1
|
Kürzinger B, Schindler S, Meffert M, Rosenhahn A, Trampel R, Turner R, Schoenknecht P. Basolateral amygdala volume in affective disorders using 7T MRI in vivo. Front Psychiatry 2025; 15:1404594. [PMID: 39834577 PMCID: PMC11744004 DOI: 10.3389/fpsyt.2024.1404594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025] Open
Abstract
Background The basolateral complex of the amygdala is a crucial neurobiological site for Pavlovian conditioning. Investigations into volumetric alterations of the basolateral amygdala in individuals with major depressive disorder (MDD) have yielded conflicting results. These may be reconciled in an inverted U-shape allostatic growth trajectory. This hypothesized trajectory unfolds with an initial phase of volumetric expansion, driven by enhanced dendritic arborization and synaptic plasticity. The increase in volume is followed by a reduction phase, as glucocorticoid exposure cumulatively results in excitotoxic damage, reflecting allostatic load. Methods 7T magnetic resonance brain imaging was conducted on a total of 84 participants (mean age 38 ± 12 years), comprising 20 unmedicated and 20 medicated individuals with MDD, 21 individuals suffering from bipolar disorder and 23 healthy controls. We employed FreeSurfer 7.3.2 for automatic high-resolution segmentation of nine amygdala subnuclei. We conducted analyses of covariance, with volumes of the basolateral complex, the lateral nucleus and, exploratively, the whole amygdala, as dependent variables, while controlling for the total intracranial volume and sex. Quadratic regressions were computed within the MDD group and in relevant subgroups to investigate the presence of a U-shaped relationship between the number of preceding major depressive episodes or the duration of the disease since the first episode and the dependent variables. Results Diagnostic groups did not exhibit statistically significant differences in the volumes of the basolateral amygdala (left F (3,75) = 0.66, p >.05; right F (3,76) = 1.80, p >.05), the lateral nucleus (left F (3,75) = 1.22, p >.05; right F (3,76) = 2.30, p >.05)), or the whole amygdala (left F (3,75) = 0.48, p >.05; right F (3,76) = 1.58, p >.05). No quadratic associations were observed between surrogate parameters of disease progression and any of the examined amygdala volumes. There were no significant correlations between subregion volumes and clinical characteristics. Conclusion We found no evidence for the hypothesis of an inverted U-shaped volumetric trajectory of the basolateral amygdala in MDD. Future research with larger sample sizes, including the measurement of genetic and epigenetic markers, will hopefully further elucidate this compelling paradigm.
Collapse
Affiliation(s)
- Benedikt Kürzinger
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Stephanie Schindler
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Martin Meffert
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Anja Rosenhahn
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Robert Turner
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Schoenknecht
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
- Out-patient Department for Sexual-therapeutic Prevention and Forensic Psychiatry, University Hospital Leipzig, Leipzig, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic, Saxon State Hospital Altscherbitz, Schkeuditz, Germany
| |
Collapse
|
2
|
Cheng Z, Yang L, Li J, Chen Y, Liang P, Wang Y, Wang N, Zhang X, Gao Y, Sui C, Li M, Liang C, Guo L. Cognitive impairment and amygdala subregion volumes in elderly with cerebral small vessel disease: A large prospective cohort study. Neurobiol Dis 2024; 202:106716. [PMID: 39490683 DOI: 10.1016/j.nbd.2024.106716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Although the amygdala is associated with cognitive impairment resulting from cerebral small vessel disease, the relationship between alterations in amygdala structure and cerebral small vessel disease (CSVD) remains controversial. Given that the amygdala comprises several subregions, detecting subtle regional changes through total amygdala volume measurement is challenging. This study aimed to identify the patterns of amygdala subregion atrophy in cerebral small vessel disease patients and their relationship with cognitive impairment. A total of 114 participants diagnosed with cerebral small vessel disease and 129 healthy participants, aged 40 to 70, underwent 3 T magnetic resonance imaging scans. The amygdala subregions were automatically segmented using FreeSurfer. In the Propensity Score Matching (PSM)-matched cohort, Lasso regression was employed to identify subregions associated with cerebral small vessel disease, and restricted cubic splines (RCS) were used to explore their nonlinear relationship with cognitive abilities. Subsequently, multivariate linear regression models were used to investigate the impact of amygdala subregion volumes on various cognitive abilities. Compared to healthy controls (HC), the volume of the left cortical nucleus was significantly reduced in cerebral small vessel disease patients. The volume of the left cortical nucleus was significantly negatively correlated with cerebral small vessel disease progression, and atrophy in this region was also identified as an independent risk factor for decreased cognitive control and processing ability. Our findings suggest that patients with cerebral small vessel disease exhibit atrophy in specific amygdala subregions compared to healthy controls, which correlates with poorer cognitive control and processing abilities. These insights may advance our understanding of the pathogenesis of cerebral small vessel disease.
Collapse
Affiliation(s)
- Zhenyu Cheng
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Linfeng Yang
- Jinan Maternity and Child Care Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Li
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yiwen Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Pengcheng Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Wang
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Na Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyue Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yian Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Chang Z, Liu L, Lin L, Wang G, Zhang C, Tian H, Liu W, Wang L, Zhang B, Ren J, Zhang Y, Xie Y, Du X, Wei X, Wei L, Luo Y, Dong H, Li X, Zhao Z, Liang M, Zhang C, Wang X, Yu C, Qin W, Liu H. Selective disrupted gray matter volume covariance of amygdala subregions in schizophrenia. Front Psychiatry 2024; 15:1349989. [PMID: 38742128 PMCID: PMC11090100 DOI: 10.3389/fpsyt.2024.1349989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Objective Although extensive structural and functional abnormalities have been reported in schizophrenia, the gray matter volume (GMV) covariance of the amygdala remain unknown. The amygdala contains several subregions with different connection patterns and functions, but it is unclear whether the GMV covariance of these subregions are selectively affected in schizophrenia. Methods To address this issue, we compared the GMV covariance of each amygdala subregion between 807 schizophrenia patients and 845 healthy controls from 11 centers. The amygdala was segmented into nine subregions using FreeSurfer (v7.1.1), including the lateral (La), basal (Ba), accessory-basal (AB), anterior-amygdaloid-area (AAA), central (Ce), medial (Me), cortical (Co), corticoamygdaloid-transition (CAT), and paralaminar (PL) nucleus. We developed an operational combat harmonization model for 11 centers, subsequently employing a voxel-wise general linear model to investigate the differences in GMV covariance between schizophrenia patients and healthy controls across these subregions and the entire brain, while adjusting for age, sex and TIV. Results Our findings revealed that five amygdala subregions of schizophrenia patients, including bilateral AAA, CAT, and right Ba, demonstrated significantly increased GMV covariance with the hippocampus, striatum, orbitofrontal cortex, and so on (permutation test, P< 0.05, corrected). These findings could be replicated in most centers. Rigorous correlation analysis failed to identify relationships between the altered GMV covariance with positive and negative symptom scale, duration of illness, and antipsychotic medication measure. Conclusion Our research is the first to discover selectively impaired GMV covariance patterns of amygdala subregion in a large multicenter sample size of patients with schizophrenia.
Collapse
Affiliation(s)
- Zhongyu Chang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Liping Liu
- Department of Psychiatry, The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang, China
| | - Liyuan Lin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Wang
- Wuhan Mental Health Center, The Ninth Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhang
- Department of Biochemistry and Psychopharmacology, Shanghai Mental Health Center, Shanghai, China
| | - Hongjun Tian
- Department of Psychiatry, Tianjin Fourth Center Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Wei Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lina Wang
- Department of Psychiatry, Tianjin Fourth Center Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Bin Zhang
- Department of Psychiatry, Tianjin Fourth Center Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Juanjuan Ren
- Department of Biochemistry and Psychopharmacology, Shanghai Mental Health Center, Shanghai, China
| | - Yu Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Du
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Wei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Luli Wei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yun Luo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoyang Dong
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Congpei Zhang
- Department of Psychiatry, The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang, China
| | - Xijin Wang
- Department of Psychiatry, The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaigui Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Meredith WJ, Silvers JA. Experience-dependent neurodevelopment of self-regulation in adolescence. Dev Cogn Neurosci 2024; 66:101356. [PMID: 38364507 PMCID: PMC10878838 DOI: 10.1016/j.dcn.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Adolescence is a period of rapid biobehavioral change, characterized in part by increased neural maturation and sensitivity to one's environment. In this review, we aim to demonstrate that self-regulation skills are tuned by adolescents' social, cultural, and socioeconomic contexts. We discuss adjacent literatures that demonstrate the importance of experience-dependent learning for adolescent development: environmental contextual influences and training paradigms that aim to improve regulation skills. We first highlight changes in prominent limbic and cortical regions-like the amygdala and medial prefrontal cortex-as well as structural and functional connectivity between these areas that are associated with adolescents' regulation skills. Next, we consider how puberty, the hallmark developmental milestone in adolescence, helps instantiate these biobehavioral adaptations. We then survey the existing literature demonstrating the ways in which cultural, socioeconomic, and interpersonal contexts drive behavioral and neural adaptation for self-regulation. Finally, we highlight promising results from regulation training paradigms that suggest training may be especially efficacious for adolescent samples. In our conclusion, we highlight some exciting frontiers in human self-regulation research as well as recommendations for improving the methodological implementation of developmental neuroimaging studies and training paradigms.
Collapse
Affiliation(s)
- Wesley J Meredith
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA, USA.
| | - Jennifer A Silvers
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA, USA
| |
Collapse
|
5
|
Ciydem E, Avci D, Uyar M, Seyhan A. Effect of Personality Traits and Emotion Regulation Strategies on Risky Behaviors in Adolescents. J Psychosoc Nurs Ment Health Serv 2024; 62:23-36. [PMID: 37646601 DOI: 10.3928/02793695-20230818-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The current study investigated the effects of personality traits and emotion regulation strategies on high-risk behaviors among adolescents (N = 1,572). This study used a cross-sectional and correlational research design. Multiple linear regression was used for analysis. A 1-unit increase in extraversion and neuroticism led to a 0.391- and 0.365-unit increase in high-risk behaviors, respectively. However, a 1-unit increase in agreeableness and conscientiousness led to a 0.307- and 0.365-unit decrease in high-risk behaviors, respectively (p < 0.05). A 1-unit increase in external and internal dysfunctional emotion regulation strategies led to a 1.34- and 0.548-unit increase in high-risk behaviors, respectively. However, a 1-unit increase in internal functional emotion regulation strategies led to a 0.641-unit decrease in high-risk behaviors (p < 0.05). Regression analysis showed that age, school type, sex, grade level, father's educational level, father's child-rearing style, and school performance were associated with more high-risk behaviors (p < 0.05). There were correlations between some personality traits, emotion regulation strategies, sociodemographic characteristics, and high-risk behaviors. Early intervention programs targeting dysfunctional personality traits and emotion regulation skills in adolescence may prevent the development of risky behaviors in adulthood. [Journal of Psychosocial Nursing and Mental Health Services, 62(2), 23-36.].
Collapse
|
6
|
Gunther KE, Petrie D, Pearce AL, Fuchs BA, Pérez-Edgar K, Keller KL, Geier C. Heterogeneity in PFC-amygdala connectivity in middle childhood, and concurrent interrelations with inhibitory control and anxiety symptoms. Neuropsychologia 2022; 174:108313. [PMID: 35798067 DOI: 10.1016/j.neuropsychologia.2022.108313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
Abstract
The prefrontal cortex (PFC) is a key brain area in considering adaptive regulatory behaviors. This includes regulatory projections to regions of the limbic system such as the amygdala, where the nature of functional connections may confer lower risk for anxiety disorders. The PFC is also associated with behaviors like executive functioning. Inhibitory control is a behavior encompassed by executive functioning and is generally viewed favorably for adaptive socioemotional development. Yet, some research suggests that high levels of inhibitory control may actually be a risk factor for some maladaptive developmental outcomes, like anxiety disorders. In a sample of 51 children ranging from 7 to 9 years old, we examined resting state functional connectivity between regions of the PFC and the amygdala. We used Subgrouping Group Iterative Multiple Model Estimation (S-GIMME) to identify and characterize data-driven subgroups of individuals with similar networks of connectivity between these brain regions. Generated subgroups were collapsed into children characterized by the presence or absence of recovered connections between the PFC and amygdala. For subsets of children with available data (N = 38-44), we then tested whether inhibitory control, as measured by a stop signal task, moderated the relation between these subgroups and child-reported anxiety symptoms. We found an inverse relation between stop-signal reaction times and reported count of anxiety symptoms when covarying for connectivity group, suggesting that greater inhibitory control was actually related to greater anxiety symptoms, but only when accounting for patterns of PFC-amygdala connectivity. These data suggest that there is a great deal of heterogeneity in the nature of functional connections between the PFC and amygdala during this stage of development. The findings also provide support for the notion of high levels of inhibitory control as a risk factor for anxiety, but trait-level biopsychosocial factors may be important to consider in assessing the nature of risk.
Collapse
|
7
|
Immature excitatory neurons in the amygdala come of age during puberty. Dev Cogn Neurosci 2022; 56:101133. [PMID: 35841648 PMCID: PMC9289873 DOI: 10.1016/j.dcn.2022.101133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The human amygdala is critical for emotional learning, valence coding, and complex social interactions, all of which mature throughout childhood, puberty, and adolescence. Across these ages, the amygdala paralaminar nucleus (PL) undergoes significant structural changes including increased numbers of mature neurons. The PL contains a large population of immature excitatory neurons at birth, some of which may continue to be born from local progenitors. These progenitors disappear rapidly in infancy, but the immature neurons persist throughout childhood and adolescent ages, indicating that they develop on a protracted timeline. Many of these late-maturing neurons settle locally within the PL, though a small subset appear to migrate into neighboring amygdala subnuclei. Despite its prominent growth during postnatal life and possible contributions to multiple amygdala circuits, the function of the PL remains unknown. PL maturation occurs predominately during late childhood and into puberty when sex hormone levels change. Sex hormones can promote developmental processes such as neuron migration, dendritic outgrowth, and synaptic plasticity, which appear to be ongoing in late-maturing PL neurons. Collectively, we describe how the growth of late-maturing neurons occurs in the right time and place to be relevant for amygdala functions and neuropsychiatric conditions.
Collapse
|
8
|
Yu S, Wei W, Liu L, Guo X, Shen Z, Tian J, Zeng F, Liang F, Yang J. The hypertrophic amygdala shape associated with anxiety in patients with primary dysmenorrhea during pain-free phase: insight from surface-based shape analysis. Brain Imaging Behav 2022; 16:1954-1963. [PMID: 35871437 PMCID: PMC9581870 DOI: 10.1007/s11682-022-00664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
Abstract
Background Primary dysmenorrhea (PDM) is highly associated with mood symptoms. However, the neuropathology of these comorbidities is unclear. In the present study, we aimed to investigate the structural changes in the amygdala of patients with PDM during the pain-free phase using a surface-based shape analysis. Methods Forty-three PDM patients and forty healthy controls were recruited in the study, and all participants underwent structural magnetic resonance imaging scans during their periovulatory phase. FMRIB’s Integrated Registration and Segmentation Tool (FIRST) was employed to assess the subcortical volumetric and surface alterations in patients with PDM. Moreover, correlation and mediation analyses were used to detect the clinical significance of the subcortical morphometry alteration. Results PDM patients showed hypertrophic alteration of the amygdala in the left superficial nuclei and right basolateral and superficial nuclei but not for the whole amygdala volume. The hypertrophic amygdala was associated with disease duration, pain severity and anxiety symptoms during the menstrual period. Furthermore, the hypertrophic left amygdala could mediate the association between disease duration and anxiety severity. Conclusions The results of the current study demonstrated that the localized amygdala shape hypertrophy was present in PDM patients even in the pain-free phase. In addition, the mediator role of the hypertrophic amygdala indicates the potential target of amygdala for anxiety treatment in PDM treatment in the pain-free phase. Supplementary Information The online version contains supplementary material available at 10.1007/s11682-022-00664-3.
Collapse
|
9
|
Taylor BK, Frenzel MR, Eastman JA, Embury CM, Agcaoglu O, Wang YP, Stephen JM, Calhoun VD, Wilson TW. Individual differences in amygdala volumes predict changes in functional connectivity between subcortical and cognitive control networks throughout adolescence. Neuroimage 2022; 247:118852. [PMID: 34954025 PMCID: PMC8822500 DOI: 10.1016/j.neuroimage.2021.118852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Adolescence is a critical period of structural and functional neural maturation among regions serving the cognitive control of emotion. Evidence suggests that this process is guided by developmental changes in amygdala and striatum structure and shifts in functional connectivity between subcortical (SC) and cognitive control (CC) networks. Herein, we investigate the extent to which such developmental shifts in structure and function reciprocally predict one another over time. 179 youth (9-15 years-old) completed annual MRI scans for three years. Amygdala and striatum volumes and connectivity within and between SC and CC resting state networks were measured for each year. We tested for reciprocal predictability of within-person and between-person changes in structure and function using random-intercept cross-lagged panel models. Within-person shifts in amygdala volumes in a given year significantly and specifically predicted deviations in SC-CC connectivity in the following year, such that an increase in volume was associated with decreased SC-CC connectivity the following year. Deviations in connectivity did not predict changes in amygdala volumes over time. Conversely, broader group-level shifts in SC-CC connectivity were predictive of subsequent deviations in striatal volumes. We did not see any cross-predictability among amygdala or striatum volumes and within-network connectivity measures. Within-person shifts in amygdala structure year-to-year robustly predicted weaker SC-CC connectivity in subsequent years, whereas broader increases in SC-CC connectivity predicted smaller striatal volumes over time. These specific structure function relationships may contribute to the development of emotional control across adolescence.
Collapse
Affiliation(s)
- Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA.
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Oktay Agcaoglu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA; Mind Research Network, Albuquerque, NM, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
10
|
Microstructural properties within the amygdala and affiliated white matter tracts across adolescence. Neuroimage 2021; 243:118489. [PMID: 34450260 PMCID: PMC8574981 DOI: 10.1016/j.neuroimage.2021.118489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022] Open
Abstract
The amygdala is a heterogenous set of nuclei with widespread cortical connections that continues to develop postnatally with vital implications for emotional regulation. Using high-resolution anatomical and multi-shell diffusion MRI in conjunction with novel amygdala segmentation, cutting-edge tractography, and Neurite Orientation Dispersion and Density (NODDI) methods, the goal of the current study was to characterize age associations with microstructural properties of amygdala subnuclei and amygdala-related white matter connections across adolescence (N = 61, 26 males; ages of 8-22 years). We found age-related increases in the Neurite Density Index (NDI) in the lateral nucleus (LA), dorsal and intermediate divisions of the basolateral nucleus (BLDI), and ventral division of the basolateral nucleus and paralaminar nucleus (BLVPL). Additionally, there were age-related increases in the NDI of the anterior commissure, ventral amygdalofugal pathway, cingulum, and uncinate fasciculus, with the strongest age associations in the frontal and temporal regions of these white matter tracts. This is the first study to utilize NODDI to show neurite density of basolateral amygdala subnuclei to relate to age across adolescence. Moreover, age-related differences were also notable in white matter microstructural properties along the anterior commissure and ventral amydalofugal tracts, suggesting increased bilateral amygdalae to diencephalon structural connectivity. As these basolateral regions and the ventral amygdalofugal pathways have been involved in associative emotional conditioning, future research is needed to determine if age-related and/or individual differences in the development of these microstructural properties link to socio-emotional functioning and/or risk for psychopathology.
Collapse
|
11
|
Šimić G, Tkalčić M, Vukić V, Mulc D, Španić E, Šagud M, Olucha-Bordonau FE, Vukšić M, R. Hof P. Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules 2021; 11:biom11060823. [PMID: 34072960 PMCID: PMC8228195 DOI: 10.3390/biom11060823] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Emotions arise from activations of specialized neuronal populations in several parts of the cerebral cortex, notably the anterior cingulate, insula, ventromedial prefrontal, and subcortical structures, such as the amygdala, ventral striatum, putamen, caudate nucleus, and ventral tegmental area. Feelings are conscious, emotional experiences of these activations that contribute to neuronal networks mediating thoughts, language, and behavior, thus enhancing the ability to predict, learn, and reappraise stimuli and situations in the environment based on previous experiences. Contemporary theories of emotion converge around the key role of the amygdala as the central subcortical emotional brain structure that constantly evaluates and integrates a variety of sensory information from the surroundings and assigns them appropriate values of emotional dimensions, such as valence, intensity, and approachability. The amygdala participates in the regulation of autonomic and endocrine functions, decision-making and adaptations of instinctive and motivational behaviors to changes in the environment through implicit associative learning, changes in short- and long-term synaptic plasticity, and activation of the fight-or-flight response via efferent projections from its central nucleus to cortical and subcortical structures.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
- Correspondence:
| | - Mladenka Tkalčić
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Rijeka, 51000 Rijeka, Croatia;
| | - Vana Vukić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Damir Mulc
- University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia;
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Marina Šagud
- Department of Psychiatry, Clinical Hospital Center Zagreb and University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | | | - Mario Vukšić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 07305, USA;
| |
Collapse
|
12
|
Fonzo GA, Goodkind MS, Oathes DJ, Zaiko YV, Harvey M, Peng KK, Weiss ME, Thompson AL, Zack SE, Lindley SE, Arnow BA, Jo B, Rothbaum BO, Etkin A. Amygdala and Insula Connectivity Changes Following Psychotherapy for Posttraumatic Stress Disorder: A Randomized Clinical Trial. Biol Psychiatry 2021; 89:857-867. [PMID: 33516458 PMCID: PMC8052256 DOI: 10.1016/j.biopsych.2020.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exposure-based psychotherapy is a first-line treatment for posttraumatic stress disorder (PTSD), but its mechanisms are poorly understood. Functional brain connectivity is a promising metric for identifying treatment mechanisms and biosignatures of therapeutic response. To this end, we assessed amygdala and insula treatment-related connectivity changes and their relationship to PTSD symptom improvements. METHODS Individuals with a primary PTSD diagnosis (N = 66) participated in a randomized clinical trial of prolonged exposure therapy (n = 36) versus treatment waiting list (n = 30). Task-free functional magnetic resonance imaging was completed prior to randomization and 1 month following cessation of treatment/waiting list. Whole-brain blood oxygenation level-dependent responses were acquired. Intrinsic connectivity was assessed by subregion in the amygdala and insula, limbic structures key to the disorder pathophysiology. Dynamic causal modeling assessed evidence for effective connectivity changes in select nodes informed by intrinsic connectivity findings. RESULTS The amygdala and insula displayed widespread patterns of primarily subregion-uniform intrinsic connectivity change, including increased connectivity between the amygdala and insula; increased connectivity of both regions with the ventral prefrontal cortex and frontopolar and sensory cortices; and decreased connectivity of both regions with the left frontoparietal nodes of the executive control network. Larger decreases in amygdala-frontal connectivity and insula-parietal connectivity were associated with larger PTSD symptom reductions. Dynamic causal modeling evidence suggested that treatment decreased left frontal inhibition of the left amygdala, and larger decreases were associated with larger symptom reductions. CONCLUSIONS PTSD psychotherapy adaptively attenuates functional interactions between frontoparietal and limbic brain circuitry at rest, which may reflect a potential mechanism or biosignature of recovery.
Collapse
Affiliation(s)
- Gregory A Fonzo
- Department of Psychiatry, University of Texas at Austin Dell Medical School, Austin, Texas
| | | | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yevgeniya V Zaiko
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Veterans Affairs Palo Alto Healthcare System and Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California
| | - Meredith Harvey
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Veterans Affairs Palo Alto Healthcare System and Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California
| | - Kathy K Peng
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Veterans Affairs Palo Alto Healthcare System and Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California
| | - M Elizabeth Weiss
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Veterans Affairs Palo Alto Healthcare System and Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California
| | - Allison L Thompson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Sanno E Zack
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Steven E Lindley
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Veterans Affairs Palo Alto Healthcare System and Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California
| | - Bruce A Arnow
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Barbara O Rothbaum
- Trauma and Anxiety Recovery Program, Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Alto Neuroscience, Los Altos, California.
| |
Collapse
|
13
|
Herzberg MP, McKenzie KJ, Hodel AS, Hunt RH, Mueller BA, Gunnar MR, Thomas KM. Accelerated maturation in functional connectivity following early life stress: Circuit specific or broadly distributed? Dev Cogn Neurosci 2021; 48:100922. [PMID: 33517108 PMCID: PMC7848776 DOI: 10.1016/j.dcn.2021.100922] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/09/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Psychosocial acceleration theory and other frameworks adapted from life history predict a link between early life stress and accelerated maturation in several physiological systems. Those findings led researchers to suggest that the emotion-regulatory brain circuits of previously-institutionalized (PI) youth are more mature than youth raised in their biological families (non-adopted, or NA, youth) during emotion tasks. Whether this accelerated maturation is evident during resting-state fMRI has not yet been established. Resting-state fMRI data from 83 early adolescents (Mage = 12.9 years, SD = 0.57 years) including 41 PI and 42 NA youth, were used to examine seed-based functional connectivity between the amygdala and ventromedial prefrontal cortex (vmPFC). Additional whole-brain analyses assessed group differences in functional connectivity and associations with cognitive performance and behavior. We found group differences in amygdala - vmPFC connectivity that may be consistent with accelerated maturation following early life stress. Further, whole-brain connectivity analyses revealed group differences associated with internalizing and externalizing symptoms. However, the majority of whole-brain results were not consistent with an accelerated maturation framework. Our results suggest early life stress in the form of institutional care is associated with circuit-specific alterations to a frontolimbic emotion-regulatory system, while revealing limited differences in more broadly distributed networks.
Collapse
Affiliation(s)
- Max P Herzberg
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN, 55455, USA.
| | - Kelly Jedd McKenzie
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN, 55455, USA
| | - Amanda S Hodel
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN, 55455, USA
| | - Ruskin H Hunt
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN, 55455, USA
| | - Bryon A Mueller
- Department of Psychiatry, School of Medicine, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Megan R Gunnar
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN, 55455, USA
| | - Kathleen M Thomas
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN, 55455, USA
| |
Collapse
|
14
|
Naneix F, Bakoyiannis I, Santoyo-Zedillo M, Bosch-Bouju C, Pacheco-Lopez G, Coutureau E, Ferreira G. Chemogenetic silencing of hippocampus and amygdala reveals a double dissociation in periadolescent obesogenic diet-induced memory alterations. Neurobiol Learn Mem 2020; 178:107354. [PMID: 33276069 DOI: 10.1016/j.nlm.2020.107354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
In addition to numerous metabolic comorbidities, obesity is associated with several adverse neurobiological outcomes, especially learning and memory alterations. Obesity prevalence is rising dramatically in youth and is persisting in adulthood. This is especially worrying since adolescence is a crucial period for the maturation of certain brain regions playing a central role in memory processes such as the hippocampus and the amygdala. We previously showed that periadolescent, but not adult, exposure to obesogenic high-fat diet (HFD) had opposite effects on hippocampus- and amygdala-dependent memory, impairing the former and enhancing the latter. However, the causal role of these two brain regions in periadolescent HFD-induced memory alterations remains unclear. Here, we first showed that periadolescent HFD induced long-term, but not short-term, object recognition memory deficits, specifically when rats were exposed to a novel context. Using chemogenetic approaches to inhibit targeted brain regions, we then demonstrated that recognition memory deficits are dependent on the activity of the ventral hippocampus, but not the basolateral amygdala. On the contrary, the HFD- induced enhancement of conditioned odor aversion specifically requires amygdala activity. Taken together, these findings suggest that HFD consumption throughout adolescence impairs long-term object recognition memory through alterations of ventral hippocampal activity during memory acquisition. Moreover, these results further highlight the bidirectional effects of adolescent HFD on hippocampal and amygdala functions.
Collapse
Affiliation(s)
- Fabien Naneix
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077, Bordeaux, France; Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33077 Bordeaux, France
| | - Ioannis Bakoyiannis
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077, Bordeaux, France
| | - Marianela Santoyo-Zedillo
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077, Bordeaux, France; Department of Health Sciences, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico
| | | | - Gustavo Pacheco-Lopez
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico
| | | | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077, Bordeaux, France.
| | | |
Collapse
|
15
|
Hansen HA, Li J, Saygin ZM. Adults vs. neonates: Differentiation of functional connectivity between the basolateral amygdala and occipitotemporal cortex. PLoS One 2020; 15:e0237204. [PMID: 33075046 PMCID: PMC7571669 DOI: 10.1371/journal.pone.0237204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
The amygdala, a subcortical structure known for social and emotional processing, consists of multiple subnuclei with unique functions and connectivity patterns. Tracer studies in adult macaques have shown that the basolateral subnuclei differentially connect to parts of visual cortex, with stronger connections to anterior regions and weaker connections to posterior regions; infant macaques show robust connectivity even with posterior visual regions. Do these developmental differences also exist in the human amygdala, and are there specific functional regions that undergo the most pronounced developmental changes in their connections with the amygdala? To address these questions, we explored the functional connectivity (from resting-state fMRI data) of the basolateral amygdala to occipitotemporal cortex in human neonates scanned within one week of life and compared the connectivity patterns to those observed in young adults. Specifically, we calculated amygdala connectivity to anterior-posterior gradients of the anatomically-defined occipitotemporal cortex, and also to putative occipitotemporal functional parcels, including primary and high-level visual and auditory cortices (V1, A1, face, scene, object, body, high-level auditory regions). Results showed a decreasing gradient of functional connectivity to the occipitotemporal cortex in adults-similar to the gradient seen in macaque tracer studies-but no such gradient was observed in neonates. Further, adults had stronger connections to high-level functional regions associated with face, body, and object processing, and weaker connections to primary sensory regions (i.e., A1, V1), whereas neonates showed the same amount of connectivity to primary and high-level sensory regions. Overall, these results show that functional connectivity between the amygdala and occipitotemporal cortex is not yet differentiated in neonates, suggesting a role of maturation and experience in shaping these connections later in life.
Collapse
Affiliation(s)
- Heather A. Hansen
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jin Li
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States of America
| | - Zeynep M. Saygin
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
16
|
Bertino S, Basile GA, Bramanti A, Anastasi GP, Quartarone A, Milardi D, Cacciola A. Spatially coherent and topographically organized pathways of the human globus pallidus. Hum Brain Mapp 2020; 41:4641-4661. [PMID: 32757349 PMCID: PMC7555102 DOI: 10.1002/hbm.25147] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022] Open
Abstract
Internal and external segments of globus pallidus (GP) exert different functions in basal ganglia circuitry, despite their main connectional systems share the same topographical organization, delineating limbic, associative, and sensorimotor territories. The identification of internal GP sensorimotor territory has therapeutic implications in functional neurosurgery settings. This study is aimed at assessing the spatial coherence of striatopallidal, subthalamopallidal, and pallidothalamic pathways by using tractography‐derived connectivity‐based parcellation (CBP) on high quality diffusion MRI data of 100 unrelated healthy subjects from the Human Connectome Project. A two‐stage hypothesis‐driven CBP approach has been carried out on the internal and external GP. Dice coefficient between functionally homologous pairs of pallidal maps has been computed. In addition, reproducibility of parcellation according to different pathways of interest has been investigated, as well as spatial relations between connectivity maps and existing optimal stimulation points for dystonic patients. The spatial organization of connectivity clusters revealed anterior limbic, intermediate associative and posterior sensorimotor maps within both internal and external GP. Dice coefficients showed high degree of coherence between functionally similar maps derived from the different bundles of interest. Sensorimotor maps derived from the subthalamopallidal pathway resulted to be the nearest to known optimal pallidal stimulation sites for dystonic patients. Our findings suggest that functionally homologous afferent and efferent connections may share similar spatial territory within the GP and that subcortical pallidal connectional systems may have distinct implications in the treatment of movement disorders.
Collapse
Affiliation(s)
- Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
17
|
Rhone AE, Kovach CK, Harmata GI, Sullivan AW, Tranel D, Ciliberto MA, Howard MA, Richerson GB, Steinschneider M, Wemmie JA, Dlouhy BJ. A human amygdala site that inhibits respiration and elicits apnea in pediatric epilepsy. JCI Insight 2020; 5:134852. [PMID: 32163374 PMCID: PMC7213805 DOI: 10.1172/jci.insight.134852] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDSeizure-induced inhibition of respiration plays a critical role in sudden unexpected death in epilepsy (SUDEP). However, the mechanisms underlying seizure-induced central apnea in pediatric epilepsy are unknown.METHODSWe studied 8 pediatric patients with intractable epilepsy undergoing intracranial electroencephalography. We recorded respiration during seizures and during electrical stimulation mapping of 174 forebrain sites. A machine-learning algorithm was used to delineate brain regions that inhibit respiration.RESULTSIn 2 patients, apnea coincided with seizure spread to the amygdala. Supporting a role for the amygdala in breathing inhibition in children, electrically stimulating the amygdala produced apnea in all 8 subjects (3-17 years old). These effects did not depend on epilepsy type and were relatively specific to the amygdala, as no other site affected breathing. Remarkably, patients were unaware that they had stopped breathing, and none reported dyspnea or arousal, findings critical for SUDEP. Finally, a machine-learning algorithm based on 45 stimulation sites and 210 stimulation trials identified a focal subregion in the human amygdala that consistently produced apnea. This site, which we refer to as the amygdala inhibition of respiration (AIR) site includes the medial subregion of the basal nuclei, cortical and medial nuclei, amygdala transition areas, and intercalated neurons.CONCLUSIONSA focal site in the amygdala inhibits respiration and induces apnea (AIR site) when electrically stimulated and during seizures in children with epilepsy. This site may prove valuable for determining those at greatest risk for SUDEP and as a therapeutic target.FUNDINGNational Institute of Neurological Disorders and Stroke - Congress of Neurological Surgeons, National Institute of General Medical Sciences, Roy J. Carver Charitable Trust.
Collapse
Affiliation(s)
| | | | - Gail I.S. Harmata
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Pharmacological Sciences Training Program
- Department of Psychiatry
| | | | - Daniel Tranel
- Iowa Neuroscience Institute
- Department of Psychological and Brain Sciences
- Department of Neurology
| | | | - Matthew A. Howard
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| | - George B. Richerson
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Neurology
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - John A. Wemmie
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Psychiatry
- Department of Neurology
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Brian J. Dlouhy
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| |
Collapse
|
18
|
DeMayo MM, Young LJ, Hickie IB, Song YJC, Guastella AJ. Circuits for social learning: A unified model and application to Autism Spectrum Disorder. Neurosci Biobehav Rev 2019; 107:388-398. [PMID: 31560922 DOI: 10.1016/j.neubiorev.2019.09.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/13/2019] [Accepted: 09/22/2019] [Indexed: 12/31/2022]
Abstract
Early life social experiences shape neural pathways in infants to develop lifelong social skills. This review presents the first unified circuit-based model of social learning that can be applied to early life social development, drawing together unique human developmental milestones, sensitive learning periods, and behavioral and neural scaffolds. Circuit domains for social learning are identified governing Activation, Integration, Discrimination, Response and Reward (AIDRR) to sculpt and drive human social learning. This unified model can be used to identify social delays earlier in development. We propose social impairments observed in Autism Spectrum Disorder are underpinned by early mistimed sensitive periods in brain development and alterations in amygdala development to disrupt the AIDRR circuits. This model directs how interventions can target neural circuits for social development and be applied early in life. To illustrate, the role of oxytocin and its use as an intervention is explored. The AIDRR model shifts focus away from delivering broad treatments based only on diagnostic classifications, to specifying and targeting the relevant circuits, at the right time of development, to optimize social learning.
Collapse
Affiliation(s)
- Marilena M DeMayo
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.
| | - Ian B Hickie
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Yun Ju C Song
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Adam J Guastella
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| |
Collapse
|
19
|
Brown SSG, Rutland JW, Verma G, Feldman RE, Schneider M, Delman BN, Murrough JM, Balchandani P. Ultra-High-Resolution Imaging of Amygdala Subnuclei Structural Connectivity in Major Depressive Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:184-193. [PMID: 31570286 DOI: 10.1016/j.bpsc.2019.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is an increasingly common and disabling illness. As the amygdala has been reported to have pathological involvement in mood disorders, we aimed to investigate for the first time potential changes to structural connectivity of individual amygdala subnuclei in MDD using ultra-high-field 7T diffusion magnetic resonance imaging. METHODS Twenty-four patients with MDD (11 women) and 24 age-matched healthy control participants (7 women) underwent diffusion-weighted imaging with a 1.05-mm isotropic resolution at 7T. Amygdala nuclei regions of interest were obtained through automated segmentation of 0.69-mm resolution T1-weighted images and 0.35-mm resolution T2-weighted images. Probabilistic tractography was performed on all subjects, with random seeding at each amygdala nucleus. RESULTS The right lateral, basal, central, and centrocortical amygdala nuclei exhibited significantly increased connection density to the rest of the brain, whereas the left medial nucleus demonstrated significantly lower connection density (false discovery rate p < .05). Increased connection density in the right lateral and basal nuclei was driven by the stria terminalis, and the significant difference in the right central nucleus was driven by the uncinate fasciculus. Decreased connection density at the left medial nucleus did not appear to be driven by any individual white matter tract. CONCLUSIONS By exploiting ultra-high-resolution magnetic resonance imaging, structural hyperconnectivity was demonstrated involving the amygdaloid nuclei in the right hemisphere in MDD. To a lesser extent, impairment of subnuclei connectivity was shown in the left hemisphere.
Collapse
Affiliation(s)
- Stephanie S G Brown
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - John W Rutland
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gaurav Verma
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rebecca E Feldman
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Molly Schneider
- Depression and Anxiety Disorders Centre for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bradley N Delman
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James M Murrough
- Depression and Anxiety Disorders Centre for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Priti Balchandani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
20
|
Jiang Y, Tian Y, Wang Z. Age-Related Structural Alterations in Human Amygdala Networks: Reflections on Correlations Between White Matter Structure and Effective Connectivity. Front Hum Neurosci 2019; 13:214. [PMID: 31333430 PMCID: PMC6624785 DOI: 10.3389/fnhum.2019.00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/11/2019] [Indexed: 11/25/2022] Open
Abstract
The amygdala, which is involved in human social information processing and socio-emotional response neuronal circuits, is segmented into three subregions that are responsible for perception, affiliation, and aversion. Though there is different functional and effective connectivity (EC) among these networks, age-related structural changes and associations between structure and function within the amygdala remain unclear. Here, we used diffusion tensor imaging (DTI) data (106 participants) to investigate age-related structural changes in fractional anisotropy (FA) of amygdalar subregions. We also examined the relationship between FA and EC within the subregions. We found that the FA of the amygdalar subregions exhibited inverted-U-shape trends with age. Moreover, over the human lifespan, there were negative correlations between the FA of the right ventrolateral amygdala (VLA.R) and the Granger-based EC (GC) of VLA.R → perception network (PerN), the FA of the VLA.R and the GC of the net flow from VLA.R → PerN, and the FA of the left dorsal amygdala (DorA.L) and the GC of the aversion network (AveN). Conversely, there was a positive correlation between the FA of the DorA.L and the GC of the net flow from DorA.L → AveN. Our results suggest that age-related changes in the function of the brain are constrained by the underlying white matter architectures, while the functional information flow changes influence white matter structure. This work increases our understanding of the neuronal mechanisms in the maturation and aging process.
Collapse
Affiliation(s)
- Yuhao Jiang
- Bio-information College, ChongQing University of Posts and Telecommunications, ChongQing, China
| | - Yin Tian
- Bio-information College, ChongQing University of Posts and Telecommunications, ChongQing, China
| | - Zhongyan Wang
- Bio-information College, ChongQing University of Posts and Telecommunications, ChongQing, China
| |
Collapse
|
21
|
Ewing-Cobbs L, DeMaster D, Watson CG, Prasad MR, Cox CS, Kramer LA, Fischer JT, Duque G, Swank PR. Post-Traumatic Stress Symptoms after Pediatric Injury: Relation to Pre-Frontal Limbic Circuitry. J Neurotrauma 2019; 36:1738-1751. [PMID: 30672379 DOI: 10.1089/neu.2018.6071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pre-frontal limbic circuitry is vulnerable to effects of stress and injury. We examined microstructure of pre-frontal limbic circuitry after traumatic brain injury (TBI) or extracranial injury (EI) and its relation to post-traumatic stress symptoms (PTSS). Participants aged 8 to 15 years who sustained mild to severe TBI (n = 53) or EI (n = 26) in motor vehicle incidents were compared with healthy children (n = 38) in a prospective longitudinal study. At the seven-week follow-up, diffusion tensor imaging was obtained in all groups; injured children completed PTSS ratings using a validated scale. Using probabilistic diffusion tensor tractography, pathways were seeded from bilateral amygdalae and hippocampi to estimate the trajectory of white matter connecting them to each other and to targeted pre-frontal cortical (PFC) regions. Microstructure was estimated using fractional anisotropy (FA) in white matter and mean diffusivity (MD) in gray matter. Pre-frontal limbic microstructure was similar across groups, except for reduced FA in the right hippocampus to orbital PFC pathway in the injured versus healthy group. We examined microstructure of components of pre-frontal limbic circuitry with concurrently obtained PTSS cluster scores in the injured children. Neither microstructure nor PTSS scores differed significantly in the TBI and EI groups. Across PTSS factors, specific symptom clusters were related positively to higher FA and MD. Higher hyperarousal, avoidance, and re-experiencing symptoms were associated with higher FA in amygdala to pre-frontal and hippocampus to amygdala pathways. Higher hippocampal MD had a central role in hyperarousal and emotional numbing symptoms. Age moderated the relation of white and gray matter microstructure with hyperarousal scores. Our findings are consistent with models of traumatic stress that implicate disrupted top-down PFC and hippocampal moderation of overreactive subcortical threat arousal systems. Alterations in limbic pre-frontal circuitry and PTSS place children with either brain or body injuries at elevated risk for both current and future psychological health problems.
Collapse
Affiliation(s)
- Linda Ewing-Cobbs
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Dana DeMaster
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Christopher G Watson
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mary R Prasad
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Charles S Cox
- 2 Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Larry A Kramer
- 4 Department of Interventional Radiology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jesse T Fischer
- 5 Department of Psychology, University of Houston, Houston, Texas
| | - Gerardo Duque
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Paul R Swank
- 3 School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
22
|
Rasmussen JM, Graham AM, Entringer S, Gilmore JH, Styner M, Fair DA, Wadhwa PD, Buss C. Maternal Interleukin-6 concentration during pregnancy is associated with variation in frontolimbic white matter and cognitive development in early life. Neuroimage 2019; 185:825-835. [PMID: 29654875 PMCID: PMC6181792 DOI: 10.1016/j.neuroimage.2018.04.020] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/08/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023] Open
Abstract
Maternal inflammation during pregnancy can alter the trajectory of fetal brain development and increase risk for offspring psychiatric disorders. However, the majority of relevant research to date has been conducted in animal models. Here, in humans, we focus on the structural connectivity of frontolimbic circuitry as it is both critical for socioemotional and cognitive development, and commonly altered in a range of psychiatric disorders associated with intrauterine inflammation. Specifically, we test the hypothesis that elevated maternal concentration of the proinflammatory cytokine interleukin-6 (IL-6) during pregnancy will be associated with variation in microstructural properties of this circuitry in the neonatal period and across the first year of life. Pregnant mothers were recruited in early pregnancy and maternal blood samples were obtained for assessment of maternal IL-6 concentrations in early (12.6 ± 2.8 weeks [S.D.]), mid (20.4 ± 1.5 weeks [S.D.]) and late (30.3 ± 1.3 weeks [S.D.]) gestation. Offspring brain MRI scans were acquired shortly after birth (N = 86, scan age = 3.7 ± 1.7 weeks [S.D.]) and again at 12-mo age (N = 32, scan age = 54.0 ± 3.1 weeks [S.D.]). Diffusion Tensor Imaging (DTI) was used to characterize fractional anisotropy (FA) along the left and right uncinate fasciculus (UF), representing the main frontolimbic fiber tract. In N = 30 of the infants with serial MRI data at birth and 12-mo age, cognitive and socioemotional developmental status was characterized using the Bayley Scales of Infant Development. All analyses tested for potentially confounding influences of household income, prepregnancy Body-Mass-Index, obstetric risk, smoking during pregnancy, and infant sex, and outcomes at 12-mo age were additionally adjusted for the quality of the postnatal caregiving environment. Maternal IL-6 concentration (averaged across pregnancy) was prospectively and inversely associated with FA (suggestive of reduced integrity under high inflammatory conditions) in the newborn offspring (bi-lateral, p < 0.01) in the central portion of the UF proximal to the amygdala. Furthermore, maternal IL-6 concentration was positively associated with rate of FA increase across the first year of life (bi-lateral, p < 0.05), resulting in a null association between maternal IL-6 and UF FA at 12-mo age. Maternal IL-6 was also inversely associated with offspring cognition at 12-mo age, and this association was mediated by FA growth across the first year of postnatal life. Findings from the current study support the premise that susceptibility for cognitive impairment and potentially psychiatric disorders may be affected in utero, and that maternal inflammation may constitute an intrauterine condition of particular importance in this context.
Collapse
Affiliation(s)
- Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, 92697, Irvine, CA, USA; Department of Pediatrics, University of California, 92697, Irvine, CA, USA.
| | - Alice M Graham
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, 92697, Irvine, CA, USA; Department of Pediatrics, University of California, 92697, Irvine, CA, USA; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, 27599, North Carolina, USA
| | - Martin Styner
- Department of Computer Science, University of North Carolina at Chapel Hill, 27599, North Carolina, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, 92697, Irvine, CA, USA; Department of Pediatrics, University of California, 92697, Irvine, CA, USA; Departments of Psychiatry and Human Behavior, Obstetrics & Gynecology, Epidemiology, University of California, 92697, Irvine, CA, USA
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, 92697, Irvine, CA, USA; Department of Pediatrics, University of California, 92697, Irvine, CA, USA; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany.
| |
Collapse
|
23
|
Gabard-Durnam LJ, O'Muircheartaigh J, Dirks H, Dean DC, Tottenham N, Deoni S. Human amygdala functional network development: A cross-sectional study from 3 months to 5 years of age. Dev Cogn Neurosci 2018; 34:63-74. [PMID: 30075348 PMCID: PMC6252269 DOI: 10.1016/j.dcn.2018.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/10/2023] Open
Abstract
Although the amygdala's role in shaping social behavior is especially important during early post-natal development, very little is known of amygdala functional development before childhood. To address this gap, this study uses resting-state fMRI to examine early amygdalar functional network development in a cross-sectional sample of 80 children from 3-months to 5-years of age. Whole brain functional connectivity with the amygdala, and its laterobasal and superficial sub-regions, were largely similar to those seen in older children and adults. Functional distinctions between sub-region networks were already established. These patterns suggest many amygdala functional circuits are intact from infancy, especially those that are part of motor, visual, auditory and subcortical networks. Developmental changes in connectivity were observed between the laterobasal nucleus and bilateral ventral temporal and motor cortex as well as between the superficial nuclei and medial thalamus, occipital cortex and a different region of motor cortex. These results show amygdala-subcortical and sensory-cortex connectivity begins refinement prior to childhood, though connectivity changes with associative and frontal cortical areas, seen after early childhood, were not evident in this age range. These findings represent early steps in understanding amygdala network dynamics across infancy through early childhood, an important period of emotional and cognitive development.
Collapse
Affiliation(s)
- L J Gabard-Durnam
- Division of Developmental Medicine, Boston Children's Hospital, Harvard University, Boston, MA, 02115, USA
| | - J O'Muircheartaigh
- Department of Forensic and Neurodevelopmental Sciences & Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - H Dirks
- Advanced Baby Imaging Lab, Brown University School of Engineering, Providence, USA
| | - D C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53702, USA; Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, 53702, USA
| | - N Tottenham
- Department of Psychology, Columbia University, New York, NY, 10027, USA
| | - S Deoni
- Department of Pediatrics, Warren Alpert Medical School, Brown University, Providence, USA
| |
Collapse
|
24
|
Tye KM. Neural Circuit Motifs in Valence Processing. Neuron 2018; 100:436-452. [PMID: 30359607 PMCID: PMC6590698 DOI: 10.1016/j.neuron.2018.10.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023]
Abstract
How do our brains determine whether something is good or bad? How is this computational goal implemented in biological systems? Given the critical importance of valence processing for survival, the brain has evolved multiple strategies to solve this problem at different levels. The psychological concept of "emotional valence" is now beginning to find grounding in neuroscience. This review aims to bridge the gap between psychology and neuroscience on the topic of emotional valence processing. Here, I highlight a subset of studies that exemplify circuit motifs that repeatedly appear as implementational systems in valence processing. The motifs I identify as being important in valence processing include (1) Labeled Lines, (2) Divergent Paths, (3) Opposing Components, and (4) Neuromodulatory Gain. Importantly, the functionality of neural substrates in valence processing is dynamic, context-dependent, and changing across short and long timescales due to synaptic plasticity, competing mechanisms, and homeostatic need.
Collapse
Affiliation(s)
- Kay M Tye
- Picower Institute for Learning and Memory, Dept of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Salk Institute for Biological Sciences, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Nadig A, Reardon PK, Seidlitz J, McDermott CL, Blumenthal JD, Clasen LS, Lalonde F, Lerch JP, Chakravarty MM, Raznahan A. Carriage of Supernumerary Sex Chromosomes Decreases the Volume and Alters the Shape of Limbic Structures. eNeuro 2018; 5:ENEURO.0265-18.2018. [PMID: 30713992 PMCID: PMC6354783 DOI: 10.1523/eneuro.0265-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/30/2018] [Accepted: 09/24/2018] [Indexed: 01/10/2023] Open
Abstract
Sex chromosome aneuploidy (SCA) increases risk for several psychiatric disorders associated with the limbic system, including mood and autism spectrum disorders. Thus, SCA offers a genetics-first model for understanding the biological basis of psychopathology. Additionally, the sex-biased prevalence of many psychiatric disorders could potentially reflect sex chromosome dosage effects on brain development. To clarify how limbic anatomy varies across sex and sex chromosome complement, we characterized amygdala and hippocampus structure in a uniquely large sample of patients carrying supernumerary sex chromosomes (n = 132) and typically developing controls (n = 166). After adjustment for sex-differences in brain size, karyotypically normal males (XY) and females (XX) did not differ in volume or shape of either structure. In contrast, all SCAs were associated with lowered amygdala volume relative to gonadally-matched controls. This effect was robust to three different methods for total brain volume adjustment, including an allometric analysis that derived normative scaling rules for these structures in a separate, typically developing population (n = 79). Hippocampal volume was insensitive to SCA after adjustment for total brain volume. However, surface-based analysis revealed that SCA, regardless of specific karyotype, was consistently associated with a spatially specific pattern of shape change in both amygdala and hippocampus. In particular, SCA was accompanied by contraction around the basomedial nucleus of the amygdala and an area crossing the hippocampal tail. These results demonstrate the power of SCA as a model to understand how copy number variation can precipitate changes in brain systems relevant to psychiatric disease.
Collapse
Affiliation(s)
- Ajay Nadig
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Paul K. Reardon
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Jakob Seidlitz
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Cassidy L. McDermott
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Jonathan D. Blumenthal
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Liv S. Clasen
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Francois Lalonde
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Jason P. Lerch
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 1R8, Canada
- Neurosciences and Mental Health, the Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | - M. Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A OG4, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A OG4, Canada
| | - Armin Raznahan
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
26
|
Grossmann T, Missana M, Krol KM. The neurodevelopmental precursors of altruistic behavior in infancy. PLoS Biol 2018; 16:e2005281. [PMID: 30252842 PMCID: PMC6155440 DOI: 10.1371/journal.pbio.2005281] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/17/2018] [Indexed: 11/19/2022] Open
Abstract
Altruistic behavior is considered a key feature of the human cooperative makeup, with deep ontogenetic roots. The tendency to engage in altruistic behavior varies between individuals and has been linked to differences in responding to fearful faces. The current study tests the hypothesis that this link exists from early in human ontogeny. Using eye tracking, we examined whether attentional responses to fear in others at 7 months of age predict altruistic behavior at 14 months of age. Our analysis revealed that altruistic behavior in toddlerhood was predicted by infants' attention to fearful faces but not happy or angry faces. Specifically, infants who showed heightened initial attention to (i.e., prolonged first look) followed by greater disengagement (i.e., reduced attentional bias over 15 seconds) from fearful faces at 7 months displayed greater prosocial behavior at 14 months of age. Our data further show that infants' attentional bias to fearful faces and their altruistic behavior was predicted by brain responses in the dorsolateral prefrontal cortex (dlPFC), measured through functional near-infrared spectroscopy (fNIRS). This suggests that, from early in ontogeny, variability in altruistic helping behavior is linked to our responsiveness to seeing others in distress and brain processes implicated in attentional control. These findings critically advance our understanding of the emergence of altruism in humans by identifying responsiveness to fear in others as an early precursor contributing to variability in prosocial behavior.
Collapse
Affiliation(s)
- Tobias Grossmann
- Department of Psychology, University of Virginia, Charlottesville, Virginia, United States of America
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Manuela Missana
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Educational Sciences, University of Leipzig, Leipzig, Germany
| | - Kathleen M. Krol
- Department of Psychology, University of Virginia, Charlottesville, Virginia, United States of America
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
27
|
Aghajani M, Klapwijk ET, Colins OF, Ziegler C, Domschke K, Vermeiren RRJM, van der Wee NJA. Interactions Between Oxytocin Receptor Gene Methylation and Callous-Unemotional Traits Impact Socioaffective Brain Systems in Conduct-Disordered Offenders. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:379-391. [PMID: 29628070 DOI: 10.1016/j.bpsc.2017.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND The developmental trajectory of psychopathy seemingly begins early in life and includes the presence of callous-unemotional (CU) traits (e.g., perturbed socioaffective reactivity and empathy, callousness) in youths with conduct disorder (CD). Whereas oxytocin receptor gene methylation (OXTRMeth) and its downstream neuromodulatory effects are deemed relevant to CU traits, nothing is known of how OXTRMeth interacts with CU traits to impact socioaffective brain systems in youngsters with CD. METHODS Hence, we uniquely probed OXTRMeth × CU trait interactions on corticolimbic activity and amygdala subregional connections during recognition and resonance of distressing socioaffective stimuli (angry and fearful faces), in juvenile offenders with CD (n = 39) versus matched healthy control youths (n = 27). RESULTS Relative to healthy control youths, elevated OXTRMeth and CU levels in youths with CD essentially interacted to predict frontoparietal hyperactivity and amygdalo-frontoparietal disconnection during task performance. Specifically, increasing OXTRMeth and CU levels in youths with CD interactively predicted midcingulate hyperactivity during both emotion conditions, with insular, temporoparietal, and precuneal hyperactivity additionally emerging during emotion recognition. Interactions between high OXTRMeth and CU levels in youths with CD additionally predicted centromedial amygdala decoupling from ventromedial/orbitofrontal regions during emotion recognition, along with basolateral amygdala decoupling from precuneal and temporoparietal cortices during emotion resonance. CONCLUSIONS These results uniquely suggest that interactions between OXTRMeth and CU traits in youths with CD may affect brain systems critical to decoding and integrating socioaffective information. Developmental models of CU traits and psychopathy could thus possibly advance by further examining OXTR epigenetic effects, which may hold promise for indicated prevention and personalized treatment by targeting oxytocinergic function.
Collapse
Affiliation(s)
- Moji Aghajani
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands.
| | - Eduard T Klapwijk
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Brain and Development Research Center, Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - Olivier F Colins
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, University Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | | | - Robert R J M Vermeiren
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Nic J A van der Wee
- Department of Pschiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
28
|
Aghajani M, Klapwijk ET, van der Wee NJ, Veer IM, Rombouts SARB, Boon AE, van Beelen P, Popma A, Vermeiren RRJM, Colins OF. Disorganized Amygdala Networks in Conduct-Disordered Juvenile Offenders With Callous-Unemotional Traits. Biol Psychiatry 2017; 82:283-293. [PMID: 27502216 DOI: 10.1016/j.biopsych.2016.05.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND The developmental trajectory of psychopathy seemingly begins early in life and includes the presence of callous-unemotional (CU) traits (e.g., deficient emotional reactivity, callousness) in conduct-disordered (CD) youth. Though subregion-specific anomalies in amygdala function have been suggested in CU pathophysiology among antisocial populations, system-level studies of CU traits have typically examined the amygdala as a unitary structure. Hence, nothing is yet known of how amygdala subregional network function may contribute to callous-unemotionality in severely antisocial people. METHODS We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral amygdala (BLA) and centromedial amygdala (CMA) networks across three matched groups of juveniles: CD offenders with CU traits (CD/CU+; n = 25), CD offenders without CU traits (CD/CU-; n = 25), and healthy control subjects (n = 24). We additionally examined whether perturbed amygdala subregional connectivity coincides with altered volume and shape of the amygdaloid complex. RESULTS Relative to CD/CU- and healthy control youths, CD/CU+ youths showed abnormally increased BLA connectivity with a cluster that included both dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices, along with posterior cingulate, sensory associative, and striatal regions. In contrast, compared with CD/CU- and healthy control youths, CD/CU+ youths showed diminished CMA connectivity with ventromedial/orbitofrontal regions. Critically, these connectivity changes coincided with local hypotrophy of BLA and CMA subregions (without being statistically correlated) and were associated to more severe CU symptoms. CONCLUSIONS These findings provide unique insights into a putative mechanism for perturbed attention-emotion interactions, which could bias salience processing and associative learning in youth with CD/CU+.
Collapse
Affiliation(s)
- Moji Aghajani
- Department of Child and Adolescent Psychiatry, Curium-Leiden University Medical Center, Leiden; Leiden Institute for Brain and Cognition, Leiden.
| | - Eduard T Klapwijk
- Department of Child and Adolescent Psychiatry, Curium-Leiden University Medical Center, Leiden; Leiden Institute for Brain and Cognition, Leiden
| | - Nic J van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden; Leiden Institute for Brain and Cognition, Leiden
| | - Ilya M Veer
- Department of Psychiatry and Psychotherapy, Division of Mind and Brain Research, Charité Universitätsmedizin, Berlin, Germany
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Center, Leiden; Institute of Psychology, Leiden University, Leiden; Leiden Institute for Brain and Cognition, Leiden
| | - Albert E Boon
- Department of Child and Adolescent Psychiatry, Curium-Leiden University Medical Center, Leiden; Lucertis Child and Adolescent Psychiatry, Rotterdam
| | - Peter van Beelen
- Forensic Psychiatry Unit Het Palmhuis, De Jutters Institute for Mental Health Care, The Hague, The Netherlands
| | - Arne Popma
- Institute of Criminal Law and Criminology, Leiden University, Leiden; Department of Child and Adolescent Psychiatry, VU University Medical Center, Amsterdam
| | - Robert R J M Vermeiren
- Department of Child and Adolescent Psychiatry, Curium-Leiden University Medical Center, Leiden; Leiden Institute for Brain and Cognition, Leiden
| | - Olivier F Colins
- Department of Child and Adolescent Psychiatry, Curium-Leiden University Medical Center, Leiden; Leiden Institute for Brain and Cognition, Leiden
| |
Collapse
|
29
|
Saygin ZM, Kliemann D, Iglesias JE, van der Kouwe AJW, Boyd E, Reuter M, Stevens A, Van Leemput K, McKee A, Frosch MP, Fischl B, Augustinack JC. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. Neuroimage 2017; 155:370-382. [PMID: 28479476 PMCID: PMC5557007 DOI: 10.1016/j.neuroimage.2017.04.046] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022] Open
Abstract
The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at high resolution (100-150µm) at 7T field strength (n = 10), we were able to visualize and label nine amygdala nuclei (anterior amygdaloid, cortico-amygdaloid transition area; basal, lateral, accessory basal, central, cortical medial, paralaminar nuclei). We created an atlas from these labels using a recently developed atlas building algorithm based on Bayesian inference. This atlas, which will be released as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a standard resolution structural MR image. We applied this atlas to two publicly available datasets (ADNI and ABIDE) with standard resolution T1 data, used individual volumetric data of the amygdala nuclei as the measure and found that our atlas i) discriminates between Alzheimer's disease participants and age-matched control participants with 84% accuracy (AUC=0.915), and ii) discriminates between individuals with autism and age-, sex- and IQ-matched neurotypically developed control participants with 59.5% accuracy (AUC=0.59). For both datasets, the new ex vivo atlas significantly outperformed (all p < .05) estimations of the whole amygdala derived from the segmentation in FreeSurfer 5.1 (ADNI: 75%, ABIDE: 54% accuracy), as well as classification based on whole amygdala volume (using the sum of all amygdala nuclei volumes; ADNI: 81%, ABIDE: 55% accuracy). This new atlas and the segmentation tools that utilize it will provide neuroimaging researchers with the ability to explore the function and connectivity of the human amygdala nuclei with unprecedented detail in healthy adults as well as those with neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Z M Saygin
- Massachusetts Institute of Technology/ McGovern Institute, 43 Vassar St., Cambridge, MA 02139, USA; Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA.
| | - D Kliemann
- Massachusetts Institute of Technology/ McGovern Institute, 43 Vassar St., Cambridge, MA 02139, USA; Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - J E Iglesias
- University College London, Dept. Medical Physics and Biomedical Engineering Translational Imaging Group, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK; Basque Center on Cognition, Brain and Language, Paseo Mikeletegi 69, 20009 Donostia - San Sebastian, Spain
| | - A J W van der Kouwe
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - E Boyd
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - M Reuter
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - A Stevens
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - K Van Leemput
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - A McKee
- Department of Neurology and Pathology, Boston University School of Medicine, Boston University Alzheimer's Disease Center, Boston, MA 02118, USA; VA Boston Healthcare System, MA 02130, USA
| | - M P Frosch
- C.S. Kubik Laboratory for Neuropathology, Pathology Service, MGH, 55 Fruit St., Boston, MA 02115, USA
| | - B Fischl
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; MIT Computer Science and AI Lab, Cambridge, MA 02139, USA
| | - J C Augustinack
- Athinoula A Martinos Center, Dept. of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
30
|
Development of brain networks and relevance of environmental and genetic factors: A systematic review. Neurosci Biobehav Rev 2016; 71:215-239. [DOI: 10.1016/j.neubiorev.2016.08.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/10/2016] [Accepted: 08/23/2016] [Indexed: 01/25/2023]
|
31
|
Martin RE, Ochsner KN. The Neuroscience of Emotion Regulation Development: Implications for Education. Curr Opin Behav Sci 2016; 10:142-148. [PMID: 27822488 DOI: 10.1016/j.cobeha.2016.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Emotion regulation is a critical life skill that can facilitate learning and improve educational outcomes. Developmental studies find that the ability to regulate emotion improves with age. In neuroimaging studies, emotion regulation abilities are associated with recruitment of a set of prefrontal brain regions involved in cognitive control and executive functioning that mature late in development. In this review we discuss the regulation of both negative and positive emotions, the role of other people in guiding our emotional responses, and the potential applications of this work to education.
Collapse
Affiliation(s)
- Rebecca E Martin
- Department of Psychology, Columbia University, 1190 Amsterdam Ave, New York, NY, 10027
| | - Kevin N Ochsner
- Department of Psychology, Columbia University, 1190 Amsterdam Ave, New York, NY, 10027
| |
Collapse
|
32
|
Anderson LC, Rice K, Chrabaszcz J, Redcay E. Tracking the Neurodevelopmental Correlates of Mental State Inference in Early Childhood. Dev Neuropsychol 2016; 40:379-94. [PMID: 26731628 DOI: 10.1080/87565641.2015.1119836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Between ages 4 and 6, children become better at inferring what others are thinking and feeling. However, the neural correlates of these advances are understudied. The current study investigated the relation between performance on a face-based mental state inference task and white matter characteristics. Two tracts of interest, the uncinate fasciculus (UF) and inferior longitudinal fasciculus, were analyzed due to their involvement in social-emotional and face processing, respectively. Findings demonstrate a significant relation between fractional anisotropy in the UF and task performance in 4- but not 6-year-old children. Findings have implications for typical and atypical populations.
Collapse
Affiliation(s)
- Laura C Anderson
- a Department of Psychology , University of Maryland , College Park , Maryland
| | - Katherine Rice
- a Department of Psychology , University of Maryland , College Park , Maryland
| | - Jeffrey Chrabaszcz
- b Program in Neuroscience and Cognitive Science , University of Maryland , College Park , Maryland
| | - Elizabeth Redcay
- a Department of Psychology , University of Maryland , College Park , Maryland
| |
Collapse
|