1
|
Gonçalves P, Magalhães J, Corujo D. Estimating the Energy Expenditure of Grazing Farm Animals Based on Dynamic Body Acceleration. Animals (Basel) 2024; 14:2140. [PMID: 39123666 PMCID: PMC11310946 DOI: 10.3390/ani14152140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Indirect methods of measuring the energy expenditure of grazing animals using heartbeat variation or accelerometers are very convenient due to their low cost and low intrusiveness, allowing animals to maintain their usual routine. In the case of accelerometers, it is possible to use them to measure activity, as well as to classify animal behavior, allowing their usage in other scenarios. Despite the obvious convenience of use, it is important to evaluate the measurement error and understand the validity of the measurement through a simplistic method. In this paper, data from accelerometers were used to classify behavior and measure animal activity, and an algorithm was developed to calculate the energy expended by sheep. The results of the energy expenditure calculations were subsequently compared with the values reported in the literature, and it was verified that the values obtained were within the reference ranges. Although it cannot be used as a real metering of energy expended, the method is promising, as it can be integrated with other complementary sources of information, such as the evolution of the animal's weight and ingestion time, thus providing assistance in animals' dietary management.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Escola Superior de Tecnologia e Gestão de Águeda and Instituto de Telecomunicações, Universidade de Aveiro, 3810-198 Aveiro, Portugal
| | - João Magalhães
- Departamento de Eletrónica Telecomunicações and Informática and Instituto de Telecomunicações, Universidade de Aveiro, 3810-198 Aveiro, Portugal; (J.M.); (D.C.)
| | - Daniel Corujo
- Departamento de Eletrónica Telecomunicações and Informática and Instituto de Telecomunicações, Universidade de Aveiro, 3810-198 Aveiro, Portugal; (J.M.); (D.C.)
| |
Collapse
|
2
|
Simmler M, Brouwers SP. triact package for R: analyzing the lying behavior of cows from accelerometer data. PeerJ 2024; 12:e17036. [PMID: 38436021 PMCID: PMC10908268 DOI: 10.7717/peerj.17036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Accelerometers are sensors proven to be useful to analyze the lying behavior of cows. For reasons of algorithm transparency and control, researchers often prefer to use their own data analysis scripts rather than proprietary software. We developed the triact R package that assists animal scientists in analyzing the lying behavior of cows from raw data recorded with a triaxial accelerometer (manufacturer agnostic) attached to a hind leg. In a user-friendly workflow, triact allows the determination of common measures for lying behavior including total lying duration, the number of lying bouts, and the mean duration of lying bouts. Further capabilities are the description of lying laterality and the calculation of proxies for the level of physical activity of the cow. In this publication we describe the functionality of triact and the rationales behind the implemented algorithms. The triact R package is developed as an open-source project and freely available via the CRAN repository.
Collapse
Affiliation(s)
| | - Stijn P. Brouwers
- Centre for Proper Housing of Ruminants and Pigs, Federal Food Safety and Veterinary Office (FSVO), Agroscope, Ettenhausen, Switzerland
| |
Collapse
|
3
|
Tedeschi LO. Review: Harnessing extant energy and protein requirement modeling for sustainable beef production. Animal 2023; 17 Suppl 3:100835. [PMID: 37210232 DOI: 10.1016/j.animal.2023.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 05/22/2023] Open
Abstract
Numerous mathematical nutrition models have been developed in the last sixty years to predict the dietary supply and requirement of farm animals' energy and protein. Although these models, usually developed by different groups, share similar concepts and data, their calculation routines (i.e., submodels) have rarely been combined into generalized models. This lack of mixing submodels is partly because different models have different attributes, including paradigms, structural decisions, inputs/outputs, and parameterization processes that could render them incompatible for merging. Another reason is that predictability might increase due to offsetting errors that cannot be thoroughly studied. Alternatively, combining concepts might be more accessible and safer than combining models' calculation routines because concepts can be incorporated into existing models without changing the modeling structure and calculation logic, though additional inputs might be needed. Instead of developing new models, improving the merging of extant models' concepts might curtail the time and effort needed to develop models capable of evaluating aspects of sustainability. Two areas of beef production research that are needed to ensure adequate diet formulation include accurate energy requirements of grazing animals (decrease methane emissions) and efficiency of energy use (reduce carcass waste and resource use) by growing cattle. A revised model for energy expenditure of grazing animals was proposed to incorporate the energy needed for physical activity, as the British feeding system recommended, and eating and rumination (HjEer) into the total energy requirement. Unfortunately, the proposed equation can only be solved iteratively through optimization because HjEer requires metabolizable energy (ME) intake. The other revised model expanded an existing model to estimate the partial efficiency of using ME for growth (kg) from protein proportion in the retained energy by including an animal degree of maturity and average daily gain (ADG) as used in the Australian feeding system. The revised kg model uses carcass composition, and it is less dependent on dietary ME content, but still requires an accurate assessment of the degree of maturity and ADG, which in turn depends on the kg. Therefore, it needs to be solved iteratively or using one-step delayed continuous calculation (i.e., use the previous day's ADG to compute the current day's kg). We believe that generalized models developed by merging different models' concepts might improve our understanding of the relationships of existing variables that were known for their importance but not included in extant models because of the lack of proper information or confidence at that time.
Collapse
Affiliation(s)
- L O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, United States.
| |
Collapse
|
4
|
Pearce J, Chang YM, Abeyesinghe S. Individual Monitoring of Activity and Lameness in Conventional and Slower-Growing Breeds of Broiler Chickens Using Accelerometers. Animals (Basel) 2023; 13:1432. [PMID: 37174469 PMCID: PMC10177109 DOI: 10.3390/ani13091432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Accelerometers are increasingly being investigated to detect animal behavior as a method for monitoring individual welfare that overcomes manual challenges associated with time, resource, and discrete sampling. We investigated the effects of broiler chicken hybrid (hereafter breed) and weight on accelerometer activity (activityA; calculated as percentage of time spent active (%)) and its association with lameness as a major broiler welfare concern. Accelerometers were attached to birds of different breeds on between 2 and 4 occasions from 26 to 30 days old (conventional breed CNV) and 26 to 49 days old (two slower-growing breeds SGH; SGN). At 2.2 kg, lameness was scored using a 6-point gait scoring system (0: unaffected to 5: severely lame). Linear mixed effects models and breed-stratified generalized linear models together with a random-effect meta-analysis were used for data analyses. ActivityA was lower in faster-growing, heavier birds compared to slower-growing, lighter birds, showing overall consistency with previous behavioral research, but did not vary linearly with gait score. Accelerometers offer the potential for simple broad-scale continuous monitoring of broiler chicken activity behavior that requires limited data processing. Exploration of the ability of accelerometers to capture more subtle and specific changes in behavioral patterning, such as non-linear acceleration with gait score that could indicate early development of lameness, warrants further investigation.
Collapse
Affiliation(s)
- Justine Pearce
- The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
| | | | | |
Collapse
|
5
|
Kitajima K, Oishi K, Kojima T, Uenishi S, Yasunaka Y, Sakai K, Kumagai H, Hirooka H. An Assessment of Stress Status in Fattening Steers by Monitoring Heart Rate Variability: A Case of Dietary Vitamin A Restriction. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.799289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heart rate variability (HRV), heart beat-to-beat variations, is a measure of cardiac autonomic functions, and HRV monitoring using sensor technology can be a non-invasive way to assess stress of animals. The objective of this study was to investigate the effect of dietary vitamin A (VA) restriction to enhance beef quality on the physiological status of fattening steers by HRV analysis. Six Japanese Black steers were equally allocated into VA-restricted (RES) and VA-supplemented (SUP) groups. The RES steers were fed VA-restricted diets from 11 to 20 months of age. The inter-beat intervals and blood VA concentration were measured at 18 and 24 months of age. HRV parameters in time, frequency, and non-linear domains were calculated using the inter-beat intervals. Blood VA concentration was significantly lower in RES steers than in SUP steers at 18 months of age (P < 0.05) but did not differ between the groups at 24 months of age. The HRV analysis indicated greater sympathetic and lower parasympathetic activities in RES steers than in SUP steers (P < 0.05). However, there were significant interactions of the group and age on HRV parameters (P < 0.05), indicating that although RES steers at 18 months of age might suffer from slight stress, the response could recover to a level similar to SUP steers at 24 months of age by the increase in blood VA concentration.
Collapse
|
6
|
Abecia JA, Luis S, Canto F, Plaza J, Palacios C. Using subcutaneous bio-loggers to monitor circadian rhythmicity of temperature, heart rate and activity in sheep under intensive housing conditions. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.2016131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- José-Alfonso Abecia
- Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Luis
- Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco Canto
- Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Javier Plaza
- Departamento de Construcción y Agronomía, Facultad de Ciencias Agrarias y Ambientales, Salamanca, Spain
| | - Carlos Palacios
- Departamento de Construcción y Agronomía, Facultad de Ciencias Agrarias y Ambientales, Salamanca, Spain
| |
Collapse
|
7
|
Gunner RM, Holton MD, Scantlebury DM, Hopkins P, Shepard ELC, Fell AJ, Garde B, Quintana F, Gómez-Laich A, Yoda K, Yamamoto T, English H, Ferreira S, Govender D, Viljoen P, Bruns A, van Schalkwyk OL, Cole NC, Tatayah V, Börger L, Redcliffe J, Bell SH, Marks NJ, Bennett NC, Tonini MH, Williams HJ, Duarte CM, van Rooyen MC, Bertelsen MF, Tambling CJ, Wilson RP. How often should dead-reckoned animal movement paths be corrected for drift? ANIMAL BIOTELEMETRY 2021; 9:43. [PMID: 34900262 PMCID: PMC7612089 DOI: 10.1186/s40317-021-00265-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/25/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Understanding what animals do in time and space is important for a range of ecological questions, however accurate estimates of how animals use space is challenging. Within the use of animal-attached tags, radio telemetry (including the Global Positioning System, 'GPS') is typically used to verify an animal's location periodically. Straight lines are typically drawn between these 'Verified Positions' ('VPs') so the interpolation of space-use is limited by the temporal and spatial resolution of the system's measurement. As such, parameters such as route-taken and distance travelled can be poorly represented when using VP systems alone. Dead-reckoning has been suggested as a technique to improve the accuracy and resolution of reconstructed movement paths, whilst maximising battery life of VP systems. This typically involves deriving travel vectors from motion sensor systems and periodically correcting path dimensions for drift with simultaneously deployed VP systems. How often paths should be corrected for drift, however, has remained unclear. METHODS AND RESULTS Here, we review the utility of dead-reckoning across four contrasting model species using different forms of locomotion (the African lion Panthera leo, the red-tailed tropicbird Phaethon rubricauda, the Magellanic penguin Spheniscus magellanicus, and the imperial cormorant Leucocarbo atriceps). Simulations were performed to examine the extent of dead-reckoning error, relative to VPs, as a function of Verified Position correction (VP correction) rate and the effect of this on estimates of distance moved. Dead-reckoning error was greatest for animals travelling within air and water. We demonstrate how sources of measurement error can arise within VP-corrected dead-reckoned tracks and propose advancements to this procedure to maximise dead-reckoning accuracy. CONCLUSIONS We review the utility of VP-corrected dead-reckoning according to movement type and consider a range of ecological questions that would benefit from dead-reckoning, primarily concerning animal-barrier interactions and foraging strategies.
Collapse
Affiliation(s)
- Richard M. Gunner
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Mark D. Holton
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - David M. Scantlebury
- School of Biological Sciences, Queen’s University Belfast, Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Phil Hopkins
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Emily L. C. Shepard
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Adam J. Fell
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Baptiste Garde
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Flavio Quintana
- Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET. Boulevard Brown, 2915, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Agustina Gómez-Laich
- Departamento de Ecología, Genética y Evolución & Instituto de Ecología, Genética Y Evolución de Buenos Aires (IEGEBA), CONICET, Pabellón II Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Takashi Yamamoto
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Nakano, Tokyo, Japan
| | - Holly English
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Sam Ferreira
- Savanna and Grassland Research Unit, Scientific Services Skukuza, South African National Parks, Kruger National Park, Skukuza 1350, South Africa
| | - Danny Govender
- Savanna and Grassland Research Unit, Scientific Services Skukuza, South African National Parks, Kruger National Park, Skukuza 1350, South Africa
| | - Pauli Viljoen
- Savanna and Grassland Research Unit, Scientific Services Skukuza, South African National Parks, Kruger National Park, Skukuza 1350, South Africa
| | - Angela Bruns
- Veterinary Wildlife Services, South African National Parks, 97 Memorial Road, Old Testing Grounds, Kimberley 8301, South Africa
| | - O. Louis van Schalkwyk
- Department of Agriculture, Government of South Africa, Land Reform and Rural Development, Pretoria 001, South Africa
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Nik C. Cole
- Durrell Wildlife Conservation Trust, Les Augrès Manor, Channel Islands, Trinity JE3 5BP, Jersey, UK
- Mauritian Wildlife Foundation, Grannum Road, Indian Ocean, Vacoas, Mauritius
| | - Vikash Tatayah
- Mauritian Wildlife Foundation, Grannum Road, Indian Ocean, Vacoas, Mauritius
| | - Luca Börger
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
- Centre for Biomathematics, Swansea University, Swansea SA2 8PP, UK
| | - James Redcliffe
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Stephen H. Bell
- School of Biological Sciences, Queen’s University Belfast, Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Nikki J. Marks
- School of Biological Sciences, Queen’s University Belfast, Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Nigel C. Bennett
- Mammal Research Institute. Department of Zoology and Entomology, University of Pretoria, Pretoria 002., South Africa
| | - Mariano H. Tonini
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, Grupo GEA, IPATEC-UNCO-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Hannah J. Williams
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
| | - Carlos M. Duarte
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Martin C. van Rooyen
- Mammal Research Institute. Department of Zoology and Entomology, University of Pretoria, Pretoria 002., South Africa
| | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark
| | - Craig J. Tambling
- Department of Zoology and Entomology, University of Fort Hare, Alice Campus, Ring Road, Alice 5700, South Africa
| | - Rory P. Wilson
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| |
Collapse
|
8
|
Palacios C, Plaza J, Abecia JA. A High Cattle-Grazing Density Alters Circadian Rhythmicity of Temperature, Heart Rate, and Activity as Measured by Implantable Bio-Loggers. Front Physiol 2021; 12:707222. [PMID: 34483961 PMCID: PMC8414586 DOI: 10.3389/fphys.2021.707222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Six cows managed under extensive grazing conditions were used to study the effect of moving the animals to a higher grazing density on the circadian rhythms of temperature (T), heart rate (HR), and activity (ACT), which were recorded by implantable bio-loggers. Cows were maintained at a density of 1.5 livestock units per hectare (LSUs/ha; low density, LD) until they were moved to a grazing area at 128 LSUs/ha (high density, HD). Animals were implanted subcutaneously with a T, HR, and ACT bio-logger, which was programmed to record data at 5-min intervals. For each animal, cosinor rhythmometry (the study of circadian rhythms by fitting a sine wave to a time series) was applied to the data recorded over 5 days in LD and HD. Mean Midline Estimating Statistic of Rhythm (MESOR; the average value around which the variable oscillates), amplitude (difference between the peak and the mean value of a wave), and acrophase (timing of peak activity) were calculated and evaluated statistically. Differences between mean day and nighttime values, and mean LD and HD values were calculated. Cows presented cosinor curves that fit a 24-h rhythm (p < 0.001) in T, HR, and ACT at both densities. MESOR (T: 37.98 vs. 38.02°C; HR: 69.12 vs. 65.91 bpm; ACT: 49.39 vs. 40.41 mg, for LD and HD, respectively) and amplitude (T: 0.28 vs. 0.28°C; HR: 4.12 vs. 3.14 bpm; ACT: 18.14 vs. 11.28 mg, respectively) did not differ significantly between the two densities; however, significant (p < 0.05) differences between densities occurred in the acrophase of the three variables; specifically, the T acrophase was 2 h later at HD (22:45 h) than LD (20:45 h), and HR (LD: 19:51; HD: 16:49 h) and ACT acrophases 3 and 2 h earlier at HD than LD (LD: 14:47; HD: 12:49 h), respectively. T and ACT differed significantly (p < 0.01) between daytime (mean ± SE; 37.92 ± 0.19°C, 40.39 ± 4.74 mg) and nighttime (38.14 ± 0.17°C, 29.93 ± 5.66 mg). In conclusion, our study suggests that a high animal grazing density might exacerbate the social competence for valuable resources for animals, resulting in shifting the circadian rhythmicity of temperature, heart rate, and activity of the cows, advancing or delaying their acrophases.
Collapse
Affiliation(s)
- Carlos Palacios
- Departamento de Construcción y Agronomía, Facultad de Ciencias Agrarias y Ambientales, Universidad de Salamanca, Salamanca, Spain
| | - Javier Plaza
- Departamento de Construcción y Agronomía, Facultad de Ciencias Agrarias y Ambientales, Universidad de Salamanca, Salamanca, Spain
| | - José-Alfonso Abecia
- Departamento de Producción Animal y Ciencia de los Alimentos, Instituto Universitario de Investigación en Ciencias Ambientales (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
9
|
Kitajima K, Oishi K, Miwa M, Anzai H, Setoguchi A, Yasunaka Y, Himeno Y, Kumagai H, Hirooka H. Effects of Heat Stress on Heart Rate Variability in Free-Moving Sheep and Goats Assessed With Correction for Physical Activity. Front Vet Sci 2021; 8:658763. [PMID: 34141733 PMCID: PMC8203806 DOI: 10.3389/fvets.2021.658763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/27/2021] [Indexed: 01/31/2023] Open
Abstract
Heart rate variability (HRV) is the heart beat-to-beat variation under control of the cardiovascular function of animals. Under stressed conditions, cardiac activity is generally regulated with an upregulated sympathetic tone and withdrawal of vagal tone; thus, HRV monitoring can be a non-invasive technique to assess stress level in animals especially related to animal welfare. Among several stress-induced factors, heat stress is one of the most serious causes of physiological damage to animals. The aim of this study was to assess the effects of heat stress on HRV in small ruminants under free-moving conditions. In three experimental periods (June, August, and October), inter-beat intervals in sheep and goats (three for each) in two consecutive days were measured. HRV parameters were calculated from the inter-beat interval data by three types of analyses: time domain, frequency domain, and non-linear analyses. The temperature–humidity index (THI) was used as an indicator of heat stress, and vectorial dynamic body acceleration (VeDBA) was calculated to quantify the physical activity of the animals tested. First, we investigated correlations of THI and VeDBA with HRV parameters; subsequently, THI was divided into five categories according to the values obtained (≤ 65, 65–70, 70–75, 75–80, and >80), and the effects of the THI categories on HRV parameters were investigated with and without correcting for the effects of physical activity based on the VeDBA. The results indicated that HRV significantly decreased with increasing THI and VeDBA. For non-linear HRV parameters that were corrected for the effects of physical activity, it was suggested that there would be a threshold of THI around 80 that strongly affected HRV; high heat stress can affect the autonomic balance of animals non-linearly by inducing the sympathetic nervous system. In conclusion, to assess psychophysiological conditions of unrestrained animals by HRV analysis, the confounding effect of physical activity on HRV should be minimized for a more precise interpretation of the results.
Collapse
Affiliation(s)
- Kaho Kitajima
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazato Oishi
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masafumi Miwa
- Division of Grassland Farming, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tochigi, Japan
| | - Hiroki Anzai
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Akira Setoguchi
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yudai Yasunaka
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Hajime Kumagai
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiroyuki Hirooka
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Byrnes EE, Lear KO, Brewster LR, Whitney NM, Smukall MJ, Armstrong NJ, Gleiss AC. Accounting for body mass effects in the estimation of field metabolic rates from body acceleration. J Exp Biol 2021; 224:239068. [PMID: 34424983 DOI: 10.1242/jeb.233544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/21/2021] [Indexed: 01/24/2023]
Abstract
Dynamic body acceleration (DBA), measured through animal-attached tags, has emerged as a powerful method for estimating field metabolic rates of free-ranging individuals. Following respirometry to calibrate oxygen consumption rate (ṀO2) with DBA under controlled conditions, predictive models can be applied to DBA data collected from free-ranging individuals. However, laboratory calibrations are generally performed on a relatively narrow size range of animals, which may introduce biases if predictive models are applied to differently sized individuals in the field. Here, we tested the mass dependence of the ṀO2-DBA relationship to develop an experimental framework for the estimation of field metabolic rates when organisms differ in size. We performed respirometry experiments with individuals spanning one order of magnitude in body mass (1.74-17.15 kg) and used a two-stage modelling process to assess the intraspecific scale dependence of the ṀO2-DBA relationship and incorporate such dependencies into the coefficients of ṀO2 predictive models. The final predictive model showed scale dependence; the slope of the ṀO2-DBA relationship was strongly allometric (M1.55), whereas the intercept term scaled closer to isometry (M1.08). Using bootstrapping and simulations, we evaluated the performance of this coefficient-corrected model against commonly used methods of accounting for mass effects on the ṀO2-DBA relationship and found the lowest error and bias in the coefficient-corrected approach. The strong scale dependence of the ṀO2-DBA relationship indicates that caution must be exercised when models developed using one size class are applied to individuals of different sizes.
Collapse
Affiliation(s)
- Evan E Byrnes
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St., Murdoch, WA 6150, Australia.,College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.,Bimini Biological Field Station Foundation, South Bimini, Bahamas
| | - Karissa O Lear
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St., Murdoch, WA 6150, Australia
| | - Lauran R Brewster
- Bimini Biological Field Station Foundation, South Bimini, Bahamas.,Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 N US Highway 1, Fort Pierce, FL 34946, USA
| | - Nicholas M Whitney
- Anderson Cabot Center for Ocean Life, New England Aquarium, 1 Central Wharf, Boston, MA 02110, USA
| | - Matthew J Smukall
- Bimini Biological Field Station Foundation, South Bimini, Bahamas.,College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 2150 Koyukuk Drive, Fairbanks, AK 99775, USA
| | - Nicola J Armstrong
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St., Murdoch, WA 6150, Australia.,Department of Mathematics and Statistics, Curtin University, Kent Street, Bentley, Perth, WA 6102, Australia
| | - Adrian C Gleiss
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St., Murdoch, WA 6150, Australia.,College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
11
|
A novel accelerometry approach combining information on classified behaviors and quantified physical activity for assessing health status of cattle: a preliminary study. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Malishev M, Kramer-Schadt S. Movement, models, and metabolism: Individual-based energy budget models as next-generation extensions for predicting animal movement outcomes across scales. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2020.109413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Halsey LG, Bryce CM. Proxy problems: Why a calibration is essential for interpreting quantified changes in energy expenditure from biologging data. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Shuert CR, Marcoux M, Hussey NE, Watt CA, Auger-Méthé M. Assessing the post-release effects of capture, handling and placement of satellite telemetry devices on narwhal (Monodon monoceros) movement behaviour. CONSERVATION PHYSIOLOGY 2021; 9:coaa128. [PMID: 33659061 PMCID: PMC7905160 DOI: 10.1093/conphys/coaa128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 06/08/2023]
Abstract
Animal-borne telemetry devices have become a popular and valuable means for studying the cryptic lives of cetaceans. Evaluating the effect of capture, handling and tagging procedures remains largely unassessed across species. Here, we examine the effect of capture, handling and tagging activities on an iconic Arctic cetacean, the narwhal (Monodon monoceros), which has previously been shown to exhibit an extreme response to extended capture and handling. Using accelerometry-derived metrics of behaviour, including activity level, energy expenditure and swimming activity, we quantify the post-release responses and time to recovery of 19 individuals following capture and tagging activities considering the intrinsic covariates of sex and individual size and the extrinsic covariates of handling time and presence of a 'bolt-on' satellite telemetry device. From accelerometer-derived behaviour, most narwhals appeared to return to mean baseline behaviour (recovery) within 24 hours after release, which was supported by longer-term measures of diving data. None of the covariates measured, however, had an effect on the time individuals took to recover following release. Using generalized additive models to describe changes in behaviour over time, we found handling time to be a significant predictor of activity levels, energy expenditure and swimming behaviour following release. Individuals held for the longest period (>40 min) were found to display the largest effect in behaviour immediately following release with respect to swimming behaviour and activity levels. We also found some support for relationships between activity levels, energy expenditure and swimming activity and two other covariates: sex and the attachment of a bolt-on configuration satellite tags. Our results indicate that narwhals recover relatively quickly following capture, handling and tagging procedures, but we suggest that researchers should minimize handling time and further investigation is needed on how to mitigate potential effects of bolt-on satellite tags in these sensitive species.
Collapse
Affiliation(s)
- Courtney R Shuert
- Department of Integrative Biology, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Marianne Marcoux
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Cortney A Watt
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Marie Auger-Méthé
- Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Institute for the Oceans & Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
15
|
Williams TM, Peter‐Heide Jørgensen M, Pagano AM, Bryce CM. Hunters versus hunted: New perspectives on the energetic costs of survival at the top of the food chain. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Terrie M. Williams
- Department of Ecology and Evolutionary Biology Coastal Biology Building University of California Santa Cruz Santa Cruz CA USA
| | | | - Anthony M. Pagano
- Institute for Conservation Research San Diego Zoo Global San Diego CA USA
| | | |
Collapse
|
16
|
Neethirajan S. Transforming the Adaptation Physiology of Farm Animals through Sensors. Animals (Basel) 2020; 10:E1512. [PMID: 32859060 PMCID: PMC7552204 DOI: 10.3390/ani10091512] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
Despite recent scientific advancements, there is a gap in the use of technology to measure signals, behaviors, and processes of adaptation physiology of farm animals. Sensors present exciting opportunities for sustained, real-time, non-intrusive measurement of farm animal behavioral, mental, and physiological parameters with the integration of nanotechnology and instrumentation. This paper critically reviews the sensing technology and sensor data-based models used to explore biological systems such as animal behavior, energy metabolism, epidemiology, immunity, health, and animal reproduction. The use of sensor technology to assess physiological parameters can provide tremendous benefits and tools to overcome and minimize production losses while making positive contributions to animal welfare. Of course, sensor technology is not free from challenges; these devices are at times highly sensitive and prone to damage from dirt, dust, sunlight, color, fur, feathers, and environmental forces. Rural farmers unfamiliar with the technologies must be convinced and taught to use sensor-based technologies in farming and livestock management. While there is no doubt that demand will grow for non-invasive sensor-based technologies that require minimum contact with animals and can provide remote access to data, their true success lies in the acceptance of these technologies by the livestock industry.
Collapse
|
17
|
Abstract
Diversity of production systems and specific socio-economic barriers are key reasons explaining why the implementation of new technologies in small ruminants, despite being needed and beneficial for farmers, is harder than in other livestock species. There are, however, helpful peculiarities where small ruminants are concerned: the compulsory use of electronic identification created a unique scenario in Europe in which all small ruminant breeding stock became searchable by appropriate sensing solutions, and the largest small ruminant population in the world is located in Asia, close to the areas producing new technologies. Notwithstanding, only a few research initiatives and literature reviews have addressed the development of new technologies in small ruminants. This Research Reflection focuses on small ruminants (with emphasis on dairy goats and sheep) and reviews in a non-exhaustive way the basic concepts, the currently available sensor solutions and the structure and elements needed for the implementation of sensor-based husbandry decision support. Finally, some examples of results obtained using several sensor solutions adapted from large animals or newly developed for small ruminants are discussed. Significant room for improvement is recognized and a large number of multiple-sensor solutions are expected to be developed in the relatively near future.
Collapse
|
18
|
Adenuga AH, Jack C, Olagunju KO, Ashfield A. Economic Viability of Adoption of Automated Oestrus Detection Technologies on Dairy Farms: A Review. Animals (Basel) 2020; 10:ani10071241. [PMID: 32708279 PMCID: PMC7401606 DOI: 10.3390/ani10071241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 01/23/2023] Open
Abstract
Simple Summary The accurate and timely detection of oestrus is a central element of good dairy herd management as it ultimately determines the level of milk production and is core to the economic viability of the farm business. However, the traditional method of oestrus detection, which occurs by observing the dairy cows standing immobile while being mounted, is usually time-consuming, repetitive and requires considerable skill and experience on the part of the farmer to attain a reasonable level of efficiency. Given the limitation of the traditional method of oestrus detection, a number of automated oestrus detection (AOD) technologies have been developed. However, the rate of adoption of these technologies remains low. One reason that has been proposed for farmers’ low adoption of such technologies has been their lack of knowledge around the potential economic returns from investing in AOD technologies. In this paper, we review the empirical literature on the viability of investment in AOD technologies from an economic perspective. The conclusion of this study provides evidence from which farmers can make more informed decisions in relation to investing in AOD technologies. The review and analysis is also of importance for informing policy, as it provides an examination of the incentives and levers that could improve productivity on dairy farms. Abstract The decision for dairy farmers to invest in automated oestrus detection (AOD) technologies involves the weighing up of the costs and benefits of implementation. In this paper, through a review of the existing literature, we examine the impacts of investment in AOD technologies in relation to the profitability and technical performance of dairy farms. Peer-reviewed articles published between 1970 and 2019 on the investment viability of AOD technologies were collated and analysed. We capture the different measures used in assessing the economic performance of investment in AOD technologies over time which include net present value (NPV), milk production, Benefit-Cost Ratio (BCR), internal rate of return (IRR) and payback period (PBP). The study concludes that investment in AOD technologies is not only worthwhile but also contributes to farm profitability.
Collapse
|
19
|
Gunner RM, Wilson RP, Holton MD, Scott R, Hopkins P, Duarte CM. A new direction for differentiating animal activity based on measuring angular velocity about the yaw axis. Ecol Evol 2020; 10:7872-7886. [PMID: 32760571 PMCID: PMC7391348 DOI: 10.1002/ece3.6515] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The use of animal-attached data loggers to quantify animal movement has increased in popularity and application in recent years. High-resolution tri-axial acceleration and magnetometry measurements have been fundamental in elucidating fine-scale animal movements, providing information on posture, traveling speed, energy expenditure, and associated behavioral patterns. Heading is a key variable obtained from the tandem use of magnetometers and accelerometers, although few field investigations have explored fine-scale changes in heading to elucidate differences in animal activity (beyond the notable exceptions of dead-reckoning).This paper provides an overview of the value and use of animal heading and a prime derivative, angular velocity about the yaw axis, as an important element for assessing activity extent with potential to allude to behaviors, using "free-ranging" Loggerhead turtles (Caretta caretta) as a model species.We also demonstrate the value of yaw rotation for assessing activity extent, which varies over the time scales considered and show that various scales of body rotation, particularly rate of change of yaw, can help resolve differences between fine-scale behavior-specific movements. For example, oscillating yaw movements about a central point of the body's arc implies bouts of foraging, while unusual circling behavior, indicative of conspecific interactions, could be identified from complete revolutions of the longitudinal axis.We believe this approach should help identification of behaviors and "space-state" approaches to enhance our interpretation of behavior-based movements, particularly in scenarios where acceleration metrics have limited value, such as for slow-moving animals.
Collapse
Affiliation(s)
- Richard M. Gunner
- Swansea Lab for Animal Movement, BiosciencesCollege of ScienceSwansea UniversitySwanseaUK
| | - Rory P. Wilson
- Swansea Lab for Animal Movement, BiosciencesCollege of ScienceSwansea UniversitySwanseaUK
| | - Mark D. Holton
- Swansea Lab for Animal Movement, BiosciencesCollege of ScienceSwansea UniversitySwanseaUK
| | - Rebecca Scott
- Future Ocean Cluster of ExcellenceGEOMAR Helmholtz Centre for Ocean ResearchKielGermany
- Natural Environmental Research Council, Polaris HouseSwindonUK
| | - Phil Hopkins
- Swansea Lab for Animal Movement, BiosciencesCollege of ScienceSwansea UniversitySwanseaUK
| | - Carlos M. Duarte
- Red Sea Research CentreKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
20
|
Modelling and Validation of Computer Vision Techniques to Assess Heart Rate, Eye Temperature, Ear-Base Temperature and Respiration Rate in Cattle. Animals (Basel) 2019; 9:ani9121089. [PMID: 31817620 PMCID: PMC6940919 DOI: 10.3390/ani9121089] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Animal monitoring normally requires procedures that are time- and labour-consuming. The implementation of novel non-invasive technologies could be a good approach to monitor animal health and welfare. This study aimed to evaluate the use of images and computer-based methods to track specific features of the face and to assess temperature; respiration rate and heart rate in cattle. The measurements were compared with measures obtained with conventional methods during the same time period. The data were collected from ten dairy cows that were recorded during six handling procedures across two consecutive days. The results from this study show over 92% of accuracy from the computer algorithm that was developed to track the areas selected on the videos collected. In addition, acceptable correlation was observed between the temperature calculated from thermal infrared images and temperature collected using intravaginal loggers. Moreover, there was acceptable correlation between the respiration rate calculated from infrared videos and from visual observation. Furthermore, a low to high relationship was found between the heart rate obtained from videos and from attached monitors. The study also showed that both the position of the cameras and the area analysed on the images are very important, as both had large impact on the accuracy of the methods. The positive outcomes and the limitations observed in this study suggest the need for further research Abstract Precision livestock farming has emerged with the aim of providing detailed information to detect and reduce problems related to animal management. This study aimed to develop and validate computer vision techniques to track required features of cattle face and to remotely assess eye temperature, ear-base temperature, respiration rate, and heart rate in cattle. Ten dairy cows were recorded during six handling procedures across two consecutive days using thermal infrared cameras and RGB (red, green, blue) video cameras. Simultaneously, core body temperature, respiration rate and heart rate were measured using more conventional ‘invasive’ methods to be compared with the data obtained with the proposed algorithms. The feature tracking algorithm, developed to improve image processing, showed an accuracy between 92% and 95% when tracking different areas of the face of cows. The results of this study also show correlation coefficients up to 0.99 between temperature measures obtained invasively and those obtained remotely, with the highest values achieved when the analysis was performed within individual cows. In the case of respiration rate, a positive correlation (r = 0.87) was found between visual observations and the analysis of non-radiometric infrared videos. Low to high correlation coefficients were found between the heart rates (0.09–0.99) obtained from attached monitors and from the proposed method. Furthermore, camera location and the area analysed appear to have a relevant impact on the performance of the proposed techniques. This study shows positive outcomes from the proposed computer vision techniques when measuring physiological parameters. Further research is needed to automate and improve these techniques to measure physiological changes in farm animals considering their individual characteristics.
Collapse
|
21
|
Benoit L, Hewison AJM, Coulon A, Debeffe L, Grémillet D, Ducros D, Cargnelutti B, Chaval Y, Morellet N. Accelerating across the landscape: The energetic costs of natal dispersal in a large herbivore. J Anim Ecol 2019; 89:173-185. [DOI: 10.1111/1365-2656.13098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Laura Benoit
- CEFS Université de Toulouse, INRA Castanet‐Tolosan France
| | | | - Aurélie Coulon
- Centre d'Ecologie et des Sciences de la Conservation (CESCO) Muséum national d'Histoire naturelle Centre National de la Recherche Scientifique Sorbonne Université Paris France
- CEFE, CNRS Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| | - Lucie Debeffe
- CEFS Université de Toulouse, INRA Castanet‐Tolosan France
| | - David Grémillet
- CEFE, CNRS Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
- FitzPatrick Institute DST‐NRF Centre of Excellence at the University of Cape Town Rondebosch South Africa
| | - Delphine Ducros
- CEFS Université de Toulouse, INRA Castanet‐Tolosan France
- Centre d'Ecologie et des Sciences de la Conservation (CESCO) Muséum national d'Histoire naturelle Centre National de la Recherche Scientifique Sorbonne Université Paris France
| | | | - Yannick Chaval
- CEFS Université de Toulouse, INRA Castanet‐Tolosan France
| | | |
Collapse
|
22
|
Stevenson R, Dalton HA, Erasmus M. Validity of Micro-Data Loggers to Determine Walking Activity of Turkeys and Effects on Turkey Gait. Front Vet Sci 2019; 5:319. [PMID: 30766875 PMCID: PMC6365412 DOI: 10.3389/fvets.2018.00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/29/2018] [Indexed: 11/13/2022] Open
Abstract
Accelerometers have the potential to provide objective, non-invasive methods for detecting changes in animal behavior and health. Our objectives were to: (1) determine the effects of micro-acceleration data loggers (accelerometers) and habituation to accelerometers on turkey gait and health status, (2) determine age-related changes in gait and health status, and (3) assess the validity and reliability of the accelerometers. Thirty-six male commercial turkeys were randomly assigned to one of five groups: accelerometer and habituation period (AH), accelerometer and no habituation period (AN), VetRap bandage (no accelerometer) and habituation period (VH), bandage (no accelerometer) and no habituation period (VN), and nothing on either leg (C). Health status and body condition were assessed prior to video-recording birds as they walked across a Tekscan® pressure pad at 8, 12, and 16 weeks to determine effects of treatment on number of steps, cadence, gait time, gait distance, gait velocity, impulse, gait cycle time, maximum force, peak vertical pressure, single support time, contact time, step length, step time, step velocity, stride length, total double support time, and duty factor. Accelerometer validity and reliability were determined by comparing the number of steps detected by the accelerometer to the number of steps determined from video recordings. Several age-related changes in turkey gait were found regardless of habituation including a slower cadence at 16 weeks, shorter gait distance at 8 weeks, and slower gait velocity at 16 weeks. When comparing bandaged vs. unbandaged limbs, both treatment and age-treatment interactions were found depending on the gait parameter. Accelerometer validity and reliability were affected by both age and treatment. False discovery rate increased, while accuracy and specificity decreased with age. Validity and reliability were lowest for non-habituated birds (AN and VN). Results demonstrated that micro-data loggers do not adversely affect turkey health status, but habituation to wearing accelerometers greatly affects accelerometer reliability and validity. Accelerometer validity and turkey gait are also greatly affected by the age of the turkeys.
Collapse
Affiliation(s)
- Rachel Stevenson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Hillary A Dalton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Marisa Erasmus
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
23
|
Oishi K, Himeno Y, Miwa M, Anzai H, Kitajima K, Yasunaka Y, Kumagai H, Ieiri S, Hirooka H. Correcting the Activity-Specific Component of Heart Rate Variability Using Dynamic Body Acceleration Under Free-Moving Conditions. Front Physiol 2018; 9:1063. [PMID: 30131717 PMCID: PMC6091277 DOI: 10.3389/fphys.2018.01063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Heart rate variability (HRV) analysis is a widely used technique to assess sympatho-vagal regulation in response to various internal or external stressors. However, HRV measurements under free-moving conditions are highly susceptible to subjects’ physical activity levels because physical activity alters energy metabolism, which inevitably modulates the cardiorespiratory system and thereby changes the sympatho-vagal balance, regardless of stressors. Thus, researchers must simultaneously quantify the effect of physical activity on HRV to reliably assess sympatho-vagal balance under free-moving conditions. In the present study, dynamic body acceleration (DBA), which was developed in the field of animal ecology as a quantitative proxy for activity-specific energy expenditure, was used as a factor to correct for physical activity when evaluating HRV in freely moving subjects. Body acceleration and heart inter-beat intervals were simultaneously measured in cattle and sheep, and the vectorial DBA and HRV parameters were evaluated at 5-min intervals. Next, the effects of DBA on the HRV parameters were statistically analyzed. The heart rate (HR) and most of the HRV parameters were affected by DBA in both animal species, and the inclusion of the effect of DBA in the HRV analysis greatly influenced the frequency domain and nonlinear HRV parameters. By removing the effect of physical activity quantified using DBA, we could fairly compare the stress levels of animals with different physical activity levels under different management conditions. Moreover, we analyzed and compared the HRV parameters before and after correcting for the mean HR, with and without inclusion of DBA. The results were somewhat unexpected, as the effect of DBA was a highly significant source of HRV also in parameters corrected for mean HR. In conclusion, the inclusion of DBA as a physical activity index is a simple and useful method for correcting the activity-specific component of HRV under free-moving conditions.
Collapse
Affiliation(s)
- Kazato Oishi
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Masafumi Miwa
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Division of Grassland Farming, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tochigi, Japan
| | - Hiroki Anzai
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kaho Kitajima
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yudai Yasunaka
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hajime Kumagai
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Seiji Ieiri
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Hiroyuki Hirooka
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Brouwer AM, van Dam E, van Erp JBF, Spangler DP, Brooks JR. Improving Real-Life Estimates of Emotion Based on Heart Rate: A Perspective on Taking Metabolic Heart Rate Into Account. Front Hum Neurosci 2018; 12:284. [PMID: 30061818 PMCID: PMC6054929 DOI: 10.3389/fnhum.2018.00284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/25/2018] [Indexed: 11/23/2022] Open
Abstract
Extracting information about emotion from heart rate in real life is challenged by the concurrent effect of physical activity on heart rate caused by metabolic need. “Non-metabolic heart rate,” which refers to the heart rate that is caused by factors other than physical activity, may be a more sensitive and more universally applicable correlate of emotion than heart rate itself. The aim of the present article is to explore the evidence that non-metabolic heart rate, as it has been determined up until now, indeed reflects emotion. We focus on methods using accelerometry since these sensors are readily available in devices suitable for daily life usage. The evidence that non-metabolic heart rate as determined by existing methods reflect emotion is limited. Alternative possible routes are explored. We conclude that for real-life cases, estimating the type and intensity of activities based on accelerometry (and other information), and in turn use those to determine the non-metabolic heart rate for emotion is most promising.
Collapse
Affiliation(s)
- Anne-Marie Brouwer
- Department of Perceptual & Cognitive Systems, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | | | - Jan B F van Erp
- Department of Perceptual & Cognitive Systems, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands.,Human Media Interaction, The University of Twente, Enschede, Netherlands
| | - Derek P Spangler
- Human Research and Engineering Directorate, US Army Research Laboratory, Adelphi, MD, United States
| | - Justin R Brooks
- Human Research and Engineering Directorate, US Army Research Laboratory, Adelphi, MD, United States
| |
Collapse
|
25
|
Miwa M, Oishi K, Anzai H, Kumagai H, Ieiri S, Hirooka H. Estimation of the energy expenditure of grazing ruminants by incorporating dynamic body acceleration into a conventional energy requirement system. J Anim Sci 2017; 95:901-909. [PMID: 28380599 DOI: 10.2527/jas.2016.0749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The estimation of energy expenditure (EE) of grazing animals is of great importance for efficient animal management on pasture. In the present study, a method is proposed to estimate EE in grazing animals based on measurements of body acceleration of animals in combination with the conventional Agricultural and Food Research Council (AFRC) energy requirement system. Three-dimensional body acceleration and heart rate were recorded for tested animals under both grazing and housing management. An acceleration index, vectorial dynamic body acceleration (VeDBA), was used to calculate activity allowance (AC) during grazing and then incorporate it into the AFRC system to estimate the EE (EE derived from VeDBA [EE]) of the grazing animals. The method was applied to 3 farm ruminant species (7 cattle, 6 goats, and 4 sheep). Energy expenditure based on heart rate (EE) was also estimated as a reference. The result showed that larger VeDBA and heart rate values were obtained under grazing management, resulting in greater EE and EE under grazing management than under housing management. There were large differences between the EE estimated from the 2 methods, where EE values were greater than EE (averages of 163.4 and 142.5% for housing and grazing management, respectively); the EE was lower than the EE, whereas the increase in EE under grazing in comparison with housing conditions was larger than that in EE. These differences may have been due to the use of an equation for estimating EE derived under laboratory conditions and due to the presence of the effects of physiological, psychological, and environmental factors in addition to physical activity being included in measurements for the heart rate method. The present method allowed us to separate activity-specific EE (i.e., AC) from overall EE, and, in fact, AC under grazing management were about twice times as large as those under housing management for farm ruminant animals. There is evidence that the conventional energy system can predict fasting metabolism and the AC of housed animals based on accumulated research on energy metabolism and that VeDBA can quantify physical activity separately from other factors in animals on pasture. Therefore, the use of the VeDBA appears to be a precise way to predict activity-specific EE under grazing conditions, and the method incorporating acceleration index data with a conventional energy system can be a simple and useful method for estimation of EE in farm ruminants on pastures.
Collapse
|
26
|
Giovanetti V, Decandia M, Molle G, Acciaro M, Mameli M, Cabiddu A, Cossu R, Serra M, Manca C, Rassu S, Dimauro C. Automatic classification system for grazing, ruminating and resting behaviour of dairy sheep using a tri-axial accelerometer. Livest Sci 2017. [DOI: 10.1016/j.livsci.2016.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Stothart MR, Elliott KH, Wood T, Hatch SA, Speakman JR. Counting calories in cormorants: dynamic body acceleration predicts daily energy expenditure measured in pelagic cormorants. ACTA ACUST UNITED AC 2016; 219:2192-200. [PMID: 27207639 DOI: 10.1242/jeb.130526] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 05/11/2016] [Indexed: 11/20/2022]
Abstract
The integral of the dynamic component of acceleration over time has been proposed as a measure of energy expenditure in wild animals. We tested that idea by attaching accelerometers to the tails of free-ranging pelagic cormorants (Phalacrocorax pelagicus) and simultaneously estimating energy expenditure using doubly labelled water. Two different formulations of dynamic body acceleration, [vectorial and overall DBA (VeDBA and ODBA)], correlated with mass-specific energy expenditure (both R(2)=0.91). VeDBA models combining and separately parameterizing flying, diving, activity on land and surface swimming were consistently considered more parsimonious than time budget models and showed less variability in model fit. Additionally, we observed evidence for the presence of hypometabolic processes (i.e. reduced heart rate and body temperature; shunting of blood away from non-essential organs) that suppressed metabolism in cormorants while diving, which was the most metabolically important activity. We concluded that a combination of VeDBA and physiological processes accurately measured energy expenditure for cormorants.
Collapse
Affiliation(s)
- Mason R Stothart
- Department of Integrative Biology, University of Guelph, Guelph, Canada N1G 2K8
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, St. Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Thomas Wood
- Department of Biology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Scott A Hatch
- Institute for Seabird Research and Conservation, Anchorage, AK 99516-9951, USA
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|