen Burkholderia multivorans using sequential isolates sampled from a CF patient over 20 years. The evolutionary history of these isolates highlighted bacterial genes and pathways that were likely subject to strong selection within the host and were associated with altered phenotypes, such as biofilm production, motility, and antimicrobial resistance. Importantly, multiple lineages coexisted for years or even decades within the infection, and the period of diversification within the dominant lineage was associated with deterioration of the patient's lung function. Identifying traits under strong selection during chronic infection not only sheds new light onto Burkholderia evolution but also sets the stage for tailored therapeutics targeting the prevailing lineages associated with disease progression.
Collapse
|
50
|
Scoffield J, Silo-Suh L. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa. Can J Microbiol 2016; 62:704-10. [PMID: 27392247 DOI: 10.1139/cjm-2016-0119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation.
Collapse
Affiliation(s)
- Jessica Scoffield
- a Department of Pediatric Dentistry, 1919 7th Avenue South, Room SDB 801, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Laura Silo-Suh
- b Department of Basic Medical Sciences, Mercer University, School of Medicine, Macon, GA 31207, USA
| |
Collapse
|