1
|
Lima ECSDE, Souza FPDE, Furlan-Murari PJ, Pandolfi VCF, Leite NG, Mainardi RM, Chideroli RT, Pereira UP, Araújo EJA, Pupim ACE, Koch JFA, Lopera-Barrero NM. Effects of dietary β-glucans on the productive performance, blood parameters, and intestinal microbiota of angelfish (Pterophyllum scalare) juveniles. AN ACAD BRAS CIENC 2024; 96:e20231006. [PMID: 38451599 DOI: 10.1590/0001-3765202420231006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/29/2023] [Indexed: 03/08/2024] Open
Abstract
Among the potential feed additives, β-glucans are known to positively affect the growth performance, blood parameters, and intestinal microbiota of fish, even the ornamental species. Therefore, the present study evaluated the effects of the dietary supplementation of different Saccharomyces cerevisiae β-glucans concentrations (0, 0.05, 0.1, and 0.2%) in juvenile angelfish (Pterophyllum scalare) over a 42-day period. Regarding growth performance, no effects were observed on most parameters. However, 0.2% β-glucans supplementation produced higher condition factor values, indicating a better nutritional status. Furthermore, β-glucans supplementation did not affect blood parameters. Regarding intestinal microbiota, β-glucans supplementation increased the abundance of the potentially beneficial bacterial genus Phascolarctobacterium. The high abundance of bacteria from the phylum Bacteroidetes, which can degrade β-glucans, may be attributed to the increased abundance of Phascolarctobacterium spp. In addition, 0.2% β-glucans supplementation produced more operational taxonomic units and higher Sobs (observed species richness), indicating effects on the overall bacterial community structure. These results demonstrate the potential application of β-glucans as a dietary supplement to improve the performance and modulate the intestinal microbiota of angelfish.
Collapse
Affiliation(s)
- Ed C S DE Lima
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Felipe P DE Souza
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Pâmela Juliana Furlan-Murari
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Victor César F Pandolfi
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Natália G Leite
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Raffaella M Mainardi
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Roberta T Chideroli
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Ulisses P Pereira
- Universidade Estadual de Londrina (UEL), Departamento de Medicina Veterinária Preventiva, Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Eduardo José A Araújo
- Universidade Estadual de Londrina (UEL), Departamento de Histologia, Centro de Ciência Biológicas (CCB), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - Andréia Carla E Pupim
- Universidade Estadual de Londrina (UEL), Departamento de Histologia, Centro de Ciência Biológicas (CCB), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| | - João Fernando A Koch
- Biorigin Brasil, Rua Quinze de Novembro, 865, Centro, 18680-900 Lençóis Paulista, SP, Brazil
| | - Nelson Mauricio Lopera-Barrero
- Universidade Estadual de Londrina (UEL), Departamento de Zootecnia, Centro de Ciências Agrárias (CCA), Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
2
|
Bu X, Li Z, Zhao W, Zeng Q, Chen Y, Li W, Zou H, Li M, Wang G. Alterations of gut microbiota and short-chain fatty acids induced by Balantidium polyvacuolum in the hindgut of Xenocyprinae fishes providing new insights into the relationship among protozoa, gut microbiota and host. Front Microbiol 2023; 14:1295456. [PMID: 38075928 PMCID: PMC10702975 DOI: 10.3389/fmicb.2023.1295456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/30/2023] [Indexed: 10/16/2024] Open
Abstract
Introduction Parasitic ciliates are protozoans with a global distribution. Along with the gut microbiota, they have formed a micro-ecosystem that affects the host's nutrition, metabolism, and immunity. The interactions and relationships among the three components of this microecosystem (protozoa, gut microbiota, and host) remain only partially understood. Xenocypris fish and the unique ciliate Balantidium polyvacuolum in its hindgut are good materials to study the interplay. Methods In this study, 16S rRNA gene amplicon sequencing and short-chain fatty acids (SCFAs) identification were used. Network was also constructed to understand their relationships. Results We found that the gut microbiota of B. polyvacuolum-infected X. davidi and X. argentea had higher diversity, richness, and evenness than uninfected ones. B. polyvacuolum could lead to an increase of Fusobacterium and Chloroflexi in both X. davidi and X. argentea, while significantly increase the abundance of genera Romboutsia and Clostridium in X. argentea. Besides, B. polyvacuolum could significantly increase the content of total SCFAs and acetic acid in X. davidi and increase the concentrations of propionic, isobutyric and butanoic acids in X. argentea. Furthermore, correlation analyses showed that B. polyvacuolum may alter SCFAs by affecting key SCFAs-producing bacteria such as Clostridium and Cetobacterium. Discussion This study greatly expands our understanding of relationships among B. polyvacuolum, gut microbiota and host Xenocypris fish, which sheds new insights into the mechanism of interaction among protozoa, gut microbiota and host.
Collapse
Affiliation(s)
- Xialian Bu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhongyang Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Weishan Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qingwen Zeng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yushun Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wenxiang Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hong Zou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ming Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Guitang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
3
|
Shankregowda AM, Siriyappagouder P, Kuizenga M, Bal TMP, Abdelhafiz Y, Eizaguirre C, Fernandes JMO, Kiron V, Raeymaekers JAM. Host habitat rather than evolutionary history explains gut microbiome diversity in sympatric stickleback species. Front Microbiol 2023; 14:1232358. [PMID: 37901806 PMCID: PMC10601471 DOI: 10.3389/fmicb.2023.1232358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Host-associated microbiota can influence host phenotypic variation, fitness and potential to adapt to local environmental conditions. In turn, both host evolutionary history and the abiotic and biotic environment can influence the diversity and composition of microbiota. Yet, to what extent environmental and host-specific factors drive microbial diversity remains largely unknown, limiting our understanding of host-microbiome interactions in natural populations. Here, we compared the intestinal microbiota between two phylogenetically related fishes, the three-spined stickleback (Gasterosteus aculeatus) and the nine-spined stickleback (Pungitius pungitius) in a common landscape. Using amplicon sequencing of the V3-V4 region of the bacterial 16S rRNA gene, we characterised the α and β diversity of the microbial communities in these two fish species from both brackish water and freshwater habitats. Across eight locations, α diversity was higher in the nine-spined stickleback, suggesting a broader niche use in this host species. Habitat was a strong determinant of β diversity in both host species, while host species only explained a small fraction of the variation in gut microbial composition. Strong habitat-specific effects overruled effects of geographic distance and historical freshwater colonisation, suggesting that the gut microbiome correlates primarily with local environmental conditions. Interestingly, the effect of habitat divergence on gut microbial communities was stronger in three-spined stickleback than in nine-spined stickleback, possibly mirroring the stronger level of adaptive divergence in this host species. Overall, our results show that microbial communities reflect habitat divergence rather than colonisation history or dispersal limitation of host species.
Collapse
Affiliation(s)
| | | | - Marijn Kuizenga
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Thijs M. P. Bal
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | |
Collapse
|
4
|
Liu N, Zhang P, Xue M, Xiao Z, Zhang M, Meng Y, Fan Y, Qiu J, Zhang Q, Zhou Y. Variations in the Intestinal Microbiota of the Chinese Soft-Shelled Turtle ( Trionyx sinensis) between Greenhouse and Pond Aquaculture. Animals (Basel) 2023; 13:2971. [PMID: 37760371 PMCID: PMC10525211 DOI: 10.3390/ani13182971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The microbial community structure in aquaculture water plays an important role in the intestinal microbial diversity of aquatic animals. The Chinese soft-shelled turtle (SST) (Trionyx sinensis) is an important aquaculture species of high economic value in the Asia-Pacific region. An intuitive understanding of the microbial diversity and abundances of SST aquaculture is crucial for comprehending these ecosystems. Herein, the evolutionary characteristics of the bacterial communities in the SST and its aquaculture water systems were investigated using Illumina MiSeq sequencing. This experiment sampled nine SSTs from a pond outside a greenhouse and was repeated three times. The sequencing results revealed significant differences in the microflora composition at the phylum and genus levels in both the intestine and aquaculture water of the SSTs in the greenhouse and pond aquaculture environments. A total of 1039 genera belonging to 65 phyla were identified. At the phylum level, the relative abundances of Chloroflexi (24%), Acidobacteria (5%), and Nitrospira (3%) were higher in the greenhouse water than in the pond water. The relative abundances of Bacteroidetes (35%), Actinobacteria (8%), and Cyanobacteria (4%) were higher in the pond water than in the greenhouse water. The intestinal microorganisms in the SSTs experienced significant changes after the SSTs were transferred from a greenhouse culture to a pond culture environment for 28 days. After the SSTs were cultured in the ponds, we observed decreases in the relative abundances of Actinobacteria (39% to 25%), Cyanobacteria (24% to 0.8%), Chlorobacteria (9% to 3%), and Firmicutes (5.5% to 0.8%. However, we observed increases in the relative abundances of Bacteroidetes (2% to 35%) and Acidobacteria (0.3% to 25%). These results showed that the bacterial diversity and richness compositions in the intestinal tract and aquaculture water were the same. However, the relative abundances of bacterial communities varied. The results of this study are of great significance in understanding how the environment affects SST cultures. These data may provide valuable instructions for Chinese soft-shelled turtle aquaculture management.
Collapse
Affiliation(s)
- Naicheng Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Peng Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
| | - Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
| | - Mengjie Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
| | - Junqiang Qiu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
| |
Collapse
|
5
|
Vedel G, Triadó-Margarit X, Linares O, Moreno-Rojas JM, la Peña ED, García-Bocanegra I, Jiménez-Martín D, Carranza J, Casamayor EO. Exploring the potential links between gut microbiota composition and natural populations management in wild boar (Sus scrofa). Microbiol Res 2023; 274:127444. [PMID: 37421802 DOI: 10.1016/j.micres.2023.127444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
We surveyed wild boar (Sus scrofa) populations using 16S rRNA gene analysis of the gut microbiota in fresh faeces taken from 88 animals hunted in 16 hunting estates. The wild boar is a very convenient model system to explore how environmental factors including game management, food availability, disease prevalence, and behaviour may affect different biological components of wild individuals with potential implications in management and conservation. We tested the hypotheses that diet (according to stable carbon isotopes analyses), gender (i.e., animal behaviour studying males and females), and both health (analyses of serum samples to detect exposure to several diseases) and form statutes (i.e., thoracic circumference in adults) are reflected in changes in the intestinal microbiota. We focused on a gut functional biomarker index combining Oscillospiraceae and Ruminococcaceae vs. Enterobacteriaceae. We found that gender and the estate (population) were explanatory variables (c.a. 28% of the variance), albeit a high degree of overlapping among individuals was observed. The individuals with higher abundance of Enterobacteriaceae showed a gut microbiota with low diversity, mostly in males. Significant statistical differences for thoracic circumference were not found between males and females. Interestingly, the thoracic circumference was significantly and inversely related to the relative abundance of Enterobacteriaceae in males. Overall, we found that diet, gender, and form status were major factors that could be related to the composition and diversity of the gut microbiota. A high variability was observed in the biomarker index for populations with natural diet (rich in C3 plants). Although, we noticed a marginally significant negative trend between the index (higher abundance of Enterobacteriaceae) and the continuous feeding of C4 plants (i.e., supplementary maize) in the diet of males. This result suggests that continuous artificial feeding in hunting estates could be one of the factors negatively influencing the gut microbiota and the form status of wild boars that deserves further investigations.
Collapse
Affiliation(s)
- Giovanni Vedel
- Wildlife Research Unit, University of Cordoba (UIRCP-UCO), 14071 Córdoba, Spain
| | - Xavier Triadó-Margarit
- Ecology of the Global Microbiome, Centre of Advanced Studies of Blanes-Spanish Council for Research (CEAB-CSIC), Accés Cala St Francesc, 14, E-17300 Blanes, Spain
| | - Olmo Linares
- Wildlife Research Unit, University of Cordoba (UIRCP-UCO), 14071 Córdoba, Spain
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez Pidal, s/n, 14071 Córdoba, Spain
| | - Eva de la Peña
- Wildlife Research Unit, University of Cordoba (UIRCP-UCO), 14071 Córdoba, Spain; IREC National Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Ignacio García-Bocanegra
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emreging Diseases ENZOEM, University of Cordoba, Cordoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain
| | - Débora Jiménez-Martín
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emreging Diseases ENZOEM, University of Cordoba, Cordoba, Spain
| | - Juan Carranza
- Wildlife Research Unit, University of Cordoba (UIRCP-UCO), 14071 Córdoba, Spain
| | - Emilio O Casamayor
- Ecology of the Global Microbiome, Centre of Advanced Studies of Blanes-Spanish Council for Research (CEAB-CSIC), Accés Cala St Francesc, 14, E-17300 Blanes, Spain.
| |
Collapse
|
6
|
Huang Z, Gao J, Peng C, Song J, Xie Z, Jia J, Li H, Zhao S, Liang Y, Gong B. The Effect of the Microalgae Chlorella vulgaris on the Gut Microbiota of Juvenile Nile Tilapia ( Oreochromis niloticus) Is Feeding-Time Dependent. Microorganisms 2023; 11:1002. [PMID: 37110425 PMCID: PMC10146053 DOI: 10.3390/microorganisms11041002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Chlorella vulgaris is one of the most commonly used microalgae in aquaculture feeds. It contains high concentrations of various kinds of nutritional elements that are involved in the physiological regulation of aquaculture animals. However, few studies have been conducted to illustrate their influence on the gut microbiota in fish. In this work, the gut microbiota of Nile tilapia (Oreochromis niloticus) (average weight is 6.64 g) was analyzed by high-throughput sequencing of the 16S rRNA gene after feeding with 0.5% and 2% C. vulgaris additives in diets for 15 and 30 days (average water temperature was 26 °C). We found that the impact of C. vulgaris on the gut microbiota of Nile tilapia was feeding-time dependent. Only by feeding for 30 days (not 15 days) did the addition of 2% C. vulgaris to diets significantly elevate the alpha diversity (Chao1, Faith pd, Shannon, Simpson, and the number of observed species) of the gut microbiota. Similarly, C. vulgaris exerted a significant effect on the beta diversity (Bray-Curtis similarity) of the gut microbiota after feeding for 30 days (not 15 days). During the 15-day feeding trial, LEfSe analysis showed that Paracoccus, Thiobacillus, Dechloromonas, and Desulfococcus were enriched under 2% C. vulgaris treatment. During the 30-day feeding trial, Afipia, Ochrobactrum, Polymorphum, Albidovulum, Pseudacidovorax, and Thiolamprovum were more abundant in 2% C. vulgaris-treated fish. C. vulgaris promoted the interaction of gut microbiota in juvenile Nile tilapia by increasing the abundance of Reyranella. Moreover, during the feeding time of 15 days, the gut microbes interacted more closely than those during the feeding time of 30 days. This work will be valuable for understanding how C. vulgaris in diets impacts the gut microbiota in fish.
Collapse
Affiliation(s)
- Zhicheng Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinyan Gao
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Chunyan Peng
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Jingjing Song
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Zongsheng Xie
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Jixin Jia
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Haochen Li
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Gong
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
7
|
Zhang L, Yang Z, Yang F, Wang G, Zeng M, Zhang Z, Yang M, Wang Z, Li Z. Gut microbiota of two invasive fishes respond differently to temperature. Front Microbiol 2023; 14:1087777. [PMID: 37056740 PMCID: PMC10088563 DOI: 10.3389/fmicb.2023.1087777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Temperature variation structures the composition and diversity of gut microbiomes in ectothermic animals, key regulators of host physiology, with potential benefit to host or lead to converse results (i.e., negative). So, the significance of either effect may largely depend on the length of time exposed to extreme temperatures and how rapidly the gut microbiota can be altered by change in temperature. However, the temporal effects of temperature on gut microbiota have rarely been clarified. To understand this issue, we exposed two juvenile fishes (Cyprinus carpio and Micropterus salmoides), which both ranked among the 100 worst invasive alien species in the world, to increased environmental temperature and sampled of the gut microbiota at multiple time points after exposure so as to determine when differences in these communities become detectable. Further, how temperature affects the composition and function of microbiota was examined by comparing predicted metagenomic profiles of gut microbiota between treatment groups at the final time point of the experiment. The gut microbiota of C. carpio was more plastic than those of M. salmoides. Specifically, communities of C. carpio were greatly altered by increased temperature within 1 week, while communities of M. salmoides exhibit no significant changes. Further, we identified 10 predicted bacterial functional pathways in C. carpio that were temperature-dependent, while none functional pathways in M. salmoides was found to be temperature-dependent. Thus, the gut microbiota of C. carpio was more sensitive to temperature changes and their functional pathways were significantly changed after temperature treatment. These results showed the gut microbiota of the two invasive fishes differ in response to temperature change, which may indicate that they differ in colonization modes. Broadly, we have confirmed that the increased short-term fluctuations in temperatures are always expected to alter the gut microbiota of ectothermic vertebrates when facing global climate change.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
- Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem and The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, China
- *Correspondence: Lixia Zhang,
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Fan Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Gege Wang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ming Zeng
- Jigongshan National Nature Reserve, Xinyang, China
| | | | - Mengxiao Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Zhibing Li
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
8
|
Gaughan S, Kyndt JA, Haas JD, Steffensen KD, Kočovský PM, Pope KL. Using the Gut Microbiome to Assess Stocking Efforts of the Endangered Pallid Sturgeon, Scaphirhynchus albus. Life (Basel) 2023; 13:life13020309. [PMID: 36836665 PMCID: PMC9967686 DOI: 10.3390/life13020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The endangered Pallid Sturgeon, Scaphirhynchus albus, has been actively managed to prevent population declines, including stocking of hatchery-raised fish. The gut microbiome plays an innate role in an organism's absorption of nutrients by increasing nutrient availability and can provide new insights for Pallid Sturgeon management. In this study, the Pallid Sturgeon's microbiome is dominated by the phyla Proteobacteria, Firmicutes, Actinobacteria and Fusobacteria. It was also determined that the gut bacterial diversity in hatchery-raised Pallid Sturgeon was not significantly different from wild Pallid Sturgeon, supporting that hatchery-raised Pallid Sturgeon are transitioning effectively to wild diets. There is also a high degree of intraspecific variation in the bacterial and eukaryotic sequences amongst individual Pallid Sturgeon microbiomes, suggesting the Pallid Sturgeon may be omnivorous. This study demonstrated that genetic markers may be used to effectively describe the dietary requirements for wild Pallid Sturgeon and provides the first genetic evidence that Pallid Sturgeons are effectively transitioning from hatchery-raised environments to the wild.
Collapse
Affiliation(s)
- Sarah Gaughan
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA
| | - John A Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA
| | - Justin D Haas
- Nebraska Game and Parks Commission, Lincoln, NE 68501, USA
| | | | | | - Kevin L Pope
- U.S. Geological Survey-Nebraska Cooperative Fish and Wildlife Research Unit, School of Natural Resources, Lincoln, NE 68583, USA
| |
Collapse
|
9
|
Devika NT, Katneni VK, Jangam AK, Suganya PN, Shekhar MS, Jithendran KP. In silico prediction of potential indigenous microbial biomarkers in Penaeus vannamei identified through meta-analysis and genome-scale metabolic modelling. ENVIRONMENTAL MICROBIOME 2023; 18:2. [PMID: 36631881 PMCID: PMC9835370 DOI: 10.1186/s40793-022-00458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Understanding the microbiome is crucial as it contributes to the metabolic health of the host and, upon dysbiosis, may influence disease development. With the recent surge in high-throughput sequencing technology, the availability of microbial genomic data has increased dramatically. Amplicon sequence-based analyses majorly profile microbial abundance and determine taxonomic markers. Furthermore, the availability of genome sequences for various microbial organisms has prompted the integration of genome-scale metabolic modelling that provides insights into the metabolic interactions influencing host health. However, the analysis from a single study may not be consistent, necessitating a meta-analysis. RESULTS We conducted a meta-analysis and integrated with constraint-based metabolic modelling approach, focusing on the microbiome of pacific white shrimp Penaeus vannamei, an extensively cultured marine candidate species. Meta-analysis revealed that Acinetobacter and Alteromonas are significant indicators of "health" and "disease" specific taxonomic biomarkers, respectively. Further, we enumerated metabolic interactions among the taxonomic biomarkers by applying a constraint-based approach to the community metabolic models (4416 pairs). Under different nutrient environments, a constraint-based flux simulation identified five beneficial species: Acinetobacter spWCHA55, Acinetobacter tandoii SE63, Bifidobacterium pseudolongum 49 D6, Brevundimonas pondensis LVF1, and Lutibacter profundi LP1 mediating parasitic interactions majorly under sucrose environment in the pairwise community. The study also reports the healthy biomarkers that can co-exist and have functionally dependent relationships to maintain a healthy state in the host. CONCLUSIONS Toward this, we collected and re-analysed the amplicon sequence data of P. vannamei (encompassing 117 healthy and 142 disease datasets). By capturing the taxonomic biomarkers and modelling the metabolic interaction between them, our study provides a valuable resource, a first-of-its-kind analysis in aquaculture scenario toward a sustainable shrimp farming.
Collapse
Affiliation(s)
- Neelakantan Thulasi Devika
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Vinaya Kumar Katneni
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India.
| | - Ashok Kumar Jangam
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Panjan Nathamuni Suganya
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Mudagandur Shashi Shekhar
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Karingalakkandy Poochirian Jithendran
- Aquatic Animal Health and Environment Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| |
Collapse
|
10
|
Santos ME, Lopes JF, Kratochwil CF. East African cichlid fishes. EvoDevo 2023; 14:1. [PMID: 36604760 PMCID: PMC9814215 DOI: 10.1186/s13227-022-00205-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Cichlid fishes are a very diverse and species-rich family of teleost fishes that inhabit lakes and rivers of India, Africa, and South and Central America. Research has largely focused on East African cichlids of the Rift Lakes Tanganyika, Malawi, and Victoria that constitute the biodiversity hotspots of cichlid fishes. Here, we give an overview of the study system, research questions, and methodologies. Research on cichlid fishes spans many disciplines including ecology, evolution, physiology, genetics, development, and behavioral biology. In this review, we focus on a range of organismal traits, including coloration phenotypes, trophic adaptations, appendages like fins and scales, sensory systems, sex, brains, and behaviors. Moreover, we discuss studies on cichlid phylogenies, plasticity, and general evolutionary patterns, ranging from convergence to speciation rates and the proximate and ultimate mechanisms underlying these processes. From a methodological viewpoint, the last decade has brought great advances in cichlid fish research, particularly through the advent of affordable deep sequencing and advances in genetic manipulations. The ability to integrate across traits and research disciplines, ranging from developmental biology to ecology and evolution, makes cichlid fishes a fascinating research system.
Collapse
Affiliation(s)
- M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - João F Lopes
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
11
|
Baldo L, Tavecchia G, Rotger A, Igual JM, Riera JL. Insular holobionts: persistence and seasonal plasticity of the Balearic wall lizard ( Podarcis lilfordi) gut microbiota. PeerJ 2023; 11:e14511. [PMID: 36620745 PMCID: PMC9817956 DOI: 10.7717/peerj.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2023] Open
Abstract
Background Integrative studies of animals and associated microbial assemblages (i.e., the holobiont) are rapidly changing our perspectives on organismal ecology and evolution. Insular vertebrates provide ideal natural systems to understand patterns of host-gut microbiota coevolution, the resilience and plasticity these microbial communities over temporal and spatial scales, and ultimately their role in the host ecological adaptation. Methods Here we used the endemic Balearic wall lizard Podarcis lilfordi to dissect the drivers of the microbial diversity within and across host allopatric populations/islets. By focusing on three extensively studied populations/islets of Mallorca (Spain) and fecal sampling from individually identified lizards along two years (both in spring and autumn), we sorted out the effect of islet, sex, life stage, year and season on the microbiota composition. We further related microbiota diversity to host genetics, trophic ecology and expected annual metabolic changes. Results All the three populations showed a remarkable conservation of the major microbial taxonomic profile, while carrying their unique microbial signature at finer level of taxonomic resolution (Amplicon Sequence Variants (ASVs)). Microbiota distances across populations were compatible with both host genetics (based on microsatellites) and trophic niche distances (based on stable isotopes and fecal content). Within populations, a large proportion of ASVs (30-50%) were recurrently found along the four sampling dates. The microbial diversity was strongly marked by seasonality, with no sex effect and a marginal life stage and annual effect. The microbiota showed seasonal fluctuations along the two sampled years, primarily due to changes in the relative abundances of fermentative bacteria (mostly families Lachnospiraceae and Ruminococcaceae), without any major compositional turnover. Conclusions These results support a large resilience of the major compositional aspects of the P. lilfordi gut microbiota over the short-term evolutionary divergence of their host allopatric populations (<10,000 years), but also indicate an undergoing process of parallel diversification of the both host and associated gut microbes. Predictable seasonal dynamics in microbiota diversity suggests a role of microbiota plasticity in the lizards' metabolic adaptation to their resource-constrained insular environments. Overall, our study supports the need for longitudinal and integrative studies of host and associated microbes in natural systems.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute for Research on Biodiversity (IRBio), Barcelona, Spain
| | - Giacomo Tavecchia
- Animal Demography and Ecology Unit, IMEDEA, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| | - Andreu Rotger
- Animal Demography and Ecology Unit, IMEDEA, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| | - José Manuel Igual
- Animal Demography and Ecology Unit, IMEDEA, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| | - Joan Lluís Riera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Menanteau-Ledouble S, Skov J, Lukassen MB, Rolle-Kampczyk U, Haange SB, Dalsgaard I, von Bergen M, Nielsen JL. Modulation of gut microbiota, blood metabolites, and disease resistance by dietary β-glucan in rainbow trout (Oncorhynchus mykiss). Anim Microbiome 2022; 4:58. [PMID: 36404315 PMCID: PMC9677660 DOI: 10.1186/s42523-022-00209-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Prebiotics are known to have a positive impact on fish health and growth rate, and β-glucans are among the most used prebiotics on the market. In this study, rainbow trout (Oncorhynchus mykiss) were treated with a β-1,3;1,6-glucan dietary supplement (at a dose of 0 g, 1 g, 10 g, and 50 g β-glucan per kg of feed). After 6 weeks, the effect of the β-glucan was evaluated by determining the changes in the microbiota and the blood serum metabolites in the fish. The impact of β-glucan on the immune system was evaluated through a challenge experiment with the bacterial fish pathogen Yersinia ruckeri. RESULTS The microbiota showed a significant change in terms of composition following β-glucan treatment, notably an increase in the relative abundance of members of the genus Aurantimicrobium, associated with a decreased abundance of the genera Carnobacterium and Deefgea. Furthermore, analysis of more than 200 metabolites revealed that the relative levels of 53 metabolites, in particular compounds related to phosphatidylcholines, were up- or downregulated in response to the dietary supplementation, this included the amino acid alanine that was significantly upregulated in the fish that had received the highest dose of β-glucan. Meanwhile, no strong effect could be detected on the resistance of the fish to the bacterial infection. CONCLUSIONS The present study illustrates the ability of β-glucans to modify the gut microbiota of fish, resulting in alteration of the metabolome and affecting fish health through the lipidome of rainbow trout.
Collapse
Affiliation(s)
- Simon Menanteau-Ledouble
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Jakob Skov
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark ,grid.5170.30000 0001 2181 8870National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Mie Bech Lukassen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Ulrike Rolle-Kampczyk
- grid.7492.80000 0004 0492 3830Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Sven-Bastiaan Haange
- grid.7492.80000 0004 0492 3830Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Inger Dalsgaard
- grid.5170.30000 0001 2181 8870National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Martin von Bergen
- grid.7492.80000 0004 0492 3830Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, 04318 Leipzig, Germany ,grid.421064.50000 0004 7470 3956German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Jeppe Lund Nielsen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| |
Collapse
|
13
|
Chen J, Wang H, Yuan H, Hu N, Zou F, Li C, Shi L, Tan B, Zhang S. Effects of dietary Clostridium autoethanogenum protein on the growth, disease resistance, intestinal digestion, immunity and microbiota structure of Litopenaeus vannamei reared at different water salinities. Front Immunol 2022; 13:1034994. [PMID: 36275652 PMCID: PMC9585349 DOI: 10.3389/fimmu.2022.1034994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
The shortage of fishmeal (FM) resources limits the healthy development of aquaculture. Developing new protein sources to replace FM in aquatic feeds is an effective measure to alleviate this situation. However, the application effect of new protein sources is greatly affected by water salinity, which is an important parameter of aquaculture. In this study, the growth, disease resistance, and intestinal digestion, immunity, and microbiota structure of Litopenaeus vannamei (initial weight: 0.38 ± 0.01 g) fed on Clostridium autoethanogenum protein (CAP) or not at three different water salinities (15 ‰, 30 ‰, and 45 ‰) were compared, aiming to explore the effects of dietary CAP on shrimp when suffering different salinity stresses. The results showed that the growth performance, feed utilization, and survival rate (SR) after pathogen challenge of L. vannamei could be significantly improved by dietary CAP when compared with the control at the same salinity and they were also significantly affected by salinity changes when L. vannamei was fed on the same protein source. With the increase in salinity, obvious upregulation was observed in the activities and gene expression of digestive enzymes both in L. vannamei fed on FM and CAP, with significantly higher levels in L. vannamei fed on CAP than in those fed on FM at the same salinity. Meanwhile, the expression levels of immune genes in the CAP group were significantly higher than those in the FM group at different salinities. The intestinal microbiota analysis showed that CAP could increase the relative abundance of beneficial bacteria and decrease the relative abundance of harmful bacteria in the intestine of L. vannamei at the phylum, family, and genus levels, and it was more affected by salinity changes when compared with FM. Besides, the changes in salinity and protein sources led to different changes in the intestinal microflora function of L. vannamei. In sum, this study indicated that CAP could improve the growth, disease resistance, digestive capacity, and intestinal microflora of L. vannamei with a much more intense immune response and enhance its ability to cope with salinity stress.
Collapse
Affiliation(s)
- Jian Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hongming Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Naijie Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Fangqi Zou
- Technology R&D Department, Beijing Shoulang Bio-Technology Co., Ltd., Beijing, China
| | - Chongyang Li
- Technology R&D Department, Beijing Shoulang Bio-Technology Co., Ltd., Beijing, China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- Aquatic Animal Nutrition and Feed Laboratory, Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- Aquatic Animal Nutrition and Feed Laboratory, Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- *Correspondence: Shuang Zhang,
| |
Collapse
|
14
|
Gallet A, Yao EK, Foucault P, Bernard C, Quiblier C, Humbert JF, Coulibaly JK, Troussellier M, Marie B, Duperron S. Fish gut-associated bacterial communities in a tropical lagoon (Aghien lagoon, Ivory Coast). Front Microbiol 2022; 13:963456. [PMID: 36246274 PMCID: PMC9556852 DOI: 10.3389/fmicb.2022.963456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Aghien lagoon (Ivory Coast) is a eutrophic freshwater lagoon that harbors high biomasses of phytoplankton. Despite Increasing interest in fish gut microbiomes diversity and functions, little data is currently available regarding wild species from tropical west African lakes. Here, gut-associated bacterial communities are investigated in four fish species that are consumed by locale populations, namely the Cichlidae Hemichromis fasciatus, Tilapia guineensis and Sarotherodon melanotheron, and the Claroteidae Chrysichthys nigrodigitatus. Species-related differences are identified, that can be attributed to host phylogeny and diet. Important variations throughout the year are observed in T. guineensis and C. nigrodigitatus. This result emphasized the importance of time-series sampling and comparison with environmental variables even in tropical regions, that are not often conducted in wild populations. Effects of environmental factors (anthropogenic or not) on the microbiota and potential outcomes for fish health and populations sustainability need to be further explored. Interestingly, fish appear as major reservoirs of bacterial diversity, suggesting that they could contribute to the overall stability and resilience of bacterial communities present in the Aghien lagoon.
Collapse
Affiliation(s)
- Alison Gallet
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Eric Kouamé Yao
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
- Institut Pasteur de Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Pierre Foucault
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Catherine Quiblier
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
- Université Paris Cité, UFR Sciences du Vivant, Paris, France
| | | | | | - Marc Troussellier
- MARBEC, Centre National de la Recherche Scientifique, Université Montpellier, IFREMER, IRD, Montpellier, France
| | - Benjamin Marie
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Sébastien Duperron
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
15
|
Heras J, Martin CH. Minimal overall divergence of the gut microbiome in an adaptive radiation of Cyprinodon pupfishes despite potential adaptive enrichment for scale-eating. PLoS One 2022; 17:e0273177. [PMID: 36112615 PMCID: PMC9481044 DOI: 10.1371/journal.pone.0273177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Adaptive radiations offer an excellent opportunity to understand the eco-evolutionary dynamics of gut microbiota and host niche specialization. In a laboratory common garden, we compared the gut microbiota of two novel derived trophic specialist pupfishes, a scale-eater and a molluscivore, to closely related and distant outgroup generalist populations, spanning both rapid trophic evolution within 10 kya and stable generalist diets persisting over 11 Mya. We predicted an adaptive and highly divergent microbiome composition in the trophic specialists reflecting their rapid rates of craniofacial and behavioral diversification. We sequenced 16S rRNA amplicons of gut microbiomes from lab-reared adult pupfishes raised under identical conditions and fed the same high protein diet. In contrast to our predictions, gut microbiota largely reflected phylogenetic distance among species, rather than generalist or specialist life history, in support of phylosymbiosis. However, we did find significant enrichment of Burkholderiaceae bacteria in replicated lab-reared scale-eater populations. These bacteria sometimes digest collagen, the major component of fish scales, supporting an adaptive shift. We also found some enrichment of Rhodobacteraceae and Planctomycetia in lab-reared molluscivore populations, but these bacteria target cellulose. Overall phylogenetic conservation of microbiome composition contrasts with predictions of adaptive radiation theory and observations of rapid diversification in all other trophic traits in these hosts, including craniofacial morphology, foraging behavior, aggression, and gene expression, suggesting that the functional role of these minor shifts in microbiota will be important for understanding the role of the microbiome in trophic diversification.
Collapse
Affiliation(s)
- Joseph Heras
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States of America
| |
Collapse
|
16
|
Su Q, Tang M, Hu J, Tang J, Zhang X, Li X, Niu Q, Zhou X, Luo S, Zhou X. Significant compositional and functional variation reveals the patterns of gut microbiota evolution among the widespread Asian honeybee populations. Front Microbiol 2022; 13:934459. [PMID: 36118209 PMCID: PMC9478171 DOI: 10.3389/fmicb.2022.934459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
The gut microbiome is a crucial element that facilitates a host’s adaptation to a changing environment. Compared to the western honeybee Apis mellifera, the Asian honeybee, Apis cerana populations across its natural range remain mostly semi-feral and are less affected by bee management, which provides a good system to investigate how gut microbiota evolve under environmental heterogeneity on large geographic scales. We compared and analyzed the gut microbiomes of 99 Asian honeybees, from genetically diverged populations covering 13 provinces across China. Bacterial composition varied significantly across populations at phylotype, sequence-discrete population (SDP), and strain levels, but with extensive overlaps, indicating that the diversity of microbial community among A. cerana populations is driven by nestedness. Pollen diets were significantly correlated with both the composition and function of the gut microbiome. Core bacteria, Gilliamella and Lactobacillus Firm-5, showed antagonistic turnovers and contributed to the enrichment in carbohydrate transport and metabolism. By feeding and inoculation bioassays, we confirmed that the variations in pollen polysaccharide composition contributed to the trade-off of these core bacteria. Progressive change, i.e., nestedness, is the foundation of gut microbiome evolution among the Asian honeybee. Such a transition during the co-diversification of gut microbiomes is affected by environmental factors, diets in general, and pollen polysaccharides in particular.
Collapse
Affiliation(s)
- Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Min Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiahui Hu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junbo Tang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xingan Li
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, China
| | - Qingsheng Niu
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- *Correspondence: Shiqi Luo,
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Xin Zhou,
| |
Collapse
|
17
|
Amillano-Cisneros JM, Hernández-Rosas PT, Gomez-Gil B, Navarrete-Ramírez P, Ríos-Durán MG, Martínez-Chávez CC, Johnston-Monje D, Martínez-Palacios CA, Raggi L. Loss of gut microbial diversity in the cultured, agastric fish, Mexican pike silverside ( Chirostoma estor: Atherinopsidae). PeerJ 2022; 10:e13052. [PMID: 35282279 PMCID: PMC8908885 DOI: 10.7717/peerj.13052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/12/2022] [Indexed: 01/11/2023] Open
Abstract
Teleost fish are the most diverse group of extant vertebrates and have varied digestive anatomical structures and strategies, suggesting they also possess an array of different host-microbiota interactions. Differences in fish gut microbiota have been shown to affect host development, the process of gut colonization, and the outcomes of gene-environment or immune system-microbiota interactions. There is generally a lack of studies on the digestive mechanisms and microbiota of agastric short-intestine fish however, meaning that we do not understand how changes in gut microbial diversity might influence the health of these types of fish. To help fill these gaps in knowledge, we decided to study the Mexican pike silverside (Chirostoma estor) which has a simplified alimentary canal (agastric, short-intestine, 0.7 gut relative length) to observe the diversity and metabolic potential of its intestinal microbiota. We characterized gut microbial populations using high-throughput sequencing of the V3 region in bacterial 16S rRNA genes while searching for population shifts resulting associated with fish development in different environments and cultivation methods. Microbiota samples were taken from the digesta, anterior and posterior intestine (the three different intestinal components) of fish that grew wild in a lake, that were cultivated in indoor tanks, or that were raised in outdoor ponds. Gut microbial diversity was significantly higher in wild fish than in cultivated fish, suggesting a loss of diversity when fish are raised in controlled environments. The most abundant phyla observed in these experiments were Firmicutes and Proteobacteria, particularly of the genera Mycoplasma, Staphylococcus, Spiroplasma, and Aeromonas. Of the 14,161 OTUs observed in this experiment, 133 were found in all groups, and 17 of these, belonging to Acinetobacter, Aeromonas, Pseudomonas, and Spiroplasma genera, were found in all samples suggesting the existence of a core C. estor microbiome. Functional metagenomic prediction of bacterial ecological functions using PICRUSt2 suggested that different intestinal components select for functionally distinct microbial populations with variation in pathways related to the metabolism of amino acids, vitamins, cofactors, and energy. Our results provide, for the first time, information on the bacterial populations present in an agastric, short-gut teleost with commercial potential and show that controlled cultivation of this fish reduces the diversity of its intestinal microbiota.
Collapse
Affiliation(s)
- Jesús Mateo Amillano-Cisneros
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Perla T. Hernández-Rosas
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Bruno Gomez-Gil
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Mazatlán, Sinaloa, Mexico
| | - Pamela Navarrete-Ramírez
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico,Cátedras-CONACYT, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - María Gisela Ríos-Durán
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Carlos Cristian Martínez-Chávez
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - David Johnston-Monje
- Max Planck Tandem Group in Plant Microbial Ecology, Universidad del Valle, Cali, Valle del Cauca, Colombia
| | - Carlos Antonio Martínez-Palacios
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Luciana Raggi
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico,Cátedras-CONACYT, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| |
Collapse
|
18
|
Zhu J, Li H, Jing ZZ, Zheng W, Luo YR, Chen SX, Guo F. Robust host source tracking building on the divergent and non-stochastic assembly of gut microbiomes in wild and farmed large yellow croaker. MICROBIOME 2022; 10:18. [PMID: 35081990 PMCID: PMC8790850 DOI: 10.1186/s40168-021-01214-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/12/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Given the lack of genetic background, the source tracking unknown individuals of fish species with both farmed and wild populations often cannot be robustly achieved. The gut microbiome, which is shaped by both deterministic and stochastic processes, can serve as a molecular marker of fish host source tracking, particularly as an alternative to the yet-to-be-established host genetic marker. A candidate for testing the feasibility is the large yellow croaker, Larimichthys crocea, which is carnivorous and ranks the top mariculture fish in China. Wild resource of this fish was depleted decades ago and might have potential problematic estimation because of escaping of farmed individuals. RESULTS The rectums of wild (n = 212) and farmed (n = 79) croakers from multiple batches were collected for the profiling of their gut bacterial communities. The farmed individuals had a higher alpha diversity and lower bacterial load than the wild individuals. The gut microbiota of the two sources exhibited divergence and high inter-batch variation, as featured by the dominance of Psychrobacter spp. in the wild group. Predicted functional capacity of the gut microbiome and representative isolates showed differences in terms of host source. This difference can be linked to the potential diet divergence between farmed and wild fishes. The non-stochastic distribution pattern of the core gut microbiota of the wild and farmed individuals supports the feasibility of microbiota-based host source tracking via the machine learning algorithm. A random forest classifier based on the divergence and non-stochastic assembly of the gut microbiome was robust in terms of host source tracking the individuals from all batches of croaker, including a newly introduced batch. CONCLUSIONS Our study revealed the divergence of gut microbiota and related functional profiles between wild and farmed croakers. For the first time, with representative datasets and non-stochastic patterns, we have verified that gut microbiota can be robustly applied to the tracking of host source even in carnivorous fish. Video abstract.
Collapse
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Hao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ze Zhou Jing
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Wei Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuan Rong Luo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, China
| | - Shi Xi Chen
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Feng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
19
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
20
|
Ofek T, Lalzar M, Laviad-Shitrit S, Izhaki I, Halpern M. Comparative Study of Intestinal Microbiota Composition of Six Edible Fish Species. Front Microbiol 2021; 12:760266. [PMID: 34950115 PMCID: PMC8689067 DOI: 10.3389/fmicb.2021.760266] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
Intensive freshwater aquaculture in the Spring Valley, Israel, is implemented mainly in earthen fishponds and reservoirs that are stocked with a variety of edible fish species. Here we sampled six different healthy fish species from these intensive aquacultures. The fish were hybrid striped bass, European bass, red drum (all carnivores), hybrid tilapia, flathead grey mullet (both herbivores), and common carp (an omnivore). Significant differences were found among the intestinal microbiota of the six studied fish species. The microbiota composition diversity was strongly related to the trophic level of the fish, such that there was a significant difference between the carnivore and the herbivore species, while the omnivore species was not significantly different from either group. The most abundant genus in the majority of the fishes’ intestinal microbiota was Cetobacterium. Furthermore, we found that beside Cetobacterium, a unique combination of taxa with relative abundance >10% characterized the intestine microbiota of each fish species: unclassified Mycoplasmataceae, Aeromonas, and Vibrio (hybrid striped bass); Turicibacter and Clostridiaceae 1 (European bass); Vibrio (red drum); ZOR0006—Firmicutes (hybrid tilapia); unclassified Mycoplasmataceae and unclassified Vibrionaceae (flathead grey mullet); and Aeromonas (common carp). We conclude that each fish species has a specific bacterial genera combination that characterizes it. Moreover, diet and the trophic level of the fish have a major influence on the gut microbiota of healthy fish that grow in intensive freshwater aquaculture.
Collapse
Affiliation(s)
- Tamir Ofek
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.,Central Fish Health Laboratory, Fishery and Aquaculture Department, Ministry of Agriculture and Rural Development, Nir David, Israel
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.,Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Kiryat Tiv'on, Israel
| |
Collapse
|
21
|
Liu C, Zhao LP, Shen YQ. A systematic review of advances in intestinal microflora of fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:2041-2053. [PMID: 34750711 DOI: 10.1007/s10695-021-01027-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/13/2021] [Indexed: 05/26/2023]
Abstract
Intestinal flora is closely related to the health of organisms and the occurrence and development of diseases. The study of intestinal flora will provide a reference for the research and treatment of disease pathogenesis. Upon hatching, fish begin to acquire a microbial community in the intestine. In response to the environment and the host itself, the fish gut eventually develops a unique set of microflora, with some microorganisms being common to different fish. The existence of intestinal microorganisms creates an excellent microecological environment for the host, while the fish symbiotically provides conditions for the growth and reproduction of intestinal microflora. The intestinal flora and the host are interdependent and mutually restrictive. This review mainly describes the formation of fish intestinal flora, the function of normal intestinal flora, factors affecting intestinal flora, and a series of fish models.
Collapse
Affiliation(s)
- Chang Liu
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Li-Ping Zhao
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Yan-Qin Shen
- Wuxi Medical School of Jiangnan University, Wuxi, China.
| |
Collapse
|
22
|
Aizpurua O, Nyholm L, Morris E, Chaverri G, Herrera Montalvo LG, Flores-Martinez JJ, Lin A, Razgour O, Gilbert MTP, Alberdi A. The role of the gut microbiota in the dietary niche expansion of fishing bats. Anim Microbiome 2021; 3:76. [PMID: 34711286 PMCID: PMC8555116 DOI: 10.1186/s42523-021-00137-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background Due to its central role in animal nutrition, the gut microbiota is likely a relevant factor shaping dietary niche shifts. We analysed both the impact and contribution of the gut microbiota to the dietary niche expansion of the only four bat species that have incorporated fish into their primarily arthropodophage diet. Results We first compared the taxonomic and functional features of the gut microbiota of the four piscivorous bats to that of 11 strictly arthropodophagous species using 16S rRNA targeted amplicon sequencing. Second, we increased the resolution of our analyses for one of the piscivorous bat species, namely Myotis capaccinii, and analysed multiple populations combining targeted approaches with shotgun sequencing. To better understand the origin of gut microorganisms, we also analysed the gut microbiota of their fish prey (Gambusia holbrooki). Our analyses showed that piscivorous bats carry a characteristic gut microbiota that differs from that of their strict arthropodophagous counterparts, in which the most relevant bacteria have been directly acquired from their fish prey. This characteristic microbiota exhibits enrichment of genes involved in vitamin biosynthesis, as well as complex carbohydrate and lipid metabolism, likely providing their hosts with an enhanced capacity to metabolise the glycosphingolipids and long-chain fatty acids that are particularly abundant in fish. Conclusions Our results depict the gut microbiota as a relevant element in facilitating the dietary transition from arthropodophagy to piscivory. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00137-w.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark.
| | - Lasse Nyholm
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark
| | - Evie Morris
- University of Exeter, Streatham Campus, Biosciences, Exeter, EX4 4PS, UK
| | - Gloriana Chaverri
- Sede del Sur, Universidad de Costa Rica, #4000 Alamedas, Golfito, 60701, Costa Rica.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, República de Panamá
| | - L Gerardo Herrera Montalvo
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 21, San Patricio, 48980, Jalisco, Mexico
| | - José Juan Flores-Martinez
- Laboratorio de Sistemas de Información Geográfica, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Orly Razgour
- University of Exeter, Streatham Campus, Biosciences, Exeter, EX4 4PS, UK
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark.,University Museum, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark
| |
Collapse
|
23
|
Diwan AD, Harke SN, Gopalkrishna, Panche AN. Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. J Anim Physiol Anim Nutr (Berl) 2021; 106:441-469. [PMID: 34355428 DOI: 10.1111/jpn.13619] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
The microbiome actually deals with micro-organisms that are associated with indigenous body parts and the entire gut system in all animals, including human beings. These microbes are linked with roles involving hereditary traits, defence against diseases and strengthening overall immunity, which determines the health status of an organism. Considerable efforts have been made to find out the microbiome diversity and their taxonomic identification in finfish and shellfish and its importance has been correlated with various physiological functions and activities. In recent past due to the availability of advanced molecular tools, some efforts have also been made on DNA sequencing of these microbes to understand the environmental impact and other stress factors on their genomic structural profile. There are reports on the use of next-generation sequencing (NGS) technology, including amplicon and shot-gun approaches, and associated bioinformatics tools to count and classify commensal microbiome at the species level. The microbiome present in the whole body, particularly in the gut systems of finfish and shellfish, not only contributes to digestion but also has an impact on nutrition, growth, reproduction, immune system and vulnerability of the host fish to diseases. Therefore, the study of such microbial communities is highly relevant for the development of new and innovative bio-products which will be a vital source to build bio and pharmaceutical industries, including aquaculture. In recent years, attempts have been made to discover the chemical ingredients present in these microbes in the form of biomolecules/bioactive compounds with their functions and usefulness for various health benefits, particularly for the treatment of different types of disorders in animals. Therefore, it has been speculated that microbiomes hold great promise not only as a cure for ailments but also as a preventive measure for the number of infectious diseases. This kind of exploration of new breeds of microbes with their miraculous ingredients will definitely help to accelerate the development of the drugs, pharmaceutical and other biological related industries. Probiotic research and bioinformatics skills will further escalate these opportunities in the sector. In the present review, efforts have been made to collect comprehensive information on the finfish and shellfish microbiome, their diversity and functional properties, relationship with diseases, health status, data on species-specific metagenomics, probiotic research and bioinformatics skills. Further, emphasis has also been made to carry out microbiome research on priority basis not only to keep healthy environment of the fish farming sector but also for the sustainable growth of biological related industries, including aquaculture.
Collapse
Affiliation(s)
- Arvind D Diwan
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Sanjay N Harke
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Gopalkrishna
- Central Institute of Fisheries Education (CIFE, Deemed University), ICAR, Mumbai, India
| | - Archana N Panche
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| |
Collapse
|
24
|
Wu B, Huang L, Chen J, Zhang Y, Wang J, He J. Gut microbiota of homologous Chinese soft-shell turtles (Pelodiscus sinensis) in different habitats. BMC Microbiol 2021; 21:142. [PMID: 33975559 PMCID: PMC8112038 DOI: 10.1186/s12866-021-02209-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Background Chinese soft-shell turtle (Pelodiscus sinensis) is an important commercial species for their high nutritional value and unique taste, but it has been a vulnerable species due to habitat loss. In this study, homologous juvenile turtles were allocated to lake, pond and paddy field to investigate the habitat effects on turtles. Results The growth, morphology and gut microbial communities were monitored during the 4 months cultural period. It showed higher growth rate of turtles in paddy field and pond. The appearance, visceral coefficients, gut morphology and microbial communities in turtles were distinct among different habitats. The microbial community richness on Chao1 was obviously lower in initial turtle guts from greenhouses, whereas it was relative higher in turtle guts sampled from paddy fields than ponds and lake. Significant differences on dominant microbes were found among initial and subsequent samples from different habitats. Firmicutes was the most abundant phylum in the guts of turtles sampled from the greenhouse initially, while Proteobacteria was the most abundant phylum after cultivation in different habitats, followed by Bacteroidetes. The microbial composition were distinct in different habitats at 60d, and the appearance of dominant phyla and genera was more driven by sampling time than habitats at 120d. Both the sampling time and habitats affected the appearance of dominant phyla and genera during the cultivation. The functional predictions indicated that both habitat type and sampling time had significant effects on metabolic pathways, especially amino acid and carbohydrate metabolism. Conclusions The turtles could adapt to natural lakes, artificial ponds and paddy fields. The gut microbial abundance was different among the habitats and sampling time. The species of microbes were significantly more diverse in paddy field specimens than in those from ponds and lakes. Rice-turtle coculture is a potential ecological and economic farming mode that plays important roles in wild turtle protection and food security. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02209-y.
Collapse
Affiliation(s)
- Benli Wu
- Key Laboratory of Aquaculture & Stock Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No.40 Nongkenan Road, Luyang District, Hefei, 230031, Anhui Province, China
| | - Long Huang
- Key Laboratory of Aquaculture & Stock Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No.40 Nongkenan Road, Luyang District, Hefei, 230031, Anhui Province, China
| | - Jing Chen
- Key Laboratory of Aquaculture & Stock Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No.40 Nongkenan Road, Luyang District, Hefei, 230031, Anhui Province, China
| | - Ye Zhang
- Key Laboratory of Aquaculture & Stock Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No.40 Nongkenan Road, Luyang District, Hefei, 230031, Anhui Province, China
| | - Jun Wang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, 710048, Xi'an, China
| | - Jixiang He
- Key Laboratory of Aquaculture & Stock Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No.40 Nongkenan Road, Luyang District, Hefei, 230031, Anhui Province, China.
| |
Collapse
|
25
|
The gut content microbiome of wild-caught rainbow darter is altered during laboratory acclimation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100835. [PMID: 33894530 DOI: 10.1016/j.cbd.2021.100835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
An increasing number of laboratory studies are showing that environmental stressors and diet affect the fish gut microbiome. However, the application of these results to wild populations is uncertain as little is known about how the gut microbiome shifts when fish are transitioned from the field to the laboratory. To assess this, intestinal contents (i.e. digesta) of wild-caught rainbow darter (Etheostoma caeruleum) were sampled in the field and in the lab after 14- and 42-days acclimation. In addition, from days 15-42 some fish were exposed to waterborne triclosan, an antimicrobial found in aquatic ecosystems, or to dilutions of municipal wastewater effluents, to determine how these stressors affect the bacterial communities of gut contents. 16S rRNA gene amplicon sequencing was used to determine microbial community composition, alpha, and beta diversity present in the fish gut contents. In total, there was 8,074,658 reads and 11,853 amplicon sequence variants (ASVs) identified. The gut contents of wild fish were dominant in both Proteobacteria (35%) and Firmicutes (27%), while lab fish were dominant in Firmicutes (37-47%) and had lower alpha diversity. Wild fish had greater ASVs per sample (423-1304) compared to lab fish (19-685). Similarly, the beta-diversity of these bacterial communities differed between field and lab control fish; control fish were distinct from the 10% wastewater effluent and 100 ng/L TCS treatment groups. Results indicate that the gut microbiome of wild fish changes with the transition to laboratory environments; hence, prolonged acclimation to new settings may be required to achieve a stable gut content microbiome in wild-caught fish. Research is required to understand the length of time required to reach a stable fish gut microbiome.
Collapse
|
26
|
Patula S, Wojno M, Pinnell LJ, Oliaro F, Cabay C, Molinari GS, Kwasek K. Nutritional Programming with Dietary Soybean Meal and Its Effect on Gut Microbiota in Zebrafish ( Danio rerio). Zebrafish 2021; 18:125-138. [PMID: 33761297 DOI: 10.1089/zeb.2020.1952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nutritional programming (NP) is considered a promising approach that can counteract the negative effects of dietary plant protein (PP) by introducing PP to fish in the early developmental stages. Therefore the objective of our study was to assess the effect of NP on PP utilization and the gut microbiome in zebrafish Danio rerio. The study included four treatment groups: (1) a positive control group that received a fishmeal (FM) diet throughout the entire trial (+ control); (2) a negative control group that received PP diet throughout the entire trial (- control); (3) an NP group that received dietary PP during the larval stage followed by FM-based diet during the juvenile stage and PP diet again during a PP challenge in the grow-out phase (NP-PP); and (4) an FM-group that received FM-based diet during the larval and juvenile stages and was challenged with a PP diet during the grow-out phase (NP-FM). During the PP challenge, the NP-PP group achieved the highest weight gain compared to the (-) control and NP-FM groups. The relative abundance of certain phyla such as Chloroflexi, Planctomycetes, and Bacteroidetes presented higher values in some groups at early juvenile stage. The fish gut microbiome also presented differences throughout the study.
Collapse
Affiliation(s)
- Samuel Patula
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Michal Wojno
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Lee J Pinnell
- A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, Chicago, Illinois, USA
| | - Frank Oliaro
- A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, Chicago, Illinois, USA
| | - Chrissy Cabay
- A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, Chicago, Illinois, USA
| | - Giovanni S Molinari
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Karolina Kwasek
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
27
|
Fu H, Zhang L, Fan C, Liu C, Li W, Li J, Zhao X, Jia S, Zhang Y. Domestication Shapes the Community Structure and Functional Metagenomic Content of the Yak Fecal Microbiota. Front Microbiol 2021; 12:594075. [PMID: 33897627 PMCID: PMC8059439 DOI: 10.3389/fmicb.2021.594075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/05/2021] [Indexed: 01/07/2023] Open
Abstract
Domestication is a key factor of genetic variation; however, the mechanism by which domestication alters gut microbiota is poorly understood. Here, to explore the variation in the structure, function, rapidly evolved genes (REGs), and enzyme profiles of cellulase and hemicellulose in fecal microbiota, we studied the fecal microbiota in wild, half-blood, and domestic yaks based on 16S rDNA sequencing, shotgun-metagenomic sequencing, and the measurement of short-chain-fatty-acids (SCFAs) concentration. Results indicated that wild and half-blood yaks harbored an increased abundance of the phylum Firmicutes and reduced abundance of the genus Akkermansia, which are both associated with efficient energy harvesting. The gut microbial diversity decreased in domestic yaks. The results of the shotgun-metagenomic sequencing showed that the wild yak harbored an increased abundance of microbial pathways that play crucial roles in digestion and growth of the host, whereas the domestic yak harbored an increased abundance of methane-metabolism-related pathways. Wild yaks had enriched amounts of REGs in energy and carbohydrate metabolism pathways, and possessed a significantly increased abundance of cellulases and endohemicellulases in the glycoside hydrolase family compared to domestic yaks. The concentrations of acetic, propionic, n-butyric, i-butyric, n-valeric, and i-valeric acid were highest in wild yaks. Our study displayed the domestic effect on the phenotype of composition, function in gut microbiota, and SCFAs associated with gut microbiota, which had a closely association with the growth performance of the livestock. These findings may enlighten the researchers to construct more links between economic characteristics and gut microbiota, and develop new commercial strains in livestock based on the biotechnology of gut microbiota.
Collapse
Affiliation(s)
- Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Jiye Li
- Datong Yak Breeding Farm of Qinghai Province, Datong, China
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
28
|
Bereded NK, Abebe GB, Fanta SW, Curto M, Waidbacher H, Meimberg H, Domig KJ. The Impact of Sampling Season and Catching Site (Wild and Aquaculture) on Gut Microbiota Composition and Diversity of Nile Tilapia ( Oreochromis niloticus). BIOLOGY 2021; 10:biology10030180. [PMID: 33804538 PMCID: PMC8001861 DOI: 10.3390/biology10030180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary The gut microbiota (all microbes in the intestine) of fishes is known to play an essential role in diverse aspects of their life. The gut microbiota of fish is affected by various environmental parameters, including temperature changes, salinity and diet. This study characterised the microbial composition in gut samples of Nile Tilapia collected from Lake Tana and the Bahir Dar aquaculture facility centre applying modern molecular techniques. The results show clear differences in the gut microbiota in fish from the Lake Tana and the ones from aquaculture. Further, also significant differences were observed on the composition of the gut microbiota across sampling months. Samples from the aquaculture centre displayed a higher diversity than the wild catch Nile tilapia from Lake Tana even though there is also an overlapping of the detected microbial groups. Overall, this is the first study on the effects of sampling season and catching site on the gut microbiota of Nile tilapia in Ethiopia. Future work will help to precisely explain the causes of these changes and their influence of the health and growth of Nile tilapia in Ethiopian lakes as well as under aquaculture conditions. Abstract The gut microbiota of fishes is known to play an essential role in diverse aspects of host biology. The gut microbiota of fish is affected by various environmental parameters, including temperature changes, salinity and diet. Studies of effect of environment on gut microbiota enables to have a further understanding of what comprises a healthy microbiota under different environmental conditions. However, there is insufficient understanding regarding the effects of sampling season and catching site (wild and aquaculture) on the gut microbiota of Nile tilapia. This study characterised gut microbial composition and diversity from samples collected from Lake Tana and the Bahir Dar aquaculture facility centre using 16S rDNA Illumina MiSeq platform sequencing. Firmicutes and Fusobacteria were the most dominant phyla in the Lake Tana samples, while Proteobacteria was the most dominant in the aquaculture samples. The results of differential abundance testing clearly indicated significant differences for Firmicutes, Fusobacteria, Bacteroidetes and Cyanobacteria across sampling months. However, Proteobacteria, Chloroflexi, Fusobacteria and Cyanobacteria were significantly enriched in the comparison of samples from the Lake Tana and aquaculture centre. Significant differences were observed in microbial diversity across sampling months and between wild and captive Nile tilapia. The alpha diversity clearly showed that samples from the aquaculture centre (captive) had a higher diversity than the wild Nile tilapia samples from Lake Tana. The core gut microbiota of all samples of Nile tilapia used in our study comprised Firmicutes, Proteobacteria and Fusobacteria. This study clearly showed the impact of sampling season and catching site (wild and aquaculture) on the diversity and composition of bacterial communities associated with the gut of Nile tilapia. Overall, this is the first study on the effects of sampling season and catching site on the gut microbiota of Nile tilapia in Ethiopia. Future work is recommended to precisely explain the causes of these changes using large representative samples of Nile tilapia from different lakes and aquaculture farms.
Collapse
Affiliation(s)
- Negash Kabtimer Bereded
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria;
- Department of Biology, Bahir Dar University, Bahir Dar, Post Code 79, Ethiopia;
- Correspondence:
| | | | - Solomon Workneh Fanta
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Post Code 26, Ethiopia;
| | - Manuel Curto
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor-Mendle-Straße 33, 1180 Vienna, Austria; (M.C.); (H.M.)
- MARE−Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-001 Lisboa, Portugal
| | - Herwig Waidbacher
- Institute for Hydrobiology and Aquatic Ecosystems Management, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor-Mendle-Straße 33/DG, 1180 Vienna, Austria;
| | - Harald Meimberg
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor-Mendle-Straße 33, 1180 Vienna, Austria; (M.C.); (H.M.)
| | - Konrad J. Domig
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria;
| |
Collapse
|
29
|
Gu H, Feng Y, Zhang Y, Yin D, Yang Z, Tang W. Differential study of the Parabramis pekinensis intestinal microbiota according to different habitats and different parts of the intestine. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-020-01614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Purpose
To identify the differences in gut bacterial community of Parabramis pekinensis under different growth conditions, and the effect of the diet in a controlled habitat on the community structure, aiming to provide a comprehensive survey of how the gut microbiota in P. pekinensis varies depending on habitat.
Methods
A total of 73 P. pekinensis from Yangtze River (W), rivers in the outskirts of Jingjiang (Jiangsu province, China, R), and farms (C) were collected to analyze the intestinal microbiota using high-throughput sequencing of the V3-V4 16S ribosomal RNA gene. We also subdivided the gut into the foregut (F), midgut (M), and hindgut (B) to analyze the differences between them.
Results
The dominant bacterial phyla in P. pekinensis were Fusobacteria, Firmicutes, Proteobacteria, and Actinobacteria; meanwhile, Cyanobacteria, Bacteroidetes, Chloroflexi, and Verrucomicrobia were also highly abundant. It is worth noting that the abundance of Fusobacteria Cetobacterium was also very high. The abundance and diversity of the intestinal microbiota structure of fish taken from breeding farm were significantly lower than those taken from Yangtze river and Suburban river, and the abundance of Aeromonas in the gut of fish taken from Yangtze river was much higher than that of fish taken from Suburban river. Compared to midgut, foregut and hindgut have similar microbiota structures, but did not differ significantly in them.
Conclusions
The core intestinal microbiota of P. pekinensis is the same to other herbivorous and partially omnivorous fish. There were significant differences in the intestinal microbiota structure of P. pekinensis from different habitats, but no significant differences in the microbiota abundance and diversity between the different parts of the intestine.
Collapse
|
30
|
Funosas G, Triadó-Margarit X, Castro F, Villafuerte R, Delibes-Mateos M, Rouco C, Casamayor EO. Individual fate and gut microbiome composition in the European wild rabbit (Oryctolagus cuniculus). Sci Rep 2021; 11:766. [PMID: 33436896 PMCID: PMC7804928 DOI: 10.1038/s41598-020-80782-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
Studies connecting microbiome composition and functional performance in wildlife have received little attention and understanding their connections with wildlife physical condition are sorely needed. We studied the variation in gut microbiota (hard fecal pellets) between allopatric subspecies of the European wild rabbit in wild populations and in captured individuals studied under captivity. We evaluated the influence of environmental and host-specific factors. The microbiome of wild rabbit populations reduced its heterogeneity under controlled conditions. None of the host-specific factors tested correlated with the microbiota composition. We only observed significant intra-group dispersion for the age factor. The most diverse microbiomes were rich in Ruminococcaceae potentially holding an enriched functional profile with dominance of cellulases and xylanases, and suggesting higher efficiency in the digestion of fiber-rich food. Conversely, low diversity gut microbiomes showed dominance of Enterobacteriaceae potentially rich in amylases. We preliminary noticed geographical variations in field populations with higher dominance of Ruminococcaceae in south-western than in north-eastern Spain. Spatial differences appeared not to be subspecies driven, since they were lost in captivity, but environmentally driven, although differences in social structure and behavior may also play a role that deserve further investigations. A marginally significant relationship between the Ruminococcaceae/Enterobacteriaceae ratio and potential life expectancy was observed in captive rabbits. We hypothesize that the gut microbiome may determine the efficiency of feeding resource exploitation, and can also be a potential proxy for life expectancy, with potential applications for the management of declining wild herbivorous populations. Such hypotheses remain to be explored in the future.
Collapse
Affiliation(s)
- Gerard Funosas
- Microbial Community Ecology, Centre for Advanced Studies of Blanes-Spanish Council for Research CEAB-CSIC, Accés Cala St Francesc, 14, 17300, Blanes, Spain
| | - Xavier Triadó-Margarit
- Microbial Community Ecology, Centre for Advanced Studies of Blanes-Spanish Council for Research CEAB-CSIC, Accés Cala St Francesc, 14, 17300, Blanes, Spain
| | - Francisca Castro
- Departamento de Didácticas Específicas, Universidad de Córdoba, Sociedad, Ecología y Gestión del Medio Ambiente, UCO-IESA, Unidad Asociada al CSIC, 14004, Córdoba, Spain
| | - Rafael Villafuerte
- Institute of Advanced Social Studies-Spanish Council for Research (IESA-CSIC), 14004, Córdoba, Spain
| | - Miguel Delibes-Mateos
- Institute of Advanced Social Studies-Spanish Council for Research (IESA-CSIC), 14004, Córdoba, Spain
| | - Carlos Rouco
- Ecology Area, Faculty of Science, University of Cordoba, Sociedad, Ecología y Gestión del Medio Ambiente, UCO-IESA, Unidad Asociada al CSIC, 14071, Córdoba, Spain
| | - Emilio O Casamayor
- Microbial Community Ecology, Centre for Advanced Studies of Blanes-Spanish Council for Research CEAB-CSIC, Accés Cala St Francesc, 14, 17300, Blanes, Spain.
| |
Collapse
|
31
|
Rajkov J, El Taher A, Böhne A, Salzburger W, Egger B. Gene expression remodelling and immune response during adaptive divergence in an African cichlid fish. Mol Ecol 2020; 30:274-296. [PMID: 33107988 DOI: 10.1111/mec.15709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Variation in gene expression contributes to ecological speciation by facilitating population persistence in novel environments. Likewise, immune responses can be of relevance in speciation driven by adaptation to different environments. Previous studies examining gene expression differences between recently diverged ecotypes have often relied on only one pair of populations, targeted the expression of only a subset of genes or used wild-caught individuals. Here, we investigated the contribution of habitat-specific parasites and symbionts and the underlying immunological abilities of ecotype hosts to adaptive divergence in lake-river population pairs of the cichlid fish Astatotilapia burtoni. To shed light on the role of phenotypic plasticity in adaptive divergence, we compared parasite and microbiota communities, immune response, and gene expression patterns of fish from natural habitats and a lake-like pond set-up. In all investigated population pairs, lake fish were more heavily parasitized than river fish, in terms of both parasite taxon composition and infection abundance. The innate immune response in the wild was higher in lake than in river populations and was elevated in a river population exposed to lake parasites in the pond set-up. Environmental differences between lake and river habitat and their distinct parasite communities have shaped differential gene expression, involving genes functioning in osmoregulation and immune response. Most changes in gene expression between lake and river samples in the wild and in the pond set-up were based on a plastic response. Finally, gene expression and bacterial communities of wild-caught individuals and individuals acclimatized to lake-like pond conditions showed shifts underlying adaptive phenotypic plasticity.
Collapse
Affiliation(s)
- Jelena Rajkov
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Athimed El Taher
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Astrid Böhne
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Bernd Egger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Riera JL, Baldo L. Microbial co-occurrence networks of gut microbiota reveal community conservation and diet-associated shifts in cichlid fishes. Anim Microbiome 2020; 2:36. [PMID: 33499972 PMCID: PMC7807433 DOI: 10.1186/s42523-020-00054-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background The extent to which deterministic rather than stochastic processes guide gut bacteria co-existence and ultimately their assembling into a community remains largely unknown. Co-occurrence networks of bacterial associations offer a powerful approach to begin exploring gut microbial community structure, maintenance and dynamics, beyond compositional aspects alone. Here we used an iconic model system, the cichlid fishes, with their multiple lake assemblages and extraordinary ecological diversity, to investigate a) patterns of microbial associations that were robust to major phylogeographical variables, and b) changes in microbial network structure along dietary shifts. We tackled these objectives using the large gut microbiota sequencing dataset available (nine lakes from Africa and America), building geographical and diet-specific networks and performing comparative network analyses. Results Major findings indicated that lake and continental microbial networks were highly resembling in global topology and node taxonomic composition, despite the heterogeneity of the samples. A small fraction of the observed co-occurrences among operational taxonomic units (OTUs) was conserved across all lake assemblages. These were all positive associations and involved OTUs within the genera Cetobacterium and Turicibacter and several OTUs belonging to the families of Peptostreptococcaceae and Clostridiaceae (order Clostridiales). Mapping of diet contribution on the African Lake Tanganyika network (therefore excluding the geographic variable) revealed a clear community change from carnivores (C) to omnivores (O) to herbivores (H). Node abundances and effect size for pairwise comparisons between diets supported a strong contrasting pattern between C and H. Moreover, diet-associated nodes in H formed complex modules of positive interactions among taxonomically diverse bacteria (mostly Verrucomicrobia and Proteobacteria). Conclusions Conservation of microbial network topologies and specific bacterial associations across distinct lake assemblages point to a major host-associated effect and potential deterministic processes shaping the cichlid gut microbiota. While the origin and biological relevance of these common associations remain unclear, their persistence suggests an important functional role in the cichlid gut. Among the very diverse cichlids of L. Tanganyika, diet nonetheless represents a major driver of microbial community changes. By intersecting results from predictive network inferences and experimental trials, future studies will be directed to explore the strength of these associations, predict the outcome of community alterations driven by diet and ultimately help understanding the role of gut microbiota in cichlid trophic diversification.
Collapse
Affiliation(s)
- Joan Lluís Riera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Laura Baldo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain. .,Institute for Research on Biodiversity (IRBio), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
33
|
Developmental, Dietary, and Geographical Impacts on Gut Microbiota of Red Swamp Crayfish ( Procambarus clarkii). Microorganisms 2020; 8:microorganisms8091376. [PMID: 32911609 PMCID: PMC7565139 DOI: 10.3390/microorganisms8091376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Red swamp crayfish (Procambarus clarkii) breeding is an important economic mainstay in Hubei province, China. However, information on the gut microbiota of the red swamp crayfish is limited. To address this issue, the effect of developmental stage, diet (fermented or non-fermented feed), and geographical location on the gut microbiota composition in the crayfish was studied via high-throughput 16S rRNA gene sequencing. The results revealed that the dominant phyla in the gut of the crayfish were Proteobacteria, Bacteroidetes,Firmicutes, Tenericutes, and RsaHF231. The alpha diversity showed a declining trend during development, and a highly comparable gut microbiota clustering was identified in a development-dependent manner. The results also revealed that development, followed by diet, is a better key driver for crayfish gut microbiota patterns than geographical location. Notably, the relative abundance of Bacteroidetes was significantly higher in the gut of the crayfish fed with fermented feed than those fed with non-fermented feed, suggesting the fermented feed can be important for the functions (e.g., polysaccharide degradation) of the gut microbiota. In summary, our results revealed the factors shaping gut microbiota of the crayfish and the importance of the fermented feed in crayfish breeding.
Collapse
|
34
|
Diet type influences the gut microbiome and nutrient assimilation of Genetically Improved Farmed Tilapia (Oreochromis niloticus). PLoS One 2020; 15:e0237775. [PMID: 32813739 PMCID: PMC7446784 DOI: 10.1371/journal.pone.0237775] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Nile tilapia, Oreochromis niloticus is the third most commonly farmed finfish species in the world, accounting for nearly 5% of global aquaculture production. In the past few decades much of the success of this species has been attributed to the development and distribution of Genetically Improved Farmed Tilapia (GIFT). Despite the increasing availability of GIFT, the productivity of small-scale farming remains highly variable, particularly in developing nations. Commercial fish-feed pellets can increase fish farm productivity; however, many small-scale farmers rely on other means of feeding fish due to the high cost and limited availability of commercial fish feed pellets. Therefore, understanding how locally-sourced feeds affect the production of GIFT is an important step towards improving feeding practices, particularly for farmers with low financial capital. This study used stable isotope analysis (SIA) and 16S rRNA gene sequencing to compare the effects of a locally-sourced vegetable-based diet and commercial pellet-based diets on the relative condition, nutrient assimilation patterns and gastrointestinal microbiota of GIFT. GIFT fed a locally-sourced diet were smaller, and in a significantly poorer condition than those fed with commercial fish feeds. SIA showed no differences in dietary carbon between the two diets; however, δ13C, poor fish condition and the abundance of specific bacterial taxa (of such as Fusobacteria) were correlated. SIA revealed that GIFT fed locally-sourced diets that predominantly consisted of vegetables were significantly enriched in δ15N despite a perceived lack of dietary protein. This enrichment suggests that GIFT fed a locally-sourced diet may be supplementing their diet via cannibalism, a behaviour representative of poor farming practice. Overall this study highlights the need to increase the availability of suitable GIFT feeds in developing nations. The development a low-cost feed alternative could improve the success of small-scale GIFT farmers in PNG, increasing both food and income security within the region.
Collapse
|
35
|
Yukgehnaish K, Kumar P, Sivachandran P, Marimuthu K, Arshad A, Paray BA, Arockiaraj J. Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. REVIEWS IN AQUACULTURE 2020; 12:1903-1927. [DOI: 10.1111/raq.12416] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/03/2020] [Indexed: 10/16/2023]
Abstract
AbstractFish gut microbiome confers various effects to the host fish; this includes overall size, metabolism, feeding behaviour and immune response in the fish. The emergence of antimicrobial‐resistant (AMR) bacteria and hard to cure fish diseases warrant the possible utilization of gut microbes that exhibits a positive effect on the fish and thus lead to the usage of these microbes as probiotics. The widespread and systematic use of antibiotics has led to severe biological and ecological problems, especially the development of antibiotic resistance that affects the gut microbiota of aquatic organisms. Probiotics are proposed as an effective and environmentally friendly alternative to antibiotics, known as beneficial microbes. At the same time, prebiotics are considered beneficial to the host's health and growth by decreasing the prevalence of intestinal pathogens and/or changing the development of bacterial metabolites related to health. Uprise of sequencing technology and the development of intricate bioinformatics tools has provided a way to study these gut microbes through metagenomic analysis. From various metagenomic studies, ample of information was obtained; such information includes the effect of the gut microbiome on the physiology of fish, gut microbe composition of different fish, factors affecting the gut microbial composition of the fish and the immunological effect of gut microbes in fish; such this information related to the fish gut microbiome, their function and their importance in aquaculture is discussed in this review.
Collapse
Affiliation(s)
| | - Praveen Kumar
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Parimannan Sivachandran
- Faculty of Applied Sciences Centre of Excellence for Omics-Driven Computational Biodiscovery (CO MBio) AIMST University Bedong Malaysia
- Faculty of Science School of Life and Environmental Sciences Engineering and Built Environment Deakin University, Waurn Ponds Campus Geelong Australia
| | - Kasi Marimuthu
- Department of Biotechnology AIMST University Semeling Kedah Darul Aman Malaysia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS) Universiti Putra Malaysia Serdang Negeri Sembilan Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Serdang Selangor Malaysia
- Laboratory of Marine Biotechnology Institute of Bioscience Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
| | - Bilal Ahmad Paray
- Department of Zoology College of Science King Saud University Riyadh Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
| |
Collapse
|
36
|
Bereded NK, Curto M, Domig KJ, Abebe GB, Fanta SW, Waidbacher H, Meimberg H. Metabarcoding Analyses of Gut Microbiota of Nile Tilapia ( Oreochromis niloticus) from Lake Awassa and Lake Chamo, Ethiopia. Microorganisms 2020; 8:microorganisms8071040. [PMID: 32668725 PMCID: PMC7409238 DOI: 10.3390/microorganisms8071040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022] Open
Abstract
The Nile tilapia (Oreochromis niloticus) gut harbors a diverse microbial community; however, their variation across gut regions, lumen and mucosa is not fully elucidated. In this study, gut microbiota of all samples across gut regions and sample types (luminal content and mucosa) were analyzed and compared from two Ethiopian lakes. Microbiota were characterized using 16S rRNA Illumina MiSeq platform sequencing. A total of 2061 operational taxonomic units (OTUs) were obtained and the results indicated that Nile tilapia from Lake Chamo harbored a much more diversified gut microbiota than Lake Awassa. In addition, the gut microbiota diversity varied significantly across the gut region based on the Chao1, Shannon and Simpson index. The microbiome analyses of all samples in the midgut region showed significantly higher values for alpha diversity (Chao 1, Shannon and Simpson). Beta diversity analysis revealed a clear separation of samples according to sampling areas and gut regions. The most abundant genera were Clostridium_sensu_stricto and Clostridium_XI genera across all samples. Between the two sampling lakes, two phyla, Phylum Fusobacteria and Cyanobacteria, were found to be significantly different. On the other hand, six phyla (Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria and Cyanobacteria) were significantly different across gut regions. In this study, we found that all samples shared a large core microbiota, comprising a relatively large number of OTUs, which was dominated by Proteobacteria, Firmicutes, Cyanobacteria, Fusobacteria and Actinobacteria. This study has established the bases for future large-scale investigations of gut microbiota of fishes in Ethiopian lakes.
Collapse
Affiliation(s)
- Negash Kabtimer Bereded
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), 1090 Vienna, Austria;
- Department of Biology, Bahir Dar University, Bahir Dar 6000, Ethiopia;
- Correspondence:
| | - Manuel Curto
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), 1090 Vienna, Austria; (M.C.); (H.M.)
- MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Konrad J. Domig
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), 1090 Vienna, Austria;
| | | | - Solomon Workneh Fanta
- School of Food and Chemical Engineering, Bahir Dar University, Bahir Dar 6000, Ethiopia;
| | - Herwig Waidbacher
- Institute for Hydrobiology and Aquatic Ecosystems Management, University of Natural Resources and Life Sciences Vienna (BOKU), 1090 Vienna, Austria;
| | - Harald Meimberg
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), 1090 Vienna, Austria; (M.C.); (H.M.)
| |
Collapse
|
37
|
Ecological and Ontogenetic Components of Larval Lake Sturgeon Gut Microbiota Assembly, Successional Dynamics, and Ecological Evaluation of Neutral Community Processes. Appl Environ Microbiol 2020; 86:AEM.02662-19. [PMID: 32169941 DOI: 10.1128/aem.02662-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gastrointestinal (GI) or gut microbiotas play essential roles in host development and physiology. These roles are influenced partly by the microbial community composition. During early developmental stages, the ecological processes underlying the assembly and successional changes in host GI community composition are influenced by numerous factors, including dispersal from the surrounding environment, age-dependent changes in the gut environment, and changes in dietary regimes. However, the relative importance of these factors to the gut microbiota is not well understood. We examined the effects of environmental (diet and water sources) and host early ontogenetic development on the diversity of and the compositional changes in the gut microbiota of a primitive teleost fish, the lake sturgeon (Acipenser fulvescens), based on massively parallel sequencing of the 16S rRNA gene. Fish larvae were raised in environments that differed in water source (stream versus filtered groundwater) and diet (supplemented versus nonsupplemented Artemia fish). We quantified the gut microbial community structure at three stages (prefeeding and 1 and 2 weeks after exogenous feeding began). The diversity declined and the community composition differed significantly among stages; however, only modest differences associated with dietary or water source treatments were documented. Many taxa present in the gut were over- or underrepresented relative to neutral expectations in each sampling period. The findings indicate dynamic relationships between the gut microbiota composition and host gastrointestinal physiology, with comparatively smaller influences being associated with the rearing environments. Neutral models of community assembly could not be rejected, but selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for sturgeon conservation and aquaculture production specifically and applications of microbe-based management in teleost fish generally.IMPORTANCE We quantified the effects of environment (diet and water sources) and host early ontogenetic development on the diversity of and compositional changes in gut microbial communities based on massively parallel sequencing of the 16S rRNA genes from the GI tracts of larval lake sturgeon (Acipenser fulvescens). The gut microbial community diversity declined and the community composition differed significantly among ontogenetic stages; however, only modest differences associated with dietary or water source treatments were documented. Selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for lake sturgeon and early larval ecology and survival in their natural habitat and for conservation and aquaculture production specifically, as well as applications of microbe-based management in teleost fish generally.
Collapse
|
38
|
Zheng X, Zhou S, Hu J, Yang R, Gu Z, Qin JG, Ma Z, Yu G. Could the gut microbiota community in the coral trout Plectropomus leopardus (Lacepède, 1802) be affected by antibiotic bath administration? Vet Med Sci 2020; 6:649-657. [PMID: 32307901 PMCID: PMC7397917 DOI: 10.1002/vms3.267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 01/03/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Gut microbiota in fish plays an important role in the nutrient digestion, immune responses and disease resistance. To understand the effect of fluoroquinolone antibiotic bath administration on fish gut microbiota, the gut microbiota community in the coral trout Plectropomus leopardus (Lacepède, 1802) was studied after enrofloxacin bathing treatment at two concentrations (5 and 10 mg/L) and 0 mg/L as control. A total of 90 fish were used in this study, and three replicates were used for each treatment. After a 24‐hr bath, the gut bacterial composition was analyzed using high‐throughput Illumina sequencing. The results indicated that the richness, diversity and the dominant bacterial taxa of P. leopardus gut bacteria were not affected by enrofloxacin bathing (p > .05). Proteobacteria and Firmicutes were the dominant phyla, and Exiguobacterium, Citrobacter, Vibrio, Acinetobacter, Pseudomonas were the dominant genus. The findings in the present study provide an understanding on the relationship between fish gut bacteria community and antibiotic bath administration. The findings of this study are instructive on the antibiotic bath administration applied for the management of P. leopardus health in aquaculture.
Collapse
Affiliation(s)
- Xing Zheng
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Ocean College, Hainan University, Haikou, P. R. China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Shengjie Zhou
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Jing Hu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Rui Yang
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Zhifeng Gu
- Ocean College, Hainan University, Haikou, P. R. China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Gang Yu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| |
Collapse
|
39
|
Foysal MJ, Fotedar R, Siddik MAB, Tay A. Lactobacillus acidophilus and L. plantarum improve health status, modulate gut microbiota and innate immune response of marron (Cherax cainii). Sci Rep 2020; 10:5916. [PMID: 32246011 PMCID: PMC7125160 DOI: 10.1038/s41598-020-62655-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/13/2020] [Indexed: 12/25/2022] Open
Abstract
This study aimed to investigate the combined effects of two most potent probiotic bacteria Lactobacillus acidophilus and Lactobacillus plantarum on overall health and immune status of freshwater crayfish, marron under laboratory conditions. A total of 36 marron were distributed into six different tanks and two different feeding groups, control and probiotic-fed group. After acclimation, control group was fed with basal diet while probiotic group was fed 109 CFU/mL per kg of bacterial supplemented feed for 60 days. The results showed no significant differences in weight gain, however, probiotic feed significantly enhanced some hemolymph parameters and biochemical composition of tail muscle. Histology data revealed better hepatopancreas health and higher microvilli counts in the marron gut fed probiotic diet. The probiotic bacteria triggered significant shift of microbial communities at different taxa level, mostly those reported as beneficial for crayfish. The probiotic diet also enriched the metabolic functions and genes associated with innate immune response of crayfish. Further correlation analysis revealed significant association of some taxa with increased activity for hemolymph and immune genes. Therefore, dietary Lactobacillus supplementation can modulate the overall health and immunity as well as gut microbial composition and interaction network between gut microbiota and immune system in crayfish.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Muhammad A B Siddik
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Alfred Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
40
|
Kuebutornye FKA, Wang Z, Lu Y, Abarike ED, Sakyi ME, Li Y, Xie CX, Hlordzi V. Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2020; 97:83-95. [PMID: 31846773 DOI: 10.1016/j.fsi.2019.12.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 05/06/2023]
Abstract
Skin and intestinal mucosa lymphoid tissues are known to be the fish's first line of defence since they serve as the first point of contact for pathogens. Only few studies have investigated the influence of host-associated Bacillus on mucosal immunity. In this study, the effects of three host-associated Bacillus species on mucosal immunity, intestinal morphology, intestinal digestive enzymes activity, intestinal microbiome and resistance of Nile tilapia against Aeromonas hydrophila infection was evaluated. The fish were divided into five treatment groups and fed with diets containing no bacteria denoted as Control, Bacillus velezensis TPS3N denoted as group V, Bacillus subtilis TPS4 denoted as group S, Bacillus amyloliquefaciens TPS17 denoted as group A and a 5th group containing the three Bacillus species at a ratio 1:1:1 denoted as group CB. At the end of the feeding trial, significant enhancement of both skin mucus and intestinal immune titres were recorded in terms of nitric oxide (NO) (except in the mucus of V and S groups), immunoglobulin M (IgM) (except in the intestine of group V), lysozyme (LZM), and alkaline phosphatase (AKP) in all fish fed the Bacillus supplemented groups relative to the untreated group. Intestinal antioxidant enzymes (catalase (CAT) (except in the intestine of group S) and superoxide dismutase (SOD)) capacity of Nile tilapia were higher in the Bacillus groups. Intestinal lipase activity was elevated in the Bacillus supplemented groups. The intestinal morphological parameters (villus height, villus width, goblet cells count (except in group S and A), and intestinal muscle thickness) were significantly enhanced in the Bacillus supplemented groups relative to the Control group. Dietary probiotic supplementation also influenced the intestinal microflora composition of Nile tilapia. Proteobacteria recorded the highest abundance followed by Firmicutes, Fusobacteria, and Bacteroidetes at the phylum level in this study. At the genus level, the abundance of pathogenic bacteria viz Staphylococcus and Aeromonas were reduced in the Bacillus supplemented groups in comparison to the Control group. A challenge test with A. hydrophila resulted in lower mortalities (%) in the Bacillus treated groups thus 86.67%, 50.00%, 43.33%, 63.33%, and 30.00% for Nile tilapia fed Control, V, S, A, and CB diets respectively. In conclusion, the inclusion of B. velezensis TPS3N, B. subtilis TPS4, and B. amyloliquefaciens TPS17 in the diet of Nile tilapia singularly or in combination, could enhance the mucosal immunity, intestinal health, and resistance of Nile tilapia against A. hydrophila infection.
Collapse
Affiliation(s)
- Felix K A Kuebutornye
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Zhiwen Wang
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Yishan Lu
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China.
| | - Emmanuel Delwin Abarike
- Department of Fisheries and Aquatic Resources Management, University for Development Studies, Tamale, Ghana
| | - Michael Essien Sakyi
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China; Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
| | - Yuan Li
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Cai Xia Xie
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Vivian Hlordzi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
41
|
de Souza FP, de Lima ECS, Urrea-Rojas AM, Suphoronski SA, Facimoto CT, Bezerra Júnior JDS, de Oliveira TES, Pereira UDP, Santis GWD, de Oliveira CAL, Lopera-Barrero NM. Effects of dietary supplementation with a microalga (Schizochytrium sp.) on the hemato-immunological, and intestinal histological parameters and gut microbiota of Nile tilapia in net cages. PLoS One 2020; 15:e0226977. [PMID: 31896132 PMCID: PMC6940142 DOI: 10.1371/journal.pone.0226977] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
Nutritional improvements in intensive aquaculture production systems is necessary for the reduction of stress, maximum utilization of nutritional components, and expression of the genetic potential of fish. The objective of this study was to evaluate the hemato-immunological, and histological parameters and gut microbiota of Nile tilapia fed with the microalga Schizochytrium sp. Males of Nile tilapia were distributed among eight net cages (6 m3), and fed for 105 days with two diets: control (CON), without Schizochytrium sp., and supplemented (SUP), with 1.2% Schizochytrium sp. in the diet. The final weight, mortality, hematocrit, total erythrocyte count (RBC), hemoglobin, hematimetric indices, white blood cell count (WBC), total protein, and serum lysozyme were measured. Alterations in intestinal morphology were evaluated. The gut microbiota was evaluated with next-generation sequencing. No significant differences (p>0.05) were found in the final weight and mortality between diets. Regarding the hematological parameters, a difference (p<0.05) was detected only in RBC, with there being lower values in the SUP, although this group also showed a tendency toward having an increased mean corpuscular hemoglobin level. There were no differences (p>0.05) in total protein and serum lysozyme concentrations or in WBCs between diets, except for lymphocytes, which presented lower values (p<0.05) in the SUP, suggesting immunomodulation by the polyunsaturated fatty acids present in the microalga. There was no difference (p>0.05) in the intestinal morphology between diets. Metagenomic data indicated greater richness (represented by the Chao index) and a higher abundance of the bacterial phylum Firmicutes in the gut microbiota of the tilapia fed with the SUP diet, demonstrating that the digestion and use of the components of the microalga could influence the microbial community. The results indicated that the microalga had modulatory effects on blood cells and the intestinal microbiota, without affecting the structure and integrity of the intestinal villi.
Collapse
Affiliation(s)
| | | | | | | | - César Toshio Facimoto
- Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Parana, Brazil
| | | | | | - Ulisses de Pádua Pereira
- Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Parana, Brazil
| | | | | | | |
Collapse
|
42
|
Kashinskaya EN, Simonov EP, Izvekova GI, Parshukov AN, Andree KB, Solovyev MM. Composition of the microbial communities in the gastrointestinal tract of perch (Perca fluviatilis L. 1758) and cestodes parasitizing the perch digestive tract. JOURNAL OF FISH DISEASES 2020; 43:23-38. [PMID: 31663143 DOI: 10.1111/jfd.13096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Using the approach of sequencing the V3-V4 region of the 16S rRNA gene, we have analysed the bacterial diversity associated with the distinct compartments of the gastrointestinal tract of perch (Perca fluviatilis) and cestodes (Proteocephalus sp.) parasitizing their digestive tract. The dominant microbiota associated with cestodes (Proteocephalus sp.) was represented by bacteria from the genera Serratia, Pseudomonas and Mycoplasma. By comparing the associated microbiota of perch and cestodes, a clear difference in bacterial composition and diversity was revealed between the community from the stomach content and other parts of the gastrointestinal tract of fish. Microbiota associated with cestodes was not significantly different in comparison with microbiota of different subcompartments of perch (mucosa and content of intestine and pyloric caeca) (ADONIS, p > .05) excluding microbiota of stomach content (ADONIS, p ≤ .05). PICRUSt-based functional assessments of the microbial communities of perch and cestodes indicated that they mainly linked in terms of metabolism and environmental information processing and could play an important role in the nutrition and health of host.
Collapse
Affiliation(s)
- Elena N Kashinskaya
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgeniy P Simonov
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Galina I Izvekova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Aleksey N Parshukov
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | | | - Mikhail M Solovyev
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
43
|
Chen X, Fang S, Wei L, Zhong Q. Systematic evaluation of the gut microbiome of swamp eel ( Monopterus albus) by 16S rRNA gene sequencing. PeerJ 2019; 7:e8176. [PMID: 31875148 PMCID: PMC6927349 DOI: 10.7717/peerj.8176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background The swamp eel (Monopterus albus) is a commercially important farmed species in China. The dysbiosis and homeostasis of gut microbiota has been suggested to be associated with the swamp eel’s disease pathogenesis and food digestion. Although the contributions of gut microbiome in fish growth and health has been increasingly recognized, little is known about the microbial community in the intestine of the swamp eel (Monopterus albus). Methods The intestinal microbiomes of the five distinct gut sections (midgut content and mucosa, hindgut content and mucosa, and stools) of swamp eel were compared using Illumina MiSeq sequencing of the bacterial 16S rRNA gene sequence and statistical analysis. Results The results showed that the number of observed OTUs in the intestine decreased proximally to distally. Principal coordinate analysis revealed significant separations among samples from different gut sections. There were 54 core OTUs shared by all gut sections and 36 of these core OTUs varied significantly in their abundances. Additionally, we discovered 66 section-specific enriched KEGG pathways. These section-specific enriched microbial taxa (e.g., Bacillus, Lactobacillus) and potential function capacities (e.g., amino acid metabolism, carbohydrate metabolism) might play vital roles in nutrient metabolism, immune modulation and host-microbe interactions of the swamp eel. Conclusions Our results showed that microbial diversity, composition and function capacity varied substantially across different gut sections. The gut section-specific enriched core microbial taxa and function capacities may perform important roles in swamp eel’s nutrient metabolism, immune modulation, and host-microbe interactions. This study should provide insights into the gut microbiome of the swamp eel.
Collapse
Affiliation(s)
- Xuan Chen
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Shaoming Fang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qiwang Zhong
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
44
|
Solovyev MM, Kashinskaya EN, Bochkarev NA, Andree KB, Simonov E. The effect of diet on the structure of gut bacterial community of sympatric pair of whitefishes ( Coregonus lavaretus): one story more. PeerJ 2019; 7:e8005. [PMID: 31824755 PMCID: PMC6896945 DOI: 10.7717/peerj.8005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022] Open
Abstract
In the Coregonus lavaretus complex may be found lacustrine sympatric pairs, which serves as an intriguing model for studying different aspects of fish evolutionary biology. One such sympatric whitefish pair inhabits Teletskoye Lake (West Siberia, Russia) and includes a “large” form (Coregonus lavaretus pidschian (Gmelin, 1789)) and a “small” form (C. l. pravdinellus (Dulkeit, 1949)). C. l. pravdinellus has a narrow trophic specialization and feeds on zooplankton, whereas the diet of C. l. pidschian is based on benthic prey. In the present study we aimed to address the question of how the gut microbial community reflects the divergence in diet of a sympatric pair of whitefish. Studied samples included the mucosa and content were collected for cardiac and pyloric stomach, anterior, middle, and posterior intestine, but only mucosa was collected for the pyloric caeca. In addition, water, sediment, macrophyte (environmental microbiota) and invertebrate (microbiota of prey) samples were collected in the same location. The V3–V4 region of the 16S rRNA genes was chosen for microbiome analysis and the software PICRUSt used to estimate the difference functional roles of the microbiota. The number of OTUs and Chao1 index in mucosa and content of cardiac and pyloric stomach were significantly different between whitefish. Significant differences were observed between whitefish for content from different parts of the intestine in terms of OTU number and Chao1 indices, whereas for mucosa from the same parts of intestine these differences were absent. No significant differences were found for diversity estimates of mucosa and content of different parts of the gut (there were a few exceptions) between whitefish. The form of whitefish and the segment of the digestive system were factors with a significant determinative effect on the structure of the microbiota from gut mucosa and content. The most dominant phyla in mucosa and content of cardiac and pyloric stomach was Proteobacteria (57.0–84.0%) for both whitefish. Throughout the intestine of C. l. pidschian the dominant phyla in mucosa were Proteobacteria (38.8%) and Firmicutes (15.6%), whereas for C. l. pravdinellus–Tenericutes (49.6%) and Proteobacteria (28.1%). For both forms, the phylum Spirochaetes was found in a significant amount (20.0–25.0%) in the mucosa of the posterior intestine. While for the content obtained from anterior, middle and posterior intestines, the dominant bacterial phyla were the same as those described for mucosa from the same parts of the intestine for both whitefish. The bacterial community of the prey and environment was significantly different from bacterial communities found for all parts of the gut mucosa for both whitefish, with the exception of the mucosa of the cardiac stomach. According to PICRUSt the highest level of differences between whitefish at the L3 level were found for the intestinal mucosa (75.3%), whereas the lowest one was registered for stomach content (38.8%).
Collapse
Affiliation(s)
- Mikhail M Solovyev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Tomsk State University, Tomsk, Russia
| | - Elena N Kashinskaya
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nickolai A Bochkarev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Karl B Andree
- Instituto de Investigación y Tecnología Agroalimentarias, San Carlos de la Rapita, Tarragona, Spain
| | - Evgeniy Simonov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Institute of Environmental and Agricultural Biology, Tyumen State University, Tyumen, Russia
| |
Collapse
|
45
|
Wang D, Wei C. Bacterial communities in digestive and excretory organs of cicadas. Arch Microbiol 2019; 202:539-553. [PMID: 31720723 DOI: 10.1007/s00203-019-01763-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/31/2019] [Indexed: 01/29/2023]
Abstract
Bacteriocyte-associated symbionts are essential for the health of many sap-sucking insects, such as cicadas, leafhoppers and treehoppers, etc., but little is known about the bacterial community in the gut and other related organs in these insects. We characterized the bacterial communities in the salivary glands, alimentary canal and the Malpighian tubules of two populations of the cicada Subpsaltria yangi occurring in different habitats and feeding on different hosts. A high degree of similarity of core microbiota was revealed between the two populations, both with the top three bacteria belonging to Meiothermus, Candidatus Sulcia and Halomonas. The bacterial communities in various organs clustered moderately by populations possibly reflect adaptive changes in the microbiota of related S. yangi populations, which provide a better understanding of the speciation and adaptive mechanism of this species to different diets and habitats. When compared with two phylogenetically distant cicada species, Hyalessa maculaticollis and Meimuna mongolica, the core microbiota in S. yangi was significantly different to that of these species. In addition, our results confirm that Ca. Sulcia distributes in the digestive and excretory organs besides the bacteriomes and gonads, which provide potential important information onto the trophic functions of this obligate endosymbiont to the host insects.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
46
|
Baldo L, Riera JL, Salzburger W, Barluenga M. Phylogeography and Ecological Niche Shape the Cichlid Fish Gut Microbiota in Central American and African Lakes. Front Microbiol 2019; 10:2372. [PMID: 31681230 PMCID: PMC6803461 DOI: 10.3389/fmicb.2019.02372] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
Cichlid fishes, with their repeated colonization of lakes and subsequent radiations at different scales of phylogenetic and ecological diversification, offer an excellent model system to understand the factors shaping the host-gut microbiota association in nature. Here, we characterized the gut microbiota of the Amphilophus species complex from Central America (known as the Midas cichlid complex), encompassing 158 wild specimens (13 species) collected from seven Nicaraguan lakes, and combined these data with previously published data from two African lakes (spanning 29 species). Our aim was to comprehensively explore trends in microbiota variation and persistence along the large spatial and temporal scales of cichlid diversification (from the oldest radiation in L. Tanganyika, 9-12 My old, to young ones in Nicaraguan crater lakes, <0.5 My old), in allopatry and sympatry (within and across lakes), and across the range of dietary niches (from highly specialized to generalist feeders). Despite their extraordinary diversity, cichlids shared a remarkably conserved microbial taxonomic profile, which argues for a primary role of the host genetics in the assembly and maintenance of these microbial communities. Within this partly constrained microbiota profile, geographic isolation (continent and lake) represented the first level of discrimination. For the Midas cichlid, a partial congruency was found between host microbiota and genetic distances, suggesting that microbial communities have partly diversified along their cichlid phylogeographic history of crater lake colonization. In sympatry (within lakes), the young and poorly ecologically diversified cichlid assemblages of Central American lakes display largely unresolved gut microbiotas (in terms of both alpha and beta diversities), whereas the phylogenetically and ecologically diverse species found in African lakes showed greater microbial interspecific diversity. This pattern largely points to the level of habitat segregation, trophic niche overlap, and reproductive barriers as major modulators of the gut microbiota connectivity among sympatric species.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute for Research on Biodiversity (IRBio), University of Barcelona, Barcelona, Spain
| | - Joan Lluís Riera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | | | - Marta Barluenga
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
47
|
Sevellec M, Laporte M, Bernatchez A, Derome N, Bernatchez L. Evidence for host effect on the intestinal microbiota of whitefish ( Coregonus sp.) species pairs and their hybrids. Ecol Evol 2019; 9:11762-11774. [PMID: 31695886 PMCID: PMC6822036 DOI: 10.1002/ece3.5676] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
Investigating relationships between microbiota and their host is essential toward a full understanding of how animal adapt to their environment. Lake Whitefish offers a powerful system to investigate processes of adaptive divergence where the dwarf, limnetic species evolved repeatedly from the normal, benthic species. We compared the transient intestinal microbiota between both species from the wild and in controlled conditions, including their reciprocal hybrids. We sequenced the 16s rRNA gene V3-V4 regions to (a) test for parallelism in the transient intestinal microbiota among sympatric pairs, (b) test for transient intestinal microbiota differences among dwarf, normal, and hybrids reared under identical conditions, and (c) compare intestinal microbiota between wild and captive whitefish. A significant host effect on microbiota taxonomic composition was observed when all lakes were analyzed together and in three of the five species pairs. In captive whitefish, host effect was also significant. Microbiota of both reciprocal hybrids fell outside of that observed in the parental forms. Six genera formed a bacterial core which was present in captive and wild whitefish, suggesting a horizontal microbiota transmission. Altogether, our results complex interactions among the host, the microbiota, and the environment, and we propose that these interactions define three distinct evolutionary paths of the intestinal microbiota.
Collapse
Affiliation(s)
- Maelle Sevellec
- Institut de Biologie Intégrative et des Systèmes (IBIS)Pavillon Charles‐Eugène‐MarchandUniversité LavalQuébecQCCanada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS)Pavillon Charles‐Eugène‐MarchandUniversité LavalQuébecQCCanada
| | - Alex Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Pavillon Charles‐Eugène‐MarchandUniversité LavalQuébecQCCanada
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS)Pavillon Charles‐Eugène‐MarchandUniversité LavalQuébecQCCanada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Pavillon Charles‐Eugène‐MarchandUniversité LavalQuébecQCCanada
| |
Collapse
|
48
|
Reinhart EM, Korry BJ, Rowan-Nash AD, Belenky P. Defining the Distinct Skin and Gut Microbiomes of the Northern Pike ( Esox lucius). Front Microbiol 2019; 10:2118. [PMID: 31572326 PMCID: PMC6751255 DOI: 10.3389/fmicb.2019.02118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
The microbiome of freshwater fish has important implications for both commercial and recreational fishing because it can have significant impacts on host heath, spoilage rates, and susceptibility to disease. The aqueous environment serves as a possible avenue for continuous introduction of microbes to an animal host, but little is known about how the surrounding microbiota contribute to piscine microbiomes. To better understand the composition of the fish microbiome exposed to the natural environment, we profiled the microbial composition of the gut and the skin mucosal surface (SMS) of northern pike (Esox lucius) and the surrounding river water. We collected fish samples from eight sites along a single river in southwestern Quebec, Canada and analyzed the microbial composition via 16S rRNA sequencing. Our results reveal robust taxonomic differences between the SMS and the gut, indicating a divergence between the microbiomes. The gut community was characterized by a lower alpha diversity compared to the SMS and a large proportion of Cetobacterium, a genus previously linked to carnivorous species. On the other hand, the SMS was more similar to the water than the gut at the family level but divergent at lower taxonomic levels, with fewer than 30% of amplicon sequence variants (ASVs) shared between the SMS and water. In total, our results suggest the establishment of distinct communities across the two fish sites, as well as a clear separation from the microbes in surrounding waters. These data indicate that despite continuous exposure to water, pike are able to establish and maintain unique microbial communities.
Collapse
Affiliation(s)
| | | | | | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
49
|
Singh A, Faber-Hammond JJ, O'Rourke CF, Renn SC. Gut microbial diversity increases with social rank in the African cichlid fish, Astatotilapia burtoni. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Tarnecki AM, Brennan NP, Schloesser RW, Rhody NR. Shifts in the Skin-Associated Microbiota of Hatchery-Reared Common Snook Centropomus undecimalis During Acclimation to the Wild. MICROBIAL ECOLOGY 2019; 77:770-781. [PMID: 30191255 PMCID: PMC6469608 DOI: 10.1007/s00248-018-1252-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/29/2018] [Indexed: 05/22/2023]
Abstract
The skin-associated microbiota of fish competes against pathogens for space and nutrients, preventing colonization by harmful bacteria encountered during environmental transitions such as those faced during stock enhancement. Thus, alterations in bacterial community structure during release of cultured fish have important implications for health of these individuals. This study investigated microbiota structure during acclimation of juvenile hatchery-reared common snook Centropomus undecimalis to the wild by comparing skin-associated microflora among snook in captivity, after 48 h of acclimation at release sites, and from the wild. After two days of acclimation, the microbiota of hatchery-reared snook mirrored that observed on wild snook. Relative abundances of potential pathogens were higher in captive fish, whereas acclimated and wild fish harbored bacterial taxa influenced by geographical factors and water quality at release sites. Predicted microbiota function of acclimated and wild fish showed higher production of protective amino acids and antimicrobials, identifying a mechanism for microbial supplementation of the immune defense of these fish. The two-day transition to wild-type microbiota suggests a temporal scale of hours associated with bacterial succession indicating that the microbiota, whose structure is vital to fish health, aids in acclimation of fish to new environments during stock enhancement efforts.
Collapse
Affiliation(s)
- Andrea M Tarnecki
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA.
| | - Nathan P Brennan
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Ryan W Schloesser
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Nicole R Rhody
- Mote Aquaculture Research Park, 874 WR Mote Way, Sarasota, FL, 34240, USA
| |
Collapse
|