1
|
Jin J, Cui Y, Niu H, Lin Y, Wu X, Qi X, Bai K, Zhang Y, Wang Y, Bu H. NSCLC Extracellular Vesicles Containing miR-374a-5p Promote Leptomeningeal Metastasis by Influencing Blood‒Brain Barrier Permeability. Mol Cancer Res 2024; 22:699-710. [PMID: 38639925 PMCID: PMC11294816 DOI: 10.1158/1541-7786.mcr-24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Leptomeningeal metastasis (LM) is a devastating complication of advanced non-small cell lung cancer (NSCLC). Its diagnosis and monitoring can be challenging. Recently, extracellular vesicle (EV) miRNAs have become a new noninvasive diagnostic biomarker. The purpose of this study was to examine the clinical value and role of EV miRNAs in NSCLC-LM. Next-generation sequencing analysis revealed that miRNAs with differential expression of EVs in sera of patients with NSCLC with LM and non-LM were detected to identify biological markers for the diagnosis of LM. Cellular and in vivo experiments were conducted to explore the pathogenesis of EV miRNA promoting LM in NSCLC. In the present study, we first demonstrated that the serum level of EV-associated miR-374a-5p in patients with LM of lung cancer was much higher than that in patients without LM and was correlated with the survival time of patients with LM. Further studies showed that EV miR-374a-5p efficiently destroys tight junctions and the integrity of the cerebral microvascular endothelial cell barrier, resulting in increased blood-brain barrier permeability. Mechanistically, miR-374a-5p regulates the distribution of ZO1 and occludin in endothelial cells by targeting γ-adducin, increasing vascular permeability and promoting LM. Implications: These results suggest that serum NSCLC-derived EV miR-374a-5p is involved in premetastatic niche formation by regulating the permeability of the blood-brain barrier to promote NSCLC-LM and can be used as a blood biomarker for the diagnosis and prognosis of NSCLC-LM.
Collapse
Affiliation(s)
- Jie Jin
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Beijing Institute of Biotechnology, Beijing, PR China.
- Xiong’an Xuanwu Hospital, Baoding, PR China.
| | - Yumeng Cui
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Huicong Niu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China.
| | - Yanli Lin
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Xiaojie Wu
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Xuejiao Qi
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| | - Kaixuan Bai
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| | - Yu Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| | - Youliang Wang
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Hui Bu
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| |
Collapse
|
2
|
Moztarzadeh S, Sepic S, Hamad I, Waschke J, Radeva MY, García-Ponce A. Cortactin is in a complex with VE-cadherin and is required for endothelial adherens junction stability through Rap1/Rac1 activation. Sci Rep 2024; 14:1218. [PMID: 38216638 PMCID: PMC10786853 DOI: 10.1038/s41598-024-51269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Vascular permeability is mediated by Cortactin (Cttn) and regulated by several molecules including cyclic-adenosine-monophosphate, small Rho family GTPases and the actin cytoskeleton. However, it is unclear whether Cttn directly interacts with any of the junctional components or if Cttn intervenes with signaling pathways affecting the intercellular contacts and the cytoskeleton. To address these questions, we employed immortalized microvascular myocardial endothelial cells derived from wild-type and Cttn-knock-out mice. We found that lack of Cttn compromised barrier integrity due to fragmented membrane distribution of different junctional proteins. Moreover, immunoprecipitations revealed that Cttn is within the VE-cadherin-based adherens junction complex. In addition, lack of Cttn slowed-down barrier recovery after Ca2+ repletion. The role of Cttn for cAMP-mediated endothelial barrier regulation was analyzed using Forskolin/Rolipram. In contrast to Cttn-KO, WT cells reacted with increased transendothelial electrical resistance. Absence of Cttn disturbed Rap1 and Rac1 activation in Cttn-depleted cells. Surprisingly, despite the absence of Cttn, direct activation of Rac1/Cdc42/RhoA by CN04 increased barrier resistance and induced well-defined cortical actin and intracellular actin bundles. In summary, our data show that Cttn is required for basal barrier integrity by allowing proper membrane distribution of junctional proteins and for cAMP-mediated activation of the Rap1/Rac1 signaling pathway.
Collapse
Affiliation(s)
- Sina Moztarzadeh
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sara Sepic
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Ibrahim Hamad
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Alexander García-Ponce
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
3
|
Vielmuth F, Radeva MY, Yeruva S, Sigmund AM, Waschke J. cAMP: A master regulator of cadherin-mediated binding in endothelium, epithelium and myocardium. Acta Physiol (Oxf) 2023; 238:e14006. [PMID: 37243909 DOI: 10.1111/apha.14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Regulation of cadherin-mediated cell adhesion is crucial not only for maintaining tissue integrity and barrier function in the endothelium and epithelium but also for electromechanical coupling within the myocardium. Therefore, loss of cadherin-mediated adhesion causes various disorders, including vascular inflammation and desmosome-related diseases such as the autoimmune blistering skin dermatosis pemphigus and arrhythmogenic cardiomyopathy. Mechanisms regulating cadherin-mediated binding contribute to the pathogenesis of diseases and may also be used as therapeutic targets. Over the last 30 years, cyclic adenosine 3',5'-monophosphate (cAMP) has emerged as one of the master regulators of cell adhesion in endothelium and, more recently, also in epithelial cells as well as in cardiomyocytes. A broad spectrum of experimental models from vascular physiology and cell biology applied by different generations of researchers provided evidence that not only cadherins of endothelial adherens junctions (AJ) but also desmosomal contacts in keratinocytes and the cardiomyocyte intercalated discs are central targets in this scenario. The molecular mechanisms involve protein kinase A- and exchange protein directly activated by cAMP-mediated regulation of Rho family GTPases and S665 phosphorylation of the AJ and desmosome adaptor protein plakoglobin. In line with this, phosphodiesterase 4 inhibitors such as apremilast have been proposed as a therapeutic strategy to stabilize cadherin-mediated adhesion in pemphigus and may also be effective to treat other disorders where cadherin-mediated binding is compromised.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna M Sigmund
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Moztarzadeh S, Radeva MY, Sepic S, Schuster K, Hamad I, Waschke J, García-Ponce A. Lack of adducin impairs the stability of endothelial adherens and tight junctions and may be required for cAMP-Rac1-mediated endothelial barrier stabilization. Sci Rep 2022; 12:14940. [PMID: 36056066 PMCID: PMC9440001 DOI: 10.1038/s41598-022-18964-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Adducin (Add) is an actin binding protein participating in the stabilization of actin/spectrin networks, epithelial junctional turnover and cardiovascular disorders such as hypertension. Recently, we demonstrated that Add is required for adherens junctions (AJ) integrity. Here we hypothesized that Add regulates tight junctions (TJ) as well and may play a role in cAMP-mediated barrier enhancement. We evaluated the role of Add in MyEnd cells isolated from WT and Add-Knock-Out (KO) mice. Our results indicate that the lack of Add drastically alters the junctional localization and protein levels of major AJ and TJ components, including VE-Cadherin and claudin-5. We also showed that cAMP signaling induced by treatment with forskolin and rolipram (F/R) enhances the barrier integrity of WT but not Add-KO cells. The latter showed no junctional reorganization upon cAMP increase. The absence of Add also led to higher protein levels of the small GTPases Rac1 and RhoA. In vehicle-treated cells the activation level of Rac1 did not differ significantly when WT and Add-KO cells were compared. However, the lack of Add led to increased activity of RhoA. Moreover, F/R treatment triggered Rac1 activation only in WT cells. The function of Rac1 and RhoA per se was unaffected by the total ablation of Add, since direct activation with CN04 was still possible in both cell lines and led to improved endothelial barrier function. In the current study, we demonstrate that Add is required for the maintenance of endothelial barrier by regulating both AJ and TJ. Our data show that Add may act upstream of Rac1 as it is necessary for its activation via cAMP.
Collapse
Affiliation(s)
- Sina Moztarzadeh
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sara Sepic
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Katharina Schuster
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Ibrahim Hamad
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Alexander García-Ponce
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
5
|
DeOre BJ, Partyka PP, Fan F, Galie PA. CD44 mediates shear stress mechanotransduction in an in vitro blood-brain barrier model through small GTPases RhoA and Rac1. FASEB J 2022; 36:e22278. [PMID: 35436025 PMCID: PMC10758994 DOI: 10.1096/fj.202100822rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/04/2024]
Abstract
Fluid shear stress is an important mediator of vascular permeability, yet the molecular mechanisms underlying the effect of shear on the blood-brain barrier (BBB) have yet to be clarified in cerebral vasculature despite its importance for brain homeostasis. The goal of this study is to probe components of shear mechanotransduction within the BBB to gain a better understanding of pathologies associated with changes in cerebral perfusion including ischemic stroke. Interrogating the effects of shear stress in vivo is complicated by the complexity of factors in the brain parenchyma and the difficulty associated with modulating blood flow regimes. The in vitro model used in this study is compatible with real-time measurement of barrier function using a transendothelial electrical resistance as well as immunocytochemistry and dextran permeability assays. These experiments reveal that there is a threshold level of shear stress required for barrier formation and that the composition of the extracellular matrix, specifically the presence of high molecular weight hyaluronan, dictates the flow response. Gene editing to modulate the expression of CD44, a mechanosensitive receptor for hyaluronan, demonstrates that the receptor is required for the endothelial response to shear stress. Manipulation of small GTPase activity reveals CD44 activates Rac1 while inhibiting RhoA activation. Additionally, adducin-γ localizes to tight junctions in response to shear stress and RhoA inhibition and is required to maintain the barrier. This study identifies specific components of the mechanosensing complex associated with the BBB response to fluid shear stress and, therefore, illuminates potential targets for barrier manipulation in vivo.
Collapse
Affiliation(s)
- Brandon J. DeOre
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Paul P. Partyka
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Peter A. Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| |
Collapse
|
6
|
Interactions Networks for Primary Heart Sarcomas. Cancers (Basel) 2021; 13:cancers13153882. [PMID: 34359782 PMCID: PMC8345524 DOI: 10.3390/cancers13153882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/19/2023] Open
Abstract
Personalized medicine incorporates genetic information into medical practice so as to optimize the management of chronic diseases. In rare diseases, such as heart cancer (incidence 0.0017-0.33%), this may be elusive. Ninety-five percent of the cases are due to secondary involvementwith the neoplasm originating in the lungs, breasts, kidney, blood, or skin. The clinical manifestations of heart tumors (benign or malignant) include heart failure, hypertension, and cardiac arrhythmias of varying severity, frequently resulting in blood vessel emboli, including strokes. This study aims to explain the pathophysiology and contribute to a P4 medicine model for use by cardiologists, pathologists, and oncologists. We created six gene/protein heart-related and tumor-related targets high-confidence interactomes, which unfold the main pathways that may lead to cardiac diseases (heart failure, hypertension, coronary artery disease, arrhythmias), i.e., the sympathetic nervous system, the renin-angiotensin-aldosterone axis and the endothelin pathway, and excludes others, such as the K oxidase or cytochrome P450 pathways. We concluded that heart cancer patients could be affected by beta-adrenergic blockers, ACE inhibitors, QT-prolonging antiarrhythmic drugs, antibiotics, and antipsychotics. Interactomes may elucidate unknown pathways, adding to patient/survivor wellness during/after chemo- and/or radio-therapy.
Collapse
|
7
|
Xiong M, Zou L, Meng L, Zhang X, Tian Y, Zhang G, Yang J, Chen G, Xiong J, Ye K, Zhang Z. A γ-adducin cleavage fragment induces neurite deficits and synaptic dysfunction in Alzheimer's disease. Prog Neurobiol 2021; 203:102074. [PMID: 33992672 DOI: 10.1016/j.pneurobio.2021.102074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Neurite deficits and synaptic dysfunction contribute to cognitive impairments in Alzheimer's disease (AD). However, the underlying molecular mechanisms remain unclear. Here, we show that γ-adducin, a cytoskeleton-associated protein that assembles the spectrin-actin framework, is cleaved by a lysosomal cysteine proteinase named asparagine endopeptidase (AEP). AEP is upregulated and activated during aging and cleaves γ-adducin at N357, disrupting spectrin-actin assembly. Moreover, γ-adducin (1-357) fragment downregulates the expression of Rac2, leading to defects in neurite outgrowth. Expression of the γ-adducin (1-357) fragment in the hippocampus of tau P301S transgenic mice resulted in significant AD-like pathology and cognitive deficits. In summary, AEP-mediated fragmentation of γ-adducin plays a vital role in AD. Blocking the activity of AEP might be a novel therapeutic target for AD.
Collapse
Affiliation(s)
- Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiaolong Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
8
|
Epac1 Is Crucial for Maintenance of Endothelial Barrier Function through A Mechanism Partly Independent of Rac1. Cells 2020; 9:cells9102170. [PMID: 32992982 PMCID: PMC7601253 DOI: 10.3390/cells9102170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Epac1 (exchange protein activated by cAMP) stabilizes the endothelial barrier, but detailed studies are limited by the side effects of pharmacological Epac1 modulators and transient transfections. Here, we compare the key properties of barriers between endothelial cells derived from wild-type (WT) and Epac1-knockout (KO) mice myocardium. We found that KO cell layers, unlike WT layers, had low and cAMP-insensitive trans-endothelial resistance (TER). They also had fragmented VE-cadherin staining despite having augmented cAMP levels and increased protein expression of Rap1, Rac1, RhoA, and VE-cadherin. The simultaneous direct activation of Rac1 and RhoA by CN04 compensated Epac1 loss, since TER was increased. In KO-cells, inhibition of Rac1 activity had no additional effect on TER, suggesting that other mechanisms compensate the inhibition of the Rac1 function to preserve barrier properties. In summary, Epac1 is crucial for baseline and cAMP-mediated barrier stabilization through mechanisms that are at least partially independent of Rac1.
Collapse
|
9
|
Chernaya O, Zhurikhina A, Hladyshau S, Pilcher W, Young KM, Ortner J, Andra V, Sulchek TA, Tsygankov D. Biomechanics of Endothelial Tubule Formation Differentially Modulated by Cerebral Cavernous Malformation Proteins. iScience 2018; 9:347-358. [PMID: 30453164 PMCID: PMC6240601 DOI: 10.1016/j.isci.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/12/2018] [Accepted: 10/31/2018] [Indexed: 11/18/2022] Open
Abstract
At early stages of organismal development, endothelial cells self-organize into complex networks subsequently giving rise to mature blood vessels. The compromised collective behavior of endothelial cells leads to the development of a number of vascular diseases, many of which can be life-threatening. Cerebral cavernous malformation is an example of vascular diseases caused by abnormal development of blood vessels in the brain. Despite numerous efforts to date, enlarged blood vessels (cavernomas) can be effectively treated only by risky and complex brain surgery. In this work, we use a comprehensive simulation model to dissect the mechanisms contributing to an emergent behavior of the multicellular system. By tightly integrating computational and experimental approaches we gain a systems-level understanding of the basic mechanisms of vascular tubule formation, its destabilization, and pharmacological rescue, which may facilitate the development of new strategies for manipulating collective endothelial cell behavior in the disease context. A biophysical model reveals the differential effects of CCM proteins on cell behavior CCM proteins are critical for the balance of cell-cell and cell-matrix interactions Altered cell biomechanics explains the limited phenotype rescue by ROCK inhibition Knockdown of CCM3 expression leads to unique defects in the actomyosin organization
Collapse
Affiliation(s)
- Olga Chernaya
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Anastasia Zhurikhina
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Siarhei Hladyshau
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - William Pilcher
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Katherine M Young
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Jillian Ortner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Vaishnavi Andra
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Todd A Sulchek
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
| |
Collapse
|
10
|
Histamine causes endothelial barrier disruption via Ca 2+-mediated RhoA activation and tension at adherens junctions. Sci Rep 2018; 8:13229. [PMID: 30185878 PMCID: PMC6125323 DOI: 10.1038/s41598-018-31408-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022] Open
Abstract
During inflammation, the disruption of the endothelial barrier leads to increased microvascular permeability. Whether tension along cell junctions contributes to histamine-induced endothelial barrier disruption remains unknown. Rapid Ca2+ influx induced by both histamine and thrombin was accompanied by endothelial barrier breakdown revealed as drop of transendothelial electric resistance in primary human microvascular endothelial cells. Interestingly, GLISA measurements revealed activation of RhoA but not inactivation of Rac1 at the time-point of barrier breakdown. FRET measurements showed activation of RhoA at intercellular junctions after both thrombin and histamine exposure. Breakdown coincided with increased stress fiber formation but not with translocation of vinculin, which was located along junctions in the resting state similar to postcapillary venules ex vivo. Moreover, increased tension at AJs was indicated by immunostaining with a conformation-sensitive antibody targeting the α18-subunit of α-catenin. Ca2+ chelation by BAPTA-AM and ROCK1 inhibition by Y27632 abolished both increase of tension along AJs as well as barrier dysfunction. Moreover, BAPTA-AM decreased RhoA activation following histamine stimulation, indicating a key role of Ca2+ signaling in barrier breakdown. Taken together, in response to histamine, Ca2+ via RhoA/ROCK activation along endothelial adherens junctions (AJs) appears to be critical for barrier disruption and presumably correlated with enhanced tension. However, vinculin appears not to be critical in this process.
Collapse
|
11
|
A Review on Adducin from Functional to Pathological Mechanisms: Future Direction in Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3465929. [PMID: 29862265 PMCID: PMC5976920 DOI: 10.1155/2018/3465929] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022]
Abstract
Adducin (ADD) is a family of membrane skeleton proteins including ADD1, ADD2, and ADD3 that are encoded by distinct genes on different chromosomes. Adducin is primarily responsible for the assembly of spectrin-actin network that provides physical support to the plasma membrane and mediates signal transduction in various cellular physiological processes upon regulation by protein kinase C-dependent and calcium/calmodulin-dependent pathways. Abnormal phosphorylation, genetic variations, and alternative splicing of adducin may contribute to alterations in cellular functions involved in pathogenic processes. These alterations are associated with a wide range of diseases including cancer. This paper begins with a discussion on how adducin partakes in the structural formation of membrane skeleton, its regulation, and related functional characteristics, followed by a review on the pathogenesis of hypertension, biliary atresia, and cancer with respect to increased disease susceptibility mediated by adducin polymorphism and/or dysregulation. Given the functional diversity of adducin in different cellular compartments, we aim to provide a knowledge base whereby its pathophysiological roles can be better understood. More importantly, we aim to provide novel insights that may be of significance in turning the adducin model to clinical application.
Collapse
|
12
|
Salinas-Torres VM, Salinas-Torres RA, Cerda-Flores RM, Martínez-de-Villarreal LE. Genetic variants conferring susceptibility to gastroschisis: a phenomenon restricted to the interaction with the environment? Pediatr Surg Int 2018; 34:505-514. [PMID: 29550988 DOI: 10.1007/s00383-018-4247-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Genes involved in gastroschisis have shown a strong interaction with environmental factors. However, less is known about its influence. We aimed to systematically review the genetic associations of gastroschisis, to summarize whether its genetic susceptibility has been restricted to the interaction with the environment, and to identify significant gaps that remain for consideration in future studies. METHODS Genetic association studies of gastroschisis published 1980-2017 (PubMed/MEDLINE) were independently searched by two reviewers. Significant SNP-gastroschisis associations were grouped into crude and stratified risks, whereas SNPs were assessed from two or more independent studies. Frequencies, odds ratios, and 95% confidence intervals were pooled using descriptive analysis and Chi-square test accounting for heterogeneity. RESULTS Seven eligible articles capturing associations of 14 SNPs from 10 genes for crude risk (including 10 and 4 SNPs with increased and decreased risk, respectively) and 30 SNPs from 14 genes for stratified risk in gastroschisis (including 37 and 14 SNPs with increased and decreased risk, respectively) were identified (Fisher's exact test, P = 0.438). The rs4961 (ADD1), rs5443 (GNB3), rs1042713, and rs1042714 (ADRB2) were significantly associated with gastroschisis. CONCLUSIONS Genetic susceptibility in gastroschisis is not restricted to the interaction with the environment and should not be too narrowly focused on environmental factors. We found significant associations with four SNPs from three genes related to blood pressure regulation, which supports a significant role of vascular disruption in the pathogenesis of gastroschisis. Future studies considering gene-gene or gene-environmental interactions are warranted for better understanding the etiology of gastroschisis.
Collapse
Affiliation(s)
- Victor M Salinas-Torres
- Departamento de Genética, Facultad de Medicina y Hospital Universitario José Eleuterio González, Universidad Autónoma de Nuevo León, Ave. Madero y Gonzalitos S/N Col. Mitras Centro, CP 64460, Monterrey, Nuevo León, Mexico.
| | - Rafael A Salinas-Torres
- Departamento de Sistemas y Computación, Instituto Tecnológico de Tijuana, Calzada del Tecnológico S/N Fracc. Tomas Aquino, CP 22414, Tijuana, Baja California, Mexico
| | - Ricardo M Cerda-Flores
- Facultad de Enfermería, Universidad Autónoma de Nuevo León, Dr. José Eleuterio González 1500, Mitras Norte, CP 64460, Monterrey, Nuevo León, Mexico
| | - Laura E Martínez-de-Villarreal
- Departamento de Genética, Facultad de Medicina y Hospital Universitario José Eleuterio González, Universidad Autónoma de Nuevo León, Ave. Madero y Gonzalitos S/N Col. Mitras Centro, CP 64460, Monterrey, Nuevo León, Mexico
| |
Collapse
|
13
|
Koh J, Hogue JA, Roman SA, Scheri RP, Fradin H, Corcoran DL, Sosa JA. Transcriptional profiling reveals distinct classes of parathyroid tumors in PHPT. Endocr Relat Cancer 2018; 25:407-420. [PMID: 29475894 PMCID: PMC5826637 DOI: 10.1530/erc-17-0470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
The clinical presentation of primary hyperparathyroidism (PHPT) varies widely, although the underlying mechanistic reasons for this disparity remain unknown. We recently reported that parathyroid tumors can be functionally segregated into two distinct groups on the basis of their relative responsiveness to ambient calcium, and that patients in these groups differ significantly in their likelihood of manifesting bone disability. To examine the molecular basis for this phenotypic variation in PHPT, we compared the global gene expression profiles of calcium-sensitive and calcium-resistant parathyroid tumors. RNAseq and proteomic analysis identified a candidate set of differentially expressed genes highly correlated with calcium-sensing capacity. Subsequent quantitative assessment of the expression levels of these genes in an independent cohort of parathyroid tumors confirmed that calcium-sensitive tumors cluster in a discrete transcriptional profile group. These data indicate that PHPT is not an etiologically monolithic disorder and suggest that divergent molecular mechanisms could drive the observed phenotypic differences in PHPT disease course, provenance, and outcome.
Collapse
Affiliation(s)
- James Koh
- Dept. of Surgery, Duke University Medical Center, Durham, NC
- Duke Clinical Research Institute, Duke University Medical Center
- To whom reprint requests should be addressed: James Koh, Ph.D., Department of Surgery, Duke University Medical Center, Durham, NC 27710, Phone: 919-684-0892, FAX: 919-681-6622,
| | - Joyce A. Hogue
- Dept. of Surgery, Duke University Medical Center, Durham, NC
| | | | | | | | | | - Julie A. Sosa
- Dept. of Surgery, Duke University Medical Center, Durham, NC
- Dept. of Medicine, Duke University
- Duke Cancer Institute, Duke University Medical Center
- Duke Clinical Research Institute, Duke University Medical Center
| |
Collapse
|
14
|
Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 2018; 222. [PMID: 28231640 DOI: 10.1111/apha.12860] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
The endothelial barrier consists of intercellular contacts localized in the cleft between endothelial cells, which is covered by the glycocalyx in a sievelike manner. Both types of barrier-forming junctions, i.e. the adherens junction (AJ) serving mechanical anchorage and mechanotransduction and the tight junction (TJ) sealing the intercellular space to limit paracellular permeability, are tethered to the actin cytoskeleton. Under resting conditions, the endothelium thereby builds a selective layer controlling the exchange of fluid and solutes with the surrounding tissue. However, in the situation of an inflammatory response such as in anaphylaxis or sepsis intercellular contacts disintegrate in post-capillary venules leading to intercellular gap formation. The resulting oedema can cause shock and multi-organ failure. Therefore, maintenance as well as coordinated opening and closure of interendothelial junctions is tightly regulated. The two principle underlying mechanisms comprise spatiotemporal activity control of the small GTPases Rac1 and RhoA and the balance of the phosphorylation state of AJ proteins. In the resting state, junctional Rac1 and RhoA activity is enhanced by junctional components, actin-binding proteins, cAMP signalling and extracellular cues such as sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang-1). In addition, phosphorylation of AJ components is prevented by junction-associated phosphatases including vascular endothelial protein tyrosine phosphatase (VE-PTP). In contrast, inflammatory mediators inhibiting cAMP/Rac1 signalling cause strong activation of RhoA and induce AJ phosphorylation finally leading to endocytosis and cleavage of VE-cadherin. This results in dissolution of TJs the outcome of which is endothelial barrier breakdown.
Collapse
Affiliation(s)
- M. Y. Radeva
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| | - J. Waschke
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| |
Collapse
|
15
|
Rezaee F, Harford TJ, Linfield DT, Altawallbeh G, Midura RJ, Ivanov AI, Piedimonte G. cAMP-dependent activation of protein kinase A attenuates respiratory syncytial virus-induced human airway epithelial barrier disruption. PLoS One 2017; 12:e0181876. [PMID: 28759570 PMCID: PMC5536269 DOI: 10.1371/journal.pone.0181876] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/07/2017] [Indexed: 12/24/2022] Open
Abstract
Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches.
Collapse
Affiliation(s)
- Fariba Rezaee
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Terri J. Harford
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Debra T. Linfield
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Ghaith Altawallbeh
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Ronald J. Midura
- Biomedical Engineering Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Andrei I. Ivanov
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Giovanni Piedimonte
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| |
Collapse
|
16
|
Desmoglein 2 regulates the intestinal epithelial barrier via p38 mitogen-activated protein kinase. Sci Rep 2017; 7:6329. [PMID: 28740231 PMCID: PMC5524837 DOI: 10.1038/s41598-017-06713-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/16/2017] [Indexed: 01/18/2023] Open
Abstract
Intestinal epithelial barrier properties are maintained by a junctional complex consisting of tight junctions (TJ), adherens junctions (AJ) and desmosomes. Desmoglein 2 (Dsg2), an adhesion molecule of desmosomes and the only Dsg isoform expressed in enterocytes, is required for epithelial barrier properties and may contribute to barrier defects in Crohn’s disease. Here, we identified extradesmosomal Dsg2 on the surface of polarized enterocytes by Triton extraction, confocal microscopy, SIM and STED. Atomic force microscopy (AFM) revealed Dsg2-specific binding events along the cell border on the surface of enterocytes with a mean unbinding force of around 30pN. Binding events were blocked by an inhibitory antibody targeting Dsg2 which under same conditions activated p38MAPK but did not reduce cell cohesion. In enterocytes deficient for Dsg2, p38MAPK activity was reduced and both barrier integrity and reformation were impaired. Dsc2 rescue did not restore p38MAPK activity indicating that Dsg2 is required. Accordingly, direct activation of p38MAPK in Dsg2-deficient cells enhanced barrier reformation demonstrating that Dsg2-mediated activation of p38MAPK is crucial for barrier function. Collectively, our data show that Dsg2, beside its adhesion function, regulates intestinal barrier function via p38MAPK signalling. This is in contrast to keratinocytes and points towards tissue-specific signalling functions of desmosomal cadherins.
Collapse
|
17
|
Wieben ED, Aleff RA, Tang X, Butz ML, Kalari KR, Highsmith EW, Jen J, Vasmatzis G, Patel SV, Maguire LJ, Baratz KH, Fautsch MP. Trinucleotide Repeat Expansion in the Transcription Factor 4 (TCF4) Gene Leads to Widespread mRNA Splicing Changes in Fuchs' Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci 2017; 58:343-352. [PMID: 28118661 PMCID: PMC5270622 DOI: 10.1167/iovs.16-20900] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To identify RNA missplicing events in human corneal endothelial tissue isolated from Fuchs' endothelial corneal dystrophy (FECD). Methods Total RNA was isolated and sequenced from corneal endothelial tissue obtained during keratoplasty from 12 patients with FECD and 4 patients undergoing keratoplasty or enucleation for other indications. The length of the trinucleotide repeat (TNR) CTG in the transcription factor 4 (TCF4) gene was determined using leukocyte-derived DNA analyzed by a combination of Southern blotting and Genescan analysis. Commercial statistical software was used to quantify expression of alternatively spliced genes. Validation of selected alternative splicing events was performed by using RT-PCR. Gene sets identified were analyzed for overrepresentation using Web-based analysis system. Results Corneal endothelial tissue from FECD patients containing a CTG TNR expansion sequence in the TCF4 gene revealed widespread changes in mRNA splicing, including a novel splicing event involving FGFR2. Differential splicing of NUMA1, PPFIBP1, MBNL1, and MBNL2 transcripts were identified in all FECD samples containing a TNR expansion. The differentially spliced genes were enriched for products that localize to the cell cortex and bind cytoskeletal and cell adhesion proteins. Conclusions Corneal endothelium from FECD patients harbors a unique signature of mis-splicing events due to CTG TNR expansion in the TCF4 gene, consistent with the hypothesis that RNA toxicity contributes to the pathogenesis of FECD. Changes to the endothelial barrier function, a known event in the development of FECD, was identified as a key biological process influenced by the missplicing events.
Collapse
Affiliation(s)
- Eric D Wieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Ross A Aleff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Xiaojia Tang
- Division of Biostatistics and Bioinformatics and Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States
| | - Malinda L Butz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States
| | - Krishna R Kalari
- Division of Biostatistics and Bioinformatics and Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States
| | - Edward W Highsmith
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States
| | - Jin Jen
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - George Vasmatzis
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sanjay V Patel
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Leo J Maguire
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Keith H Baratz
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael P Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
18
|
Nguyen CH, Brenner S, Huttary N, Li Y, Atanasov AG, Dirsch VM, Holzner S, Stadler S, Riha J, Krieger S, Milovanovic D, Fristiohardy A, Simonitsch-Klupp I, Dolznig H, Saiko P, Szekeres T, Giessrigl B, Jäger W, Krupitza G. 12(S)-HETE increases intracellular Ca2+ in lymph-endothelial cells disrupting their barrier function in vitro; stabilization by clinical drugs impairing calcium supply. Cancer Lett 2016; 380:174-83. [DOI: 10.1016/j.canlet.2016.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
|