1
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Chen Y, Li M, Wu Y. The occurrence and development of induced pluripotent stem cells. Front Genet 2024; 15:1389558. [PMID: 38699229 PMCID: PMC11063328 DOI: 10.3389/fgene.2024.1389558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc (OSKM), known as "Yamanaka factors," can reprogram or stimulate the production of induced pluripotent stem cells (iPSCs). Although OSKM is still the gold standard, there are multiple ways to reprogram cells into iPSCs. In recent years, significant progress has been made in improving the efficiency of this technology. Ten years after the first report was published, human pluripotent stem cells have gradually been applied in clinical settings, including disease modeling, cell therapy, new drug development, and cell derivation. Here, we provide a review of the discovery of iPSCs and their applications in disease and development.
Collapse
Affiliation(s)
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Ryan T, Roberts JD. Stem cell models of inherited arrhythmias. NATURE CARDIOVASCULAR RESEARCH 2024; 3:420-430. [PMID: 39196215 DOI: 10.1038/s44161-024-00451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/29/2024] [Indexed: 08/29/2024]
Abstract
Inherited arrhythmias are a heterogeneous group of conditions that confer risk of sudden death. Many inherited arrhythmias have been linked to pathogenic genetic variants that result in ion channel dysfunction, although current genetic testing panels fail to identify variants in many patients, potentially secondary to their underlying substrates being oligogenic or polygenic. Here we review the current state of knowledge surrounding the cellular mechanisms of inherited arrhythmias generated from stem cell models with a focus on integrating genetic and mechanistic data. The utility and limitations of human induced pluripotent stem cell models in disease modeling and drug development are also explored with a particular focus on examples of pharmacogenetics and precision medicine. We submit that progress in understanding inherited arrhythmias is likely to be made by using human induced pluripotent stem cells to model probable polygenic cases as well as to interrogate the diverse and potentially complex molecular networks implicated by genome-wide association studies.
Collapse
Affiliation(s)
- Tammy Ryan
- McMaster University, Hamilton, Ontario, Canada.
| | - Jason D Roberts
- McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute and Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Wegener JW, Mitronova GY, ElShareif L, Quentin C, Belov V, Pochechueva T, Hasenfuss G, Ackermann L, Lehnart SE. A dual-targeted drug inhibits cardiac ryanodine receptor Ca 2+ leak but activates SERCA2a Ca 2+ uptake. Life Sci Alliance 2024; 7:e202302278. [PMID: 38012000 PMCID: PMC10681910 DOI: 10.26508/lsa.202302278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
In the heart, genetic or acquired mishandling of diastolic [Ca2+] by ryanodine receptor type 2 (RyR2) overactivity correlates with risks of arrhythmia and sudden cardiac death. Strategies to avoid these risks include decrease of Ca2+ release by drugs modulating RyR2 activity or increase in Ca2+ uptake by drugs modulating SR Ca2+ ATPase (SERCA2a) activity. Here, we combine these strategies by developing experimental compounds that act simultaneously on both processes. Our screening efforts identified the new 1,4-benzothiazepine derivative GM1869 as a promising compound. Consequently, we comparatively studied the effects of the known RyR2 modulators Dantrolene and S36 together with GM1869 on RyR2 and SERCA2a activity in cardiomyocytes from wild type and arrhythmia-susceptible RyR2R2474S/+ mice by confocal live-cell imaging. All drugs reduced RyR2-mediated Ca2+ spark frequency but only GM1869 accelerated SERCA2a-mediated decay of Ca2+ transients in murine and human cardiomyocytes. Our data indicate that S36 and GM1869 are more suitable than dantrolene to directly modulate RyR2 activity, especially in RyR2R2474S/+ mice. Remarkably, GM1869 may represent a new dual-acting lead compound for maintenance of diastolic [Ca2+].
Collapse
Affiliation(s)
- Jörg W Wegener
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gyuzel Y Mitronova
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Lina ElShareif
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
| | - Christine Quentin
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vladimir Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Tatiana Pochechueva
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Lutz Ackermann
- Georg-August University of Göttingen, Institute of Organic and Biomolecular Chemistry, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
George SA, Brennan-McLean JA, Trampel KA, Rytkin E, Faye NR, Knollmann BC, Efimov IR. Ryanodine receptor inhibition with acute dantrolene treatment reduces arrhythmia susceptibility in human hearts. Am J Physiol Heart Circ Physiol 2023; 325:H720-H728. [PMID: 37566110 DOI: 10.1152/ajpheart.00103.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Ryanodine receptor 2 (RyR2) hyperactivity is observed in structural heart diseases that are a result of ischemia or heart failure. It causes abnormal calcium handling and calcium leaks that cause metabolic, electrical, and mechanical dysfunction, which can trigger arrhythmias. Here, we tested the antiarrhythmic potential of dantrolene (RyR inhibitor) in human hearts. Human hearts not used in transplantation were obtained, and right ventricular outflow tract (RVOT) wedges and left ventricular (LV) slices were prepared. Pseudo-ECGs were recorded to determine premature ventricular contraction (PVC) incidences. Optical mapping was performed to determine arrhythmogenic substrates. After baseline optical recordings, tissues were treated with 1) isoproterenol (250 nM), 2) caffeine (200 mM), and 3) dantrolene (2 or 10 mM). Optical recordings were obtained after each treatment. Isoproterenol and caffeine treatment increased PVC incidence, whereas dantrolene reduced the PVC burden. Isoproterenol shortened action potential duration (APD) in the RV, RVOT, and LV regions and shortened calcium transient duration (CaTD) in the LV. Caffeine further shortened APD in the RV, did not modulate APD in the RVOT, and prolonged APD in the LV. In addition, in the LV, CaTD prolongation was also observed. More importantly, adding dantrolene did not alter APD in the RV or RVOT regions but produced a trend toward APD prolongation and significant CaTD prolongation in the LV, restoring these parameters to baseline values. In conclusions, dantrolene treatment suppresses triggers and reverses arrhythmogenic substrates in the human heart and could be a novel antiarrhythmic therapy in patients with structural heart disease.NEW & NOTEWORTHY Ryanodine receptor 2 hyperactivity is observed in structural heart diseases caused by ischemia or heart failure. It causes abnormal calcium leaks, which can trigger arrhythmias. To prevent arrhythmias, we applied dantrolene in human hearts ex vivo. Isoproterenol and caffeine treatment increased PVC incidence, whereas dantrolene reduced the PVC burden. Dantrolene treatment suppresses triggers and reverses arrhythmogenic substrates and could be a novel antiarrhythmic therapy in patients with structural heart disease.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Jaclyn A Brennan-McLean
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
| | - Katy A Trampel
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Eric Rytkin
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - N Rokhaya Faye
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
6
|
Henriquez E, Hernandez EA, Mundla SR, Wankhade DH, Saad M, Ketha SS, Penke Y, Martinez GC, Ahmed FS, Hussain MS. Catecholaminergic Polymorphic Ventricular Tachycardia and Gene Therapy: A Comprehensive Review of the Literature. Cureus 2023; 15:e47974. [PMID: 38034271 PMCID: PMC10686237 DOI: 10.7759/cureus.47974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited channelopathy. In this review, we summarize the epidemiology, pathophysiology, clinical characteristics, diagnostics, genetic mutations, standard treatment, and the emergence of potential gene therapy. This inherited cardiac arrhythmia presents in a bimodal distribution with no association between sex or ethnicity. Six different CPVT genes have been identified, however, most of the cases are related to a heterozygous, gain-of-function mutation on the ryanodine receptor-2 gene (RyR2) and calsequestrin-2 gene (CASQ2) that causes delayed after-depolarization. The diagnosis is clinically based, seen in patients presenting with syncope after exercise or stress-related emotions, as well as cardiac arrest with full recovery or even sudden cardiac death. Standard treatment relies on beta-blockers, with add-on therapy, flecainide, and cardiac sympathetic denervation as second-line treatments. An implantable cardioverter-defibrillator is indicated for patients who have suffered a cardiac arrest. Potential gene therapy has emerged in the last 20 years and accelerated because of associated viral vector application in increasing the efficiency of prolonged cardiac gene expression. Nevertheless, human trials for gene therapy for CPVT have been limited as the population is rare, and an excessive amount of funding is required.
Collapse
Affiliation(s)
- Elvis Henriquez
- Miscellaneous, Facultad de Medicina, Universidad de Ciencias Medicas, Las Tunas, CUB
| | - Edwin A Hernandez
- Miscellaneous, Faculty of Medicine, Universidad de El Salvador, San Salvador, SLV
| | - Sravya R Mundla
- Internal Medicine, Apollo Institute of Medical Sciences and Research, Hyderabad, IND
| | | | - Muhammad Saad
- Internal Medicine, Fatima Memorial College (FMH) of Medicine and Dentistry, Lahore, PAK
| | - Sagar S Ketha
- Internal Medicine, Government Medical College, Srikakulam, IND
| | - Yasaswini Penke
- Internal Medicine, Government Medical College, Srikakulam, IND
| | - Gabriela C Martinez
- Internal Medicine, Faculty of Medicine, Universidad Nacional Autonoma de Honduras, San Pedro Sula, HND
| | - Faiza S Ahmed
- Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, USA
| | | |
Collapse
|
7
|
Bergeman AT, Wilde AAM, van der Werf C. Catecholaminergic Polymorphic Ventricular Tachycardia: A Review of Therapeutic Strategies. Card Electrophysiol Clin 2023; 15:293-305. [PMID: 37558300 DOI: 10.1016/j.ccep.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterized by bidirectional or polymorphic ventricular arrhythmia provoked by exercise or emotion. Most cases are caused by pathogenic variants in the gene encoding the cardiac ryanodine receptor (RYR2). The options for treating patients with CPVT have increased during the years, and evidence suggests that these have led to lower arrhythmic event rates. In addition, numerous potential new therapies are being investigated. In this review, we summarize the state of knowledge on both established and potential future treatment strategies for patients with CPVT and describe our approach to their management.
Collapse
Affiliation(s)
- Auke T Bergeman
- Department of Cardiology, Heart Centre, Amsterdam UMC Location Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Arthur A M Wilde
- Department of Cardiology, Heart Centre, Amsterdam UMC Location Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Christian van der Werf
- Department of Cardiology, Heart Centre, Amsterdam UMC Location Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Yang HS, Choi JM, In J, Sung TY, Kim YB, Sultana S. Current clinical application of dantrolene sodium. Anesth Pain Med (Seoul) 2023; 18:220-232. [PMID: 37691593 PMCID: PMC10410554 DOI: 10.17085/apm.22260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 09/12/2023] Open
Abstract
Dantrolene sodium (DS) was first introduced as an oral antispasmodic drug. However, in 1975, DS was demonstrated to be effective for managing malignant hyperthermia (MH) and was adopted as the primary therapeutic drug after intravenous administration. However, it is difficult to administer DS intravenously to manage MH. MH is life-threatening, pharmacogenomically related, and induced by depolarizing neuromuscular blocking agents or inhalational anesthetics. All anesthesiologists should know the pharmacology of DS. DS suppresses Ca2+ release from ryanodine receptors (RyRs). RyRs are expressed in various tissues, although their distribution differs among subtypes. The anatomical and physiological functions of RyRs have also been demonstrated as effective therapeutic drugs for cardiac arrhythmias, Alzheimer's disease, and other RyR-related diseases. Recently, a new formulation was introduced that enhanced the hydrophilicity of the lipophilic DS. The authors summarize the pharmacological properties of DS and comment on its indications, contraindications, adverse effects, and interactions with other drugs by reviewing reference articles.
Collapse
Affiliation(s)
- Hong Seuk Yang
- Department of Anesthesiology and Pain Medicine, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Korea
| | - Jae Moon Choi
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Junyong In
- Department of Anesthesiology and Pain Medicine, Dongguk University Ilsan Hospital, Dongguk University, Goyang, Korea
| | - Tae-yun Sung
- Department of Anesthesiology and Pain Medicine, Konyang University Hopsital, Konyang University College of Medicine, Daejeon, Korea
| | - Yong Beom Kim
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Shofina Sultana
- Department of Anesthesia, Analgesia and lntensive Care lVedicine, Bangabandhu Sheikh Mujib Medical University Dhaka, Bangladesh
| |
Collapse
|
9
|
Przybylski R, Abrams DJ. Current management of inherited arrhythmia syndromes associated with the cardiac ryanodine receptor. Curr Opin Cardiol 2023; 38:390-395. [PMID: 37016946 DOI: 10.1097/hco.0000000000001051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
PURPOSE OF REVIEW Gain-of-function variants in the gene encoding the cardiac ryanodine receptor ( RYR2 ) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). The exercise stress test (EST) has long been fundamental in diagnosis and management, but recent work has further explored its role. A new entity termed calcium release deficiency syndrome (CRDS) has been associated with loss-of-function RYR2 variants and a different arrhythmic phenotype. RECENT FINDINGS Standard EST is not perfectly reproducible with regards to provocation of arrhythmia in CPVT. A newly described burst EST protocol may be more sensitive in this regard. Nadolol is the most effective beta blocker in CPVT, though arrhythmic events remain frequent and dual therapy with flecainide and/or left cardiac sympathetic denervation may add protection. A recent report renews debate regarding the use of implantable defibrillator therapy in CPVT. CRDS is characterized by later age of presentation, normal/near normal EST, and ventricular arrhythmia induced by a novel ventricular stimulation protocol. SUMMARY Burst EST may aid in the diagnosis and management of CPVT. Nadolol is the preferred beta blocker in CPVT, and consideration should be given to early dual therapy. CRDS should be suspected in patients with arrhythmic events, rare RYR2 variants, and a phenotype inconsistent with CPVT.
Collapse
Affiliation(s)
- Robert Przybylski
- Department of Cardiology, Center for Cardiovascular Genetics, Boston Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
10
|
Sleiman Y, Lacampagne A, Meli AC. Correction: "Ryanopathies" and RyR2 dysfunctions: can we further decipher them using in vitro human disease models? Cell Death Dis 2022; 13:1014. [PMID: 36450727 PMCID: PMC9712522 DOI: 10.1038/s41419-022-05468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Yvonne Sleiman
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Albano C Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
11
|
Abstract
Flecainide, a cardiac class 1C blocker of the surface membrane sodium channel (NaV1.5), has also been reported to reduce cardiac ryanodine receptor (RyR2)-mediated sarcoplasmic reticulum (SR) Ca2+ release. It has been introduced as a clinical antiarrhythmic agent for catecholaminergic polymorphic ventricular tachycardia (CPVT), a condition most commonly associated with gain-of-function RyR2 mutations. Current debate concerns both cellular mechanisms of its antiarrhythmic action and molecular mechanisms of its RyR2 actions. At the cellular level, it targets NaV1.5, RyR2, Na+/Ca2+ exchange (NCX), and additional proteins involved in excitation-contraction (EC) coupling and potentially contribute to the CPVT phenotype. This Viewpoint primarily addresses the various direct molecular actions of flecainide on isolated RyR2 channels in artificial lipid bilayers. Such studies demonstrate different, multifarious, flecainide binding sites on RyR2, with voltage-dependent binding in the channel pore or voltage-independent binding at distant peripheral sites. In contrast to its single NaV1.5 pore binding site, flecainide may bind to at least four separate inhibitory sites on RyR2 and one activation site. None of these binding sites have been specifically located in the linear RyR2 sequence or high-resolution structure. Furthermore, it is not clear which of the inhibitory sites contribute to flecainide's reduction of spontaneous Ca2+ release in cellular studies. A confounding observation is that flecainide binding to voltage-dependent inhibition sites reduces cation fluxes in a direction opposite to physiological Ca2+ flow from SR lumen to cytosol. This may suggest that, rather than directly blocking Ca2+ efflux, flecainide can reduce Ca2+ efflux by blocking counter currents through the pore which otherwise limit SR membrane potential change during systolic Ca2+ efflux. In summary, the antiarrhythmic effects of flecainide in CPVT seem to involve multiple components of EC coupling and multiple actions on RyR2. Their clarification may identify novel specific drug targets and facilitate flecainide's clinical utilization in CPVT.
Collapse
Affiliation(s)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - James A. Fraser
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| |
Collapse
|
12
|
Miotto MC, Weninger G, Dridi H, Yuan Q, Liu Y, Wronska A, Melville Z, Sittenfeld L, Reiken S, Marks AR. Structural analyses of human ryanodine receptor type 2 channels reveal the mechanisms for sudden cardiac death and treatment. SCIENCE ADVANCES 2022; 8:eabo1272. [PMID: 35857850 PMCID: PMC9299551 DOI: 10.1126/sciadv.abo1272] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/03/2022] [Indexed: 05/29/2023]
Abstract
Ryanodine receptor type 2 (RyR2) mutations have been linked to an inherited form of exercise-induced sudden cardiac death called catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT results from stress-induced sarcoplasmic reticular Ca2+ leak via the mutant RyR2 channels during diastole. We present atomic models of human wild-type (WT) RyR2 and the CPVT mutant RyR2-R2474S determined by cryo-electron microscopy with overall resolutions in the range of 2.6 to 3.6 Å, and reaching local resolutions of 2.25 Å, unprecedented for RyR2 channels. Under nonactivating conditions, the RyR2-R2474S channel is in a "primed" state between the closed and open states of WT RyR2, rendering it more sensitive to activation that results in stress-induced Ca2+ leak. The Rycal drug ARM210 binds to RyR2-R2474S, reverting the primed state toward the closed state. Together, these studies provide a mechanism for CPVT and for the therapeutic actions of ARM210.
Collapse
Affiliation(s)
- Marco C. Miotto
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Zephan Melville
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| |
Collapse
|
13
|
Rebbeck R, Ginsburg KS, Ko CY, Fasoli A, Rusch K, Cai GF, Dong X, Thomas DD, Bers DM, Cornea RL. Synergistic FRET assays for drug discovery targeting RyR2 channels. J Mol Cell Cardiol 2022; 168:13-23. [PMID: 35405106 PMCID: PMC10088286 DOI: 10.1016/j.yjmcc.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/09/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
A key therapeutic target for heart failure and arrhythmia is the deleterious leak through sarcoplasmic reticulum (SR) ryanodine receptor 2 (RyR2) calcium release channels. We have previously developed methods to detect the pathologically leaky state of RyR2 in adult cardiomyocytes by monitoring RyR2 binding to either calmodulin (CaM) or a biosensor peptide (DPc10). Here, we test whether these complementary binding measurements are effective as high-throughput screening (HTS) assays to discover small molecules that target leaky RyR2. Using FRET, we developed and validated HTS procedures under conditions that mimic a pathological state, to screen the library of 1280 pharmaceutically active compounds (LOPAC) for modulators of RyR2 in cardiac SR membrane preparations. Complementary FRET assays with acceptor-labeled CaM and DPc10 were used for Hit prioritization based on the opposing binding properties of CaM vs. DPc10. This approach narrowed the Hit list to one compound, Ro 90-7501, which altered FRET to suggest increased RyR2-CaM binding and decreased DPc10 binding. Follow-up studies revealed that Ro 90-7501 does not detrimentally affect myocyte Ca2+ transients. Moreover, Ro 90-7501 partially inhibits overall Ca2+ leak, as assessed by Ca2+ sparks in permeabilized rat cardiomyocytes. Together, these results demonstrate (1) the effectiveness of our HTS approach where two complementary assays synergize for Hit ranking and (2) a drug discovery process that combines high-throughput, high-precision in vitro structural assays with in situ myocyte assays of the pathologic RyR2 leak. These provide a drug discovery platform compatible with large-scale HTS campaigns, to identify agents that inhibit RyR2 for therapeutic development.
Collapse
Affiliation(s)
- RobynT Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, USA
| | | | - Christopher Y Ko
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Anna Fasoli
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Katherine Rusch
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, USA
| | - George F Cai
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, USA
| | - Xiaoqiong Dong
- Department of Pharmacology, University of California, Davis, CA, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, USA; Photonic Pharma LLC, Minneapolis, MN, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, USA; Photonic Pharma LLC, Minneapolis, MN, USA.
| |
Collapse
|
14
|
Dulhunty AF. Molecular Changes in the Cardiac RyR2 With Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). Front Physiol 2022; 13:830367. [PMID: 35222090 PMCID: PMC8867003 DOI: 10.3389/fphys.2022.830367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The cardiac ryanodine receptor Ca2+ release channel (RyR2) is inserted into the membrane of intracellular sarcoplasmic reticulum (SR) myocyte Ca2+ stores, where it releases the Ca2+ essential for contraction. Mutations in proteins involved in Ca2+ signaling can lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). The most common cellular phenotype in CPVT is higher than normal cytoplasmic Ca2+ concentrations during diastole due to Ca2+ leak from the SR through mutant RyR2. Arrhythmias are triggered when the surface membrane sodium calcium exchanger (NCX) lowers cytoplasmic Ca2+ by importing 3 Na+ ions to extrude one Ca2+ ion. The Na+ influx leads to delayed after depolarizations (DADs) which trigger arrhythmia when reaching action potential threshold. Present therapies use drugs developed for different purposes that serendipitously reduce RyR2 Ca2+ leak, but can adversely effect systolic Ca2+ release and other target processes. Ideal drugs would specifically reverse the effect of individual mutations, without altering normal channel function. Such drugs will depend on the location of the mutation in the 4967-residue monomer and the effect of the mutation on local structure, and downstream effects on structures along the conformational pathway to the pore. Such atomic resolution information is only now becoming available. This perspective provides a summary of known or predicted structural changes associated with a handful of CPVT mutations. Known molecular changes associated with RyR opening are discussed, as well one study where minute molecular changes with a particular mutation have been tracked from the N-terminal mutation site to gating residues in the channel pore.
Collapse
|
15
|
Juhola M, Joutsijoki H, Penttinen K, Shah D, Pölönen RP, Aalto-Setälä K. Data analytics for cardiac diseases. Comput Biol Med 2022; 142:105218. [PMID: 34999413 DOI: 10.1016/j.compbiomed.2022.105218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
In the present research we tackled the classification of seven genetic cardiac diseases and control subjects by using an extensive set of machine learning algorithms with their variations from simple K-nearest neighbor searching method to support vector machines. The research was based on calcium transient signals measured from induced pluripotent stem cell-derived cardiomyocytes. All in all, 55 different machine learning alternatives were used to model eight classes by applying the principle of 10-fold crossvalidation with the peak data of 1626 signals. The best classification accuracy of approximately 69% was given by random forests, which can be seen high enough here to show machine learning to be potential for the differentiation of the eight disease classes.
Collapse
Affiliation(s)
- Martti Juhola
- Faculty of Information Technology and Communication Sciences, Tampere University, 33014, Tampere, Finland.
| | - Henry Joutsijoki
- Faculty of Information Technology and Communication Sciences, Tampere University, 33014, Tampere, Finland
| | - Kirsi Penttinen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Disheet Shah
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
| | - Risto-Pekka Pölönen
- Department of Pharmacology, University of California Davis, 95616, Davis, CA, USA
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland; Heart Center, Tampere University Hospital, 33520, Tampere, Finland
| |
Collapse
|
16
|
Iop L, Iliceto S, Civieri G, Tona F. Inherited and Acquired Rhythm Disturbances in Sick Sinus Syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling. Cells 2021; 10:3175. [PMID: 34831398 PMCID: PMC8623957 DOI: 10.3390/cells10113175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Rhythm disturbances are life-threatening cardiovascular diseases, accounting for many deaths annually worldwide. Abnormal electrical activity might arise in a structurally normal heart in response to specific triggers or as a consequence of cardiac tissue alterations, in both cases with catastrophic consequences on heart global functioning. Preclinical modeling by recapitulating human pathophysiology of rhythm disturbances is fundamental to increase the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and clinical management. In silico, in vivo, and in vitro models found variable application to dissect many congenital and acquired rhythm disturbances. In the copious list of rhythm disturbances, diseases of the conduction system, as sick sinus syndrome, Brugada syndrome, and atrial fibrillation, have found extensive preclinical modeling. In addition, the electrical remodeling as a result of other cardiovascular diseases has also been investigated in models of hypertrophic cardiomyopathy, cardiac fibrosis, as well as arrhythmias induced by other non-cardiac pathologies, stress, and drug cardiotoxicity. This review aims to offer a critical overview on the effective ability of in silico bioinformatic tools, in vivo animal studies, in vitro models to provide insights on human heart rhythm pathophysiology in case of sick sinus syndrome, Brugada syndrome, and atrial fibrillation and advance their safe and successful translation into the cardiology arena.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| | | | | | - Francesco Tona
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| |
Collapse
|
17
|
Juhola M, Joutsijoki H, Penttinen K, Shah D, Aalto-Setälä K. On computational classification of genetic cardiac diseases applying iPSC cardiomyocytes. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 210:106367. [PMID: 34474196 DOI: 10.1016/j.cmpb.2021.106367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) can be used to study genetic cardiac diseases. In patients these diseases are manifested e.g. with impaired contractility and fatal cardiac arrhythmias, and both of these can be due to abnormal calcium transients in cardiomyocytes. Here we classify different genetic cardiac diseases using Ca2+ transient data and different machine learning algorithms. METHODS By studying calcium cycling of disease-specific iPSC-CMs and by using calcium transients measured from these cells it is possible to classify diseases from each other and also from healthy controls by applying machine learning computation on the basis of peak attributes detected from calcium transient signals. RESULTS In the current research we extend our previous study having Ca-transient data from four different genetic diseases by adding data from two additional diseases (dilated cardiomyopathy and long QT Syndrome 2). We also study, in the light of the current data, possible differences and relations when machine learning modelling and classification accuracies were computed by using either leave-one-out test or 10-fold cross-validation. CONCLUSIONS Despite more complex classification tasks compared to our earlier research and having more different genetic cardiac diseases in the analysis, it is still possible to attain good disease classification results. As excepted, leave-one-out test and 10-fold cross-validation achieved virtually equal results.
Collapse
Affiliation(s)
- Martti Juhola
- Faculty of Information Technology and Communication Sciences, Tampere University, 33014 Finland.
| | - Henry Joutsijoki
- Faculty of Information Technology and Communication Sciences, Tampere University, 33014 Finland
| | - Kirsi Penttinen
- Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Disheet Shah
- Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology, Tampere University, Finland; Heart Center, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
18
|
Kallas D, Lamba A, Roston TM, Arslanova A, Franciosi S, Tibbits GF, Sanatani S. Pediatric Catecholaminergic Polymorphic Ventricular Tachycardia: A Translational Perspective for the Clinician-Scientist. Int J Mol Sci 2021; 22:ijms22179293. [PMID: 34502196 PMCID: PMC8431429 DOI: 10.3390/ijms22179293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare and potentially lethal inherited arrhythmia disease characterized by exercise or emotion-induced bidirectional or polymorphic ventricular tachyarrhythmias. The median age of disease onset is reported to be approximately 10 years of age. The majority of CPVT patients have pathogenic variants in the gene encoding the cardiac ryanodine receptor, or calsequestrin 2. These lead to mishandling of calcium in cardiomyocytes resulting in after-depolarizations, and ventricular arrhythmias. Disease severity is particularly pronounced in younger individuals who usually present with cardiac arrest and arrhythmic syncope. Risk stratification is imprecise and long-term prognosis on therapy is unknown despite decades of research focused on pediatric CPVT populations. The purpose of this review is to summarize contemporary data on pediatric CPVT, highlight knowledge gaps and present future research directions for the clinician-scientist to address.
Collapse
Affiliation(s)
- Dania Kallas
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
| | - Avani Lamba
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
| | - Thomas M. Roston
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
- Clinician-Investigator Program, University of British Columbia, 2016-1874 East Mall, Vancouver, BC V6T 1Z1, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada; (A.A.); (G.F.T.)
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Sonia Franciosi
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada; (A.A.); (G.F.T.)
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Shubhayan Sanatani
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
- Correspondence:
| |
Collapse
|
19
|
Micheu MM, Rosca AM. Patient-specific induced pluripotent stem cells as “disease-in-a-dish” models for inherited cardiomyopathies and channelopathies – 15 years of research. World J Stem Cells 2021; 13:281-303. [PMID: 33959219 PMCID: PMC8080539 DOI: 10.4252/wjsc.v13.i4.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Among inherited cardiac conditions, a special place is kept by cardiomyopathies (CMPs) and channelopathies (CNPs), which pose a substantial healthcare burden due to the complexity of the therapeutic management and cause early mortality. Like other inherited cardiac conditions, genetic CMPs and CNPs exhibit incomplete penetrance and variable expressivity even within carriers of the same pathogenic deoxyribonucleic acid variant, challenging our understanding of the underlying pathogenic mechanisms. Until recently, the lack of accurate physiological preclinical models hindered the investigation of fundamental cellular and molecular mechanisms. The advent of induced pluripotent stem cell (iPSC) technology, along with advances in gene editing, offered unprecedented opportunities to explore hereditary CMPs and CNPs. Hallmark features of iPSCs include the ability to differentiate into unlimited numbers of cells from any of the three germ layers, genetic identity with the subject from whom they were derived, and ease of gene editing, all of which were used to generate “disease-in-a-dish” models of monogenic cardiac conditions. Functionally, iPSC-derived cardiomyocytes that faithfully recapitulate the patient-specific phenotype, allowed the study of disease mechanisms in an individual-/allele-specific manner, as well as the customization of therapeutic regimen. This review provides a synopsis of the most important iPSC-based models of CMPs and CNPs and the potential use for modeling disease mechanisms, personalized therapy and deoxyribonucleic acid variant functional annotation.
Collapse
Affiliation(s)
- Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Bucharest 014452, Romania
| | - Ana-Maria Rosca
- Cell and Tissue Engineering Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| |
Collapse
|
20
|
Hnatiuk AP, Briganti F, Staudt DW, Mercola M. Human iPSC modeling of heart disease for drug development. Cell Chem Biol 2021; 28:271-282. [PMID: 33740432 PMCID: PMC8054828 DOI: 10.1016/j.chembiol.2021.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have emerged as a promising platform for pharmacogenomics and drug development. In cardiology, they make it possible to produce unlimited numbers of patient-specific human cells that reproduce hallmark features of heart disease in the culture dish. Their potential applications include the discovery of mechanism-specific therapeutics, the evaluation of safety and efficacy in a human context before a drug candidate reaches patients, and the stratification of patients for clinical trials. Although this new technology has the potential to revolutionize drug discovery, translational hurdles have hindered its widespread adoption for pharmaceutical development. Here we discuss recent progress in overcoming these hurdles that should facilitate the use of hiPSCs to develop new medicines and individualize therapies for heart disease.
Collapse
Affiliation(s)
- Anna P Hnatiuk
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Francesca Briganti
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - David W Staudt
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Wang Y, Lei W, Yang J, Ni X, Ye L, Shen Z, Hu S. The updated view on induced pluripotent stem cells for cardiovascular precision medicine. Pflugers Arch 2021; 473:1137-1149. [DOI: 10.1007/s00424-021-02530-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
|
22
|
Zhang XH, Wei H, Xia Y, Morad M. Calcium signaling consequences of RyR2 mutations associated with CPVT1 introduced via CRISPR/Cas9 gene editing in human-induced pluripotent stem cell-derived cardiomyocytes: Comparison of RyR2-R420Q, F2483I, and Q4201R. Heart Rhythm 2021; 18:250-260. [PMID: 32931925 PMCID: PMC7893824 DOI: 10.1016/j.hrthm.2020.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) created from patients with catecholaminergic polymorphic ventricular tachycardia 1 (CPVT1) have been used to study CPVT1 arrhythmia. OBJECTIVE The purpose of this study was to evaluate the Ca2+ signaling aberrancies and pharmacological sensitivities of 3 CRISPR/Cas9-introduced CPVT1 mutations located in different molecular domains of ryanodine receptor 2 (RyR2). METHODS CRISPR/Cas9-engineered hiPSC-CMs carrying RyR2 mutations-R420Q, Q4201R, and F2483I-were voltage clamped, and their electrophysiology, pharmacology, and Ca2+ signaling phenotypes measured using total internal reflection fluorescence microscopy. RESULTS R420Q and Q4201R mutant hiPSC-CMs exhibit irregular, long-lasting, spatially wandering Ca2+ sparks and aberrant Ca2+ releases similar to F2483I unlike the wild-type myocytes. Large sarcoplasmic reticulum (SR) Ca2+ leaks and smaller SR Ca2+ contents were detected in cells expressing Q4201R and F2483I, but not R420Q. Fractional Ca2+ release and calcium-induced calcium release gain were higher in Q4201R than in R420Q and F2483I hiPSC-CMs. JTV519 was equally effective in suppressing Ca2+ sparks, waves, and SR Ca2+ leaks in hiPSC-CMs derived from all 3 mutant lines. Flecainide and dantrolene similarly suppressed SR Ca2+ leaks, but were less effective in decreasing spark frequency and durations. CONCLUSION CRISPR/Cas9 gene editing of hiPSCs provides a novel approach in studying CPVT1-associated RyR2 mutations and suggests that Ca2+-signaling aberrancies and drug sensitivities may vary depending on the mutation site.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Hua Wei
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Yanli Xia
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Martin Morad
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina.
| |
Collapse
|
23
|
Salazar-Ramírez F, Ramos-Mondragón R, García-Rivas G. Mitochondrial and Sarcoplasmic Reticulum Interconnection in Cardiac Arrhythmia. Front Cell Dev Biol 2021; 8:623381. [PMID: 33585462 PMCID: PMC7876262 DOI: 10.3389/fcell.2020.623381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Ca2+ plays a pivotal role in mitochondrial energy production, contraction, and apoptosis. Mitochondrial Ca2+-targeted fluorescent probes have demonstrated that mitochondria Ca2+ transients are synchronized with Ca2+ fluxes occurring in the sarcoplasmic reticulum (SR). The presence of specialized proteins tethering SR to mitochondria ensures the local Ca2+ flux between these organelles. Furthermore, communication between SR and mitochondria impacts their functionality in a bidirectional manner. Mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniplex is essential for ATP production and controlled reactive oxygen species levels for proper cellular signaling. Conversely, mitochondrial ATP ensures the proper functioning of SR Ca2+-handling proteins, which ensures that mitochondria receive an adequate supply of Ca2+. Recent evidence suggests that altered SR Ca2+ proteins, such as ryanodine receptors and the sarco/endoplasmic reticulum Ca2+ ATPase pump, play an important role in maintaining proper cardiac membrane excitability, which may be initiated and potentiated when mitochondria are dysfunctional. This recognized mitochondrial role offers the opportunity to develop new therapeutic approaches aimed at preventing cardiac arrhythmias in cardiac disease.
Collapse
Affiliation(s)
- Felipe Salazar-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Cardiovascular, Monterrey, Mexico
| | - Roberto Ramos-Mondragón
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Cardiovascular, Monterrey, Mexico.,TecSalud, Centro de Investigación Biomédica, Hospital Zambrano-Hellion, San Pedro Garza García, Mexico.,TecSalud, Centro de Medicina Funcional, Hospital Zambrano-Hellion, San Pedro Garza García, Mexico
| |
Collapse
|
24
|
Prajapati C, Ojala M, Lappi H, Aalto-Setälä K, Pekkanen-Mattila M. Electrophysiological evaluation of human induced pluripotent stem cell-derived cardiomyocytes obtained by different methods. Stem Cell Res 2021; 51:102176. [PMID: 33485184 DOI: 10.1016/j.scr.2021.102176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/21/2020] [Accepted: 01/09/2021] [Indexed: 11/30/2022] Open
Abstract
The human induced pluripotent stem cells (hiPSCs) derived cardiomyocytes (CMs) (hiPSC-CMs) retain the same genetic information as the donor, and they have been shown to faithfully recapitulate the disease phenotypes of various genetic cardiac diseases. The hiPSC-CMs can be utilized in multiple types of studies and in most cases, the functionality of hiPSC-CMs is of interest. For the functional analyses, the hiPSC-CMs need to be manipulated after differentiation, e.g. enriched or dissociated into single-cell stage. For the functional assessments to be reliable and reproducible, the cell culture environment should support the cells in an optimal manner. The aim of the present study was to evaluate the effect of various differentiation methods, as well as coating materials used for the dissociated cells on the functionality of the differentiated hiPSC-CMs. The different protocols not only had different differentiation efficiencies, but they also yielded functionally different hiPSC-CMs. Additionally, the coating material had a major effect on the functionality of the hiPSC-CMs. The results of the present study emphasize that the cardiac differentiation method and the coating material have a major effect on hiPS-CMs' characteristics. Thus, when different hiPSC lines and results obtained in different labs are compared, extra care should be taken to check the conditions when results are compared.
Collapse
Affiliation(s)
- Chandra Prajapati
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland.
| | - Marisa Ojala
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Henna Lappi
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland.
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland; Heart Hospital, Tampere University Hospital, Tampere, Finland.
| | - Mari Pekkanen-Mattila
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland.
| |
Collapse
|
25
|
Abstract
Inherited cardiac arrhythmias contribute substantially to sudden cardiac death in the young. The underlying pathophysiology remains incompletely understood because of the lack of representative study models and the labour-intensive nature of electrophysiological patch clamp experiments. Whereas patch clamp is still considered the gold standard for investigating electrical properties in a cell, optical mapping of voltage and calcium transients has paved the way for high-throughput studies. Moreover, the development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) has enabled the study of patient specific cell lines capturing the full genomic background. Nevertheless, hiPSC-CMs do not fully address the complex interactions between various cell types in the heart. Studies using in vivo models, are therefore necessary. Given the analogies between the human and zebrafish cardiovascular system, zebrafish has emerged as a cost-efficient model for arrhythmogenic diseases. In this review, we describe how hiPSC-CM and zebrafish are employed as models to study primary electrical disorders. We provide an overview of the contemporary electrophysiological phenotyping tools and discuss in more depth the different strategies available for optical mapping. We consider the current advantages and disadvantages of both hiPSC-CM and zebrafish as a model and optical mapping as phenotyping tool and propose strategies for further improvement. Overall, the combination of experimental readouts at cellular (hiPSC-CM) and whole organ (zebrafish) level can raise our understanding of the complexity of inherited cardiac arrhythmia disorders to the next level.
Collapse
|
26
|
Koponen M, Marjamaa A, Tuiskula AM, Viitasalo M, Nallinmaa-Luoto T, Leinonen JT, Widen E, Toivonen L, Kontula K, Swan H. Genealogy and clinical course of catecholaminergic polymorphic ventricular tachycardia caused by the ryanodine receptor type 2 P2328S mutation. PLoS One 2020; 15:e0243649. [PMID: 33315912 PMCID: PMC7735638 DOI: 10.1371/journal.pone.0243649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Background Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe inherited arrhythmic disease associated with a risk of syncope and sudden cardiac death (SCD). Aims We aimed at identifying RYR2 P2328S founder mutation carriers and describing the clinical course associated with the mutation. Methods The study population was drawn from the Finnish Inherited Cardiac Disorder Research Registry, and from the present genealogical study. Kaplan-Meier graphs, log-rank test and Cox regression model were used to evaluate the clinical course. Results Genealogical study revealed a common ancestor couple living in the late 17th century. A total of 1837 living descendants were tested for RYR2 P2328S mutation unveiling 62 mutation carriers aged mean 39±23 years old. No arrhythmic deaths were documented among genotyped subjects, but 11 SCDs were detected in non-genotyped family members since 1970. Three genotyped patients (5%) suffered an aborted cardiac arrest (ACA), and 15 (25%) had a syncope triggered by exercise or stress. Rate of cardiac events was higher among patients who in exercise stress test showed a maximum rate of premature ventricular contractions >30/min (68% vs 17%, p<0.01; hazard ratio = 7.1, p = 0.02), in comparison to patients without the respective finding. A cardioverter-defibrillator (ICD) was implanted to 13 (22%) patients, with an appropriate ICD shock in four (31%) subjects. All ICD shocks, one ACA, and one syncope occurred during β-blocker medication. Conclusions Previously undiagnosed CPVT patients may be identified by well-conducted genealogical studies. The RYR2 P2328S mutation causes a potentially severe phenotype, but its expression is variable, thus calling for additional studies on modifying factors.
Collapse
Affiliation(s)
- Mikael Koponen
- Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Annukka Marjamaa
- Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Annukka M. Tuiskula
- Department of Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Laboratory of Genetics, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Matti Viitasalo
- Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | | | - Jaakko T. Leinonen
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Lauri Toivonen
- Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Kimmo Kontula
- Department of Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
27
|
Arrhythmia Mechanisms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J Cardiovasc Pharmacol 2020; 77:300-316. [PMID: 33323698 DOI: 10.1097/fjc.0000000000000972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
ABSTRACT Despite major efforts by clinicians and researchers, cardiac arrhythmia remains a leading cause of morbidity and mortality in the world. Experimental work has relied on combining high-throughput strategies with standard molecular and electrophysiological studies, which are, to a great extent, based on the use of animal models. Because this poses major challenges for translation, the progress in the development of novel antiarrhythmic agents and clinical care has been mostly disappointing. Recently, the advent of human induced pluripotent stem cell-derived cardiomyocytes has opened new avenues for both basic cardiac research and drug discovery; now, there is an unlimited source of cardiomyocytes of human origin, both from healthy individuals and patients with cardiac diseases. Understanding arrhythmic mechanisms is one of the main use cases of human induced pluripotent stem cell-derived cardiomyocytes, in addition to pharmacological cardiotoxicity and efficacy testing, in vitro disease modeling, developing patient-specific models and personalized drugs, and regenerative medicine. Here, we review the advances that the human induced pluripotent stem cell-derived-based modeling systems have brought so far regarding the understanding of both arrhythmogenic triggers and substrates, while also briefly speculating about the possibilities in the future.
Collapse
|
28
|
Jiang B, Liang S, Liang G, Wei H. Could dantrolene be explored as a repurposed drug to treat COVID-19 patients by restoring intracellular calcium homeostasis? EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2020; 24:10228-10238. [PMID: 33090434 DOI: 10.26355/eurrev_202010_23247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dantrolene, an FDA approved drug to treat malignant hyperthermia and muscle spasm, has been demonstrated to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediated toxicity of host cells. Ryanodine receptor overactivation and associated disruption of intracellular Ca2+ homeostasis play important roles in SARS-CoV-2 infection and replication of host cells. Dantrolene, as an inhibitor of RyRs, is expected to ameliorate these detrimental effects of SARS-CoV-2 in host cells. Additionally, dantrolene has also been shown to inhibit multiple cell or organ damage induced by hypoxia/ischemia, mitochondria damage, oxidative stresses, inflammation, impairment of autophagy and apoptosis, etc., which are often the causes of severity and mortality of COVID-19 patients. We have repurposed that dantrolene has a high potential at treating COVID-19 patients and reducing its morbidity and mortality.
Collapse
Affiliation(s)
- B Jiang
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
29
|
Protze SI, Lee JH, Keller GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell 2020; 25:311-327. [PMID: 31491395 DOI: 10.1016/j.stem.2019.07.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in our understanding of cardiovascular development have provided a roadmap for the directed differentiation of human pluripotent stem cells (hPSCs) to the major cell types found in the heart. In this Perspective, we review the state of the field in generating and maturing cardiovascular cells from hPSCs based on our fundamental understanding of heart development. We then highlight their applications for studying human heart development, modeling disease-performing drug screening, and cell replacement therapy. With the advancements highlighted here, the promise that hPSCs will deliver new treatments for degenerative and debilitating diseases may soon be fulfilled.
Collapse
Affiliation(s)
- Stephanie I Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jee Hoon Lee
- BlueRock Therapeutics ULC, Toronto, ON M5G 1L7, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
30
|
Bauerová-Hlinková V, Hajdúchová D, Bauer JA. Structure and Function of the Human Ryanodine Receptors and Their Association with Myopathies-Present State, Challenges, and Perspectives. Molecules 2020; 25:molecules25184040. [PMID: 32899693 PMCID: PMC7570887 DOI: 10.3390/molecules25184040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 01/28/2023] Open
Abstract
Cardiac arrhythmias are serious, life-threatening diseases associated with the dysregulation of Ca2+ influx into the cytoplasm of cardiomyocytes. This dysregulation often arises from dysfunction of ryanodine receptor 2 (RyR2), the principal Ca2+ release channel. Dysfunction of RyR1, the skeletal muscle isoform, also results in less severe, but also potentially life-threatening syndromes. The RYR2 and RYR1 genes have been found to harbor three main mutation “hot spots”, where mutations change the channel structure, its interdomain interface properties, its interactions with its binding partners, or its dynamics. In all cases, the result is a defective release of Ca2+ ions from the sarcoplasmic reticulum into the myocyte cytoplasm. Here, we provide an overview of the most frequent diseases resulting from mutations to RyR1 and RyR2, briefly review some of the recent experimental structural work on these two molecules, detail some of the computational work describing their dynamics, and summarize the known changes to the structure and function of these receptors with particular emphasis on their N-terminal, central, and channel domains.
Collapse
|
31
|
Njegic A, Wilson C, Cartwright EJ. Targeting Ca 2 + Handling Proteins for the Treatment of Heart Failure and Arrhythmias. Front Physiol 2020; 11:1068. [PMID: 33013458 PMCID: PMC7498719 DOI: 10.3389/fphys.2020.01068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Diseases of the heart, such as heart failure and cardiac arrhythmias, are a growing socio-economic burden. Calcium (Ca2+) dysregulation is key hallmark of the failing myocardium and has long been touted as a potential therapeutic target in the treatment of a variety of cardiovascular diseases (CVD). In the heart, Ca2+ is essential for maintaining normal cardiac function through the generation of the cardiac action potential and its involvement in excitation contraction coupling. As such, the proteins which regulate Ca2+ cycling and signaling play a vital role in maintaining Ca2+ homeostasis. Changes to the expression levels and function of Ca2+-channels, pumps and associated intracellular handling proteins contribute to altered Ca2+ homeostasis in CVD. The remodeling of Ca2+-handling proteins therefore results in impaired Ca2+ cycling, Ca2+ leak from the sarcoplasmic reticulum and reduced Ca2+ clearance, all of which contributes to increased intracellular Ca2+. Currently, approved treatments for targeting Ca2+ handling dysfunction in CVD are focused on Ca2+ channel blockers. However, whilst Ca2+ channel blockers have been successful in the treatment of some arrhythmic disorders, they are not universally prescribed to heart failure patients owing to their ability to depress cardiac function. Despite the progress in CVD treatments, there remains a clear need for novel therapeutic approaches which are able to reverse pathophysiology associated with heart failure and arrhythmias. Given that heart failure and cardiac arrhythmias are closely associated with altered Ca2+ homeostasis, this review will address the molecular changes to proteins associated with both Ca2+-handling and -signaling; their potential as novel therapeutic targets will be discussed in the context of pre-clinical and, where available, clinical data.
Collapse
Affiliation(s)
- Alexandra Njegic
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Juhola M, Penttinen K, Joutsijoki H, Aalto-Setälä K. Analysis of Drug Effects on iPSC Cardiomyocytes with Machine Learning. Ann Biomed Eng 2020; 49:129-138. [PMID: 32367466 PMCID: PMC7773623 DOI: 10.1007/s10439-020-02521-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/24/2020] [Indexed: 01/16/2023]
Abstract
Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer an attractive experimental platform to investigate cardiac diseases and therapeutic outcome. In this study, iPSC-CMs were utilized to study their calcium transient signals and drug effects by means of machine learning, a central part of artificial intelligence. Drug effects were assessed in six iPSC-lines carrying different mutations causing catecholaminergic polymorphic ventricular tachycardia (CPVT), a highly malignant inherited arrhythmogenic disorder. The antiarrhythmic effect of dantrolene, an inhibitor of sarcoplasmic calcium release, was studied in iPSC-CMs after adrenaline, an adrenergic agonist, stimulation by machine learning analysis of calcium transient signals. First, beats of transient signals were identified with our peak recognition algorithm previously developed. Then 12 peak variables were computed for every identified peak of a signal and by means of this data signals were classified into different classes corresponding to those affected by adrenaline or, thereafter, affected by a drug, dantrolene. The best classification accuracy was approximately 79% indicating that machine learning methods can be utilized in analysis of iPSC-CM drug effects. In the future, data analysis of iPSC-CM drug effects together with machine learning methods can create a very valuable and efficient platform to individualize medication in addition to drug screening and cardiotoxicity studies.
Collapse
Affiliation(s)
- Martti Juhola
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland.
| | - Kirsi Penttinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henry Joutsijoki
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
33
|
Connell P, Word TA, Wehrens XHT. Targeting pathological leak of ryanodine receptors: preclinical progress and the potential impact on treatments for cardiac arrhythmias and heart failure. Expert Opin Ther Targets 2020; 24:25-36. [PMID: 31869254 DOI: 10.1080/14728222.2020.1708326] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Introduction: Type-2 ryanodine receptor (RyR2) located on the sarcoplasmic reticulum initiate systolic Ca2+ transients within cardiomyocytes. Proper functioning of RyR2 is therefore crucial to the timing and force generated by cardiomyocytes within a healthy heart. Improper intracellular Ca2+ handing secondary to RyR2 dysfunction is associated with a variety of cardiac pathologies including catecholaminergic polymorphic ventricular tachycardia (CPVT), atrial fibrillation (AF), and heart failure (HF). Thus, RyR2 and its associated accessory proteins provide promising drug targets to scientists developing therapeutics for a variety of cardiac pathologies.Areas covered: In this article, we review the role of RyR2 in a variety of cardiac pathologies. We performed a literature search utilizing PubMed and MEDLINE as well as reviewed registries of trials from clinicaltrials.gov from 2010 to 2019 for novel therapeutic approaches that address the cellular mechanisms underlying CPVT, AF, and HF by specifically targeting defective RyR2 channels.Expert opinion: The negative impact of cardiac dysfunction on human health and medical economics are major motivating factors for establishing new and effective therapeutic approaches. Focusing on directly impacting the molecular mechanisms underlying defective Ca2+ handling by RyR2 in HF and arrhythmia has great potential to be translated into novel and innovative therapies.
Collapse
Affiliation(s)
- Patrick Connell
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.,Departments of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tarah A Word
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.,Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.,Departments of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.,Medicine (Cardiology, Baylor College of Medicine, Houston, TX, USA.,Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
34
|
Pölönen RP, Swan H, Aalto-Setälä K. Mutation-specific differences in arrhythmias and drug responses in CPVT patients: simultaneous patch clamp and video imaging of iPSC derived cardiomyocytes. Mol Biol Rep 2019; 47:1067-1077. [PMID: 31786768 DOI: 10.1007/s11033-019-05201-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited cardiac disease characterized by arrhythmias under adrenergic stress. Mutations in the cardiac ryanodine receptor (RYR2) are the leading cause for CPVT. We characterized electrophysiological properties of CPVT patient-specific induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying different mutations in RYR2 and evaluated effects of carvedilol and flecainide on action potential (AP) and contractile properties of hiPSC-CMs. iPSC-CMs were generated from skin biopsies of CPVT patients carrying exon 3 deletion (E3D) and L4115F mutation in RYR2. APs and contractile movement were recorded simultaneously from the same hiPSC-CMs. Differences in AP properties of ventricular like CMs were seen in CPVT and control CMs: APD90 of both E3D (n = 20) and L4115F (n = 25) CPVT CMs was shorter than in control CMs (n = 15). E3D-CPVT CMs had shortest AP duration, lowest AP amplitude, upstroke velocity and more depolarized diastolic potential than controls. Adrenaline had positive and carvedilol and flecainide negative chronotropic effect in all hiPSC CMs. CPVT CMs had increased amount of delayed after depolarizations (DADs) and early after depolarizations (EADs) after adrenaline exposure. E3D CPVT CMs had the most DADs, EADs, and tachyarrhythmia. Discordant negatively coupled alternans was seen in L4115F CPVT CMs. Carvedilol cured almost all arrhythmias in L4115F CPVT CMs. Both drugs decreased contraction amplitude in all hiPSC CMs. E3D CPVT CMs have electrophysiological properties, which render them more prone to arrhythmias. iPSC-CMs provide a unique platform for disease modeling and drug screening for CPVT. Combining electrophysiological measurements, we can gain deeper insight into mechanisms of arrhythmias.
Collapse
Affiliation(s)
- R P Pölönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Arvo2 D441, 33520, Tampere, Finland.
| | - H Swan
- Helsinki University Hospital and Helsinki University, PO Box 340, 00029, Helsinki, Finland
| | - K Aalto-Setälä
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Arvo2 D441, 33520, Tampere, Finland
- Heart Center, Tampere University Hospital, Arvo Ylpön katu 34, Arvo2 D437, 33520, Tampere, Finland
| |
Collapse
|
35
|
Park SJ, Zhang D, Qi Y, Li Y, Lee KY, Bezzerides VJ, Yang P, Xia S, Kim SL, Liu X, Lu F, Pasqualini FS, Campbell PH, Geva J, Roberts AE, Kleber AG, Abrams DJ, Pu WT, Parker KK. Insights Into the Pathogenesis of Catecholaminergic Polymorphic Ventricular Tachycardia From Engineered Human Heart Tissue. Circulation 2019; 140:390-404. [PMID: 31311300 PMCID: PMC6750809 DOI: 10.1161/circulationaha.119.039711] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Modeling of human arrhythmias with induced pluripotent stem cell-derived cardiomyocytes has focused on single-cell phenotypes. However, arrhythmias are the emergent properties of cells assembled into tissues, and the impact of inherited arrhythmia mutations on tissue-level properties of human heart tissue has not been reported. METHODS Here, we report an optogenetically based, human engineered tissue model of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia caused by mutation of the cardiac ryanodine channel and triggered by exercise. We developed a human induced pluripotent stem cell-derived cardiomyocyte-based platform to study the tissue-level properties of engineered human myocardium. We investigated pathogenic mechanisms in CPVT by combining this novel platform with genome editing. RESULTS In our model, CPVT tissues were vulnerable to developing reentrant rhythms when stimulated by rapid pacing and catecholamine, recapitulating hallmark features of the disease. These conditions elevated diastolic Ca2+ levels and increased temporal and spatial dispersion of Ca2+ wave speed, creating a vulnerable arrhythmia substrate. Using Cas9 genome editing, we pinpointed a single catecholamine-driven phosphorylation event, ryanodine receptor-serine 2814 phosphorylation by Ca2+/calmodulin-dependent protein kinase II, that is required to unmask the arrhythmic potential of CPVT tissues. CONCLUSIONS Our study illuminates the molecular and cellular pathogenesis of CPVT and reveals a critical role of calmodulin-dependent protein kinase II-dependent reentry in the tissue-scale mechanism of this disease. We anticipate that this approach will be useful for modeling other inherited and acquired cardiac arrhythmias.
Collapse
Affiliation(s)
- Sung-Jin Park
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.).,Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.)
| | - Yifei Li
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.).,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu (Y.L.)
| | - Keel Yong Lee
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Vassilios J Bezzerides
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Pengcheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.)
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.)
| | - Sean L Kim
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Xujie Liu
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Fujian Lu
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Francesco S Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Patrick H Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Judith Geva
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Andre G Kleber
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (A.G.K.)
| | - Dominic J Abrams
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - William T Pu
- Harvard Stem Cell Institute (W.T.P., K.K.P.), Harvard University, Cambridge, MA.,Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA.,Harvard Stem Cell Institute (W.T.P., K.K.P.), Harvard University, Cambridge, MA.,Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.).,Sogang-Harvard Research Center for Disease Biophysics, Sogang University, Seoul, South Korea (K.K.P.). Dr Park is currently at the Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University School of Medicine, Atlanta
| |
Collapse
|
36
|
Koivisto JT, Gering C, Karvinen J, Maria Cherian R, Belay B, Hyttinen J, Aalto-Setälä K, Kellomäki M, Parraga J. Mechanically Biomimetic Gelatin-Gellan Gum Hydrogels for 3D Culture of Beating Human Cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20589-20602. [PMID: 31120238 PMCID: PMC6750838 DOI: 10.1021/acsami.8b22343] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/17/2019] [Indexed: 05/07/2023]
Abstract
To promote the transition of cell cultures from 2D to 3D, hydrogels are needed to biomimic the extracellular matrix (ECM). One potential material for this purpose is gellan gum (GG), a biocompatible and mechanically tunable hydrogel. However, GG alone does not provide attachment sites for cells to thrive in 3D. One option for biofunctionalization is the introduction of gelatin, a derivative of the abundant ECM protein collagen. Unfortunately, gelatin lacks cross-linking moieties, making the production of self-standing hydrogels difficult under physiological conditions. Here, we explore the functionalization of GG with gelatin at biologically relevant concentrations using semiorthogonal, cytocompatible, and facile chemistry based on hydrazone reaction. These hydrogels exhibit mechanical behavior, especially elasticity, which resembles the cardiac tissue. The use of optical projection tomography for 3D cell microscopy demonstrates good cytocompatibility and elongation of human fibroblasts (WI-38). In addition, human-induced pluripotent stem cell-derived cardiomyocytes attach to the hydrogels and recover their spontaneous beating in 24 h culture. Beating is studied using in-house-built phase contrast video analysis software, and it is comparable with the beating of control cardiomyocytes under regular culture conditions. These hydrogels provide a promising platform to transition cardiac tissue engineering and disease modeling from 2D to 3D.
Collapse
Affiliation(s)
- Janne T. Koivisto
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Christine Gering
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Jennika Karvinen
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Reeja Maria Cherian
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Birhanu Belay
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Jari Hyttinen
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Katriina Aalto-Setälä
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Heart
Hospital, Tampere University Hospital, 33520 Tampere, Finland
| | - Minna Kellomäki
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Jenny Parraga
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| |
Collapse
|
37
|
Moon I, Ahmadzadeh E, Jaferzadeh K, Kim N. Automated quantification study of human cardiomyocyte synchronization using holographic imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:610-621. [PMID: 30800503 PMCID: PMC6377906 DOI: 10.1364/boe.10.000610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 05/05/2023]
Abstract
This paper investigates the rhythm strip and parameters of synchronization of human induced pluripotent stem cell (iPS) derived cardiomyocytes. The synchronization is evaluated from quantitative phase images of beating cardiomyocytes which are obtained using the time-lapse digital holographic imaging method. By quantitatively monitoring the dry mass redistribution, digital holography provides the physical contraction-relaxation signal caused by autonomous cardiac action potential. In order to analyze the synchronicity at the cell-to-cell level, we extracted single cardiac muscle cells, which contain the nuclei, from the phase images of cardiomyocytes containing multiple cells resulting from the fusion of k-means clustering and watershed segmentation algorithms. We demonstrate that mature cardiomyocyte cell synchronization can be automatically evaluated by time-lapse microscopic holographic imaging. Our proposed method can be applied for studies on cardiomyocyte disorders and drug safety testing systems.
Collapse
Affiliation(s)
- InKyu Moon
- Department of Robotics Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea
| | - Ezat Ahmadzadeh
- Department of Robotics Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea
- Department of Computer Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, South Korea
| | - Keyvan Jaferzadeh
- Department of Robotics Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea
| | - Namgon Kim
- Department of Robotics Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea
| |
Collapse
|
38
|
Thomas D, Christ T, Fabritz L, Goette A, Hammwöhner M, Heijman J, Kockskämper J, Linz D, Odening KE, Schweizer PA, Wakili R, Voigt N. German Cardiac Society Working Group on Cellular Electrophysiology state-of-the-art paper: impact of molecular mechanisms on clinical arrhythmia management. Clin Res Cardiol 2018; 108:577-599. [PMID: 30306295 DOI: 10.1007/s00392-018-1377-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
Cardiac arrhythmias remain a common challenge and are associated with significant morbidity and mortality. Effective and safe rhythm control strategies are a primary, yet unmet need in everyday clinical practice. Despite significant pharmacological and technological advances, including catheter ablation and device-based therapies, the development of more effective alternatives is of significant interest to increase quality of life and to reduce symptom burden, hospitalizations and mortality. The mechanistic understanding of pathophysiological pathways underlying cardiac arrhythmias has advanced profoundly, opening up novel avenues for mechanism-based therapeutic approaches. Current management of arrhythmias, however, is primarily guided by clinical and demographic characteristics of patient groups as opposed to individual, patient-specific mechanisms and pheno-/genotyping. With this state-of-the-art paper, the Working Group on Cellular Electrophysiology of the German Cardiac Society aims to close the gap between advanced molecular understanding and clinical decision-making in cardiac electrophysiology. The significance of cellular electrophysiological findings for clinical arrhythmia management constitutes the main focus of this document. Clinically relevant knowledge of pathophysiological pathways of arrhythmias and cellular mechanisms of antiarrhythmic interventions are summarized. Furthermore, the specific molecular background for the initiation and perpetuation of atrial and ventricular arrhythmias and mechanism-based strategies for therapeutic interventions are highlighted. Current "hot topics" in atrial fibrillation are critically appraised. Finally, the establishment and support of cellular and translational electrophysiology programs in clinical rhythmology departments is called for to improve basic-science-guided patient management.
Collapse
Affiliation(s)
- Dierk Thomas
- Department of Cardiology, Medical University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. .,HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.,Department of Cardiology, UHB NHS Trust, Birmingham, UK.,Department of Cardiovascular Medicine, Division of Rhythmology, University Hospital Münster, Münster, Germany
| | - Andreas Goette
- St. Vincenz-Hospital, Paderborn, Germany.,Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Matthias Hammwöhner
- St. Vincenz-Hospital, Paderborn, Germany.,Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jens Kockskämper
- Biochemical and Pharmacological Center (BPC) Marburg, Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Dominik Linz
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, SA, Australia.,Experimental Electrophysiology, University Hospital of Saarland, Homburg, Saar, Germany
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Freiburg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.,Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany
| | - Reza Wakili
- Department of Cardiology and Vascular Medicine, Medical Faculty, West German Heart Center, University Hospital Essen, Essen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.
| |
Collapse
|
39
|
Bruyneel AA, McKeithan WL, Feyen DA, Mercola M. Will iPSC-cardiomyocytes revolutionize the discovery of drugs for heart disease? Curr Opin Pharmacol 2018; 42:55-61. [PMID: 30081259 DOI: 10.1016/j.coph.2018.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/01/2018] [Indexed: 12/30/2022]
Abstract
Cardiovascular disease remains the largest single cause of mortality in the Western world, despite significant advances in clinical management over the years. Unfortunately, the development of new cardiovascular medicines is stagnating and can in part be attributed to the difficulty of screening for novel therapeutic strategies due to a lack of suitable models. The advent of human induced pluripotent stem cells and the ability to make limitless numbers of cardiomyocytes could revolutionize heart disease modeling and drug discovery. This review summarizes the state of the art in the field, describes the strengths and weaknesses of the technology, and applications where the model system would be most appropriate.
Collapse
Affiliation(s)
- Arne An Bruyneel
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wesley L McKeithan
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dries Am Feyen
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Mercola
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
40
|
Prajapati C, Pölönen RP, Aalto-Setälä K. Simultaneous recordings of action potentials and calcium transients from human induced pluripotent stem cell derived cardiomyocytes. Biol Open 2018; 7:bio.035030. [PMID: 29970475 PMCID: PMC6078349 DOI: 10.1242/bio.035030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) offer a unique in vitro platform to study cardiac diseases, as they recapitulate many disease phenotypes. The membrane potential (Vm) and intracellular calcium (Ca2+) transient (CaT) are usually investigated separately, because incorporating different techniques to acquire both aspects concurrently is challenging. In this study, we recorded Vm and CaT simultaneously to understand the interrelation between these parameters in hiPSC-CMs. For this, we used a conventional patch clamp technique to record Vm, and synchronized this with a Ca2+ imaging system to acquire CaT from same hiPSC-CMs. Our results revealed that the CaT at 90% decay (CaT90) was longer than action potential (AP) duration at 90% repolarization (APD90). In addition, there was also a strong positive correlation between the different parameters of CaT and AP. The majority of delayed after depolarizations (DADs) observed in the Vm recording were also characterized by elevations in the intracellular Ca2+ level, but in some cases no abnormalities were observed in CaT. However, simultaneous fluctuations in CaT were always observed during early after depolarizations (EADs) in Vm In summary, simultaneous recording of Vm and CaT broadens the understanding of the interrelation between Vm and CaT and could be used to elucidate the mechanisms underlying arrhythmia in cardiac disease condition.
Collapse
Affiliation(s)
| | | | - Katriina Aalto-Setälä
- BioMediTech, University of Tampere, 33520 Tampere, Finland .,Faculty of Medicine and Life Science, University of Tampere, 33520 Tampere, Finland.,Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
41
|
Human iPSC-Derived Cardiomyocytes for Investigation of Disease Mechanisms and Therapeutic Strategies in Inherited Arrhythmia Syndromes: Strengths and Limitations. Cardiovasc Drugs Ther 2018; 31:325-344. [PMID: 28721524 PMCID: PMC5550530 DOI: 10.1007/s10557-017-6735-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last two decades, significant progress has been made in the identification of genetic defects underlying inherited arrhythmia syndromes, which has provided some clinical benefit through elucidation of gene-specific arrhythmia triggers and treatment. However, for most arrhythmia syndromes, clinical management is hindered by insufficient knowledge of the functional consequences of the mutation in question, the pro-arrhythmic mechanisms involved, and hence the most optimal treatment strategy. Moreover, disease expressivity and sensitivity to therapeutic interventions often varies between mutations and/or patients, underlining the need for more individualized strategies. The development of the induced pluripotent stem cell (iPSC) technology now provides the opportunity for generating iPSC-derived cardiomyocytes (CMs) from human material (hiPSC-CMs), enabling patient- and/or mutation-specific investigations. These hiPSC-CMs may furthermore be employed for identification and assessment of novel therapeutic strategies for arrhythmia syndromes. However, due to their relative immaturity, hiPSC-CMs also display a number of essential differences as compared to adult human CMs, and hence there are certain limitations in their use. We here review the electrophysiological characteristics of hiPSC-CMs, their use for investigating inherited arrhythmia syndromes, and their applicability for identification and assessment of (novel) anti-arrhythmic treatment strategies.
Collapse
|
42
|
Becker BV, Seeger T, Beiert T, Antwerpen M, Palnek A, Port M, Ullmann R. Impact of Ionizing Radiation on Electrophysiological Behavior of Human-induced Ipsc-derived Cardiomyocytes on Multielectrode Arrays. HEALTH PHYSICS 2018; 115:21-28. [PMID: 29787427 DOI: 10.1097/hp.0000000000000817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cardiac arrhythmia presumably induced through cardiac fibrosis is a recurrent long-term consequence of exposure to ionizing radiation. However, there is also evidence that cardiac arrhythmia can occur in patients shortly after irradiation. In this study, the authors employed multielectrode arrays to investigate the short-term effects of x-ray radiation on the electrophysiological behavior of cardiomyocytes derived from human-induced pluripotent stem cells. These cardiomyocytes with spontaneous pacemaker activity were cultured on single-well multielectrode arrays. After exposure to 0, 0.5, 1, 2, 5, 10 Gy x-ray radiation, electrical activity was measured at time points ranging from 10 min to 96 h. RNA sequencing was employed to verify the expression of genes specifically involved in cardiomyocyte differentiation and function. A decrease in beating rate was observed after irradiation with 5 and 10 Gy starting 48 h after exposure. Cells exposed to higher doses of radiation were more prone to show changes in electrophysiological spatial distribution. No radiation-induced effects with respect to the corrected QT interval were detectable. Gene expression analysis showed up regulation of typical cardiac features like ACTC1 or HCN4. In this study, early dose-dependent changes in electrophysiological behavior were determined after x-ray irradiation. Results point towards a dose-dependent effect on pacemaker function of cardiomyocytes and indicate a possible connection between irradiation and short-term changes in electrophysiological cardiac function. Cardiomyocytes derived from human-induced pluripotent stem cells on multielectrode arrays represent a promising in vitro cardiac-modeling system for preclinical studies.
Collapse
Affiliation(s)
- Benjamin V Becker
- Bundeswehr Institute of Radiobiology affiliated with Ulm University, Genomics II, Neuherbergstrasse 11, 80804, Munich, Germany
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80804, Munich, Germany
| | - Thomas Beiert
- Department of Cardiology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany
| | - Markus Antwerpen
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80804, Munich, Germany
| | - Andreas Palnek
- Bundeswehr Institute of Radiobiology affiliated with Ulm University, Genomics II, Neuherbergstrasse 11, 80804, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated with Ulm University, Head of Institute, Neuherbergstrasse 11, 80804, Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology affiliated with Ulm University, Genomics II Department Head, Neuherbergstrasse 11, 80804, Munich, Germany
| |
Collapse
|
43
|
Juhola M, Joutsijoki H, Penttinen K, Aalto-Setälä K. Detection of genetic cardiac diseases by Ca 2+ transient profiles using machine learning methods. Sci Rep 2018; 8:9355. [PMID: 29921843 PMCID: PMC6008430 DOI: 10.1038/s41598-018-27695-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/07/2018] [Indexed: 01/16/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have revolutionized cardiovascular research. Abnormalities in Ca2+ transients have been evident in many cardiac disease models. We have shown earlier that, by exploiting computational machine learning methods, normal Ca2+ transients corresponding to healthy CMs can be distinguished from diseased CMs with abnormal transients. Here our aim was to study whether it is possible to separate different genetic cardiac diseases (CPVT, LQT, HCM) on the basis of Ca2+ transients using machine learning methods. Classification accuracies of up to 87% were obtained for these three diseases, indicating that Ca2+ transients are disease-specific. By including healthy controls in the classifications, the best classification accuracy obtained was still high: approximately 79%. In conclusion, we demonstrate as the proof of principle that the computational machine learning methodology appears to be a powerful means to accurately categorize iPSC-CMs and could provide effective methods for diagnostic purposes in the future.
Collapse
Affiliation(s)
- Martti Juhola
- Faculty of Natural Sciences, University of Tampere, Tampere, Finland.
| | - Henry Joutsijoki
- Faculty of Natural Sciences, University of Tampere, Tampere, Finland
| | - Kirsi Penttinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Heart Center, Tampere University Hospital, 33520, Tampere, Finland
| |
Collapse
|
44
|
Brandão KO, Tabel VA, Atsma DE, Mummery CL, Davis RP. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. Dis Model Mech 2018; 10:1039-1059. [PMID: 28883014 PMCID: PMC5611968 DOI: 10.1242/dmm.030320] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It is now a decade since human induced pluripotent stem cells (hiPSCs) were first described. The reprogramming of adult somatic cells to a pluripotent state has become a robust technology that has revolutionised our ability to study human diseases. Crucially, these cells capture all the genetic aspects of the patient from which they were derived. Combined with advances in generating the different cell types present in the human heart, this has opened up new avenues to study cardiac disease in humans and investigate novel therapeutic approaches to treat these pathologies. Here, we provide an overview of the current state of the field regarding the generation of cardiomyocytes from human pluripotent stem cells and methods to assess them functionally, an essential requirement when investigating disease and therapeutic outcomes. We critically evaluate whether treatments suggested by these in vitro models could be translated to clinical practice. Finally, we consider current shortcomings of these models and propose methods by which they could be further improved.
Collapse
Affiliation(s)
- Karina O Brandão
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Viola A Tabel
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
45
|
CRISPR/Cas9 Gene editing of RyR2 in human stem cell-derived cardiomyocytes provides a novel approach in investigating dysfunctional Ca 2+ signaling. Cell Calcium 2018; 73:104-111. [PMID: 29730419 DOI: 10.1016/j.ceca.2018.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/27/2022]
Abstract
Type-2 ryanodine receptors (RyR2s) play a pivotal role in cardiac excitation-contraction coupling by releasing Ca2+ from sarcoplasmic reticulum (SR) via a Ca2+ -induced Ca2+ release (CICR) mechanism. Two strategies have been used to study the structure-function characteristics of RyR2 and its disease associated mutations: (1) heterologous cell expression of the recombinant mutant RyR2s, and (2) knock-in mouse models harboring RyR2 point mutations. Here, we establish an alternative approach where Ca2+ signaling aberrancy caused by the RyR2 mutation is studied in human cardiomyocytes with robust CICR mechanism. Specifically, we introduce point mutations in wild-type RYR2 of human induced pluripotent stem cells (hiPSCs) by CRISPR/Cas9 gene editing, and then differentiate them into cardiomyocytes. To verify the reliability of this approach, we introduced the same disease-associated RyR2 mutation, F2483I, which was studied by us in hiPSC-derived cardiomyocytes (hiPSC-CMs) from a patient biopsy. The gene-edited F2483I hiPSC-CMs exhibited longer and wandering Ca2+ sparks, elevated diastolic Ca2+ leaks, and smaller SR Ca2+ stores, like those of patient-derived cells. Our CRISPR/Cas9 gene editing approach validated the feasibility of creating myocytes expressing the various RyR2 mutants, making comparative mechanistic analysis and pharmacotherapeutic approaches for RyR2 pathologies possible.
Collapse
|
46
|
Antiarrhythmic Effects of Carvedilol and Flecainide in Cardiomyocytes Derived from Catecholaminergic Polymorphic Ventricular Tachycardia Patients. Stem Cells Int 2018; 2018:9109503. [PMID: 29760739 DOI: 10.1155/2018/9109503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/02/2018] [Accepted: 02/15/2018] [Indexed: 12/18/2022] Open
Abstract
Mutations in the cardiac ryanodine receptor (RYR2) are the leading cause for catecholaminergic polymorphic ventricular tachycardia (CPVT). In this study, we evaluated antiarrhythmic efficacy of carvedilol and flecainide in CPVT patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) carrying different mutations in RYR2. iPSC-CMs were generated from skin biopsies of CPVT patients carrying exon 3 deletion and L4115 or V4653F mutation in RYR2 and of a healthy individual. Ca2+ kinetics and drug effects were studied with Fluo-4 AM indicator. Carvedilol abolished Ca2+ abnormalities in 31% of L4115F, 36% of V4653F, and 46% of exon 3 deletion carrying CPVT cardiomyocytes and flecainide 33%, 30%, and 52%, respectively. Both drugs lowered the intracellular Ca2+ level and beating rate of the cardiomyocytes significantly. Moreover, flecainide caused abnormal Ca2+ transients in 61% of controls compared to 26% of those with carvedilol. Carvedilol and flecainide were equally effective in CPVT iPSC-CMs. However, flecainide induced arrhythmias in 61% of control cells. CPVT cardiomyocytes carrying the exon 3 deletion had the most severe Ca2+ abnormalities, but they had the best response to drug therapies. According to this study, the arrhythmia-abolishing effect of neither of the drugs is optimal. iPSC-CMs provide a unique platform for testing drugs for CPVT.
Collapse
|
47
|
Prajapati C, Ojala M, Aalto-Setälä K. Divergent effects of adrenaline in human induced pluripotent stem cell-derived cardiomyocytes obtained from hypertrophic cardiomyopathy. Dis Model Mech 2018; 11:dmm.032896. [PMID: 29361520 PMCID: PMC5894949 DOI: 10.1242/dmm.032896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/22/2017] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited cardiac disease that affects the heart muscle with diverse clinical outcomes. HCM can cause sudden cardiac death (SCD) during or immediately after mild to rigorous physical activity in young patients. However, the mechanism causing SCD as a result of exercise remains unknown, but exercise-induced ventricular arrhythmias are thought to be responsible for this fatal consequence. To understand the disease mechanism behind HCM in a better way, we generated patient-specific induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from HCM patients carrying either the MYBPC3-Gln1061X or TPM1-Asp175Asn mutation. We extensively investigated the effects of low to high concentrations of adrenaline on action potential characteristics, and the occurrence of arrhythmias in the presence of various concentrations of adrenaline and in wash-out condition. We classified and quantified different types of arrhythmias observed in hiPSC-CMs, and found that the occurrence of arrhythmias was dependent on concentrations of adrenaline and positions of mutations in genes causing HCM. In addition, we observed ventricular tachycardia types of arrhythmias in hiPSC-CMs carrying the TPM1-Asp175Asn mutation. We additionally examined the antiarrhythmic potency of bisoprolol in HCM-specific hiPSC-CMs. However, bisoprolol could not reduce the occurrence of arrhythmias during administration or during the wash-out condition of adrenaline in HCM-specific hiPSC-CMs. Our study demonstrates hiPSC-CMs as a promising tool for studying HCM. The experimental design used in this study could be suitable and beneficial for studying other components and drugs related to cardiac disease in general. Summary: Different concentrations of adrenaline have divergent effects during and immediately after administration in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) obtained from hypertrophic cardiomyopathy (HCM) patients. Bisoprolol could not reduce the arrhythmias in HCM-specific hiPSC-CMs.
Collapse
Affiliation(s)
| | - Marisa Ojala
- BioMediTech, University of Tampere, 33014 Tampere, Finland
| | - Katriina Aalto-Setälä
- BioMediTech, University of Tampere, 33014 Tampere, Finland .,Faculty of Medicine and Life Science, University of Tampere, 33014 Tampere, Finland.,Heart Hospital, Tampere University Hospital, 33521 Tampere, Finland
| |
Collapse
|
48
|
Ramos-Franco J, Fill M. Approaching ryanodine receptor therapeutics from the calcin angle. J Gen Physiol 2018; 147:369-73. [PMID: 27114611 PMCID: PMC4845691 DOI: 10.1085/jgp.201611599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 11/23/2022] Open
Affiliation(s)
- Josefina Ramos-Franco
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612
| | - Michael Fill
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
49
|
Stem cells in cardiovascular diseases: turning bad days into good ones. Drug Discov Today 2017; 22:1730-1739. [DOI: 10.1016/j.drudis.2017.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/28/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022]
|
50
|
Simultaneous Measurement of Contraction and Calcium Transients in Stem Cell Derived Cardiomyocytes. Ann Biomed Eng 2017; 46:148-158. [PMID: 28975460 PMCID: PMC5754453 DOI: 10.1007/s10439-017-1933-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/19/2017] [Indexed: 02/01/2023]
Abstract
Induced pluripotent stem cell derived cardiomyocytes (iPSC-CM) provide a powerful platform for disease modeling and drug development in vitro. Traditionally, electrophysiological methods or fluorescent dyes (e.g. calcium) have been used in their functional characterization. Recently, video microscopy has enabled non-invasive analysis of CM contractile motion. Simultaneous assessments of motion and calcium transients have not been generally conducted, as motion detection methods are affected by changing pixel intensities in calcium imaging. Here, we present for the first time a protocol for simultaneous video-based measurement of contraction and calcium with fluorescent dye Fluo-4 videos without corrections, providing data on both ionic and mechanic activity. The method and its accuracy are assessed by measuring the effect of fluorescence and background light on transient widths and contraction velocity amplitudes. We demonstrate the method by showing the contraction-calcium relation and measuring the transient time intervals in catecholaminergic polymorphic ventricular tachycardia patient specific iPSC-CMs and healthy controls. Our validation shows that the simultaneous method provides comparable data to combined individual measurements, providing a new tool for measuring CM biomechanics and calcium simultaneously. Our results with calcium sensitive dyes suggest the method could be expanded to use with other fluorescent reporters as well.
Collapse
|