1
|
Correa E, Mialon M, Cizeron M, Bessereau JL, Pinan-Lucarre B, Kratsios P. UNC-30/PITX coordinates neurotransmitter identity with postsynaptic GABA receptor clustering. Development 2024; 151:dev202733. [PMID: 39190555 PMCID: PMC11385328 DOI: 10.1242/dev.202733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Terminal selectors are transcription factors that control neuronal identity by regulating expression of key effector molecules, such as neurotransmitter biosynthesis proteins and ion channels. Whether and how terminal selectors control neuronal connectivity is poorly understood. Here, we report that UNC-30 (PITX2/3), the terminal selector of GABA nerve cord motor neurons in Caenorhabditis elegans, is required for neurotransmitter receptor clustering, a hallmark of postsynaptic differentiation. Animals lacking unc-30 or madd-4B, the short isoform of the motor neuron-secreted synapse organizer madd-4 (punctin/ADAMTSL), display severe GABA receptor type A (GABAAR) clustering defects in postsynaptic muscle cells. Mechanistically, UNC-30 acts directly to induce and maintain transcription of madd-4B and GABA biosynthesis genes (e.g. unc-25/GAD, unc-47/VGAT). Hence, UNC-30 controls GABAA receptor clustering in postsynaptic muscle cells and GABA biosynthesis in presynaptic cells, transcriptionally coordinating two crucial processes for GABA neurotransmission. Further, we uncover multiple target genes and a dual role for UNC-30 as both an activator and a repressor of gene transcription. Our findings on UNC-30 function may contribute to our molecular understanding of human conditions, such as Axenfeld-Rieger syndrome, caused by PITX2 and PITX3 gene variants.
Collapse
Affiliation(s)
- Edgar Correa
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Morgane Mialon
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Mélissa Cizeron
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Jean-Louis Bessereau
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Berangere Pinan-Lucarre
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- University of Chicago Neuroscience Institute, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Yang D, Jian Z, Tang C, Chen Z, Zhou Z, Zheng L, Peng X. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges. Int J Mol Sci 2024; 25:5943. [PMID: 38892128 PMCID: PMC11172925 DOI: 10.3390/ijms25115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Congenital heart defects (CHDs) are common human birth defects. Genetic mutations potentially cause the exhibition of various pathological phenotypes associated with CHDs, occurring alone or as part of certain syndromes. Zebrafish, a model organism with a strong molecular conservation similar to humans, is commonly used in studies on cardiovascular diseases owing to its advantageous features, such as a similarity to human electrophysiology, transparent embryos and larvae for observation, and suitability for forward and reverse genetics technology, to create various economical and easily controlled zebrafish CHD models. In this review, we outline the pros and cons of zebrafish CHD models created by genetic mutations associated with single defects and syndromes and the underlying pathogenic mechanism of CHDs discovered in these models. The challenges of zebrafish CHD models generated through gene editing are also discussed, since the cardiac phenotypes resulting from a single-candidate pathological gene mutation in zebrafish might not mirror the corresponding human phenotypes. The comprehensive review of these zebrafish CHD models will facilitate the understanding of the pathogenic mechanisms of CHDs and offer new opportunities for their treatments and intervention strategies.
Collapse
|
3
|
Vetriselvan Y, Manoharan A, Murugan M, Jayakumar S, Govindasamy C, Ravikumar S. In Silico Characterization of Pathogenic Homeodomain Missense Mutations in the PITX2 Gene. Biochem Genet 2024:10.1007/s10528-024-10836-z. [PMID: 38802693 DOI: 10.1007/s10528-024-10836-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Paired homologous domain transcription factor 2 (PITX2) is critically involved in ocular and cardiac development. Mutations in PITX2 are consistently reported in association with Axenfeld-Rieger syndrome, an autosomal dominant genetic disorder and atrial fibrillation, a common cardiac arrhythmia. In this study, we have mined missense mutations in PITX2 gene from NCBI-dbSNP and Ensembl databases, evaluated the pathogenicity of the missense variants in the homeodomain and C-terminal region using five in silico prediction tools SIFT, PolyPhen2, GERP, Mutation Assessor and CADD. Fifteen homeodomain mutations G42V, G42R, R45W, S49Y, R53W, E53D, E55V, R62H, P65S, R69H, G75R, R84G, R86K, R87W, R91P were found to be highly pathogenic by both SIFT, PolyPhen2 were further functionally characterized using I-Mutant 2.0, Consurf, MutPred and Project Hope. The findings of the study can be used for prioritizing mutations in the context of genetic studies.
Collapse
Affiliation(s)
- Yogesh Vetriselvan
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India
| | - Aarthi Manoharan
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India
| | - Manoranjani Murugan
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India
| | - Swetha Jayakumar
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, 11433, Riyadh, Saudi Arabia
| | - Sambandam Ravikumar
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India.
| |
Collapse
|
4
|
Correa E, Mialon M, Cizeron M, Bessereau JL, Pinan-Lucarre B, Kratsios P. UNC-30/PITX coordinates neurotransmitter identity with postsynaptic GABA receptor clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580278. [PMID: 38405977 PMCID: PMC10888783 DOI: 10.1101/2024.02.14.580278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Terminal selectors are transcription factors that control neuronal identity by regulating the expression of key effector molecules, such as neurotransmitter (NT) biosynthesis proteins, ion channels and neuropeptides. Whether and how terminal selectors control neuronal connectivity is poorly understood. Here, we report that UNC-30 (PITX2/3), the terminal selector of GABA motor neuron identity in C. elegans , is required for NT receptor clustering, a hallmark of postsynaptic differentiation. Animals lacking unc-30 or madd-4B, the short isoform of the MN-secreted synapse organizer madd-4 ( Punctin/ADAMTSL ), display severe GABA receptor type A (GABA A R) clustering defects in postsynaptic muscle cells. Mechanistically, UNC-30 acts directly to induce and maintain transcription of madd-4B and GABA biosynthesis genes (e.g., unc-25/GAD , unc-47/VGAT ). Hence, UNC-30 controls GABA A R clustering on postsynaptic muscle cells and GABA biosynthesis in presynaptic cells, transcriptionally coordinating two critical processes for GABA neurotransmission. Further, we uncover multiple target genes and a dual role for UNC-30 both as an activator and repressor of gene transcription. Our findings on UNC-30 function may contribute to our molecular understanding of human conditions, such as Axenfeld-Rieger syndrome, caused by PITX2 and PITX3 gene mutations.
Collapse
|
5
|
Houyel L. Human Genetics of d-Transposition of Great Arteries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:671-681. [PMID: 38884741 DOI: 10.1007/978-3-031-44087-8_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Although several genes underlying occurrence of transposition of the great arteries have been found in the mouse, human genetics of the most frequent cyanotic congenital heart defect diagnosed in neonates is still largely unknown. Development of the outflow tract is a complex process which involves the major genes of cardiac development, acting on myocardial cells from the anterior second heart field, and on mesenchymal cells from endocardial cushions. These genes, coding for transcription factors, interact with each other, and their differential expression conditions the severity of the phenotype. A precise description of the anatomic phenotypes is mandatory to achieve a better comprehension of the complex mechanisms responsible for transposition of the great arteries.
Collapse
Affiliation(s)
- Lucile Houyel
- Department of Congenital and Pediatric Cardiology, Necker-Enfants Malades Hospital-M3C, APHP, Paris, France.
- Université Paris Cité, Paris, France.
| |
Collapse
|
6
|
Abstract
Axenfeld-Rieger syndrome is a rare multi-system disorder associated with cardiac anomalies. All patients with a diagnosis of Axenfeld-Rieger syndrome were identified from our electronic medical record. Chart review was performed to document the presence and types of CHD. Out of 58 patients, 14 (24.1%) had CHD and a wide variety of cardiac lesions were identified.
Collapse
Affiliation(s)
- Nishma Valikodath
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, USA
| | - James A Johns
- Division of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, USA
| | - Justin Godown
- Division of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, USA
| |
Collapse
|
7
|
Feng J, Wang Y, Cheng S, Liu Z, Lan L, Miao Q, Zhang C. Case report: Congenital mitral and tricuspid valve insufficiency in a patient with Axenfeld-Rieger syndrome. Front Cardiovasc Med 2022; 9:977432. [PMID: 36211572 PMCID: PMC9537679 DOI: 10.3389/fcvm.2022.977432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Axenfeld-Rieger syndrome (ARS) is an autosomal dominant disorder that is primarily due to disruption of the development of neural crest cells. The onset of associated symptoms in both eyes accompanied by extraocular developmental defects is referred to as ARS. Cardiac defects associated with ARS have been reported, but the extent of the cardiac defects has yet to be defined. We report a case of a 17-year-old girl with ARS with typical facial malformations and severe mitral and tricuspid valve insufficiency. The patient was diagnosed with secondary glaucoma detected on ophthalmologic examination. Echocardiography showed severe mitral and tricuspid valve insufficiency. This case provides further evidence of the association of ARS with cardiac malformations and extends the reported range of cardiac malformations in patients with ARS.
Collapse
Affiliation(s)
- Jingwei Feng
- Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingjiao Wang
- Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shiyu Cheng
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zishuo Liu
- Department of Ultrasound, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Lan
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Miao
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chaoji Zhang
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Chaoji Zhang
| |
Collapse
|
8
|
Yadav ML, Ranjan P, Das P, Jain D, Kumar A, Mohapatra B. Implication of rare genetic variants of NODAL and ACVR1B in congenital heart disease patients from Indian population. Exp Cell Res 2021; 409:112869. [PMID: 34666056 DOI: 10.1016/j.yexcr.2021.112869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022]
Abstract
NODAL signaling plays an essential role in vertebrate embryonic patterning and heart development. Accumulating evidences suggest that genetic mutations in TGF-β/NODAL signaling pathway can cause congenital heart disease in humans. To investigate the implication of NODAL signaling in isolated cardiovascular malformation, we have screened 300 non-syndromic CHD cases and 200 controls for NODAL and ACVR1B by Sanger sequencing and identified two rare missense (c.152C > T; p.P51L and c.981 T > A; p.D327E) variants in NODAL and a novel missense variant c.1035G > A; p.M345I in ACVR1B. All these variants are absent in 200 controls. Three-dimensional protein-modelling demonstrates that both p.P51L and p.D327E variations of NODAL and p.M345I mutation of ACVR1B, affect the tertiary structure of respective proteins. Variants of NODAL (p.P51L and p.D327E) and ACVR1B (p.M345I), significantly reduce the transactivation of AR3-Luc, (CAGA)12-Luc and (SBE)4-Luc promoters. Moreover, qRT-PCR results have also deciphered a reduction in the expression of cardiac-enriched transcription factors namely Gata4, Nkx2-5, and Tbx5 in both the mutants of NODAL. Decreased expression of, Gata4, Nkx2-5, Tbx5, and lefty is observed in p.M345I mutant of ACVR1B as well. Additionally, reduced phosphorylation of SMAD2/3 in response to these variants, suggests impaired NODAL signaling and possibly responsible for defective cell fate decision and differentiation of cardiomyocytes leading to CHD phenotype.
Collapse
Affiliation(s)
- Manohar Lal Yadav
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prashant Ranjan
- Center of Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Parimal Das
- Center of Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Dharmendra Jain
- Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
9
|
French CR. Mechanistic Insights into Axenfeld-Rieger Syndrome from Zebrafish foxc1 and pitx2 Mutants. Int J Mol Sci 2021; 22:ijms221810001. [PMID: 34576164 PMCID: PMC8472202 DOI: 10.3390/ijms221810001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022] Open
Abstract
Axenfeld-Rieger syndrome (ARS) encompasses a group of developmental disorders that affect the anterior segment of the eye, as well as systemic developmental defects in some patients. Malformation of the ocular anterior segment often leads to secondary glaucoma, while some patients also present with cardiovascular malformations, craniofacial and dental abnormalities and additional periumbilical skin. Genes that encode two transcription factors, FOXC1 and PITX2, account for almost half of known cases, while the genetic lesions in the remaining cases remain unresolved. Given the genetic similarity between zebrafish and humans, as well as robust antisense inhibition and gene editing technologies available for use in these animals, loss of function zebrafish models for ARS have been created and shed light on the mechanism(s) whereby mutations in these two transcription factors cause such a wide array of developmental phenotypes. This review summarizes the published phenotypes in zebrafish foxc1 and pitx2 loss of function models and discusses possible mechanisms that may be used to target pharmaceutical development and therapeutic interventions.
Collapse
Affiliation(s)
- Curtis R French
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
10
|
Tran TQ, Kioussi C. Pitx genes in development and disease. Cell Mol Life Sci 2021; 78:4921-4938. [PMID: 33844046 PMCID: PMC11073205 DOI: 10.1007/s00018-021-03833-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Homeobox genes encode sequence-specific transcription factors (SSTFs) that recognize specific DNA sequences and regulate organogenesis in all eukaryotes. They are essential in specifying spatial and temporal cell identity and as a result, their mutations often cause severe developmental defects. Pitx genes belong to the PRD class of the highly evolutionary conserved homeobox genes in all animals. Vertebrates possess three Pitx paralogs, Pitx1, Pitx2, and Pitx3 while non-vertebrates have only one Pitx gene. The ancient role of regulating left-right (LR) asymmetry is conserved while new functions emerge to afford more complex body plan and functionalities. In mouse, Pitx1 regulates hindlimb tissue patterning and pituitary development. Pitx2 is essential for the development of the oral cavity and abdominal wall while regulates the formation and symmetry of other organs including pituitary, heart, gut, lung among others by controlling growth control genes upon activation of the Wnt/ß-catenin signaling pathway. Pitx3 is essential for lens development and migration and survival of the dopaminergic neurons of the substantia nigra. Pitx gene mutations are linked to various congenital defects and cancers in humans. Pitx gene family has the potential to offer a new approach in regenerative medicine and aid in identifying new drug targets.
Collapse
Affiliation(s)
- Thai Q Tran
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
11
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
12
|
Varshney A, Chahal G, Santos L, Stolper J, Hallab JC, Nim HT, Nikolov M, Yip A, Ramialison M. Human Cardiac Transcription Factor Networks. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
De Ita M, Cisneros B, Rosas-Vargas H. Genetics of Transposition of Great Arteries: Between Laterality Abnormality and Outflow Tract Defect. J Cardiovasc Transl Res 2020; 14:390-399. [PMID: 32734553 DOI: 10.1007/s12265-020-10064-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022]
Abstract
Transposition of great arteries (TGA) is a complex congenital heart disease whose etiology is still unknown. This defect has been associated, at least in part, with genetic abnormalities involved in laterality establishment and heart outflow tract development, which suggest a genetic heterogeneity. In animal models, the evidence of association with certain genes is strong but, surprisingly, genetic anomalies of its human orthologues are found only in a low proportion of patients and in nonaffected subjects, so that the underlying causes remain as an unexplored field. Evidence related to TGA suggests different pathogenic mechanisms involved between patients with normal organ disposition and isomerism. This article reviews the most important genetic abnormalities related to TGA and contextualizes them into the mechanism of embryonic development, comparing them between humans and mice, to comprehend the evidence that could be relevant for genetic counseling. Graphical abstract.
Collapse
Affiliation(s)
- Marlon De Ita
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- 2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico.
| |
Collapse
|
14
|
Chang YL, Lin J, Li YH, Tsao LC. Unusual association of Axenfeld-Rieger syndrome and wandering spleen: A case report. World J Clin Cases 2020; 8:1502-1506. [PMID: 32368543 PMCID: PMC7190964 DOI: 10.12998/wjcc.v8.i8.1502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Axenfeld-Rieger syndrome (ARS) is an autosomal dominant genetic disease characterized by ocular developmental disorders and its association with torsion of wandering spleen (WS) has not been reported to date to the best of our knowledge. This study aimed to describe a rare case of ARS observed at our emergency department.
CASE SUMMARY A 25-year-old female presented with a constant lower abdominal pain of increasing severity. Diagnostic computed tomography with intravenous contrast material showed a non-homogenously enhanced splenic parenchyma with a twisted vascular pedicle. Further, an emergent laparoscopic exploration was performed, and an ischemic spleen without its normal ligamentous attachments was noted. Notably, the spleen did not regain its normal vascularity after detorsion; thus, we performed the laparoscopic total splenectomy. The postoperative course was uneventful, and the patient was discharged on the 5th postoperative day. This case demonstrates a rare association of WS and ARS.
CONCLUSION Early diagnosis of WS in the emergency department is important to prevent pedicle torsion or splenic necrosis and to avoid splenectomy.
Collapse
Affiliation(s)
- Yi-Lin Chang
- Department of General Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Joseph Lin
- Department of General Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Yu-Hsien Li
- Department of General Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Lien-Cheng Tsao
- Department of General Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan
| |
Collapse
|
15
|
Genetics of Congenital Heart Disease. Biomolecules 2019; 9:biom9120879. [PMID: 31888141 PMCID: PMC6995556 DOI: 10.3390/biom9120879] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital heart disease (CHD) is one of the most common birth defects. Studies in animal models and humans have indicated a genetic etiology for CHD. About 400 genes have been implicated in CHD, encompassing transcription factors, cell signaling molecules, and structural proteins that are important for heart development. Recent studies have shown genes encoding chromatin modifiers, cilia related proteins, and cilia-transduced cell signaling pathways play important roles in CHD pathogenesis. Elucidating the genetic etiology of CHD will help improve diagnosis and the development of new therapies to improve patient outcomes.
Collapse
|
16
|
Novel PITX2 Mutations including a Mutation Causing an Unusual Ophthalmic Phenotype of Axenfeld-Rieger Syndrome. J Ophthalmol 2019; 2019:5642126. [PMID: 31341655 PMCID: PMC6636469 DOI: 10.1155/2019/5642126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose The aims of this study were to examine novel mutations in PITX2 and FOXC1 in Chinese patients with anterior segment dysgenesis (ASD) and to compare the clinical presentations of these mutations with previously reported associated phenotypes. Methods Twenty-six unrelated patients with different forms of ASD were enrolled from our paediatric and genetic eye clinic. The ocular manifestations of both eyes of each patient were recorded. Genomic DNA was prepared from venous leukocytes. All coding exons of PITX2 and FOXC1 were amplified by polymerase chain reaction (PCR) from genomic DNA and subjected to direct DNA sequencing. Analysis of mutations in control subjects was performed by heteroduplex single-strand conformation polymorphism (SSCP) analysis. Results Sequence analysis of the PITX2 gene revealed four mutations, including c.475_476delCT (P.L159VfsX39), c.64C > T (P.Q22X), c.296delG (P.R99PfsX56), and c.206G > A (P.R69H). The first three mutations were found to be novel. The c.475_476delCT (P.L159VfsX39) mutation, located at the 3' end of the PITX2-coding region, was identified in a Chinese Axenfeld-Rieger syndrome (ARS) patient who presented with an unusual severe phenotype of bilateral aniridia. The clinical characteristics, including the severity and manifestations of the patient's phenotype, were compared with reported PITX2-associated aniridia phenotypes of ARS in the literature. Conclusions These results expand the mutation spectrum of the PITX2 gene in patients with ARS. The PITX2 gene may be responsible for a significant portion of ARS with additional systemic defects in the Chinese population. This is the first reported case of a mutation at the 3' end of the PITX2-coding region extending the phenotypic consequences to bilateral aniridia. The traits of ARS could display tremendous variability in severity and manifestations due to the dominant-negative effect of PITX2. Our results further emphasize the importance of careful clinical and genetic analysis in determining mutation-disease associations and may lead to a better understanding of the role of PITX2 in ocular development.
Collapse
|
17
|
Scherer WJ. Corneal endothelial cell density and cardiovascular mortality: A Global Survey and Correlative Meta-Analysis. Clin Anat 2018; 31:927-936. [PMID: 30168608 DOI: 10.1002/ca.23230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
Based on embryological commonalities between eye and heart development, a global, country-specific meta-analysis of normal, adult corneal endothelial cell density (ECD) was performed and correlated against mortality rates secondary to diseases affecting cardiac neural crest cell (CNCC)-derived cardiovascular structures. A country-specific survey of ECD was performed by searching PubMed for studies reporting ECD datasets from normal adults. All eligible datasets were assigned a country of origin. Country-specific weighted mean ECD were calculated based on dataset n. Country-specific disease mortality rates were obtained from the World Health Organization. The correlations between weighted mean ECD and mortality rates secondary to diseases affecting CNCC-derived cardiovascular structures were calculated. As controls, correlations between ECD and noncardiovascular disease mortality were examined. Pearson correlation coefficients (r) corresponding to P-value < 0.05 were considered significant. Three hundred ninety-two datasets (39,762 eyes) from 267 source-studies were assigned to 42 countries. Significant correlations were found between ECD and mortality due to coronary heart disease (r = -0.39, P = 0.011), hypertension (r = -0.33, P = 0.033), and all-cause cardiac disease (r = -0.36, P = 0.019). No significant correlations were found between ECD and mortality secondary to the control conditions: inflammatory heart disease (mesoderm-derived tissues) (r = -0.12, P = 0.45), diabetes (r = -0.13, P = 0.41), lung disease (r = -0.21, P = 0.18), liver disease (r = -0.13, P = 0.41), renal disease (r = -0.10, P = 0.53), lung cancer (r = 0.02, P = 0.90), pancreatic cancer (r = 0.24, P = 0.13), malnutrition (r = -0.07, P = 0.66), or all-cause mortality (r = 0.04, P = 0.81). Negative correlations exist between ECD and mortality due to coronary artery disease and hypertension. On a population-based level, adult ECD is correlated to mortality from certain cardiovascular diseases. Clin. Anat. 31:927-936, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Warren J Scherer
- Envision Eye Specialists, 1250 Belcher Rd. South, Largo, Florida 33771
| |
Collapse
|
18
|
Abstract
There are multiple intrinsic mechanisms for diastolic dysfunction ranging from molecular to structural derangements in ventricular myocardium. The molecular mechanisms regulating the progression from normal diastolic function to severe dysfunction still remain poorly understood. Recent studies suggest a potentially important role of core cardio-enriched transcription factors (TFs) in the control of cardiac diastolic function in health and disease through their ability to regulate the expression of target genes involved in the process of adaptive and maladaptive cardiac remodeling. The current relevant findings on the role of a variety of such TFs (TBX5, GATA-4/6, SRF, MYOCD, NRF2, and PITX2) in cardiac diastolic dysfunction and failure are updated, emphasizing their potential as promising targets for novel treatment strategies. In turn, the new animal models described here will be key tools in determining the underlying molecular mechanisms of disease. Since diastolic dysfunction is regulated by various TFs, which are also involved in cross talk with each other, there is a need for more in-depth research from a biomedical perspective in order to establish efficient therapeutic strategies.
Collapse
|
19
|
Vande Perre P, Zazo Seco C, Patat O, Bouneau L, Vigouroux A, Bourgeois D, El Hout S, Chassaing N, Calvas P. 4q25 microdeletion encompassing PITX2: A patient presenting with tetralogy of Fallot and dental anomalies without ocular features. Eur J Med Genet 2018; 61:72-78. [PMID: 29100920 DOI: 10.1016/j.ejmg.2017.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/07/2017] [Accepted: 10/29/2017] [Indexed: 12/19/2022]
Abstract
Axenfeld-Rieger syndrome (ARS) is a heterogeneous clinical entity transmitted in an autosomal dominant manner. The main feature, Axenfeld-Rieger Anomaly (ARA), is a malformation of the anterior segment of the eye that can lead to glaucoma and impair vision. Extra-ocular defects have also been reported. Point mutations of FOXC1 and PITX2 are responsible for about 40% of the ARS cases. We describe the phenotype of a patient carrying a deletion encompassing the 4q25 locus containing PITX2 gene. This child presented with a congenital heart defect (Tetralogy of Fallot, TOF) and no signs of ARA. He is the first patient described with TOF and a complete deletion of PITX2 (arr[GRCh37]4q25(110843057-112077858)x1, involving PITX2, EGF, ELOVL6 and ENPEP) inherited from his ARS affected mother. In addition, to our knowledge, he is the first patient reported with no ocular phenotype associated with haploinsufficiency of PITX2. We compare the phenotype and genotype of this patient to those of five other patients carrying 4q25 deletions. Two of these patients were enrolled in the university hospital in Toulouse, while the other three were already documented in DECIPHER. This comparative study suggests both an incomplete penetrance of the ocular malformation pattern in patients carrying PITX2 deletions and a putative association between TOF and PITX2 haploinsufficiency.
Collapse
Affiliation(s)
- P Vande Perre
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, France; UDEAR, Université de Toulouse, UMRS 1056 Inserm-Université Paul Sabatier, Toulouse, France
| | - C Zazo Seco
- UDEAR, Université de Toulouse, UMRS 1056 Inserm-Université Paul Sabatier, Toulouse, France
| | - O Patat
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, France; UDEAR, Université de Toulouse, UMRS 1056 Inserm-Université Paul Sabatier, Toulouse, France
| | - L Bouneau
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, France
| | - A Vigouroux
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, France
| | - D Bourgeois
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, France
| | - S El Hout
- Service d'Ophtalmologie, Hôpital Purpan, CHU Toulouse, France
| | - N Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, France; UDEAR, Université de Toulouse, UMRS 1056 Inserm-Université Paul Sabatier, Toulouse, France
| | - P Calvas
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, France; UDEAR, Université de Toulouse, UMRS 1056 Inserm-Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
20
|
Multiple Roles of Pitx2 in Cardiac Development and Disease. J Cardiovasc Dev Dis 2017; 4:jcdd4040016. [PMID: 29367545 PMCID: PMC5753117 DOI: 10.3390/jcdd4040016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
Cardiac development is a complex morphogenetic process initiated as bilateral cardiogenic mesoderm is specified at both sides of the gastrulating embryo. Soon thereafter, these cardiogenic cells fuse at the embryonic midline configuring a symmetrical linear cardiac tube. Left/right bilateral asymmetry is first detected in the forming heart as the cardiac tube bends to the right, and subsequently, atrial and ventricular chambers develop. Molecular signals emanating from the node confer distinct left/right signalling pathways that ultimately lead to activation of the homeobox transcription factor Pitx2 in the left side of distinct embryonic organ anlagen, including the developing heart. Asymmetric expression of Pitx2 has therefore been reported during different cardiac developmental stages, and genetic deletion of Pitx2 provided evidence of key regulatory roles of this transcription factor during cardiogenesis and thus congenital heart diseases. More recently, impaired Pitx2 function has also been linked to arrhythmogenic processes, providing novel roles in the adult heart. In this manuscript, we provide a state-of-the-art review of the fundamental roles of Pitx2 during cardiogenesis, arrhythmogenesis and its contribution to congenital heart diseases.
Collapse
|
21
|
Li YJ, Yang YQ. An update on the molecular diagnosis of congenital heart disease: focus on loss-of-function mutations. Expert Rev Mol Diagn 2017; 17:393-401. [PMID: 28274167 DOI: 10.1080/14737159.2017.1300062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yan-Jie Li
- Department of Cardiology, Cardiovascular Research Laboratory, and Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qing Yang
- Department of Cardiology, Cardiovascular Research Laboratory, and Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Abstract
As the most prevalent form of birth defect in humans worldwide, congenital heart disease (CHD) is responsible for substantial morbidity and is still the leading cause of birth defect-related demises. Increasing evidence demonstrates that genetic defects play an important role in the pathogenesis of CHD, and mutations in multiple genes, especially in those coding for cardiac core transcription factors, have been causally linked to various CHDs. Nevertheless, CHD is a genetically heterogeneous disease and the genetic determinants underpinning CHD in an overwhelming majority of patients remain elusive. In the current study, genomic DNA was extracted from venous blood samples of 165 unrelated patients with CHD, and the coding exons and splicing junction sites of the HAND1 gene, which encodes a basic helix-loop-helix transcription factor essential for cardiovascular development, were sequenced. As a result, a novel heterozygous mutation, p.R118C, was identified in a patient with tetralogy of Fallot (TOF). The missense mutation, which was absent in 600 referential chromosomes, altered the amino acid that was completely conserved evolutionarily. Biological assays with a dual-luciferase reporter assay system revealed that the R118C-mutant HAND1 protein had significantly reduced transcriptional activity when compared with its wild-type counterpart. Furthermore, the mutation significantly decreased the synergistic activation of a downstream target gene between HAND1 and GATA4, another cardiac core transcription factor associated with TOF. To our knowledge, this is the first report on the association of a HAND1 loss-of-function mutation with enhanced susceptibility to TOF in humans. The findings provide novel insight into the molecular etiology underlying TOF, suggesting potential implications for the improved prophylactic and therapeutic strategies for TOF.
Collapse
|
23
|
Xu YJ, Qiu XB, Yuan F, Shi HY, Xu L, Hou XM, Qu XK, Liu X, Huang RT, Xue S, Yang YQ, Li RG. Prevalence and spectrum of NKX2.5 mutations in patients with congenital atrial septal defect and atrioventricular block. Mol Med Rep 2017; 15:2247-2254. [PMID: 28259982 DOI: 10.3892/mmr.2017.6249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 12/21/2016] [Indexed: 11/05/2022] Open
Abstract
Congenital atrial septal defect (ASD) and progressive atriventricular block (AVB) are the two most common phenotypes linked to NK2 homeobox 5 (NKX2.5) mutations in animals and humans. However, the prevalence and spectrum of NKX2.5 mutation in patients with ASD and AVB remain to be elucidated. In the present study, the coding exons and flanking introns of the NKX2.5 gene, which encodes a homeobox‑containing transcription factor essential for development of the heart, were sequenced in a cohort of 62 unrelated patients with ASD and AVB, and subsequently in a mutation carrier's available family members. As controls, 300 unrelated, ethnically‑matched healthy individuals were recruited, who were also genotyped for NKX2.5. The functional consequence of the mutant NKX2.5 was evaluated in contrast to its wild‑type counterpart using a dual‑luciferase reporter assay system. As a result, a novel heterozygous NKX2.5 mutation, p.Q181X, was identified in an index patient with ASD and AVB, with a prevalence of ~1.61%. Genetic analysis of the proband's pedigree revealed that the mutation co‑segregated with ASD and AVB with complete penetrance. The nonsense mutation, which eliminated partial homeobox and the carboxyl terminus, was absent in the 600 control chromosomes. Functional evaluation showed that the NKX2.5 mutant had no transcriptional activity. Furthermore, the mutation disrupted the synergistic activation between NKX2.5 and GATA binding protein 4, another cardiac core transcription factor associated with ASD. The results of the present study expand the spectrum of NKX2.5 mutations linked to ASD and AVB, and indicated that NKX2.5 loss‑of‑function mutations are an uncommon cause of ASD and AVB in humans.
Collapse
Affiliation(s)
- Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lei Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xu-Min Hou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
24
|
Hassed SJ, Li S, Xu W, Taylor AC. A Novel Mutation in PITX2 in a Patient with Axenfeld-Rieger Syndrome. Mol Syndromol 2017; 8:107-109. [PMID: 28611552 DOI: 10.1159/000454963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
Axenfeld-Rieger syndrome is a rare autosomal dominant condition. Anomalies include anterior segment dysgenesis of the eye, dental anomalies, maxillary hypoplasia, periumbilical anomalies, and congenital heart defects. We report a patient with Peters anomaly, dysmorphic features, congenital heart defect, umbilical hernia, short stature, and developmental delay. Diagnostic sequencing of 23 genes known to be causally related to the condition was performed on the patient, parents, and maternal grandparents. A variant of uncertain significance in PITX2 was identified. The mother had the same mutation and the father did not. The mother had decreased vision, congenitally missing teeth, and required jaw surgery as a child. Her asymptomatic parents elected to be tested and were negative for the mutation. The mutation, NM_153427.2:c.272G>A (p.Arg91Gln), is predicted to be damaging by PolyPhen-2 (score of 0.997), identified as a missense mutation with an allele frequency of 1.648e-05 by the Exome Aggregation Consortium, and has been reported in ClinVar once, by the laboratory that analyzed our patient's sample. Due to the in silico predictions and the results of family studies, it is suggested that this variant can be classified as pathogenic according to the American College of Medical Genetics and Genomics 2015 rule Pathogenic(iii)(b), specifically rules PS2, PM2, PM5, PP1, and PP3.
Collapse
Affiliation(s)
- Susan J Hassed
- Section of Genetics, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shibo Li
- Section of Genetics, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Weihong Xu
- Section of Genetics, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ashley C Taylor
- Section of Genetics, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
25
|
Li L, Wang J, Liu XY, Liu H, Shi HY, Yang XX, Li N, Li YJ, Huang RT, Xue S, Qiu XB, Yang YQ. HAND1 loss-of-function mutation contributes to congenital double outlet right ventricle. Int J Mol Med 2017; 39:711-718. [DOI: 10.3892/ijmm.2017.2865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/05/2017] [Indexed: 11/06/2022] Open
|
26
|
Current Perspectives in Cardiac Laterality. J Cardiovasc Dev Dis 2016; 3:jcdd3040034. [PMID: 29367577 PMCID: PMC5715725 DOI: 10.3390/jcdd3040034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
The heart is the first organ to break symmetry in the developing embryo and onset of dextral looping is the first indication of this event. Looping is a complex process that progresses concomitantly to cardiac chamber differentiation and ultimately leads to the alignment of the cardiac regions in their final topology. Generation of cardiac asymmetry is crucial to ensuring proper form and consequent functionality of the heart, and therefore it is a highly regulated process. It has long been known that molecular left/right signals originate far before morphological asymmetry and therefore can direct it. The use of several animal models has led to the characterization of a complex regulatory network, which invariably converges on the Tgf-β signaling molecule Nodal and its downstream target, the homeobox transcription factor Pitx2. Here, we review current data on the cellular and molecular bases of cardiac looping and laterality, and discuss the contribution of Nodal and Pitx2 to these processes. A special emphasis will be given to the morphogenetic role of Pitx2 and to its modulation of transcriptional and functional properties, which have also linked laterality to atrial fibrillation.
Collapse
|
27
|
Burns T, Yang Y, Hiriart E, Wessels A. The Dorsal Mesenchymal Protrusion and the Pathogenesis of Atrioventricular Septal Defects. J Cardiovasc Dev Dis 2016; 3. [PMID: 28133602 PMCID: PMC5267359 DOI: 10.3390/jcdd3040029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Congenital heart malformations are the most common type of defects found at birth. About 1% of infants are born with one or more heart defect on a yearly basis. Congenital Heart Disease (CHD) causes more deaths in the first year of life than any other congenital abnormality, and each year, nearly twice as many children die in the United States from CHD as from all forms of childhood cancers combined. Atrioventricular septal defects (AVSD) are congenital heart malformations affecting approximately 1 in 2000 live births. Babies born with an AVSD often require surgical intervention shortly after birth. However, even after successful surgery, these individuals typically have to deal with lifelong complications with the most common being a leaky mitral valve. In recent years the understanding of the molecular etiology and morphological mechanisms associated with the pathogenesis of AVSDs has significantly changed. Specifically, these studies have linked abnormal development of the Dorsal Mesenchymal Protrusion (DMP), a Second Heart Field-derived structure, to the development of this congenital defect. In this review we will be discuss some of the latest insights into the role of the DMP in the normal formation of the atrioventricular septal complex and in the pathogenesis of AVSDs.
Collapse
Affiliation(s)
- Tara Burns
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (T.B.); (Y.Y.); (E.H.)
| | - Yanping Yang
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (T.B.); (Y.Y.); (E.H.)
- Department of Histology and Embryology, Shanxi Medical University, No 56 Xin Jian Nan Road, Taiyuan 030001, Shanxi, China
| | - Emilye Hiriart
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (T.B.); (Y.Y.); (E.H.)
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (T.B.); (Y.Y.); (E.H.)
- Correspondence: ; Tel.: +1-843-792-8183
| |
Collapse
|
28
|
Soh YQ, Peh GSL, Mehta JS. Translational issues for human corneal endothelial tissue engineering. J Tissue Eng Regen Med 2016; 11:2425-2442. [DOI: 10.1002/term.2131] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Qiang Soh
- Tissue Engineering and Stem Cell Group; Singapore Eye Research Institute; Singapore
- Singapore National Eye Centre; Singapore
| | - Gary S. L. Peh
- Tissue Engineering and Stem Cell Group; Singapore Eye Research Institute; Singapore
- Ophthalmology Academic Clinical Programme; Duke-NUS Graduate Medical School; Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Stem Cell Group; Singapore Eye Research Institute; Singapore
- Singapore National Eye Centre; Singapore
- Ophthalmology Academic Clinical Programme; Duke-NUS Graduate Medical School; Singapore
- Department of Clinical Sciences; Duke-NUS Graduate Medical School; Singapore
| |
Collapse
|
29
|
Sun YM, Wang J, Qiu XB, Yuan F, Xu YJ, Li RG, Qu XK, Huang RT, Xue S, Yang YQ. PITX2 loss-of-function mutation contributes to tetralogy of Fallot. Gene 2016; 577:258-64. [PMID: 26657035 DOI: 10.1016/j.gene.2015.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/12/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022]
Abstract
Congenital heart disease (CHD) is the most prevalent developmental abnormality in humans and is the most common non-infectious cause of infant morbidity and mortality. Increasing evidence demonstrates that genetic defects are involved in the pathogenesis of CHD. However, CHD is genetically heterogeneous, and the genetic determinants underpinning CHD in most patients remain unknown. In this study, the whole coding region of the PITX2 gene (isoform c) was sequenced in 185 unrelated patients with CHD. The available relatives of a mutation carrier and 300 unrelated healthy individuals used as controls were also genotyped for PITX2. The functional characteristics of the mutation were delineated by using a dual-luciferase reporter assay system. As a result, a novel heterozygous PITX2 mutation, p.Q102L, was identified in a patient with tetralogy of Fallot (TOF). Genetic analysis of the index patient's pedigree showed that the mutation co-segregated with TOF. The mutation was absent in 600 reference chromosomes. Biochemical analysis revealed that the Q102L-mutant PITX2 is associated with significantly reduced transcriptional activity compared with its wild-type counterpart. Furthermore, the mutation markedly decreased the synergistic activation between PITX2 and NKX2-5. This study firstly associates PITX2 loss-of-function mutation with increased susceptibility to TOF, providing novel insight into the molecular mechanism of CHD.
Collapse
Affiliation(s)
- Yu-Min Sun
- Department of Cardiology, Jing'an District Central Hospital, 259 Xikang Road, Shanghai 200040, PR China
| | - Jun Wang
- Department of Cardiology, Jing'an District Central Hospital, 259 Xikang Road, Shanghai 200040, PR China.
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, PR China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, PR China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, PR China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, PR China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, PR China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, PR China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, PR China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, PR China; Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, PR China; Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, PR China.
| |
Collapse
|