1
|
Zhou YC, Wang QQ, Zhou GYJ, Yin TF, Zhao DY, Sun XZ, Tan C, Zhou L, Yao SK. Matrine promotes colorectal cancer apoptosis by downregulating shank-associated RH domain interactor expression. World J Gastrointest Oncol 2024; 16:4700-4715. [PMID: 39678809 PMCID: PMC11577358 DOI: 10.4251/wjgo.v16.i12.4700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND The 5-year survival rate of patients with colorectal cancer (CRC) in China is only 56.9%, highlighting the need for new therapeutic drugs. Previous studies have shown that matrine exhibits antitumor effects by inducing apoptosis. However, the mechanism by which matrine regulates antiapoptotic proteins in CRC remains unclear. AIM To identify apoptotic proteins from proteomics and investigate the role of matrine in impeding CRC apoptosis by regulating these proteins. METHODS Tumor and adjacent normal tissues were collected from 52 patients with CRC who underwent surgery between January and December 2021. Data-independent acquisition quantitative proteomic analysis was performed to identify differentially expressed apoptotic proteins. The selected apoptotic proteins were identified through their association with tumor-node-metastasis (TNM) stage and prognosis, then confirmed by immunohistochemical (IHC) staining in validation cohort. In vitro, the role of matrine or apoptotic proteins on cancer cells were analyzed. RESULTS Compared to normal tissues, 88 anti-apoptotic proteins from proteomic results were selected. Among them, Shank-associated RH domain interactor (SHARPIN) was identified because of its relationship with TNM stage and overall survival in TCGA database. In the IHC-confirmed cohort, SHARPIN was highly expressed in CRC tissues and localized in the cytoplasm. Higher SHARPIN expression was associated with TNM stage, carbohydrate antigen 153 levels, and gross type compared to low expression. SHARPIN knockdown promoted apoptosis, significantly upregulated the expression of Bcl-2 associated agonist of cell death, Bcl-2 associated X protein, caspase 3, and caspase 8, and downregulated B-cell lymphoma-2 (P < 0.05). Importantly, matrine treatment promoted apoptosis and reversed the proliferation, invasion, and migration of CRC cells by repressing SHARPIN. CONCLUSION SHARPIN was identified as an upregulated anti-apoptotic protein in CRC, and matrine exhibited anticancer effects by downregulating its expression. Thus, matrine appears to be a promising drug for CRC.
Collapse
Affiliation(s)
- Yuan-Chen Zhou
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Qian-Qian Wang
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Ge-Yu-Jia Zhou
- Department of Gastroenterology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, China
| | - Teng-Fei Yin
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Dong-Yan Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Xi-Zhen Sun
- Department of Gastroenterology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Chang Tan
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Lei Zhou
- Department of General Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shu-Kun Yao
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
2
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
3
|
Wang G, Zhuang Z, Cheng J, Yang F, Zhu D, Jiang Z, Du W, Shen S, Huang J, Hua L, Chen Y. Overexpression of SHARPIN promotes tumor progression in ovarian cancer. Exp Mol Pathol 2022:104806. [PMID: 35798064 DOI: 10.1016/j.yexmp.2022.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
SHARPIN (Shank-associated RH domain interacting protein) plays an important role in tumorigenesis. However, its role in ovarian cancer remains largely unknown. To investigate this issue, we systematically analyzed the amplification and expression of the SHARPIN in the TCGA database. From the database, we found that SHARPIN was amplified in ovarian cancer compared to normal ovarian tissue, and the mRNA level of SHARPIN was significantly elevated in ovarian cancer compared to non-tumorigenic ovarian tissue. In addition, we observed similar results from ovarian cancer cell lines and clinical samples from ovarian cancer patients, which indicated that increased SHARPIN expression is associated with tumorigenesis in ovarian cancer. SHARPIN knockdown inhibited the migration and invasion of ovarian cancer cells, also inhibited cell cycle and promoted apoptosis, thereby suppressing cell proliferation. RNA-seq results showed that SHARPIN significantly increased the expression of P53 and P21 and decreased the expression of Cyclin D1 and c-Myc, all of which are involved in the regulation of cell proliferation. Subsequent mechanistic exploration revealed that SHARPIN knockdown increased the expression of caspases 3 and 9, leading to apoptosis of ovarian cancer cells. We also found that high expression of SHARPIN was associated with poor prognosis of ovarian cancer patients. Collectively, we demonstrated a positive correlation between SHARPIN and ovarian cancer progression and provide a basis for combined targeted therapy strategies for future ovarian cancer treatment.
Collapse
Affiliation(s)
- Guanghui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zi Zhuang
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianxiang Cheng
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fan Yang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dachun Zhu
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyuan Jiang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wensheng Du
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Siyuan Shen
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ju Huang
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Hua
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
4
|
Shen J, Wang M, Li F, Yan H, Zhou J. Homeodomain-containing gene 10 contributed to breast cancer malignant behaviors by activating Interleukin-6/Janus kinase 2/Signal transducer and activator of transcription 3 pathway. Bioengineered 2022; 13:1335-1345. [PMID: 34983296 PMCID: PMC8805924 DOI: 10.1080/21655979.2021.2016088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Homeodomain‑containing gene 10 (HOXC10) has been identified as an oncogene in various malignancies. Nevertheless, the role and function of HOXC10 in breast cancer (BC) remain unclear. RT-qPCR and Western blot were used to detect the mRNA and protein levels of genes, respectively. CCK-8, transwell, and TUNEL assays were performed to evaluate cell viability, invasion, migration, and apoptosis of BC cells in vitro. The xenograft model was established to examine the effect of HOXC10 on tumor growth in vivo. Our results indicated that HOXC10 expression was increased in BC and correlated with an unsatisfactory prognosis. Functional assays indicated that HOXC10 overexpression promoted cell proliferation and metastasis, and suppressed cell apoptosis of BC, while HOXC10 knockdown showed opposite trends. Furthermore, in vitro and in vivo assays uncovered that HOXC10 promoted the tumorigenesis of BC via the activation of IL-6/JAK2/STAT3 signaling. Overall, our study revealed that HOXC10 could function as a tumor promotor in BC by upregulating IL-6 levels to activate the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jun Shen
- Department of Breast Surgery, The First People's Hospital of LianYunGang, Lianyungang, Jiangsu Province, China
| | - Meng Wang
- Department of Breast Surgery, The First People's Hospital of LianYunGang, Lianyungang, Jiangsu Province, China
| | - Fan Li
- Department of Breast Surgery, The First People's Hospital of LianYunGang, Lianyungang, Jiangsu Province, China
| | - Huanhuan Yan
- Department of Breast Surgery, The First People's Hospital of LianYunGang, Lianyungang, Jiangsu Province, China
| | - Jun Zhou
- Department of Breast Surgery, The First People's Hospital of LianYunGang, Lianyungang, Jiangsu Province, China
| |
Collapse
|
5
|
Xia S, Lin Q. Estrogen Receptor Bio-Activities Determine Clinical Endocrine Treatment Options in Estrogen Receptor-Positive Breast Cancer. Technol Cancer Res Treat 2022; 21:15330338221090351. [PMID: 35450488 PMCID: PMC9036337 DOI: 10.1177/15330338221090351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In estrogen receptor positive (ER+) breast cancer therapy, estrogen receptors (ERs) are the major targeting molecules. ER-targeted therapy has provided clinical benefits for approximately 70% of all breast cancer patients through targeting the ERα subtype. In recent years, mechanisms underlying breast cancer occurrence and progression have been extensively studied and largely clarified. The PI3K/AKT/mTOR pathway, microRNA regulation, and other ER downstream signaling pathways are found to be the effective therapeutic targets in ER+ BC therapy. A number of the ER+ (ER+) breast cancer biomarkers have been established for diagnosis and prognosis. The ESR1 gene mutations that lead to endocrine therapy resistance in ER+ breast cancer had been identified. Mutations in the ligand-binding domain of ERα which encoded by ESR1 gene occur in most cases. The targeted drugs combined with endocrine therapy have been developed to improve the therapeutic efficacy of ER+ breast cancer, particularly the endocrine therapy resistance ER+ breast cancer. The combination therapy has been demonstrated to be superior to monotherapy in overall clinical evaluation. In this review, we focus on recent progress in studies on ERs and related clinical applications for targeted therapy and provide a perspective view for therapy of ER+ breast cancer.
Collapse
Affiliation(s)
- Song Xia
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, China
- Qiong Lin, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China.
| |
Collapse
|
6
|
Zhang L, Liu Q, Liu KW, Qin ZY, Zhu GX, Shen LT, Zhang N, Liu BY, Che LR, Li JY, Wang T, Wen LZ, Liu KJ, Guo Y, Yin XR, Wang XW, Zhou ZH, Xiao HL, Cui YH, Bian XW, Lan CH, Chen D, Wang B. SHARPIN stabilizes β-catenin through a linear ubiquitination-independent manner to support gastric tumorigenesis. Gastric Cancer 2021; 24:402-416. [PMID: 33159601 DOI: 10.1007/s10120-020-01138-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Aberrant activation of Wnt/β-catenin signaling by dysregulated post-translational protein modifications, especially ubiquitination is causally linked to cancer development and progression. Although Lys48-linked ubiquitination is known to regulate Wnt/β-catenin signaling, it remains largely obscure how other types of ubiquitination, such as linear ubiquitination governs its signaling activity. METHODS The expression and regulatory mechanism of linear ubiquitin chain assembly complex (LUBAC) on Wnt/β-catenin signaling was examined by immunoprecipitation, western blot and immunohistochemical staining. The ubiquitination status of β-catenin was detected by ubiquitination assay. The impacts of SHARPIN, a core component of LUBAC on malignant behaviors of gastric cancer cells were determined by various functional assays in vitro and in vivo. RESULTS Unlike a canonical role in promoting linear ubiquitination, SHARPIN specifically interacts with β-catenin to maintain its protein stability. Mechanistically, SHARPIN competes with the E3 ubiquitin ligase β-Trcp1 for β-catenin binding, thereby decreasing β-catenin ubiquitination levels to abolish its proteasomal degradation. Importantly, SHARPIN is required for invasiveness and malignant growth of gastric cancer cells in vitro and in vivo, a function that is largely dependent on its binding partner β-catenin. In line with these findings, elevated expression of SHARPIN in gastric cancer tissues is associated with disease malignancy and correlates with β-catenin expression levels. CONCLUSIONS Our findings reveal a novel molecular link connecting linear ubiquitination machinery and Wnt/β-catenin signaling via SHARPIN-mediated stabilization of β-catenin. Targeting the linear ubiquitination-independent function of SHARPIN could be exploited to inhibit the hyperactive β-catenin signaling in a subset of human gastric cancers.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Qin Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Ke-Wei Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Zhong-Yi Qin
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Guang-Xi Zhu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Li-Ting Shen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Ni Zhang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Bi-Ying Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Lin-Rong Che
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Jin-Yang Li
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Tao Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Liang-Zhi Wen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Kai-Jun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Yan Guo
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Xin-Ru Yin
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Xing-Wei Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Zhi-Hua Zhou
- Department of Pathology, The 904 Hospital of People Liberation Army, Wuxi, People's Republic of China
| | - Hua-Liang Xiao
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Chun-Hui Lan
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Bin Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China. .,Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
7
|
Krishnan D, Menon RN, Gopala S. SHARPIN: Role in Finding NEMO and in Amyloid-Beta Clearance and Degradation (ABCD) Pathway in Alzheimer's Disease? Cell Mol Neurobiol 2021; 42:1267-1281. [PMID: 33400084 DOI: 10.1007/s10571-020-01023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
SHANK- associated RH domain-interacting protein (SHARPIN) is a multifunctional protein associated with numerous physiological functions and many diseases. The primary role of the protein as a LUBAC-dependent component in regulating the activation of the transcription factor NF-κB accounts to its role in inflammation and antiapoptosis. Hence, an alteration of SHARPIN expression or genetic mutations or polymorphisms leads to the alteration of the above-mentioned primary physiological functions contributing to inflammation-associated diseases and cancer, respectively. However, there are complications of targeting SHARPIN as a therapeutic approach, which arises from the wide-range of LUBAC-independent functions and yet unknown roles of SHARPIN including neuronal functions. The identification of SHARPIN as a postsynaptic protein and the emerging studies indicating its role in several neurodegenerative diseases including Alzheimer's disease suggests a strong role of SHARPIN in neuronal functioning. This review summarizes the functional roles of SHARPIN in normal physiology and disease pathogenesis and strongly suggests a need for concentrating more studies on identifying the unknown neuronal functions of SHARPIN and hence its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhanya Krishnan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Ramsekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
8
|
Sundberg JP, Pratt CH, Goodwin LP, Silva KA, Kennedy VE, Potter CS, Dunham A, Sundberg BA, HogenEsch H. Keratinocyte-specific deletion of SHARPIN induces atopic dermatitis-like inflammation in mice. PLoS One 2020; 15:e0235295. [PMID: 32687504 PMCID: PMC7371178 DOI: 10.1371/journal.pone.0235295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Spontaneous mutations in the SHANK-associated RH domain interacting protein (Sharpin) resulted in a severe autoinflammatory type of chronic proliferative dermatitis, inflammation in other organs, and lymphoid organ defects. To determine whether cell-type restricted loss of Sharpin causes similar lesions, a conditional null mutant was created. Ubiquitously expressing cre-recombinase recapitulated the phenotype seen in spontaneous mutant mice. Limiting expression to keratinocytes (using a Krt14-cre) induced a chronic eosinophilic dermatitis, but no inflammation in other organs or lymphoid organ defects. The dermatitis was associated with a markedly increased concentration of serum IgE and IL18. Crosses with S100a4-cre resulted in milder skin lesions and moderate to severe arthritis. This conditional null mutant will enable more detailed studies on the role of SHARPIN in regulating NFkB and inflammation, while the Krt14-Sharpin-/- provides a new model to study atopic dermatitis.
Collapse
Affiliation(s)
- John P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - C. Herbert Pratt
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | | | | | | | - Anisa Dunham
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| | - Beth A. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Harm HogenEsch
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
9
|
Yang Y, Liang YH, Zheng Y, Tang LJ, Zhou ST, Zhu JN. SHARPIN regulates cell proliferation of cutaneous basal cell carcinoma via inactivation of the transcriptional factors GLI2 and c‑JUN. Mol Med Rep 2020; 21:1799-1808. [PMID: 32319607 PMCID: PMC7057814 DOI: 10.3892/mmr.2020.10981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
SHANK‑associated RH domain‑interacting protein (SHARPIN) is a component of the linear ubiquitin chain assembly complex that can enhance the NF‑κB and JNK signaling pathways, acting as a tumor‑associated protein in a variety of cancer types. The present study investigated the role of SHARPIN in cutaneous basal cell carcinoma (BCC). Human BCC (n=26) and normal skin (n=5) tissues, and BCC (TE354.T) and normal skin (HaCaT) cell lines were used to evaluate SHARPIN expression level using immunohistochemistry and western blotting, respectively. A lentivirus carrying SHARPIN‑targeting or negative control short hairpin RNA was infected into TE354.T cells, and the infected stable cells were assayed to analyze tumor cell proliferation, cell cycle, apoptosis, migration and invasion by Cell Counting Kit‑8 and 5‑ethynyl‑2'‑deoxyuridine incorporation assays, flow cytometry and Transwell assays. Western blotting was performed to assess the protein expression levels of gene signaling in SHARPIN‑silenced BCC cells. SHARPIN protein expression levels were downregulated or absent in BCC cancer nests and precancerous lesions compared with normal skin samples. In addition, SHARPIN expression levels were lower in TE354.T cells compared with HaCaT cells. SHARPIN shRNA enhanced tumor cell proliferation and the S phase of the cell cycle, whereas BCC cell apoptotic rates, and migratory and invasive abilities were not significantly altered. The expression levels of cyclin D1, cyclin‑dependent kinase 4, phosphorylated‑c‑JUN and GLI family zinc finger 2 proteins were increased, whereas Patched 1 (PTCH1) and PTCH2 were decreased in the SHARPIN‑shRNA‑infected BCC cells. Therefore, the present results suggested that SHARPIN may act as a tumor suppressor during BCC development.
Collapse
Affiliation(s)
- Yao Yang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Yan-Hua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Yan Zheng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Ling-Jie Tang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Si-Tong Zhou
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Jing-Na Zhu
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| |
Collapse
|
10
|
Zhang A, Wang W, Chen Z, Pang D, Zhou X, Lu K, Hou J, Wang S, Gao C, Lv B, Yan Z, Chen Z, Zhu J, Wang L, Zhuang T, Li X. SHARPIN Inhibits Esophageal Squamous Cell Carcinoma Progression by Modulating Hippo Signaling. Neoplasia 2019; 22:76-85. [PMID: 31884247 PMCID: PMC6939053 DOI: 10.1016/j.neo.2019.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 01/25/2023] Open
Abstract
Esophageal cancer is one of the leading malignancies worldwide, while around sixty percent of newly diagnosed cases are in China. In recent years, genome-wide sequencing studies and cancer biology studies show that Hippo signaling functions a critical role in esophageal squamous cell carcinoma (ESCC) progression, which could be a promising therapeutic targets in ESCC treatment. However, the detailed mechanisms of Hippo signaling dys-regulation in ESCC remain not clear. Here we identify SHARPIN protein as an endogenous inhibitor for YAP protein. SHARPIN depletion significantly decreases cell migration and invasion capacity in ESCC, which effects could be rescued by further YAP depletion. Depletion SHARPIN increases YAP protein level and YAP/TEAD target genes, such as CTGF and CYR61 in ESCC. Immuno-precipitation assay shows that SHARPIN associates with YAP, promoting YAP degradation possibly via inducing YAP K48-dependent poly-ubiquitination. Our study reveals a novel post-translational mechanism in modulating Hippo signaling in ESCC. Overexpression or activation of SHARPIN could be a promising strategy to target Hippo signaling for ESCC patients.
Collapse
Affiliation(s)
- Aijia Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Weilong Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Zhijun Chen
- Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Dan Pang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Xiaofeng Zhou
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Kui Lu
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Jinghan Hou
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Sujie Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Can Gao
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Benjie Lv
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Ziyi Yan
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Zhen Chen
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Jian Zhu
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Lidong Wang
- Henan Key Laboratory for Esophageal Cancer Research and State Key Laboratory for Esophageal Cancer Prevention & Treatment of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Ting Zhuang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| | - Xiumin Li
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| |
Collapse
|
11
|
Chen B, Zheng Y, Zhu J, Liang Y. SHARPIN overexpression promotes TAK1 expression and activates JNKs and NF-κB pathway in Mycosis Fungoides. Exp Dermatol 2019; 28:1279-1288. [PMID: 31461795 DOI: 10.1111/exd.14026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/02/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Mycosis Fungoides (MF) is the most common subtype of cutaneous T-cell lymphomas (CTCL). Shank-associated RH domain-interacting protein (SHARPIN) participates in the initiation and development of multiple tumors. However, the clinical significance of SHARPIN in MF hasn't been investigated. The c-Jun N-terminal kinases (JNKs) pathway is a member of mitogen-activated protein kinases (MAPKs). Its dysregulation is observed in various tumors including CTCL, whereas the roles of JNKs pathway in MF remain largely unknown, the relationship between SHARPIN and JNKs pathway remains elusive. Herein, we showed that upregulated expression of SHARPIN was related to poor prognosis of MF patients. In vitro experiments found increased SHARPIN expression and activation of JNKs pathway in MF cell line MyLa2059. SHARPIN induced transforming growth factor β activated kinase-1 (TAK1) transcription, which is an upstream kinase of JNKs, NF-κB and p38 pathway, leading to activation of JNKs and NF-κB pathway. SHARPIN also promoted p38 signalling independent of TAK1 expression, by which overexpression of SHARPIN induced cell proliferation, inhibited apoptosis, enhanced migration and invasion of MyLa2059. Our work provided direct evidences for effects of SHARPIN on JNKs and NF-κB pathway, and the contributing roles of JNKs, NF-κB and p38 pathway regulated by SHARPIN in the development of MF.
Collapse
Affiliation(s)
- Biao Chen
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yan Zheng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingna Zhu
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yanhua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
12
|
Zhou S, Liang Y, Zhang X, Liao L, Yang Y, Ouyang W, Xu H. SHARPIN Promotes Melanoma Progression via Rap1 Signaling Pathway. J Invest Dermatol 2019; 140:395-403.e6. [PMID: 31401046 DOI: 10.1016/j.jid.2019.07.696] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 01/06/2023]
Abstract
SHARPIN, as a tumor-associated gene, is involved in the metastatic process of many kinds of tumors. Herein, we studied the function of Shank-associated RH domain interacting protein (SHARPIN) in melanoma metastasis and the relevant molecular mechanisms. We found that SHARPIN expression was increased in melanoma tissues and activated the process of proliferation, migration, and invasion in vitro and in vivo, resulting in a poor prognosis of the disease. Functional analysis demonstrated that SHARPIN promoted melanoma migration and invasion by regulating Ras-associated protein-1(Rap1) and its downstream pathways, including p38 and JNK/c-Jun. Rap1 activator (8-pCPT-2'-O-Me-cAMP) and inhibitor (ESI-09 and farnesylthiosalicylic acid-amide) treatments could partially rescue invasion and migration of tumor cells. Additionally, SHARPIN expression in cell lines and public datasets also indicated that molecules other than BRAF and N-RAS may contribute to SHARPIN activation. In conclusion, our broad-in-depth work suggests that SHARPIN promotes melanoma development via p38 and JNK/c-Jun pathways through upregulation of Rap1 expression.
Collapse
Affiliation(s)
- Sitong Zhou
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yanhua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Xi Zhang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Lexi Liao
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yao Yang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wen Ouyang
- The Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huaiyuan Xu
- Department of Bone and Soft Tissue Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Siitonen R, Peuhu E, Autio A, Liljenbäck H, Mattila E, Metsälä O, Käkelä M, Saanijoki T, Dijkgraaf I, Jalkanen S, Ivaska J, Roivainen A. 68Ga-DOTA-E[c(RGDfK)] 2 PET Imaging of SHARPIN-Regulated Integrin Activity in Mice. J Nucl Med 2019; 60:1380-1387. [PMID: 30850498 DOI: 10.2967/jnumed.118.222026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Shank-associated RH domain-interacting protein (SHARPIN) is a cytosolic protein that plays a key role in activation of nuclear factor κ-light-chain enhancer of activated B cells and regulation of inflammation. Furthermore, SHARPIN controls integrin-dependent cell adhesion and migration in several normal and malignant cell types, and loss of SHARPIN correlates with increased integrin activity in mice. Arginyl-glycyl-aspartic acid (RGD), a cell adhesion tripeptide motif, is an integrin recognition sequence that facilitates PET imaging of integrin upregulation during tumor angiogenesis. We hypothesized that increased integrin activity due to loss of SHARPIN protein would affect the uptake of αvβ3-selective cyclic, dimeric peptide 68Ga-DOTA-E[c(RGDfK)]2, where E[c(RGDfk)]2 = glutamic acid-[cyclo(arginyl-glycyl-aspartic acid-D-phenylalanine-lysine)], both in several tissue types and in the tumor microenvironment. To test this hypothesis, we used RGD-based in vivo PET imaging to evaluate wild-type (wt) and SHARPIN-deficient mice (Sharpin cpdm , where cpdm = chronic proliferative dermatitis in mice) with and without melanoma tumor allografts. Methods: Sharpin cpdm mice with spontaneous null mutation in the Sharpin gene and their wt littermates with or without B16-F10-luc melanoma tumors were studied by in vivo imaging and ex vivo measurements with cyclic-RGD peptide 68Ga-DOTA-E[c(RGDfK)]2 After the last 68Ga-DOTA-E[c(RGDfK)]2 peptide PET/CT, tumors were cut into cryosections for autoradiography, histology, and immunohistochemistry. Results: The ex vivo uptake of 68Ga-DOTA-E[c(RGDfK)]2 in the mouse skin and tumor was significantly higher in Sharpin cpdm mice than in wt mice. B16-F10-luc tumors were detected 4 d after inoculation, without differences in volume or blood flow between the mouse strains. PET imaging with 68Ga-DOTA-E[c(RGDfK)]2 peptide at day 10 after inoculation revealed significantly higher uptake in the tumors transplanted into Sharpin cpdm mice than in wt mice. Furthermore, tumor vascularization was increased in the Sharpin cpdm mice. Conclusion: Sharpin cpdm mice demonstrated increased integrin activity and vascularization in B16-F10-luc melanoma tumors, as demonstrated by RGD-based in vivo PET imaging. These data indicate that SHARPIN, a protein previously associated with increased cancer growth and metastasis, may also have important regulatory roles in controlling the tumor microenvironment.
Collapse
Affiliation(s)
| | - Emilia Peuhu
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Anu Autio
- Turku PET Centre, University of Turku, Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Elina Mattila
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Olli Metsälä
- Turku PET Centre, University of Turku, Turku, Finland
| | - Meeri Käkelä
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Ingrid Dijkgraaf
- Department of Biochemistry, University of Maastricht, Maastricht, the Netherlands
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biochemistry, University of Turku, Turku, Finland; and
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland .,Turku Center for Disease Modeling, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| |
Collapse
|
14
|
Zheng Y, Yang Y, Wang J, Liang Y. Aberrant expression and high-frequency mutations of SHARPIN in nonmelanoma skin cancer. Exp Ther Med 2019; 17:2746-2756. [PMID: 30936956 PMCID: PMC6434243 DOI: 10.3892/etm.2019.7261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 02/05/2019] [Indexed: 12/18/2022] Open
Abstract
Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) have exhibited a marked increase in incidence in previous decades and are the most common malignancies in Caucasian populations. Src homology 3 and multiple ankyrin repeat domains protein-associated RH domain-interacting protein (SHARPIN) has been identified as a commonly overexpressed proto-oncogene in several types of visceral cancer. However, to the best of our knowledge, the functions of SHARPIN in nonmelanoma skin cancer (NMSC) have not been described. The present study aimed to investigate the expression of SHARPIN protein and SHARPIN mutations in NMSC. A total of 85 BCC, 77 SCC and 21 keratoacanthoma (KA) formalin-fixed paraffin-embedded (FFPE) samples were collected. SHARPIN expression was detected using immunohistochemistry. DNA was extracted from the FFPE samples, and the sequences of SHARPIN were analyzed using polymerase chain reaction. In addition, high and moderate expression levels of SHARPIN were observed in normal skin tissues and KA samples. However, the expression of SHARPIN was absent in cancer nests and was significantly low in precancerous NMSC lesions. The total mutation frequency of SHARPIN was 21.8% in BCC and 17.0% in SCC. These data indicate that SHARPIN may serve a tumor-suppressing role and be a promising diagnostic, prognostic and therapeutic biomarker in NMSC.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Dermatology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Yao Yang
- Department of Dermatology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Jiaman Wang
- Department of Dermatology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Yanhua Liang
- Department of Dermatology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| |
Collapse
|
15
|
Post-translational modification of the death receptor complex as a potential therapeutic target in cancer. Arch Pharm Res 2019; 42:76-87. [PMID: 30610617 DOI: 10.1007/s12272-018-01107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/27/2018] [Indexed: 12/26/2022]
Abstract
Programmed cell death is critical to the physiological function of multi-cellular organisms, controlling development, immunity, inflammation, and cancer progression. Death receptor (DR)-mediated regulation of a protease functions as a second messenger to initiate a death signal cascade to induce apoptosis or necroptosis. Recently, it has become clear that post-translational modifications (PTMs) of signaling components in the DR complex are highly complex, temporally controlled, and tightly regulated, and play an important role in cell death signaling. This review focuses on the molecular mechanisms and pathophysiological consequences of PTMs on the formation of the DR signaling complex, especially with respect to tumor necrosis factor receptor 1 (TNFR1). Furthermore, characterization of the role of PTMs in spatially different TNFR1 complexes (complexes I and II), especially with respect to the role of ubiquitination and phosphorylation of receptor interacting protein 1 (RIP1) in programmed cell death in cancer cells, will be reviewed. By integrating recently gained insight of the functional importance of PTMs in complex I or II, this review discusses how the concerted action of PTMs results in life or death upon DR ligation. Finally, the emerging concept of a sequential cell death checkpoint by the PTMs of RIP1, which may reveal novel therapeutic opportunities for the treatment of some cancers, will be discussed.
Collapse
|
16
|
Liang Y, Chen B, Liu F, Wang J, Yang Y, Zheng Y, Tan S. Shank-associated RH domain-interacting protein expression is upregulated in entodermal and mesodermal cancer or downregulated in ectodermal malignancy. Oncol Lett 2018; 16:7180-7188. [PMID: 30546455 PMCID: PMC6256368 DOI: 10.3892/ol.2018.9514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 09/17/2018] [Indexed: 12/25/2022] Open
Abstract
Shank-associated RH domain-interacting protein (SHARPIN) is a type of linear ubiquitin chain-associated protein, which serves an important role in cell proliferation, apoptosis, organ development, immune and inflammatory reaction, initiation and development of malignant tumors. To evaluate SHARPIN expression in multiple malignant tumors derived from different germ layers, 14 types of cancer and their corresponding normal tissues were examined. Immunohistochemistry was performed to semi-quantify SHARPIN expression in multiple malignant tumors, and immunofluorescence was performed to evaluate the subcellular localization of SHARPIN in various malignant tumors. All the recruited cancer and paracancer samples originated from entoderm and mesoderm showed an upregulated expression of SHARPIN, whereas the cancer types that originated from ectoderm exhibited a downregulated or loss of SHARPIN expression. SHARPIN was primarily localized in the cytoplasm of cells and exhibited a faint signal in the nucleus, with the exception for lung cancer and esophagus cancer, in which malignant cells had aberrantly large nuclei and limited cytoplasm, which produced a signal in the nucleus but not in the cytoplasm. Conclusively, SHARPIN expression was upregulated in entodermal and mesodermal cancer types, but downregulated in ectodermal cancer types, indicating SHARPIN could act as either oncogene or anti-oncogene in malignant tumors derived from different germ layers.
Collapse
Affiliation(s)
- Yanhua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Biao Chen
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Fen Liu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jiaman Wang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Yao Yang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Yan Zheng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Shicui Tan
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| |
Collapse
|
17
|
Kharman-Biz A, Gao H, Ghiasvand R, Haldosen LA, Zendehdel K. Expression of the three components of linear ubiquitin assembly complex in breast cancer. PLoS One 2018; 13:e0197183. [PMID: 29763465 PMCID: PMC5953448 DOI: 10.1371/journal.pone.0197183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Proteins belonging to the linear ubiquitin assembly complex (LUBAC) are believed to be important in tumorigenesis. LUBAC has been demonstrated to be composed of RBCK1, RNF31 and SHARPIN. The aim of this study was to explore all members of the LUBAC complex as novel biomarkers in breast cancer. We have already reported that RNF31 mRNA levels are higher in breast cancer samples compared to adjacent non-tumor tissue. In this study we extend these findings by demonstrating that the mRNA levels of RBCK1 and SHARPIN are also higher in tumors compared to adjacent non-tumor tissue in the same cross sectional study of samples (p < 0.001). In addition, up-regulated mRNA expression of all three members of the LUBAC complex displayed high predictive value in distinguishing tumor tissues from adjacent non-tumor tissue as determined by ROC curve analysis. Furthermore, we investigated whether there is an association between the mRNA and protein expression levels of RBCK1, RNF31 and SHARPIN and clinicopathological parameters including estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor (HER2) status and found that RNF31 protein is significantly higher in ERalpha-negative tumors than ERalpha-positive tumors (p = 0.034). Collectively, our findings indicate that up-regulated mRNA expression of RNF31, RBCK1 and SHARPIN could potentially be diagnostic biomarkers of breast cancer and RNF31 might be a drug target for ERalpha-negative breast cancers.
Collapse
Affiliation(s)
- Amirhossein Kharman-Biz
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Reza Ghiasvand
- Oslo Centre for Biostatistics and Epidemiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lars-Arne Haldosen
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
18
|
Zhang J, Xu M, Gao H, Guo JC, Guo YL, Zou M, Wu XF. Two protein-coding genes act as a novel clinical signature to predict prognosis in patients with ovarian serous cystadenocarcinoma. Oncol Lett 2018; 15:3669-3675. [PMID: 29456732 PMCID: PMC5795895 DOI: 10.3892/ol.2018.7778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/18/2017] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is the seventh most common type of cancer and the eighth most common cause of cancer-associated mortality among women. A number of studies have hypothesized that the expression status of certain genes may be used to predict prognosis in ovarian cancer. In the present study, the RNA expression data from next-generation sequencing and the clinical information of 413 patients from The Cancer Genome Atlas dataset was downloaded to identify the association between gene-expression level and the survival time of the patients with ovarian serous cystadenocarcinoma. A five-gene model was predicted to be significantly associated with patient survival in ovarian serous cystadenocarcinoma by using random survival forests variable hunting algorithm and Cox analysis. A total of two genes, mesencephalic astrocyte-derived neurotrophic factor and dedicator of cytokinesis 11, of the predicted five genes demonstrated positive expression in the ovarian serous cystadenocarcinoma cancer tissues by polymerase chain reaction analysis. Kaplan-Meier and Receiver Operating Characteristic analysis confirmed that the model of the two genes exhibited high sensitivity and specificity to predict the prognostic survival of patients. In conclusion, the expression of the two genes in the two-gene model was associated with the prognostic outcomes of patients with ovarian serous cystadenocarcinoma; the model demonstrated potential as a novel prognostic indicator, which may have important clinical significance.
Collapse
Affiliation(s)
- Jue Zhang
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, P.R. China
| | - Meng Xu
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, P.R. China
| | - Han Gao
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, P.R. China
| | - Jin-Chen Guo
- Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yu-Lin Guo
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, P.R. China
| | - Miao Zou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, P.R. China
| | - Xu-Feng Wu
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, P.R. China
- Correspondence to: Dr Xu-Feng Wu, Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, Hubei 430070, P.R. China, E-mail:
| |
Collapse
|
19
|
Ojo D, Wu Y, Bane A, Tang D. A role of SIPL1/SHARPIN in promoting resistance to hormone therapy in breast cancer. Biochim Biophys Acta Mol Basis Dis 2017; 1864:735-745. [PMID: 29248549 DOI: 10.1016/j.bbadis.2017.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023]
Abstract
SIPL1 inhibits PTEN function and stimulates NF-κB signaling; both processes contribute to resistance to hormone therapy in estrogen receptor positive breast cancer (ER+ BC). However, whether SIPL1 promotes tamoxifen resistance in BC remains unclear. We report here that SIPL1 enhances tamoxifen resistance in ER+ BC. Overexpression of SIPL1 in MCF7 and TD47 cells conferred tamoxifen resistance. In MCF7 cell-derived tamoxifen resistant (TAM-R) cells, SIPL1 expression was upregulated and knockdown of SIPL1 in TAM-R cells re-sensitized the cells to tamoxifen. Furthermore, xenograft tumors produced by MCF7 SIPL1 cells but not by MCF7 empty vector cells resisted tamoxifen treatment. Collectively, we demonstrated a role of SIPL1 in promoting tamoxifen resistance in BC. Increases in AKT activation and NF-κB signaling were detected in both MCF7 SIPL1 and TAM-R cells; using specific inhibitors and unique SIPL1 mutants to inhibit either pathway significantly reduced tamoxifen resistance. A SIPL1 mutant defective in activating both pathways was incapable of conferring resistance to tamoxifen, showing that both pathways contributed to SIPL1-derived resistance to tamoxifen in ER+ BCs. Using the Curtis dataset of breast cancer (n=1980) within the cBioPortal database, we examined a correlation of SIPL1 expression with ER+ BC and resistance to hormone therapy. SIPL1 upregulation strongly associates with reductions in overall survival in BC patients, particularly in patients with hormone naïve ER+ BCs. Taken together, we provide data suggesting that SIPL1 contributes to promote resistance to tamoxifen in BC cells through both AKT and NF-κB actions.
Collapse
Affiliation(s)
- Diane Ojo
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada; the Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Ying Wu
- Department of Pathology and Molecular Medicine, Juravinski Hospital and Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Anita Bane
- Department of Pathology and Molecular Medicine, Juravinski Hospital and Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada; the Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada.
| |
Collapse
|
20
|
Guo W, Chen X, Zhu L, Wang Q. A six-mRNA signature model for the prognosis of head and neck squamous cell carcinoma. Oncotarget 2017; 8:94528-94538. [PMID: 29212247 PMCID: PMC5706893 DOI: 10.18632/oncotarget.21786] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), one of the most common cancers with high morbidity and mortality rates worldwide, has a poor prognosis. The transcriptome sequencing data of 500 patients with HNSCC in the TCGA dataset were assessed to find biomarkers associated with HNSCC prognosis so as to improve the prognosis of patients with HNSCC. The patients were divided into the training and testing sets. A model of six mRNAs (FRMD5, PCMT1, PDGFA, TMC8, YIPF4, ZNF324B) that could predict patient prognosis was identified in the training set using the Cox regression analysis. According to this model, the patients were divided into high-risk and low-risk groups. The Kaplan-Meier analysis showed that the high-risk group showed significantly shorter overall survival time compared with the low-risk group in both training and testing sets. The receiver operating characteristic analysis further confirmed high sensitivity and specificity for the model, which was more accurate compared with some known biomarkers in predicting HNSCC prognosis. Moreover, the model was applicable to patients of different ages, genders, clinical stages, tumor locations, smoking history, and human papillomavirus (HPV) status, as well as to microarray dataset. This model could be used as a novel biomarker for the prognosis of HNSCC and a significant tool for guiding the clinical treatment of HNSCC. The risk score acquired from the model might contribute to improving outcome prediction and management for patients with HNSCC, indicating its clinical significance.
Collapse
Affiliation(s)
- Wenna Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xijia Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Khan MH, Salomaa SI, Jacquemet G, Butt U, Miihkinen M, Deguchi T, Kremneva E, Lappalainen P, Humphries MJ, Pouwels J. The Sharpin interactome reveals a role for Sharpin in lamellipodium formation via the Arp2/3 complex. J Cell Sci 2017; 130:3094-3107. [PMID: 28775156 PMCID: PMC5612173 DOI: 10.1242/jcs.200329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/25/2017] [Indexed: 12/15/2022] Open
Abstract
Sharpin, a multifunctional adaptor protein, regulates several signalling pathways. For example, Sharpin enhances signal-induced NF-κB signalling as part of the linear ubiquitin assembly complex (LUBAC) and inhibits integrins, the T cell receptor, caspase 1 and PTEN. However, despite recent insights into Sharpin and LUBAC function, a systematic approach to identify the signalling pathways regulated by Sharpin has not been reported. Here, we present the first 'Sharpin interactome', which identifies a large number of novel potential Sharpin interactors in addition to several known ones. These data suggest that Sharpin and LUBAC might regulate a larger number of biological processes than previously identified, such as endosomal trafficking, RNA processing, metabolism and cytoskeleton regulation. Importantly, using the Sharpin interactome, we have identified a novel role for Sharpin in lamellipodium formation. We demonstrate that Sharpin interacts with Arp2/3, a protein complex that catalyses actin filament branching. We have identified the Arp2/3-binding site in Sharpin and demonstrate using a specific Arp2/3-binding deficient mutant that the Sharpin-Arp2/3 interaction promotes lamellipodium formation in a LUBAC-independent fashion.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Meraj H Khan
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland
| | - Siiri I Salomaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Drug Research Doctoral Programme, University of Turku, Turku 20520, Finland
| | - Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Umar Butt
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland
| | - Mitro Miihkinen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Drug Research Doctoral Programme, University of Turku, Turku 20520, Finland
| | - Takahiro Deguchi
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland
- Laboratory of Biophysics, University of Turku, Turku 20520, Finland
| | - Elena Kremneva
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jeroen Pouwels
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| |
Collapse
|
22
|
Ojo D, Seliman M, Tang D. Signatures derived from increase in SHARPIN gene copy number are associated with poor prognosis in patients with breast cancer. BBA CLINICAL 2017; 8:56-65. [PMID: 28879097 PMCID: PMC5582379 DOI: 10.1016/j.bbacli.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 11/18/2022]
Abstract
We report three signatures produced from SHARPIN gene copy number increase (GCN-Increase) and their effects on patients with breast cancer (BC). In the Metabric dataset (n = 2059, cBioPortal), SHARPIN GCN-Increase occurs preferentially or mutual exclusively with mutations in TP53, PIK3CA, and CDH1. These genomic alterations constitute a signature (SigMut) that significantly correlates with reductions in overall survival (OS) in BC patients (n = 1980; p = 1.081e − 6). Additionally, SHARPIN GCN-Increase is associated with 4220 differentially expressed genes (DEGs). These DEGs are enriched in activation of the pathways regulating cell cycle progression, RNA transport, ribosome biosynthesis, DNA replication, and in downregulation of the pathways related to extracellular matrix. These DEGs are thus likely to facilitate the proliferation and metastasis of BC cells. Additionally, through forward (FWD) and backward (BWD) stepwise variate selections among the top 160 downregulated and top 200 upregulated DEGs using the Cox regression model, a 6-gene (SigFWD) and a 50-gene (SigBWD) signature were derived. Both signatures robustly associate with decreases in OS in BC patients within the Curtis (n = 1980; p = 6.16e − 11 for SigFWD; p = 1.06e − 10, for SigBWD) and TCGA cohort (n = 817; p = 4.53e − 4 for SigFWD and p = 0.00525 for SigBWD). After adjusting for known clinical factors, SigMut (HR 1.21, p = 0.0297), SigBWD (HR 1.25, p = 0.0263), and likely SigFWD (HR 1.17, p = 0.062) remain independent risk factors of BC deaths. Furthermore, the proportion of patients positive for these signatures is significantly increased in ER −, Her2-enriched, basal-like, and claudin-low BCs compared to ER + and luminal BCs. Collectively, these SHARPIN GCN-Increase-derived signatures may have clinical applications in management of patients with BC. SHARPIN genomic increase correlates with poor prognosis in breast cancer patients SHARPIN genomic increase associates with enrichment of mutations in TP53 and others SHARPIN genomic increases occur along with many differentially expressed genes (DEGs) These DEGs enhance breast cancer cell proliferation and reduces extracellular matrix Enriched mutations and DEGs strongly associate with reductions in overall survival
Collapse
Affiliation(s)
- Diane Ojo
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada
- Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Maryam Seliman
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada
- Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada
- Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
- Corresponding author at: St. Joseph's Hospital, T3310, 50 Charlton Ave East, Hamilton, Ontario L8N 4A6, Canada.St. Joseph's HospitalT3310, 50 Charlton Ave EastHamiltonOntarioL8N 4A6Canada
| |
Collapse
|
23
|
Zhuang T, Yu S, Zhang L, Yang H, Li X, Hou Y, Liu Z, Shi Y, Wang W, Yu N, Li A, Li X, Li X, Niu G, Xu J, Hasni MS, Mu K, Wang H, Zhu J. SHARPIN stabilizes estrogen receptor α and promotes breast cancer cell proliferation. Oncotarget 2017; 8:77137-77151. [PMID: 29100376 PMCID: PMC5652769 DOI: 10.18632/oncotarget.20368] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/29/2017] [Indexed: 12/26/2022] Open
Abstract
Estrogen receptor α is expressed in the majority of breast cancers and promotes estrogen-dependent cancer progression. In our study, we identified the novel E3 ubiquitin ligase SHARPIN function to facilitate ERα signaling. SHARPIN is highly expressed in human breast cancer and correlates with ERα protein level by immunohistochemistry. SHARPIN expression level correlates with poor prognosis in ERα positive breast cancer patients. SHARPIN depletion based RNA-sequence data shows that ERα signaling is a potential SHARPIN target. SHARPIN depletion significantly decreases ERα protein level, ERα target genes expression and estrogen response element activity in breast cancer cells, while SHARPIN overexpression could reverse these effects. SHARPIN depletion significantly decreases estrogen stimulated cell proliferation in breast cancer cells, which effect could be further rescued by ERα overexpression. Further mechanistic study reveals that SHARPIN mainly localizes in the cytosol and interacts with ERα both in the cytosol and the nuclear. SHARPIN regulates ERα signaling through protein stability, not through gene expression. SHARPIN stabilizes ERα protein via prohibiting ERα protein poly-ubiquitination. Further study shows that SHARPIN could facilitate the mono-ubiquitinaiton of ERα at K302/303 sites and facilitate ERE luciferase activity. Together, our findings propose a novel ERα modulation mechanism in supporting breast cancer cell growth, in which SHARPIN could be one suitable target for development of novel therapy for ERα positive breast cancer.
Collapse
Affiliation(s)
- Ting Zhuang
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sifan Yu
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Renal Cancer and Melanoma, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Lichen Zhang
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Laboratory of Genetic Regulators in the Immune System, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Huijie Yang
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xin Li
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yingxiang Hou
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhenhua Liu
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Synthetic Biology Remaking Engineering and Application Laboratory, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuanyuan Shi
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Weilong Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, China
| | - Na Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, China
| | - Anqi Li
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,School of International Education, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xuefeng Li
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Xiumin Li
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, China
| | - Gang Niu
- Department of Cancer genomics, LemonData biotech (Shenzhen) Ltd, Shenzhen, Guangdong, China.,Phil Rivers Technology (Beijing) Ltd. Beijing, China.,Institute of Biochemistry University of Balochistan, Quetta, Pakistan
| | - Juntao Xu
- Department of Cancer genomics, LemonData biotech (Shenzhen) Ltd, Shenzhen, Guangdong, China.,Phil Rivers Technology (Beijing) Ltd. Beijing, China.,Institute of Biochemistry University of Balochistan, Quetta, Pakistan
| | - Muhammad Sharif Hasni
- Institute of Biochemistry University of Balochistan, Quetta, Pakistan.,Department of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Kun Mu
- Department of Pathology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Wang
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jian Zhu
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
24
|
A novel SHARPIN-PRMT5-H3R2me1 axis is essential for lung cancer cell invasion. Oncotarget 2017; 8:54809-54820. [PMID: 28903384 PMCID: PMC5589623 DOI: 10.18632/oncotarget.18957] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022] Open
Abstract
SHARPIN (Shank-associated RH domain interacting protein) is the main component of the linear ubiquitin chain activation complex (LUBAC). SHARPIN is involved in regulating inflammation and cancer progression. However, whether SHARPIN plays an important role in lung cancer metastasis and the potential underlying mechanism are still unknown. Here, for the first time, we reported that SHARPIN expression is closely related to lung cancer progression. Moreover, SHARPIN plays a central role in controlling lung cancer cell metastasis. Mechanistic studies further revealed that PRMT5 (Protein arginine methyltransferase 5), responsible for catalyzing arginine methylation on histones, is a novel cofactor of SHARPIN. This finding provides the basis for further study of the crosstalk between protein ubiquitination and histone methylation. We further found that SHARPIN-PRMT5 is essential for the monomethylation of histones of chromatins at key metastasis-related genes, defining a new mechanism regulating cancer invasion. A novel MLL complex (ASH2 and WDR5) was implied in the link between histone arginine2 monomethylation (H3R2me1) and histone lysine4 trimethylation (H3K4me3) for the activation of metastasis-related genes. These novel findings establish a new epigenetic paradigm in which SHARPIN-PRMT5 has distinct roles in orchestrating chromatin environments for cancer-related genes via integrating signaling between H3R2me1 and H3K4me3.
Collapse
|
25
|
Yang H, Yu S, Wang W, Li X, Hou Y, Liu Z, Shi Y, Mu K, Niu G, Xu J, Wang H, Zhu J, Zhuang T. SHARPIN Facilitates p53 Degradation in Breast Cancer Cells. Neoplasia 2017; 19:84-92. [PMID: 28063307 PMCID: PMC5219588 DOI: 10.1016/j.neo.2016.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 11/30/2022]
Abstract
The ubiquitin binding protein SHAPRIN is highly expressed in human breast cancer, one of the most frequent female malignancies worldwide. Here, we perform SHARPIN depletion in breast cancer cells together with RNA sequencing. The global expression profiling showed p53 signaling as a potential SHARPIN target. SHARPIN depletion decreased cell proliferation, which effect could be rescue by p53 knocking down. Depletion SHARPIN significantly increases p53 protein level and its target genes in multiple breast cancer cell lines. Further experiment revealed that SHARPIN could facilitate p53 poly-ubiquitination and degradation in MDM2 dependent manner. Immuno-precipitation assay showed that SHARPIN associated with MDM2 and prolonged MDM2 protein stability. Analysis of public available database showed SHARPIN correlated with poor prognosis specifically in p53 wild-type breast cancer patients. Together, our finding revealed a novel modifier for p53/MDM2 complex and suggested SHARPIN as a promising target to restore p53 function in breast cancer.
Collapse
Affiliation(s)
- Huijie Yang
- Research Center for Immunology, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Sifan Yu
- Research Center for Immunology, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Department of Renal Cancer and Melanoma, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Weilong Wang
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Xin Li
- Research Center for Immunology, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Yingxiang Hou
- Research Center for Immunology, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Zhenhua Liu
- College of Life Science and Technology, Synthetic Biology, Medical Institute, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Yuanyuan Shi
- Research Center for Immunology, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Kun Mu
- Department of Pathology, Shandong University School of Medicine, Jinan, PR China
| | - Gang Niu
- Department of Cancer genomics, LemonData biotech (Shenzhen) Ltd., Shenzhen, PR China
| | - Juntao Xu
- Department of Cancer genomics, LemonData biotech (Shenzhen) Ltd., Shenzhen, PR China
| | - Hui Wang
- Research Center for Immunology, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| | - Jian Zhu
- Research Center for Immunology, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| | - Ting Zhuang
- Research Center for Immunology, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| |
Collapse
|
26
|
Peuhu E, Kaukonen R, Lerche M, Saari M, Guzmán C, Rantakari P, De Franceschi N, Wärri A, Georgiadou M, Jacquemet G, Mattila E, Virtakoivu R, Liu Y, Attieh Y, Silva KA, Betz T, Sundberg JP, Salmi M, Deugnier MA, Eliceiri KW, Ivaska J. SHARPIN regulates collagen architecture and ductal outgrowth in the developing mouse mammary gland. EMBO J 2016; 36:165-182. [PMID: 27974362 DOI: 10.15252/embj.201694387] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 11/09/2022] Open
Abstract
SHARPIN is a widely expressed multifunctional protein implicated in cancer, inflammation, linear ubiquitination and integrin activity inhibition; however, its contribution to epithelial homeostasis remains poorly understood. Here, we examined the role of SHARPIN in mammary gland development, a process strongly regulated by epithelial-stromal interactions. Mice lacking SHARPIN expression in all cells (Sharpincpdm), and mice with a stromal (S100a4-Cre) deletion of Sharpin, have reduced mammary ductal outgrowth during puberty. In contrast, Sharpincpdm mammary epithelial cells transplanted in vivo into wild-type stroma, fully repopulate the mammary gland fat pad, undergo unperturbed ductal outgrowth and terminal differentiation. Thus, SHARPIN is required in mammary gland stroma during development. Accordingly, stroma adjacent to invading mammary ducts of Sharpincpdm mice displayed reduced collagen arrangement and extracellular matrix (ECM) stiffness. Moreover, Sharpincpdm mammary gland stromal fibroblasts demonstrated defects in collagen fibre assembly, collagen contraction and degradation in vitro Together, these data imply that SHARPIN regulates the normal invasive mammary gland branching morphogenesis in an epithelial cell extrinsic manner by controlling the organisation of the stromal ECM.
Collapse
Affiliation(s)
- Emilia Peuhu
- Centre for Biotechnology, University of Turku, Turku, Finland
| | - Riina Kaukonen
- Centre for Biotechnology, University of Turku, Turku, Finland
| | - Martina Lerche
- Centre for Biotechnology, University of Turku, Turku, Finland
| | - Markku Saari
- Centre for Biotechnology, University of Turku, Turku, Finland
| | - Camilo Guzmán
- Centre for Biotechnology, University of Turku, Turku, Finland
| | - Pia Rantakari
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | | | - Anni Wärri
- Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | - Elina Mattila
- Centre for Biotechnology, University of Turku, Turku, Finland
| | | | - Yuming Liu
- Department of Biomedical Engineering, Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin at Madison, Madison, WI, USA
| | - Youmna Attieh
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | | | - Timo Betz
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Center for Molecular Biology of Inflammation, Cells-in-Motion Cluster of Excellence, Institute of Cell Biology, Münster University, Münster, Germany
| | | | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Marie-Ange Deugnier
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Institut Curie, CNRS, UMR144, Paris, France
| | - Kevin W Eliceiri
- Department of Biomedical Engineering, Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin at Madison, Madison, WI, USA
| | - Johanna Ivaska
- Centre for Biotechnology, University of Turku, Turku, Finland .,Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Sharpin promotes hepatocellular carcinoma progression via transactivation of Versican expression. Oncogenesis 2016; 5:e277. [PMID: 27941932 PMCID: PMC5177774 DOI: 10.1038/oncsis.2016.76] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 12/12/2022] Open
Abstract
Sharpin (Shank-associated RH domain-interacting protein, also known as SIPL1) is a multifunctional molecule that participates in various biological settings, including nuclear factor-κB signaling activation and tumor suppressor gene inhibition. Sharpin is upregulated in various types of cancers, including hepatocellular carcinoma (HCC), and is implicated in tumor progression. However, the exact roles of Sharpin in tumorigenesis and tumor progression remain largely unknown. Here we report novel mechanisms of HCC progression through Sharpin overexpression. In our study, Sharpin was upregulated in human HCC tissues. Increased Sharpin expression enhanced hepatoma cell invasion, whereas decrease in Sharpin expression by RNA interference inhibited invasion. Microarray analysis identified that Versican, a chondroitin sulfate proteoglycan that plays crucial roles in tumor progression and invasion, was also upregulated in Sharpin-expressing stable cells. Versican expression increased in the majority of HCC tissues and knocking down of Versican greatly attenuated hepatoma cell invasion. Sharpin expression resulted in a significant induction of Versican transcription synergistically with Wnt/β-catenin pathway activation. Furthermore, Sharpin-overexpressing cells had high tumorigenic properties in vivo. These results demonstrate that Sharpin promotes Versican expression synergistically with the Wnt/β-catenin pathway, potentially contributing to HCC development. A Sharpin/Versican axis could be an attractive therapeutic target for this currently untreatable cancer.
Collapse
|
28
|
Bii VM, Trobridge GD. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors. Cancers (Basel) 2016; 8:cancers8110099. [PMID: 27792127 PMCID: PMC5126759 DOI: 10.3390/cancers8110099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022] Open
Abstract
Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.
Collapse
Affiliation(s)
- Victor M Bii
- College of Pharmacy, Washington State University, WSU Spokane PBS 323, P.O. Box 1495, Spokane, WA 99210, USA.
| | - Grant D Trobridge
- College of Pharmacy, Washington State University, WSU Spokane PBS 323, P.O. Box 1495, Spokane, WA 99210, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
29
|
Bii VM, Rae DT, Trobridge GD. A novel gammaretroviral shuttle vector insertional mutagenesis screen identifies SHARPIN as a breast cancer metastasis gene and prognostic biomarker. Oncotarget 2015; 6:39507-20. [PMID: 26506596 PMCID: PMC4741842 DOI: 10.18632/oncotarget.6232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of malignancy among U.S. women. Metastasis results in a poor prognosis and increased mortality, but the molecular mechanisms by which metastatic tumors occur are not well understood. Identifying the genes that drive the metastatic process could provide targets for improved therapy and biomarkers to improve BC patient outcomes. Using a forward mutagenesis screen, BC cells mutagenized with a replication-incompetent gammaretroviral vector (γRV) were xenotransplanted into the mammary fat pad of immunodeficient mice. In this approach the vector provirus dysregulates nearby genes, providing a selective advantage to transduced cells to form metastases. Metastatic tumors were analyzed for proviral integration sites to identify nearby candidate metastasis genes. The γRV has a transgene cassette that allows for rescue in bacteria and rapid identification of vector integration sites. Using this approach, we identified the previously described metastasis gene WWTR1 (TAZ), and three other novel candidate metastasis genes including SHARPIN. SHARPIN was independently validated in vivo as a BC metastasis gene. Analysis of patient data showed that SHARPIN expression predicts metastasis-free survival after adjuvant therapy. Our approach has broad potential to identify genes involved in oncogenic processes for BC and other cancers. We show here it can identify both known (WWTR1) and novel (SHARPIN) BC metastasis genes.
Collapse
Affiliation(s)
- Victor M. Bii
- Washington State University College of Pharmacy, WSU Spokane, Spokane, WA, USA
| | - Dustin T. Rae
- Washington State University College of Pharmacy, WSU Spokane, Spokane, WA, USA
| | - Grant D. Trobridge
- Washington State University College of Pharmacy, WSU Spokane, Spokane, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
30
|
A Five-Gene Signature Predicts Prognosis in Patients with Kidney Renal Clear Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:842784. [PMID: 26539246 PMCID: PMC4619904 DOI: 10.1155/2015/842784] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/16/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most common cancers with high mortality all over the world. Many studies have proposed that genes could be used to predict prognosis in KIRC. In this study, RNA expression data from next-generation sequencing and clinical information of 523 patients downloaded from The Cancer Genome Atlas (TCGA) dataset were analyzed in order to identify the relationship between gene expression level and the prognosis of KIRC patients. A set of five genes that significantly associated with overall survival time was identified and a model containing these five genes was constructed by Cox regression analysis. By Kaplan-Meier and Receiver Operating Characteristic (ROC) analysis, we confirmed that the model had good sensitivity and specificity. In summary, expression of the five-gene model is associated with the prognosis outcomes of KIRC patients, and it may have an important clinical significance.
Collapse
|