1
|
Rhyu MR, Ozdener MH, Lyall V. Differential Effect of TRPV1 Modulators on Neural and Behavioral Responses to Taste Stimuli. Nutrients 2024; 16:3858. [PMID: 39599644 PMCID: PMC11597080 DOI: 10.3390/nu16223858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
In our diet, we ingest a variety of compounds that are TRPV1 modulators. It is important to understand if these compounds alter neural and behavioral responses to taste stimuli representing all taste qualities. Here, we will summarize the effects of capsaicin, resiniferatoxin, cetylpyridinium chloride, ethanol, nicotine, N-geranyl cyclopropylcarboxamide, Kokumi taste peptides, pH, and temperature on neural and behavioral responses to taste stimuli in rodent models and on human taste perception. The above TRPV1 agonists produced characteristic biphasic effects on chorda tympani taste nerve responses to NaCl in the presence of amiloride, an epithelial Na+ channel blocker, at low concentrations enhancing and at high concentrations inhibiting the response. Biphasic responses were also observed with KCl, NH4Cl, and CaCl2. In the presence of multiple stimuli, the effect is additive. These responses are blocked by TRPV1 antagonists and are not observed in TRPV1 knockout mice. Some TRPV1 modulators also increase neural responses to glutamate but at concentrations much above the concentrations that enhance salt responses. These modulators also alter human salt and glutamate taste perceptions at different concentration ranges. Glutamate responses are TRPV1-independent. Sweet and bitter responses are TRPV1-independent but the off-taste of sweeteners is TRPV1-dependent. Aversive responses to acids and ethanol are absent in animals in which both the taste system and the TRPV1-trigeminal system are eliminated. Thus, TRPV1 modulators differentially alter responses to taste stimuli.
Collapse
Affiliation(s)
- Mee-Ra Rhyu
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | | | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
2
|
Sharma R. Network-based approach highlighting interplay among anti-hypertensives: target coding-genes: diseases. Sci Rep 2020; 10:20152. [PMID: 33214616 PMCID: PMC7677320 DOI: 10.1038/s41598-020-76605-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022] Open
Abstract
Elucidating the relation between the medicines: targets, targets: diseases and diseases: diseases are of fundamental significance as-is for societal benefit. Hypertension is one of the dangerous health conditions prevalent in society, is a risk factor for several other diseases if left untreated and anti-hypertensives (AHs) are the approved drugs to treat it. The goal of the study is to decipher the connection between hypertension with other health conditions, however, is challenging due to the large interactome. To fulfill the aim, the strategy involves prior clustering of the AHs into groups as per our previous method, followed by the analyzing functional association of the target coding-genes (tc-genes) and health conditions for each group. Following our recently published work where the AHs are clustered into six groups such that molecules having similar patterns come together, here, the distribution of molecular functions and the cellular components adopted by the tc-genes of each group are analyzed. The analyses indicate that kidney, heart, brain or lung related ailments are commonly associated with the tc-genes. The association of selective tc-genes to health conditions suggests a preference for certain health conditions despite many possibilities. Analyses of experimentally validated drug–drug combinations indicate the trend in successful AHs combinations. Clinically validated combinations bind different targets. Our study provides a promising methodology in a network-based approach that considers the influence of structural diversity of AHs to the functional perspective of tc-genes concerning the health conditions. The method could be extended to explore disease–disease relationships.
Collapse
Affiliation(s)
- Reetu Sharma
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India.
| |
Collapse
|
3
|
Rimal S, Lee Y. Molecular sensor of nicotine in taste of Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103178. [PMID: 31226410 DOI: 10.1016/j.ibmb.2019.103178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
Nicotine is an alkaloid and potent parasympathomimetic stimulant found in the leaves of many plants including Nicotiana tabacum, which functions as an anti-herbivore chemical and an insecticide. Chemoreceptors embedded in the gustatory receptor neurons (GRNs) enable animals to judge the quality of bitter compounds and respond to them. Various taste receptors such as gustatory receptors (GRs), ionotropic receptors (IRs), transient receptor potential channels (TRPs), and pickpocket channels (PPKs) have been shown to have important roles in taste sensation. However, the mechanism underlying nicotine taste sensation has not been resolved in the insect model. Here we identify molecular receptors to detect the taste of nicotine and provide electrophysiological and behavioral evidence that gustatory receptors are required for avoiding nicotine-laced foods. Our results demonstrate that gustatory receptors are reasonable targets to develop new pesticides that maximize the insecticidal effects of nicotine.
Collapse
Affiliation(s)
- Suman Rimal
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
4
|
Behrens M, Meyerhof W. Vertebrate Bitter Taste Receptors: Keys for Survival in Changing Environments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2204-2213. [PMID: 28013542 DOI: 10.1021/acs.jafc.6b04835] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research on bitter taste receptors has made enormous progress during recent years. Although in the early period after the discovery of this highly interesting receptor family special emphasis was placed on the deorphanization of mainly human bitter taste receptors, the research focus has shifted to sophisticated structure-function analyses, the discovery of small-molecule interactors, and the pharmacological profiling of nonhuman bitter taste receptors. These findings allowed novel perspectives on, for example, evolutionary and ecological questions that have arisen and that are discussed.
Collapse
Affiliation(s)
- Maik Behrens
- Department of Molecular Genetics , German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee 114-116 , 14558 Nuthetal , Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics , German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee 114-116 , 14558 Nuthetal , Germany
| |
Collapse
|
5
|
Qian J, Mummalaneni S, Larsen J, Grider JR, Spielman AI, Özdener MH, Lyall V. Nicotinic acetylcholine receptor (CHRN) expression and function in cultured human adult fungiform (HBO) taste cells. PLoS One 2018. [PMID: 29513745 PMCID: PMC5841828 DOI: 10.1371/journal.pone.0194089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In rodents, CHRNs are involved in bitter taste transduction of nicotine and ethanol. Currently, it is not clear if CHRNs are expressed in human taste cells and if they play a role in transducing the bitter taste of nicotine and ethanol or in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of CHRNs in HBO cells. Using molecular techniques, we demonstrate that a subset of HBO cells express CHRNs that also co-express TRPM5, T1R3 or T2R38. Exposing HBO cells to nicotine or ethanol acutely or to nicotine chronically induced a differential increase in the expression of CHRN mRNA and protein in a dose- and time-dependent manner. Acutely exposing HBO cells to a mixture containing nicotine plus ethanol induced a smaller increase in CHRN mRNAs relative to nicotine or ethanol treatment alone. A subset of HBO cells responded to nicotine, acetylcholine and ATP with a transient increase in [Ca2+]i. Nicotine effects on [Ca2+]i were mecamylamine sensitive. Brain-derived neurotrophic factor (BDNF) protein was detected in HBO cells using ELISA. Acute nicotine exposure decreased BDNF in HBO cells and increased BDNF release in the medium. CHRNs were also detected in HEK293 cells by RT-PCR. Unlike HBO cells, CHRNs were localized in most of HEK293 cells and majority of HEK293 cells responded to nicotine and ethanol stimulation with a transient increase in [Ca2+]i. BDNF levels in HEK293 cells were significantly higher than in HBO cells but the nicotine induced release of BDNF in the media was a fraction of the BDNF cellular content. We conclude that CHRNs are expressed in TRPM5 positive HBO cells. CHRN mRNA expression is modulated by exposure to nicotine and ethanol in a dose- and time-dependent manner. Nicotine induces the synthesis and release of BDNF in HBO cells.
Collapse
Affiliation(s)
- Jie Qian
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Shobha Mummalaneni
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - James Larsen
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - John R. Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | | | | | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
- * E-mail:
| |
Collapse
|
6
|
Qian J, Mummalaneni S, Grider JR, Damaj MI, Lyall V. Nicotinic acetylcholine receptors (nAChRs) are expressed in Trpm5 positive taste receptor cells (TRCs). PLoS One 2018; 13:e0190465. [PMID: 29293602 PMCID: PMC5749851 DOI: 10.1371/journal.pone.0190465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/17/2017] [Indexed: 12/15/2022] Open
Abstract
Nicotine evokes chorda tympani (CT) taste nerve responses and an aversive behavior in Trpm5 knockout (KO) mice. The agonists and antagonists of nicotinic acetylcholine receptors (nAChRs) modulate neural and behavioral responses to nicotine in wildtype (WT) mice, Trpm5 KO mice and rats. This indicates that nicotine evokes bitter taste by activating a Trpm5-dependent pathway and a Trpm5-independent but nAChR-dependent pathway. Rat CT responses to ethanol are also partially inhibited by nAChR blockers, mecamylamine and dihydro-β-erythroidine. This indicates that a component of the bitter taste of ethanol is also nAChR-dependent. However, at present the expression and localization of nAChR subunits has not been investigated in detail in taste receptor cells (TRCs). To this end, in situ hybridization, immunohistochemistry and q-RT-PCR techniques were utilized to localize nAChR subunits in fungiform and circumvallate TRCs in WT mice, Trpm5-GFP transgenic mice, nAChR KO mice, and rats. The expression of mRNAs for α7, β2 and β4 nAChR subunits was observed in a subset of rat and WT mouse circumvallate and fungiform TRCs. Specific α3, α4, α7, β2, and β4 antibodies localized to a subset of WT mouse circumvallate and fungiform TRCs. In Trpm5-GFP mice α3, α4, α7, and β4 antibody binding was observed in a subset of Trpm5-positive circumvallate TRCs. Giving nicotine (100 μg/ml) in drinking water to WT mice for 3 weeks differentially increased the expression of α3, α4, α5, α6, α7, β2 and β4 mRNAs in circumvallate TRCs to varying degrees. Giving ethanol (5%) in drinking water to WT mice induced an increase in the expression of α5 and β4 mRNAs in circumvallate TRCs with a significant decrease in the expression of α3, α6 and β2 mRNAs. We conclude that nAChR subunits are expressed in Trpm5-positive TRCs and their expression levels are differentially altered by chronic oral exposure to nicotine and ethanol.
Collapse
Affiliation(s)
- Jie Qian
- Physiology and Biophysics Virginia Commonwealth University, Richmond, VA, United States of America
| | - Shobha Mummalaneni
- Physiology and Biophysics Virginia Commonwealth University, Richmond, VA, United States of America
| | - John R. Grider
- Physiology and Biophysics Virginia Commonwealth University, Richmond, VA, United States of America
| | - M. Imad Damaj
- Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Vijay Lyall
- Physiology and Biophysics Virginia Commonwealth University, Richmond, VA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Behrens M, Gu M, Fan S, Huang C, Meyerhof W. Bitter substances from plants used in traditional Chinese medicine exert biased activation of human bitter taste receptors. Chem Biol Drug Des 2017; 91:422-433. [PMID: 28834122 DOI: 10.1111/cbdd.13089] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/20/2017] [Accepted: 08/06/2017] [Indexed: 12/22/2022]
Abstract
The number and variety of bitter compounds originating from plants are vast. Whereas some bitter chemicals are toxic and should not be ingested, other compounds exhibit health beneficial effects, which is manifest in the cross-cultural believe that the bitterness of medicine is correlated with the desired medicinal activity. The bitter taste receptors in the oral cavity serve as sensors for bitter compounds and, as they are expressed in numerous extraoral tissues throughout the body, may also be responsible for some physiological effects exerted by bitter compounds. Chinese herbal medicine uses bitter herbs since ancient times for the treatment of various diseases; however, the routes by which these herbs modify physiology are frequently not well understood. We therefore screened 26 bitter substances extracted from medical herbs for the activation of the 25 human bitter taste receptors. We identified six receptors activated by in total 17 different bitter compounds. Interestingly, we observed a bias in bitter taste receptor activation with 10 newly identified agonists for the broadly tuned receptor TAS2R46, seven agonists activating the TAS2R14 and two compounds activating narrowly tuned receptors, suggesting that these receptors play dominant roles in the evaluation and perhaps physiological activities of Chinese herbal medicines.
Collapse
Affiliation(s)
- Maik Behrens
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Ming Gu
- School of Pharmacy, Drug Discovery Lab, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Drug Discovery Lab, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Drug Discovery Lab, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
8
|
Kamens HM, Silva C, McCarthy R, Cox RJ, Ehringer MA. No evidence of a role of the β4 subunit of the nicotinic acetylcholine receptor in alcohol-related behaviors. BMC Res Notes 2017; 10:151. [PMID: 28381286 PMCID: PMC5382442 DOI: 10.1186/s13104-017-2470-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 03/27/2017] [Indexed: 11/10/2022] Open
Abstract
Background Nicotinic acetylcholine receptors have gained attention in the last several years as mediators of alcohol-related behaviors. The genes that code for the α5, α3, and β4 subunits (Chrna5, Chrna3, and Chrnb4, respectively) map adjacent to each other on human chromosome 15/mouse chromosome 9. Genetic variants in this region have been associated with alcohol phenotypes and mice that overexpress these three subunits have reduced ethanol intake. In the present experiments, we examined the role of the Chrnb4 gene in three ethanol behaviors: consumption, ataxia, and sedation. Wildtype, heterozygous, and knockout mice were tested for ethanol consumption with a 2-bottle choice procedure and the drinking-in-the-dark paradigm. Ethanol-induced ataxia was measured with the balance beam and dowel test. Finally, the sedative effects of ethanol were measured with the loss of righting reflex paradigm. Results We observed no significant genotypic effects on any of the ethanol behaviors examined, suggesting that the β4 subunit is not involved in mediating these responses. Conclusions While we found no evidence for the involvement of the β4 subunit in ethanol responses, it is possible that this subunit modulates other behaviors not tested and further work should address this before completely ruling out its involvement. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2470-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA. .,Center for Brain, Behavior, and Cognition, Penn State University, University Park, PA, USA.
| | - Constanza Silva
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Riley McCarthy
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Ryan J Cox
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| |
Collapse
|
9
|
Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells. PLoS One 2016; 11:e0166565. [PMID: 27846263 PMCID: PMC5112875 DOI: 10.1371/journal.pone.0166565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/30/2016] [Indexed: 02/06/2023] Open
Abstract
In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells.
Collapse
|
10
|
Yu Y, Daugherty SL, de Groat WC. Effects of nicotinic receptor agonists on bladder afferent nerve activity in an in vitro bladder-pelvic nerve preparation. Brain Res 2016; 1637:91-101. [PMID: 26876739 DOI: 10.1016/j.brainres.2016.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
Effects of nicotinic receptor agonists (epibatidine and nicotine) on mechano-sensitive bladder afferent nerve (MS-BAN) activity were studied in an in vitro bladder-pelvic afferent nerve preparation. MS-BAN activity was induced by isotonic distention of the bladder at pressures of 10-40 cmH2O. The effect of epibatidine varied according to the concentration, route of administration and the intravesical pressure stimulus. Epibatidine (300-500 nM) administered in the perfusate to the serosal surface of the bladder decreased distension evoked afferent firing by 30-50% depending on the bladder pressure. However these concentrations also produced an immediate increase in tonic afferent firing in the empty bladder. Lower concentrations (50-100 nM) elicited weaker and more variable effects. The inhibitory effects were blocked by bath application of mecamylamine (150 µM) a nicotinic receptor antagonist. Bath application of nicotine (20 µM) elicited similar effects. Intravesical administration of epibatidine (500 nM) significantly increased MS-BAN firing by 15-30%; while lower concentrations (200-300 nM) were ineffective. This facilitatory effect of epibatidine was blocked by intravesical administration of mecamylamine (250 µM). Electrical stimulation on the surface of the bladder elicited action potentials (AP) in BAN. Bath application of epibatidine (300 nM) or nicotine (20 µM) did not change either the voltage threshold or the area of evoked AP. These results indicate that nicotinic agonists: (1) enhance MS-BAN activity originating at afferent receptors near the urothelium, (2) inhibit MS-BAN activity originating at afferent receptors located at other sites in the bladder, (3) directly excite unidentified afferents, (4) do not alter afferent axonal excitability.
Collapse
Affiliation(s)
- Yongbei Yu
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - Stephanie L Daugherty
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - William C de Groat
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|