1
|
Oberreiter V, Gelabert P, Brück F, Franz S, Zelger E, Szedlacsek S, Cheronet O, Cano FT, Exler F, Zagorc B, Karavanić I, Banda M, Gasparyan B, Straus LG, Gonzalez Morales MR, Kappelman J, Stahlschmidt M, Rattei T, Kraemer SM, Sawyer S, Pinhasi R. Maximizing efficiency in sedimentary ancient DNA analysis: a novel extract pooling approach. Sci Rep 2024; 14:19388. [PMID: 39169089 PMCID: PMC11339378 DOI: 10.1038/s41598-024-69741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In the last few decades, the field of ancient DNA has taken a new direction towards using sedimentary ancient DNA (sedaDNA) for studying human and mammalian population dynamics as well as past ecosystems. However, the screening of numerous sediment samples from archaeological sites remains a time-consuming and costly endeavor, particularly when targeting hominin DNA. Here, we present a novel high-throughput method that facilitates the fast and efficient analysis of sediment samples by applying a pooled testing approach. This method combines multiple extracts, enabling early parallelization of laboratory procedures and effective aDNA screening. Pooled samples with detectable aDNA signals undergo detailed analysis, while empty pools are discarded. We have successfully applied our method to multiple sediment samples from Middle and Upper Paleolithic sites in Europe, Asia, and Africa. Notably, our results reveal that an aDNA signal remains discernible even when pooled with four negative samples. We also demonstrate that the DNA yield of double-stranded libraries increases significantly when reducing the extract input, potentially mitigating the effects of inhibition. By embracing this innovative approach, researchers can analyze large numbers of sediment samples for aDNA preservation, achieving significant cost reductions of up to 70% and reducing hands-on laboratory time to one-fifth.
Collapse
Affiliation(s)
- Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Florian Brück
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Franz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Evelyn Zelger
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Sophie Szedlacsek
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | | | - Florian Exler
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Ivor Karavanić
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Marko Banda
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Boris Gasparyan
- Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Lawrence Guy Straus
- Department of Anthropology, University of New Mexico, Albuquerque, USA
- EvoAdapta Group Universidad de Cantabria, Santander, Spain
| | - Manuel R Gonzalez Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, Gobierno de Cantabria, Banco Santander, Spain
| | - John Kappelman
- Department of Anthropology and Department of Earth and Planetary Sciences, The University of Texas, Austin, TX, USA
| | - Mareike Stahlschmidt
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan M Kraemer
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institut für Analytische Chemie, University of Vienna, Vienna, Austria
- Forschungsverbund Umwelt und Klima, University of Vienna, Vienna, Austria
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Martorelli I, Pooryousefi A, van Thiel H, Sicking FJ, Ramackers GJ, Merckx V, Verbeek FJ. Multiple graphical views for automatically generating SQL for the MycoDiversity DB; making fungal biodiversity studies accessible. Biodivers Data J 2024; 12:e119660. [PMID: 38933486 PMCID: PMC11199959 DOI: 10.3897/bdj.12.e119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Fungi is a highly diverse group of eukaryotic organisms that live under an extremely wide range of environmental conditions. Nowadays, there is a fundamental focus on observing how biodiversity varies on different spatial scales, in addition to understanding the environmental factors which drive fungal biodiversity. Metabarcoding is a high-throughput DNA sequencing technology that has positively contributed to observing fungal communities in environments. While the DNA sequencing data generated from metabarcoding studies are available in public archives, this valuable data resource is not directly usable for fungal biodiversity investigation. Additionally, due to its fragmented storage and distributed nature, it is not immediately accessible through a single user interface. We developed the MycoDiversity DataBase User Interface (https://mycodiversity.liacs.nl) to provide direct access and retrieval of fungal data that was previously inaccessible in the public domain. The user interface provides multiple graphical views of the data components used to reveal fungal biodiversity. These components include reliable geo-location terms, the reference taxonomic scientific names associated with fungal species and the standard features describing the environment where they occur. Direct observation of the public DNA sequencing data in association with fungi is accessible through SQL search queries created by interactively manipulating topological maps and dynamic hierarchical tree views. The search results are presented in configurable data table views that can be downloaded for further use. With the MycoDiversity DataBase User Interface, we make fungal biodiversity data accessible, assisting researchers and other stakeholders in using metabarcoding studies for assessing fungal biodiversity.
Collapse
Affiliation(s)
- Irene Martorelli
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
| | - Aram Pooryousefi
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Haike van Thiel
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Floris J Sicking
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Guus J Ramackers
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Vincent Merckx
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, NetherlandsInstitute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdamNetherlands
| | - Fons J Verbeek
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| |
Collapse
|
3
|
Younginger BS, Stewart NU, Balkan MA, Ballhorn DJ. Stable coexistence or competitive exclusion? Fern endophytes demonstrate rapid turnover favouring a dominant fungus. Mol Ecol 2023; 32:244-257. [PMID: 36218009 DOI: 10.1111/mec.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Fungal endophytes are critical members of the plant microbiome, but their community dynamics throughout an entire growing season are underexplored. Additionally, most fungal endophyte research has centred on seed-reproducing hosts, while spore-reproducing plants also host endophytes and may be colonized by unique community members. In order to examine annual fungal endophyte community dynamics in a spore-reproducing host, we explored endophytes in a single population of ferns, Polystichum munitum, in the Pacific Northwest. Through metabarcoding, we characterized the community assembly and temporal turnover of foliar endophytes throughout a growing season. From these results, we selected endophytes with outsized representations in sequence data and performed in vitro competition assays. Finally, we inoculated sterile fern gametophytes with dominant fungi observed in the field and determined their effects on host performance. Sequencing demonstrated that ferns were colonized by a diverse community of fungal endophytes in newly emerged tissue, but diversity decreased throughout the season leading to the preponderance of a single fungus in later sampling months. This previously undescribed endophyte appears to abundantly colonize the host to the detriment of other microfungi. Competition assays on a variety of media types failed to demonstrate that the dominant fungus was competitive against other fungi isolated from the same hosts, and inoculation onto sterile fern gametophytes did not alter growth compared to sterile controls, suggesting its effects are not antagonistic. The presence of this endophyte in the fern population probably demonstrates a case of repeated colonization driving competitive exclusion of other fungal community members.
Collapse
Affiliation(s)
| | - Nathan U Stewart
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Mehmet A Balkan
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Daniel J Ballhorn
- Department of Biology, Portland State University, Portland, Oregon, USA
| |
Collapse
|
4
|
Rai S, Omar AF, Rehan M, Al-Turki A, Sagar A, Ilyas N, Sayyed RZ, Hasanuzzaman M. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture. PLANTA 2022; 257:27. [PMID: 36583789 DOI: 10.1007/s00425-022-04052-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
This review is an effort to provide in-depth knowledge of microbe's interaction and its role in crop microbiome using combination of advanced molecular and OMICS technology to translate this information for the sustenance of agriculture. Increasing population, climate change and exhaustive agricultural practices either influenced nutrient inputs of soil or generating biological and physico-chemical deterioration of the soils and affecting the agricultural productivity and agro-ecosystems. Alarming concerns toward food security and crop production claim for renewed attention in microbe-based farming practices. Microbes are omnipresent (soil, water, and air) and their close association with plants would help to accomplish sustainable agriculture goals. In the last few decades, the search for beneficial microbes in crop production, soil fertilization, disease management, and plant growth promotion is the thirst for eco-friendly agriculture. The crop microbiome opens new paths to utilize beneficial microbes and manage pathogenic microbes through integrated advanced biotechnology. The crop microbiome helps plants acquire nutrients, growth, resilience against phytopathogens, and tolerance to abiotic stresses, such as heat, drought, and salinity. Despite the emergent functionality of the crop microbiome as a complicated constituent of the plant fitness, our understanding of how the functionality of microbiome influenced by numerous factors including genotype of host, climatic conditions, mobilization of minerals, soil composition, nutrient availability, interaction between nexus of microbes, and interactions with other external microbiomes is partially understood. However, the structure, composition, dynamics, and functional contribution of such cultured and uncultured crop microbiome are least explored. The advanced biotechnological approaches are efficient tools for acquiring the information required to investigate the microbiome and extract data to develop high yield producing and resistant variety crops. This knowledge fills the fundamental gap between the theoretical concepts and the operational use of these advanced tools in crop microbiome studies. Here, we review (1) structure and composition of crop microbiome, (2) microbiome-mediated role associated with crops fitness, (3) Molecular and -omics techniques for exploration of crop microbiome, and (4) current approaches and future prospectives of crop microbiome and its exploitation for sustainable agriculture. Recent -omic approaches are influential tool for mapping, monitoring, modeling, and management of crops microbiome. Identification of crop microbiome, using system biology and rhizho-engineering, can help to develop future bioformulations for disease management, reclamation of stressed agro-ecosystems, and improved productivity of crops. Nano-system approaches combined with triggering molecules of crop microbiome can help in designing of nano-biofertilizers and nano-biopesticides. This combination has numerous merits over the traditional bioinoculants. They stimulate various defense mechanisms in plants facing stress conditions; provide bioavailability of nutrients in the soil, helps mitigate stress conditions; and enhance chances of crops establishment.
Collapse
Affiliation(s)
- Shalini Rai
- Department of Biotechnology, SHEPA, Varanasi, India.
| | - Ayman F Omar
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia.
- Department of Plant Pathology, Plant Pathology and Biotechnology Laboratory and EPCRS Excellence Center, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Ahmad Al-Turki
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Alka Sagar
- Department of Microbiology, MIET, Meerut, India
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - R Z Sayyed
- Asian PGPR Society, Auburn Venture, Auburn, AL, USA.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University (SAU), Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| |
Collapse
|
5
|
Fang FZ, Chen SL, Gui HY, Li ZJ, Zhang XF. Long-Read Sequencing Analysis Revealed the Impact of Forest Conversion on Soil Fungal Diversity in Limu Mountain, Hainan. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02129-y. [PMID: 36329282 DOI: 10.1007/s00248-022-02129-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Soil fungi are essential to soil microorganisms that play an important role in the ecosystem's soil carbon cycle and mineral nutrient transformation. Understanding the structural characteristics and diversity of soil fungal communities helps understand the health of forest ecosystems. The transition from tropical rainforest to artificial forest greatly impacts the composition and diversity of fungal communities. Hainan Limushan tropical rainforest National Park has a large area of artificial forests. Ecologists have conducted in-depth studies on the succession of animals and plants to regenerate tropical rainforests. There are few reports on the diversity of soil fungi and its influencing factors in the succession of tropical rainforests in Limu Mountain. In this study, 44 soil samples from five different stands were collected in the tropical rainforest of Limushan, Hainan. High-throughput sequencing of rDNA in its region was used to analyze fungal communities and study their α and β diversity. Analysis of variance and multiple regression models was used to analyze soil variables and fungal functional groups to determine the effects of interaction between fungi and environmental factors. A total of 273,996 reads and 1290 operational taxonomic units (OTUs) were obtained, belonging to 418 species, 325 genera, 159 families, eight phyla, 30 classes, and 73 orders. The results showed that the composition of soil fungal communities in the five stands was similar, with ascomycetes accounting for 70.5% and basidiomycetes accounting for 14.7%. α and β diversity analysis showed that soil fungi in Limushan tropical rainforest had high abundance and diversity. Multiple regression analysis between soil variables and functional groups showed that organic matter, TN, TP, TK, and AK were excellent predictors for soil fungi. TP was the strongest predictor in all functional groups except soil saprotroph. Organic matter and total nitrogen were the strongest predictors of soil rot. The transformation from tropical rainforest to artificial forest in Limushan did not change the soil fungal community structure, but the richness and diversity of soil fungi changed. The forest transformation did not lead to decreased soil fungal abundance and diversity. Different vegetation types and soil properties affect the diversity of soil fungal communities. We found that Caribbean pine plantations can improve soil fungal diversity, while long-term Eucalyptus spp. plantations may reduce soil fungal diversity.
Collapse
Affiliation(s)
- Fa-Zhi Fang
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Su-Ling Chen
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Hui-Ying Gui
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Zhao-Jia Li
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Xiao-Feng Zhang
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China.
| |
Collapse
|
6
|
Kageyama T, Toju H. Effects of source sample amount on biodiversity surveys of bacteria, fungi, and nematodes in soil ecosystems. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.959945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacteria, fungi, and nematodes are major components of soil ecosystems, playing pivotal roles in belowground material cycles and biological community processes. A number of studies have recently uncovered the diversity and community structure of those organisms in various types of soil ecosystems based on DNA metabarcoding (amplicon sequencing). However, because most previous studies examined only one or two of the three organismal groups, it remains an important challenge to reveal the entire picture of soil community structure. We examined how we could standardize DNA extraction protocols for simultaneous DNA metabarcoding of bacteria, fungi, and nematodes. Specifically, in an Illumina sequencing analysis of forest and farmland soil samples, we performed DNA extraction at five levels of soil-amount (0.5, 2, 5, 10, and 20 g). We then found that DNA extraction with the 0.5 g soil setting, which had been applied as default in many commercial DNA extraction kits, could lead to underestimation of α-diversity in nematode community. We also found that dissimilarity (β-diversity) estimates of community structure among replicate samples could be affected by soil sample amount. Based on the assays, we conclude that DNA extraction from at least 20 g of soil is a standard for comparing biodiversity patterns among bacteria, fungi and nematodes.
Collapse
|
7
|
Matsuoka S, Sugiyama Y, Nagano M, Doi H. Influence of DNA extraction kits on freshwater fungal DNA metabarcoding. PeerJ 2022; 10:e13477. [PMID: 35651749 PMCID: PMC9150701 DOI: 10.7717/peerj.13477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/01/2022] [Indexed: 01/17/2023] Open
Abstract
Background Environmental DNA (eDNA) metabarcoding is a common technique for efficient biodiversity monitoring, especially of microbes. Recently, the usefulness of aquatic eDNA in monitoring the diversity of both terrestrial and aquatic fungi has been suggested. In eDNA studies, different experimental factors, such as DNA extraction kits or methods, can affect the subsequent analyses and the results of DNA metabarcoding. However, few methodological studies have been carried out on eDNA of fungi, and little is known about how experimental procedures can affect the results of biodiversity analysis. In this study, we focused on the effect of DNA extraction method on fungal DNA metabarcoding using freshwater samples obtained from rivers and lakes. Methods DNA was extracted from freshwater samples using the DNeasy PowerSoil kit, which is mainly used to extractmicrobial DNA from soil, and the DNeasy Blood & Tissue kit, which is commonly used for eDNA studies on animals. We then compared PCR inhibition and fungal DNA metabarcoding results; i.e., operational taxonomic unit (OTU) number and composition of the extracted samples. Results No PCR inhibition was detected in any of the samples, and no significant differences in the number of OTUs and OTU compositions were detected between the samples processed using different kits. These results indicate that both DNA extraction kits may provide similar diversity results for the river and lake samples evaluated in this study. Therefore, it may be possible to evaluate the diversity of fungi using a unified experimental method, even with samples obtained for diversity studies on other taxa such as those of animals.
Collapse
Affiliation(s)
- Shunsuke Matsuoka
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| | - Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Mariko Nagano
- Department of Bioenvironmental Design, Kyoto University of Advanced Science, Kameoka, Japan
| | - Hideyuki Doi
- Graduate School of Information Science, University of Hyogo, Kobe, Japan
| |
Collapse
|
8
|
Tedersoo L, Bahram M, Zinger L, Nilsson RH, Kennedy PG, Yang T, Anslan S, Mikryukov V. Best practices in metabarcoding of fungi: From experimental design to results. Mol Ecol 2022; 31:2769-2795. [PMID: 35395127 DOI: 10.1111/mec.16460] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
The development of high-throughput sequencing (HTS) technologies has greatly improved our capacity to identify fungi and unveil their ecological roles across a variety of ecosystems. Here we provide an overview of current best practices in metabarcoding analysis of fungal communities, from experimental design through molecular and computational analyses. By reanalysing published data sets, we demonstrate that operational taxonomic units (OTUs) outperform amplified sequence variants (ASVs) in recovering fungal diversity, a finding that is particularly evident for long markers. Additionally, analysis of the full-length ITS region allows more accurate taxonomic placement of fungi and other eukaryotes compared to the ITS2 subregion. Finally, we show that specific methods for compositional data analyses provide more reliable estimates of shifts in community structure. We conclude that metabarcoding analyses of fungi are especially promising for integrating fungi into the full microbiome and broader ecosystem functioning context, recovery of novel fungal lineages and ancient organisms as well as barcoding of old specimens including type material.
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Bahram
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lucie Zinger
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Naturalis Biodiversity Center, Leiden, The Netherlands
| | - R Henrik Nilsson
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Vladimir Mikryukov
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
9
|
Morita H, Akao S. The effect of soil sample size, for practical DNA extraction, on soil microbial diversity in different taxonomic ranks. PLoS One 2021; 16:e0260121. [PMID: 34793564 PMCID: PMC8601499 DOI: 10.1371/journal.pone.0260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022] Open
Abstract
To determine the optimal soil sample size for microbial community structure analysis, DNA extraction, microbial composition analysis, and diversity assessments were performed using soil sample sizes of 0.2, 1, and 5 g. This study focused on the relationship between soil amount and DNA extraction container volume and the alteration in microbial composition at different taxonomic ranks (order, class, and phylum). Horizontal (0.2 and 1 g) and vertical (5 g) shaking were applied during DNA extraction for practical use in a small laboratory. In the case of the 5 g soil sample, DNA extraction efficiency and the value of α-diversity index fluctuated severely, possibly because of vertical shaking. Regarding the 0.2 and 1 g soil samples, the number of taxa, Shannon–Wiener index, and Bray–Curtis dissimilarity were stable and had approximately the same values at each taxonomic rank. However, non-metric multidimensional scaling showed that the microbial compositions of these two sample sizes were different. The higher relative abundance of taxa in the case of the 0.2 g soil sample might indicate that cell wall compositions differentiated the microbial community structures in these two sample sizes due to high shear stress tolerance. The soil sample size and tube volume affected the estimated microbial community structure. A soil sample size of 0.2 g would be preferable to the other sample sizes because of the possible higher shearing force for DNA extraction and lower experimental costs due to smaller amounts of consumables. When the taxonomic rank was changed from order to phylum, some minor taxa identified at the order rank were integrated into major taxa at the phylum rank. The integration affected the value of the β-diversity index; therefore, the microbial community structure analysis, reproducibility of structures, diversity assessment, and detection of minor taxa would be influenced by the taxonomic rank applied.
Collapse
Affiliation(s)
- Hiroki Morita
- Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Satoshi Akao
- Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
- * E-mail:
| |
Collapse
|
10
|
Matsuoka S, Sugiyama Y, Shimono Y, Ushio M, Doi H. Evaluation of seasonal dynamics of fungal DNA assemblages in a flow-regulated stream in a restored forest using eDNA metabarcoding. Environ Microbiol 2021; 23:4797-4806. [PMID: 34258854 DOI: 10.1111/1462-2920.15669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022]
Abstract
Investigation of seasonal variation in fungal communities is essential for understanding biodiversity and ecosystem functions. However, the conventional sampling method, with substrate removal and high spatial heterogeneity of community composition, makes surveying the seasonality of fungal communities challenging. Recently, water environmental DNA (eDNA) analysis has been explored for its utility in biodiversity surveys. In this study, we assessed whether the seasonality of fungal communities can be detected by monitoring eDNA in a forest stream. We conducted monthly water sampling in a forest stream over 2 years and used DNA metabarcoding to identify fungal eDNA. The stream water contained DNA from functionally diverse aquatic and terrestrial fungi, such as plant decomposers, parasites and mutualists. The variation in the fungal assemblage showed a regular annual periodicity, meaning that the assemblages in a given season were similar, irrespective of the year or sampling. Furthermore, the strength of the annual periodicity varied among functional groups. Our results suggest that forest streams may act as a 'trap' for terrestrial fungal DNA derived from different habitats, allowing the analysis of fungal DNA in stream water to provide information about the temporal variation in fungal communities in both the aquatic and the surrounding terrestrial ecosystems.
Collapse
Affiliation(s)
- Shunsuke Matsuoka
- Graduate School of Information Science, University of Hyogo, Kobe, Japan
| | - Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Yoshito Shimono
- Graduate School of Bioresources, Mie University, Tsu, Japan.,Osaka Museum of Nature History, Osaka, Japan
| | - Masayuki Ushio
- Hakubi Center, Kyoto University, Kyoto, Japan.,Center for Ecological Research, Kyoto University, Kyoto, Japan
| | - Hideyuki Doi
- Graduate School of Information Science, University of Hyogo, Kobe, Japan
| |
Collapse
|
11
|
Vallianou N, Kounatidis D, Christodoulatos GS, Panagopoulos F, Karampela I, Dalamaga M. Mycobiome and Cancer: What Is the Evidence? Cancers (Basel) 2021; 13:cancers13133149. [PMID: 34202433 PMCID: PMC8269322 DOI: 10.3390/cancers13133149] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Although comprising a much smaller proportion of the human microbiome, the fungal community has gained much more attention lately due to its multiple and yet undiscovered interactions with the human bacteriome and the host. Head and neck cancer carcinoma, colorectal carcinoma, and pancreatic ductal adenocarcinoma have been associated with dissimilarities in the composition of the mycobiome between cases with cancer and non-cancer subjects. In particular, an abundance of Malassezia has been associated with the onset and progression of colorectal carcinoma and pancreatic adenocarcinoma, while the genera Schizophyllum, a member of the oral mycobiome, is suggested to exhibit anti-cancer potential. The use of multi-omics will further assist in establishing whether alterations in the human mycobiome are causal or a consequence of specific types of cancers. Abstract Background: To date, most researchhas focused on the bacterial composition of the human microbiota. In this review, we synopsize recent data on the human mycobiome and cancer, highlighting specific cancer types based on current available evidence, presenting interesting perspectives and limitations of studies and laboratory methodologies. Recent findings: Head and neck cancer carcinoma (HNCC), colorectal carcinoma (CRC) and pancreatic ductal adenocarcinoma (PDA) have been associated with dissimilarities in the composition of mycobiota between cancer cases and non-cancer participants. Overall, fungal dysbiosis with decreased fungal richness and diversity was common in cancer patients; however, a specific mycobiotic signature in HNSCC or CRC has not emerged. Different strains of Candida albicans have been identified among cases with HNCC, whilst Lichtheimia corymbifera, a member of the Mucoraceae family, has been shown to predominate among patients with oral tongue cancer. Virulence factors of Candida spp. include the formation of biofilm and filamentation, and the secretion of toxins and metabolites. CRC patients present a dysregulated ratio of Basidiomycota/Ascomycota. Abundance of Malassezia has been linked to the occurrence and progression of CRC and PDA, particularly in animal models of PDA. Interestingly, Schizophyllum, a component of the oral mycobiome, may exhibit anti-cancer potential. Conclusion: The human mycobiome, per se, along with its interactions with the human bacteriome and the host, may be implicated in the promotion and progression of carcinogenesis. Fungi may be used as diagnostic and prognostic/predictive tools or treatment targets for cancer in the coming years. More large-scale, prospective, multicentric and longitudinal studies with an integrative multi-omics methodology are required to examine the precise contribution of the mycobiome in the etiopathogenesis of cancer, and to delineate whether changes that occur in the mycobiome are causal or consequent of cancer.
Collapse
Affiliation(s)
- Natalia Vallianou
- First Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str., 10676 Athens, Greece; (D.K.); (F.P.)
- Correspondence: (N.V.); (M.D.)
| | - Dimitris Kounatidis
- First Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str., 10676 Athens, Greece; (D.K.); (F.P.)
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527 Athens, Greece;
| | - Fotis Panagopoulos
- First Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str., 10676 Athens, Greece; (D.K.); (F.P.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527 Athens, Greece;
- Correspondence: (N.V.); (M.D.)
| |
Collapse
|
12
|
Bullington LS, Lekberg Y, Larkin BG. Insufficient sampling constrains our characterization of plant microbiomes. Sci Rep 2021; 11:3645. [PMID: 33574436 PMCID: PMC7878899 DOI: 10.1038/s41598-021-83153-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Plants host diverse microbial communities, but there is little consensus on how we sample these communities, and this has unknown consequences. Using root and leaf tissue from showy milkweed (Asclepias speciosa), we compared two common sampling strategies: (1) homogenizing after subsampling (30 mg), and (2) homogenizing bulk tissue before subsampling (30 mg). We targeted bacteria, arbuscular mycorrhizal (AM) fungi and non-AM fungi in roots, and foliar fungal endophytes (FFE) in leaves. We further extracted DNA from all of the leaf tissue collected to determine the extent of undersampling of FFE, and sampled FFE twice across the season using strategy one to assess temporal dynamics. All microbial groups except AM fungi differed in composition between the two sampling strategies. Community overlap increased when rare taxa were removed, but FFE and bacterial communities still differed between strategies, with largely non-overlapping communities within individual plants. Increasing the extraction mass 10 × increased FFE richness ~ 10 ×, confirming the severe undersampling indicated in the sampling comparisons. Still, seasonal patterns in FFEs were apparent, suggesting that strong drivers are identified despite severe undersampling. Our findings highlight that current sampling practices poorly characterize many microbial groups, and increased sampling intensity is necessary for increase reproducibility and to identify subtler patterns in microbial distributions.
Collapse
Affiliation(s)
- Lorinda S Bullington
- MPG Ranch, Missoula, MT, 59801, USA.
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA.
| | - Ylva Lekberg
- MPG Ranch, Missoula, MT, 59801, USA
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | | |
Collapse
|
13
|
Soil Microbial Community Profiling and Bacterial Metabolic Activity of Technosols as an Effect of Soil Properties following Land Reclamation: A Case Study from the Abandoned Iron Sulphide and Uranium Mine in Rudki (South-Central Poland). AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10111795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aims of the study were (1) to recognize the structure of bacteria diversity in Technosols developed from mine spoils containing iron (Fe) sulphides with the use of culture-independent technique, and (2) to determine microbial metabolic activities, in the context of their potential to be an adequate indicators of soil properties being the consequence of land reclamation. The study site was located in the vicinity of the abandoned Fe sulphide and uranium mine in Rudki village (Holy Cross Mts., Poland). Three soil profiles with different chemical properties (pH, content of carbonates, soil salinity, content of total organic carbon and total nitrogen) were studied. Biodiversity was determined with the use of meta-barcoding of 16S rRNA community profiling analysis based on the hypervariable V3-V4 region of 16S rRNA gene (MiSeq, Illumina). The catabolic fingerprinting of soil microbial communities was evaluated with the use of Biolog®EcoPlates™ System. It was evidenced that changes in microbial structure and their metabolic activity were the consequence of a combined effect of both the soil depth and soil chemical properties being the final result of reclamation process. Consequently, microbial indicators (from phyla to genera level) indirectly testifying about success or ineffectiveness of reclamation in technogenic soils were recommended. To our best knowledge, the present study is the first insight into Polish Technosols biodiversity and catabolic activity.
Collapse
|
14
|
New Insight into the Composition of Wheat Seed Microbiota. Int J Mol Sci 2020; 21:ijms21134634. [PMID: 32629754 PMCID: PMC7370184 DOI: 10.3390/ijms21134634] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023] Open
Abstract
Endophytes are associated with host plants throughout their life history from seed germination to fruit development. One of the most important plant organs colonized by endophytic microbiota is the seed. The aim of this study was to determine the structure of the seed core microbiome inhabiting the endosperms and embryos of eight wheat cultivars with the use of a culture-independent technique. The seeds of Triticum aestivum L. cv. Hondia, Wilejka, STH, Opcja, Tybalt, Euforia and Triticum spelta L. cv. Rokosz and Schwabencorn (producer: Plant Breeding Strzelce Sp. z o.o. Group IHAR) were studied. Rokosz and Hondia were cultured in vitro and in vivo to identify obligatory bacterial endophytes. A restrictive analysis of reads originating from the in vitro plants has demonstrated that the bacterial genera Paenibacillus and Propionibacterium inhabiting Rokosz and Hondia plants have a status of obligatory microorganisms. Greater biodiversity of seed-borne endophytes was found in the seed endosperms than in the embryos. The multiple comparison analysis of the OTU abundance indicated that the seed part significantly influenced the relative abundance. The seed-born microbiome is not statistically significantly dependent on the wheat cultivars; however, it cannot be claimed that every wheat seed is the same.
Collapse
|
15
|
Core Rhizosphere Microbiomes of Dryland Wheat Are Influenced by Location and Land Use History. Appl Environ Microbiol 2020; 86:AEM.02135-19. [PMID: 31862727 DOI: 10.1128/aem.02135-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 01/22/2023] Open
Abstract
The Inland Pacific Northwest is one of the most productive dryland wheat production areas in the United States. We explored the bacterial and fungal communities associated with wheat in a controlled greenhouse experiment using soils from multiple locations to identify core taxa consistently associated with wheat roots and how land use history influences wheat-associated communities. Further, we examined microbial co-occurrence networks from wheat rhizospheres to identify candidate hub taxa. Location of origin and land use history (long-term no-till versus noncropped Conservation Reserve Program [CRP]) of soils were the strongest drivers of bacterial and fungal communities. Wheat rhizospheres were especially enriched in many bacterial families, while only a few fungal taxa were enriched in the rhizosphere. There was a core set of bacteria and fungi that was found in >95% of rhizosphere or bulk soil samples, including members of Bradyrhizobium, Sphingomonadaceae, Massilia, Variovorax, Oxalobacteraceae, and Caulobacteraceae Core fungal taxa in the rhizosphere included Nectriaceae, Ulocladium, Alternaria, Mortierella, and Microdochium Overall, there were fewer core fungal taxa, and the rhizosphere effect was not as pronounced as with bacteria. Cross-domain co-occurrence networks were used to identify hub taxa in the wheat rhizosphere, which included bacterial and fungal taxa (e.g., Sphingomonas, Massilia, Knufia, and Microdochium). Our results suggest that there is a relatively small group of core rhizosphere bacteria that were highly abundant on wheat roots regardless of soil origin and land use history. These core communities may play important roles in nutrient uptake, suppressing fungal pathogens, and other plant health functions.IMPORTANCE Plant-associated microbiomes are critical for plant health and other important agroecosystem processes. We assessed the bacterial and fungal microbiomes of wheat grown in soils from across a dryland wheat cropping systems in eastern Washington to identify the core microbiome on wheat roots that is consistent across soils from different locations and land use histories. Moreover, cross-domain co-occurrence network analysis identified core and hub taxa that may play important roles in microbial community assembly. Candidate core and hub taxa provide a starting point for targeting microbiome components likely to be critical to plant health and for constructing synthetic microbial communities for further experimentation. This work is one of the first examples of identifying a core microbiome on a major field crop grown across hundreds of square kilometers over a wide range of biogeographical zones.
Collapse
|
16
|
Castle SC, Samac DA, Sadowsky MJ, Rosen CJ, Gutknecht JLM, Kinkel LL. Impacts of Sampling Design on Estimates of Microbial Community Diversity and Composition in Agricultural Soils. MICROBIAL ECOLOGY 2019; 78:753-763. [PMID: 30852638 DOI: 10.1007/s00248-019-01318-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Soil microbiota play important and diverse roles in agricultural crop nutrition and productivity. Yet, despite increasing efforts to characterize soil bacterial and fungal assemblages, it is challenging to disentangle the influences of sampling design on assessments of communities. Here, we sought to determine whether composite samples-often analyzed as a low cost and effort alternative to replicated individual samples-provide representative summary estimates of microbial communities. At three Minnesota agricultural research sites planted with an oat cover crop, we conducted amplicon sequencing for soil bacterial and fungal communities (16SV4 and ITS2) of replicated individual or homogenized composite soil samples. We compared soil microbiota from within and among plots and then among agricultural sites using both sampling strategies. Results indicated that single or multiple replicated individual samples, or a composite sample from each plot, were sufficient for distinguishing broad site-level macroecological differences among bacterial and fungal communities. Analysis of a single sample per plot captured only a small fraction of the distinct OTUs, diversity, and compositional variability detected in the analysis of multiple individual samples or a single composite sample. Likewise, composite samples captured only a fraction of the diversity represented by the six individual samples from which they were formed, and, on average, analysis of two or three individual samples offered greater compositional coverage (i.e., greater number of OTUs) than a single composite sample. We conclude that sampling design significantly impacts estimates of bacterial and fungal communities even in homogeneously managed agricultural soils, and our findings indicate that while either strategy may be sufficient for broad macroecological investigations, composites may be a poor substitute for replicated samples at finer spatial scales.
Collapse
Affiliation(s)
- Sarah C Castle
- Department of Plant Pathology, University of Minnesota, Minneapolis, USA.
| | - Deborah A Samac
- Department of Plant Pathology, University of Minnesota, Minneapolis, USA
- USDA-ARS, Plant Science Research Unit, Saint Paul, MN, USA
| | - Michael J Sadowsky
- Department of Soil, Water, and Climate, University of Minnesota, Minneapolis, MN, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, MN, USA
| | - Carl J Rosen
- Department of Soil, Water, and Climate, University of Minnesota, Minneapolis, MN, USA
| | - Jessica L M Gutknecht
- Department of Soil, Water, and Climate, University of Minnesota, Minneapolis, MN, USA
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, Minneapolis, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
17
|
Nuske SJ, Anslan S, Tedersoo L, Congdon BC, Abell SE. Ectomycorrhizal fungal communities are dominated by mammalian dispersed truffle-like taxa in north-east Australian woodlands. MYCORRHIZA 2019; 29:181-193. [PMID: 30895370 DOI: 10.1007/s00572-019-00886-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Mycorrhizal fungi are very diverse, including those that produce truffle-like fruiting bodies. Truffle-like fungi are hypogeous and sequestrate (produced below-ground, with an enclosed hymenophore) and rely on animal consumption, mainly by mammals, for spore dispersal. This dependence links mycophagous mammals to mycorrhizal diversity and, assuming truffle-like fungi are important components of mycorrhizal communities, to plant nutrient cycling and ecosystem health. These links are largely untested as currently little is known about mycorrhizal fungal community structure and its dependence on mycophagous mammals. We quantified the mycorrhizal fungal community in the north-east Australian woodland, including the portion interacting with ten species of mycophagous mammals. The study area is core habitat of an endangered fungal specialist marsupial, Bettongia tropica, and as such provides baseline data on mycorrhizal fungi-mammal interactions in an area with no known mammal declines. We examined the mycorrhizal fungi in root and soil samples via high-throughput sequencing and compared the observed taxa to those dispersed by mycophagous mammals at the same locations. We found that the dominant root-associating ectomycorrhizal fungal taxa (> 90% sequence abundance) included the truffle-like taxa Mesophellia, Hysterangium and Chondrogaster. These same taxa were also present in mycophagous mammalian diets, with Mesophellia often dominating. Altogether, 88% of truffle-like taxa from root samples were shared with the fungal specialist diet and 52% with diets from generalist mammals. Our data suggest that changes in mammal communities, particularly the loss of fungal specialists, could, over time, induce reductions to truffle-like fungal diversity, causing ectomycorrhizal fungal communities to shift with unknown impacts on plant and ecosystem health.
Collapse
Affiliation(s)
- S J Nuske
- College of Science and Engineering, Centre for Tropical Environmental and Sustainability Science, Australian Tropical Herbarium, James Cook University, Cairns, QLD, 4878, Australia.
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.
| | - S Anslan
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - L Tedersoo
- Natural History Museum and Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila, EE-50411, Tartu, Estonia
| | - B C Congdon
- College of Science and Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, QLD, 4878, Australia
| | - S E Abell
- College of Science and Engineering, Centre for Tropical Environmental and Sustainability Science, Australian Tropical Herbarium, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
18
|
Tedersoo L, Drenkhan R, Anslan S, Morales‐Rodriguez C, Cleary M. High-throughput identification and diagnostics of pathogens and pests: Overview and practical recommendations. Mol Ecol Resour 2019; 19:47-76. [PMID: 30358140 PMCID: PMC7379260 DOI: 10.1111/1755-0998.12959] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/01/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
High-throughput identification technologies provide efficient tools for understanding the ecology and functioning of microorganisms. Yet, these methods have been only rarely used for monitoring and testing ecological hypotheses in plant pathogens and pests in spite of their immense importance in agriculture, forestry and plant community dynamics. The main objectives of this manuscript are the following: (a) to provide a comprehensive overview about the state-of-the-art high-throughput quantification and molecular identification methods used to address population dynamics, community ecology and host associations of microorganisms, with a specific focus on antagonists such as pathogens, viruses and pests; (b) to compile available information and provide recommendations about specific protocols and workable primers for bacteria, fungi, oomycetes and insect pests; and (c) to provide examples of novel methods used in other microbiological disciplines that are of great potential use for testing specific biological hypotheses related to pathology. Finally, we evaluate the overall perspectives of the state-of-the-art and still evolving methods for diagnostics and population- and community-level ecological research of pathogens and pests.
Collapse
Affiliation(s)
- Leho Tedersoo
- Natural History Museum and Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Rein Drenkhan
- Institute of Forestry and Rural EngineeringEstonian University of Life SciencesTartuEstonia
| | - Sten Anslan
- Natural History Museum and Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | | | - Michelle Cleary
- Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
19
|
Schön ME, Nieselt K, Garnica S. Belowground fungal community diversity and composition associated with Norway spruce along an altitudinal gradient. PLoS One 2018; 13:e0208493. [PMID: 30517179 PMCID: PMC6281267 DOI: 10.1371/journal.pone.0208493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Altitudinal gradients provide valuable information about the effects of environmental variables on changes in species richness and composition as well as the distribution of below ground fungal communities. Since most knowledge in this respect has been gathered on aboveground communities, we focused our study towards the characterization of belowground fungal communities associated with two different ages of Norway spruce (Picea abies) trees along an altitudinal gradient. By sequencing the internal transcribed spacer (ITS) region on the Illumina platform, we investigated the fungal communities in a floristically and geologically relatively well explored forest on the slope of Mt. Iseler of the Bavarian Alps. From fine roots and rhizosphere of a total of 90 of Norway spruce trees from 18 plots we detected 1285 taxa, with a range of 167 to 506 (average 377) taxa per plot. Fungal taxa are distributed over 96 different orders belonging to the phyla Ascomycota, Basidiomycota, Chrytridiomycota, Glomeromycota, and Mucoromycota. Overall the Agaricales (438 taxa) and Tremellales (81 taxa) belonging to the Basidiomycota and the Hypocreales (65 spp.) and Helotiales (61 taxa) belonging to the Ascomycota represented the taxon richest orders. The evaluation of our multivariate generalized mixed models indicate that the altitude has a significant influence on the composition of the fungal communities (p < 0.003) and that tree age determines community diversity (p < 0.05). A total of 47 ecological guilds were detected, of which the ectomycorrhizal and saprophytic guilds were the most taxon-rich. Our ITS amplicon Illumina sequencing approach allowed us to characterize a high fungal community diversity that would not be possible to capture with fruiting body surveys alone. We conclude that it is an invaluable tool for diverse monitoring tasks and inventorying biodiversity, especially in the detection of microorganisms developing very ephemeral and/or inconspicuous fruiting bodies or lacking them all together. Results suggest that the altitude mainly influences the community composition, whereas fungal diversity becomes higher in mature/older trees. Finally, we demonstrate that novel techniques from bacterial microbiome analyses are also useful for studying fungal diversity and community structure in a DNA metabarcoding approach, but that incomplete reference sequence databases so far limit effective identification.
Collapse
Affiliation(s)
- Max E. Schön
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Tübingen, Germany
- University of Tübingen, Center for Bioinformatics (ZBIT), Integrative Transcriptomics, Tübingen, Germany
| | - Kay Nieselt
- University of Tübingen, Center for Bioinformatics (ZBIT), Integrative Transcriptomics, Tübingen, Germany
| | - Sigisfredo Garnica
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Tübingen, Germany
- Universidad Austral de Chile, Instituto de Bioquímica y Microbiología, Casilla, Isla Teja, Valdivia, Chile
| |
Collapse
|
20
|
Schlatter DC, Burke I, Paulitz TC. Succession of Fungal and Oomycete Communities in Glyphosate-Killed Wheat Roots. PHYTOPATHOLOGY 2018; 108:582-594. [PMID: 29256828 DOI: 10.1094/phyto-06-17-0212-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The successional dynamics of root-colonizing microbes are hypothesized to be critical to displacing fungal pathogens that can proliferate after the use of some herbicides. Applications of glyphosate in particular, which compromises the plant defense system by interfering with the production of aromatic amino acids, are thought to promote a buildup of root pathogens and can result in a "greenbridge" between weeds or volunteers and crop hosts. By planting 2 to 3 weeks after spraying, growers can avoid most negative impacts of the greenbridge by allowing pathogen populations to decline, but with the added cost of delayed planting dates. However, the specific changes in microbial communities during this period of root death and the microbial taxa likely to be involved in displacing pathogens are poorly characterized. Using high-throughput sequencing, we characterized fungal and oomycete communities in roots after applications of herbicides with different modes of action (glyphosate or clethodim) and tracked their dynamics over 3 weeks in both naturally infested soil and soil inoculated with Rhizoctonia solani AG-8. We found that many unexpected taxa were present at high relative abundance (e.g., Pythium volutum and Myrmecridium species) in live and dying wheat roots and may play an under-recognized role in greenbridge dynamics. Moreover, communities were highly dynamic over time and had herbicide-specific successional patterns, but became relatively stable by 2 weeks after herbicide application. Network analysis of communities over time revealed patterns of interactions among taxa that were both common and unique to each herbicide treatment and identified two primary groups of taxa with many positive associations within-groups but negative associations between-groups, suggesting that these groups are antagonistic to one another in dying roots and may play a role in displacing pathogen populations during greenbridge dynamics.
Collapse
Affiliation(s)
- Daniel C Schlatter
- First and third authors: U.S. Department of Agriculture-Agriculture Research Service, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman 99164-6430; and second author: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420
| | - Ian Burke
- First and third authors: U.S. Department of Agriculture-Agriculture Research Service, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman 99164-6430; and second author: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420
| | - Timothy C Paulitz
- First and third authors: U.S. Department of Agriculture-Agriculture Research Service, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman 99164-6430; and second author: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420
| |
Collapse
|
21
|
Soliman T, Yang SY, Yamazaki T, Jenke-Kodama H. Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise. PeerJ 2017; 5:e4178. [PMID: 29302394 PMCID: PMC5740954 DOI: 10.7717/peerj.4178] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/29/2017] [Indexed: 01/03/2023] Open
Abstract
Structure and diversity of microbial communities are an important research topic in biology, since microbes play essential roles in the ecology of various environments. Different DNA isolation protocols can lead to data bias and can affect results of next-generation sequencing. To evaluate the impact of protocols for DNA isolation from soil samples and also the influence of individual handling of samples, we compared results obtained by two researchers (R and T) using two different DNA extraction kits: (1) MO BIO PowerSoil® DNA Isolation kit (MO_R and MO_T) and (2) NucleoSpin® Soil kit (MN_R and MN_T). Samples were collected from six different sites on Okinawa Island, Japan. For all sites, differences in the results of microbial composition analyses (bacteria, archaea, fungi, and other eukaryotes), obtained by the two researchers using the two kits, were analyzed. For both researchers, the MN kit gave significantly higher yields of genomic DNA at all sites compared to the MO kit (ANOVA; P < 0.006). In addition, operational taxonomic units for some phyla and classes were missed in some cases: Micrarchaea were detected only in the MN_T and MO_R analyses; the bacterial phylum Armatimonadetes was detected only in MO_R and MO_T; and WIM5 of the phylum Amoebozoa of eukaryotes was found only in the MO_T analysis. Our results suggest the possibility of handling bias; therefore, it is crucial that replicated DNA extraction be performed by at least two technicians for thorough microbial analyses and to obtain accurate estimates of microbial diversity.
Collapse
Affiliation(s)
- Taha Soliman
- Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.,National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Sung-Yin Yang
- Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Tomoko Yamazaki
- Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Holger Jenke-Kodama
- Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
22
|
Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T. Disease Suppressive Soils: New Insights from the Soil Microbiome. PHYTOPATHOLOGY 2017; 107:1284-1297. [PMID: 28650266 DOI: 10.1094/phyto-03-17-0111-rvw] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soils suppressive to soilborne pathogens have been identified worldwide for almost 60 years and attributed mainly to suppressive or antagonistic microorganisms. Rather than identifying, testing and applying potential biocontrol agents in an inundative fashion, research into suppressive soils has attempted to understand how indigenous microbiomes can reduce disease, even in the presence of the pathogen, susceptible host, and favorable environment. Recent advances in next-generation sequencing of microbiomes have provided new tools to reexamine and further characterize the nature of these soils. Two general types of suppression have been described: specific and general suppression, and theories have been developed around these two models. In this review, we will present three examples of currently-studied model systems with features representative of specific and general suppressiveness: suppression to take-all (Gaeumannomyces graminis var. tritici), Rhizoctonia bare patch of wheat (Rhizoctonia solani AG-8), and Streptomyces. To compare and contrast the two models of general versus specific suppression, we propose a number of hypotheses about the nature and ecology of microbial populations and communities of suppressive soils. We outline the potential and limitations of new molecular techniques that can provide novel ways of testing these hypotheses. Finally, we consider how this greater understanding of the phytobiome can facilitate sustainable disease management in agriculture by harnessing the potential of indigenous soil microbes.
Collapse
Affiliation(s)
- Daniel Schlatter
- First, third, and fourth authors: U.S. Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Washington State University, Pullman 99164-6430; and second author: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Linda Kinkel
- First, third, and fourth authors: U.S. Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Washington State University, Pullman 99164-6430; and second author: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Linda Thomashow
- First, third, and fourth authors: U.S. Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Washington State University, Pullman 99164-6430; and second author: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - David Weller
- First, third, and fourth authors: U.S. Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Washington State University, Pullman 99164-6430; and second author: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Timothy Paulitz
- First, third, and fourth authors: U.S. Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Washington State University, Pullman 99164-6430; and second author: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| |
Collapse
|
23
|
Rojas JA, Jacobs JL, Napieralski S, Karaj B, Bradley CA, Chase T, Esker PD, Giesler LJ, Jardine DJ, Malvick DK, Markell SG, Nelson BD, Robertson AE, Rupe JC, Smith DL, Sweets LE, Tenuta AU, Wise KA, Chilvers MI. Oomycete Species Associated with Soybean Seedlings in North America-Part II: Diversity and Ecology in Relation to Environmental and Edaphic Factors. PHYTOPATHOLOGY 2017; 107:293-304. [PMID: 27841963 DOI: 10.1094/phyto-04-16-0176-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Soybean (Glycine max (L.) Merr.) is produced across a vast swath of North America, with the greatest concentration in the Midwest. Root rot diseases and damping-off are a major concern for production, and the primary causal agents include oomycetes and fungi. In this study, we focused on examination of oomycete species distribution in this soybean production system and how environmental and soil (edaphic) factors correlate with oomycete community composition at early plant growth stages. Using a culture-based approach, 3,418 oomycete isolates were collected from 11 major soybean-producing states and most were identified to genus and species using the internal transcribed spacer region of the ribosomal DNA. Pythium was the predominant genus isolated and investigated in this study. An ecology approach was taken to understand the diversity and distribution of oomycete species across geographical locations of soybean production. Metadata associated with field sample locations were collected using geographical information systems. Operational taxonomic units (OTU) were used in this study to investigate diversity by location, with OTU being defined as isolate sequences with 97% identity to one another. The mean number of OTU ranged from 2.5 to 14 per field at the state level. Most OTU in this study, classified as Pythium clades, were present in each field in every state; however, major differences were observed in the relative abundance of each clade, which resulted in clustering of states in close proximity. Because there was similar community composition (presence or absence) but differences in OTU abundance by state, the ordination analysis did not show strong patterns of aggregation. Incorporation of 37 environmental and edaphic factors using vector-fitting and Mantel tests identified 15 factors that correlate with the community composition in this survey. Further investigation using redundancy analysis identified latitude, longitude, precipitation, and temperature as factors that contribute to the variability observed in community composition. Soil parameters such as clay content and electrical conductivity also affected distribution of oomycete species. The present study suggests that oomycete species composition across geographical locations of soybean production is affected by a combination of environmental and edaphic conditions. This knowledge provides the basis to understand the ecology and distribution of oomycete species, especially those able to cause diseases in soybean, providing cues to develop management strategies.
Collapse
Affiliation(s)
- J Alejandro Rojas
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Janette L Jacobs
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Stephanie Napieralski
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Behirda Karaj
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Carl A Bradley
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Thomas Chase
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Paul D Esker
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Loren J Giesler
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Doug J Jardine
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Dean K Malvick
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Samuel G Markell
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Berlin D Nelson
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Alison E Robertson
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - John C Rupe
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Damon L Smith
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Laura E Sweets
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Albert U Tenuta
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Kiersten A Wise
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Martin I Chilvers
- First, second, third, fourth, and nineteenth authors: Department of Plant, Soil and Microbial Sciences, and first and nineteenth authors: Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing 48824; fifth author; Department of Crop Sciences, University of Illinois, Urbana 61801; sixth author: Department of Plant Science, South Dakota State University, Brookings 57007; seventh and fifteenth authors: Department of Plant Pathology, University of Wisconsin-Madison 53706; eighth author: Department of Plant Pathology, University of Nebraska-Lincoln 68583; ninth author: Department of Plant Pathology, Kansas State University, Manhattan 66506; tenth author: Department of Plant Pathology, University of Minnesota, St. Paul 55108; eleventh and twelfth authors: Department of Plant Pathology, North Dakota State University, Fargo 58105; thirteenth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; fourteenth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701; sixteenth author: Division of Plant Sciences, University of Missouri, Columbia 65211; seventeenth author: Ontario Ministry of Agriculture, Food & Rural Affairs, Ridgetown, ON N0P2C0, Canada; and eighteenth author: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
24
|
Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, Pennanen T. Accurate Estimation of Fungal Diversity and Abundance through Improved Lineage-Specific Primers Optimized for Illumina Amplicon Sequencing. Appl Environ Microbiol 2016; 82:7217-7226. [PMID: 27736792 PMCID: PMC5118932 DOI: 10.1128/aem.02576-16] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022] Open
Abstract
While high-throughput sequencing methods are revolutionizing fungal ecology, recovering accurate estimates of species richness and abundance has proven elusive. We sought to design internal transcribed spacer (ITS) primers and an Illumina protocol that would maximize coverage of the kingdom Fungi while minimizing nontarget eukaryotes. We inspected alignments of the 5.8S and large subunit (LSU) ribosomal genes and evaluated potential primers using PrimerProspector. We tested the resulting primers using tiered-abundance mock communities and five previously characterized soil samples. We recovered operational taxonomic units (OTUs) belonging to all 8 members in both mock communities, despite DNA abundances spanning 3 orders of magnitude. The expected and observed read counts were strongly correlated (r = 0.94 to 0.97). However, several taxa were consistently over- or underrepresented, likely due to variation in rRNA gene copy numbers. The Illumina data resulted in clustering of soil samples identical to that obtained with Sanger sequence clone library data using different primers. Furthermore, the two methods produced distance matrices with a Mantel correlation of 0.92. Nonfungal sequences comprised less than 0.5% of the soil data set, with most attributable to vascular plants. Our results suggest that high-throughput methods can produce fairly accurate estimates of fungal abundances in complex communities. Further improvements might be achieved through corrections for rRNA copy number and utilization of standardized mock communities. IMPORTANCE Fungi play numerous important roles in the environment. Improvements in sequencing methods are providing revolutionary insights into fungal biodiversity, yet accurate estimates of the number of fungal species (i.e., richness) and their relative abundances in an environmental sample (e.g., soil, roots, water, etc.) remain difficult to obtain. We present improved methods for high-throughput Illumina sequencing of the species-diagnostic fungal ribosomal marker gene that improve the accuracy of richness and abundance estimates. The improvements include new PCR primers and library preparation, validation using a known mock community, and bioinformatic parameter tuning.
Collapse
Affiliation(s)
- D Lee Taylor
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - William A Walters
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Niall J Lennon
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| | | | - Andrew Krohn
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - J Gregory Caporaso
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Taina Pennanen
- Natural Resources Institute Finland (Luke), Vantaa, Finland
| |
Collapse
|
25
|
Nguyen NH, Williams LJ, Vincent JB, Stefanski A, Cavender-Bares J, Messier C, Paquette A, Gravel D, Reich PB, Kennedy PG. Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field-based tree experiment. Mol Ecol 2016; 25:4032-46. [DOI: 10.1111/mec.13719] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Nhu H. Nguyen
- Department of Plant Biology; University of Minnesota; St. Paul MN USA
| | - Laura J. Williams
- Department of Ecology, Evolution and Behavior; University of Minnesota; St. Paul MN USA
| | - John B. Vincent
- Department of Plant Biology; University of Minnesota; St. Paul MN USA
| | - Artur Stefanski
- Department of Forest Resources; University of Minnesota; St. Paul MN USA
| | | | - Christian Messier
- Department of Biological Sciences; University of Quebec; Montreal QC Canada
| | - Alain Paquette
- Department of Biological Sciences; University of Quebec; Montreal QC Canada
| | - Dominique Gravel
- Department of Biology; University of Sherbrooke; Sherbrooke QC Canada
| | - Peter B. Reich
- Department of Forest Resources; University of Minnesota; St. Paul MN USA
| | - Peter G. Kennedy
- Department of Plant Biology; University of Minnesota; St. Paul MN USA
- Department of Ecology, Evolution and Behavior; University of Minnesota; St. Paul MN USA
| |
Collapse
|
26
|
Penton CR, Gupta VVSR, Yu J, Tiedje JM. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons. Front Microbiol 2016; 7:824. [PMID: 27313569 PMCID: PMC4889595 DOI: 10.3389/fmicb.2016.00824] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/16/2016] [Indexed: 01/05/2023] Open
Abstract
We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungal community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.
Collapse
Affiliation(s)
- C Ryan Penton
- Faculty of Science and Mathematics, College of Integrative Sciences and Arts, Arizona State UniversityMesa, AZ, USA; Arizona State University Applied and Functional Microbiomics Institute, Arizona State UniversityMesa, AZ, USA
| | | | - Julian Yu
- Faculty of Science and Mathematics, College of Integrative Sciences and Arts, Arizona State University Mesa, AZ, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University East Lansing, MI, USA
| |
Collapse
|