1
|
Chin SP, Saffery NS, Then KY, Cheong SK. Preclinical assessments of safety and tumorigenicity of very high doses of allogeneic human umbilical cord mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2024; 60:307-319. [PMID: 38421574 PMCID: PMC11014873 DOI: 10.1007/s11626-024-00852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
Human umbilical cord-mesenchymal stem cells (hUC-MSCs) have been widely investigated as a new therapeutic agent to treat injuries and inflammatory-mediated and autoimmune diseases. Previous studies have reported on the safety of low-dose infusion of hUC-MSCs, but information on the cell behaviour at higher doses and frequency of injection of the cells remains uncertain. The aim of the present study was to demonstrate the safety and efficacy of hUC-MSCs by Cytopeutics® (Selangor, Malaysia) from low to an extremely high dose in different monitoring periods in healthy BALB/c mice as well as assessing the tumorigenicity of the cells in B-NDG SCID immunocompromised mice. Umbilical cord from two healthy human newborns was obtained and the isolation of the hUC-MSCs was performed based on previous established method. Assessment of the cells at different doses of single or multiple administrations was performed on healthy BALB/c mice in dose range finding, sub-acute (7 d and 28 d) and sub-chronic periods (90 d). Tumorigenicity potential of Cytopeutics® hUC-MSCs was also evaluated on B-NDG immunocompromised mice for 26 wk. Single or multiple administrations of Cytopeutics® hUC-MSCs up to 40 × 106 cells per kilogramme of body weight (kg BW) were found to have no adverse effect in terms of clinical symptoms, haematology and other laboratory parameters, and histology examination in healthy BALB/c mice. hUC-MSCs were also found to reduce pro-inflammatory cytokines (IL-6 and TNF-α) in a dose-dependent manner. No sign of tumor formation was observed in B-NDG mice in the 26-wk tumorigenicity assessment. Single or multiple administration of allogenic Cytopeutics® hUC-MSCs was safe even at very high doses, is non-tumorigenic and did not cause adverse effects in mice throughout the evaluation periods. In addition, Cytopeutics® hUC-MSCs exhibited immunomodulatory effect in a dose-dependent manner.
Collapse
Affiliation(s)
- Sze-Piaw Chin
- Cytopeutics Sdn Bhd, Bio-X Centre, Persiaran Cyberpoint Selatan, Suite 2-3, 2nd Floor, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia.
- CMH Specialist Hospital, Jalan Tun Dr. Ismail, 70200, Seremban, Negeri Sembilan, Malaysia.
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman (UTAR), Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.
| | - Nik Syazana Saffery
- Cytopeutics Sdn Bhd, Bio-X Centre, Persiaran Cyberpoint Selatan, Suite 2-3, 2nd Floor, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Kong-Yong Then
- Cytopeutics Sdn Bhd, Bio-X Centre, Persiaran Cyberpoint Selatan, Suite 2-3, 2nd Floor, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
- Cryocord Sdn Bhd, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Soon-Keng Cheong
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman (UTAR), Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
2
|
Chin SP, Marzuki M, Tai L, Mohamed Shahrehan NA, Ricky C, Fanty A, Salleh A, Low CT, Then KY, Hoe SLL, Cheong SK. Dynamic tracking of human umbilical cord mesenchymal stem cells (hUC-MSCs) following intravenous administration in mice model. Regen Ther 2024; 25:273-283. [PMID: 38314402 PMCID: PMC10834363 DOI: 10.1016/j.reth.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction In the past decades, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have sparked interest in cellular therapy due to their immunomodulatory properties. Nevertheless, the fate of hUC-MSCs in the body remains poorly understood. This study aimed to investigate the biodistribution, homing and clearance of systemically administered hUC-MSCs in healthy BALB/c mice model. Methods hUC-MSCs were labelled with GFP-Luc2 protein, followed by characterisation with flow cytometry. Upon intravenous infusion of transduced hUC-MSCs into the healthy BALB/c mice, the cells were dynamically monitored through the bioluminescent imaging (BLI) approach. Results Transduction of hUC-MSCs with GFP-Luc2 not only preserved the characteristics of MSCs, but also allowed live monitoring of transduced cells in the mice model. Upon systemic administration, BLI showed that transduced hUC-MSCs first localised predominantly in the lungs of healthy BALB/c mice and mainly remained in the lungs for up to 3 days before eventually cleared from the body. At terminal sacrifice, plasma chemistry biomarkers remained unchanged except for C-peptide levels, which were significantly reduced in the hUC-MSCs group. Histopathological findings further revealed that hUC-MSCs infusion did not cause any adverse effects and toxicity to lung, liver and heart tissues. Conclusions Collectively, systemically administrated hUC-MSCs was safe and demonstrated dynamic homing capacity before eventually disappearing from the body.
Collapse
Affiliation(s)
- Sze-Piaw Chin
- Cytopeutics Sdn Bhd, Cyberjaya, Selangor, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long, Selangor, Malaysia
| | - Marini Marzuki
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | - Lihui Tai
- Cytopeutics Sdn Bhd, Cyberjaya, Selangor, Malaysia
| | | | - Christine Ricky
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | - Audrey Fanty
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | - Annas Salleh
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chui Thean Low
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | | | - Susan Ling Ling Hoe
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | - Soon Keng Cheong
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long, Selangor, Malaysia
| |
Collapse
|
3
|
Tai L, Saffery NS, Chin SP, Cheong SK. Secretome profile of TNF-α-induced human umbilical cord mesenchymal stem cells unveils biological processes relevant to skin wound healing. Regen Med 2023; 18:839-856. [PMID: 37671699 DOI: 10.2217/rme-2023-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Aim: To profile and study the proteins responsible for the beneficial effect of the TNF-α-induced human umbilical cord mesenchymal stem cells (hUCMSCs) secretome in wound healing. Methods: The hUCMSCs secretome was generated with (induced) or without (uninduced) TNF-α and was subsequently analyzed by liquid chromatography-mass spectrometry, immunoassay and in vitro scratch assay. Results: Proteomic analysis revealed approximately 260 proteins, including 51 and 55 unique proteins in the induced and uninduced secretomes, respectively. Gene ontology analysis disclosed that differential proteins in the induced secretome mainly involved inflammation-related terms. The induced secretome, consisting of higher levels of FGFb, VEGF, PDGF and IL-6, significantly accelerated wound closure and enhanced MMP-13 secretion in HaCaT keratinocytes. Conclusion: The secretome from induced hUCMSCs includes factors that promote wound closure.
Collapse
Affiliation(s)
- Lihui Tai
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Nik Syazana Saffery
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Sze Piaw Chin
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Soon Keng Cheong
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
- M. Kandiah Faculty of Medicine & Health Sciences (MK FMHS), Universiti Tunku Abdul Rahman Sungai Long City Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
4
|
Özkan B, Yılmaz Tuğan B, Hemşinlioğlu C, Sır Karakuş G, Şahin Ö, Ovalı E. Suprachoroidal spheroidal mesenchymal stem cell implantation in retinitis pigmentosa: clinical results of 6 months follow-up. Stem Cell Res Ther 2023; 14:252. [PMID: 37705097 PMCID: PMC10500760 DOI: 10.1186/s13287-023-03489-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
PURPOSE This prospective clinical case series aimed to evaluate the effect of suprachoroidal implantation of mesenchymal stem cells (MSCs) in the form of spheroids as a stem cell therapy for retinitis pigmentosa (RP) patients with relatively good visual acuity. METHODS Fifteen eyes of 15 patients with RP who received suprachoroidal implantation of MSCs in the form of spheroids were included. Best-corrected visual acuity (BCVA), 10-2 and 30-2 visual field examination and multifocal electroretinography (mfERG) recordings were recorded at baseline, postoperative 1st, 3rd and 6th months during follow-up. RESULTS Baseline median BCVA of RP patients was 1.30 (1.00-2.00) logMAR. BCVA has improved to 1.00 (0.50-1.30), 0.80 (0.40-1.30) and 0.80 (0.40-1.30) at the postoperative 1st, 3rd and 6th months, respectively. The improvements from baseline to the 3rd and 6th months were statistically significant (p = 0.03 and p < 0.001, respectively). In the 30-2 VF test, median MD was significantly improved at the 6th month compared to baseline (p = 0.030). In the 10-2 VF test, the median MD value was significantly different at the 6th month compared to the baseline (p = 0.043). The PSD value of the 10-2 VF test was significantly different at the 6th month compared to the 3rd month (p = 0.043). The amplitudes of P1 waves in < 2°, 5°-10° and 10°-15° rings improved significantly at the postoperative 6th month (p = 0.014, p = 0.018 and p = 0.017, respectively). There was also a statistically significant improvement in implicit times of P1 waves in 10°-15° ring at the postoperative 6th month (p = 0.004). CONCLUSION Suprachoroidal implantation of MSCs in the form of spheroids as a stem cell therapy for RP patients with relatively good visual acuity has an improving effect on BCVA, VF and mfERG recordings during the 6-month follow-up period. Spheroidal MSCs with enhanced effects may be more successful in preventing apoptosis and improving retinal tissue healing in RP patients.
Collapse
Affiliation(s)
- Berna Özkan
- Department of Ophthalmology, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey.
| | | | | | | | - Özlem Şahin
- Department of Ophthalmology, Marmara University, Istanbul, Turkey
| | - Ercüment Ovalı
- Acıbadem Labcell Cellular Therapy Center, Istanbul, Turkey
| |
Collapse
|
5
|
Koh B, Sulaiman N, Fauzi MB, Law JX, Ng MH, Yuan TL, Azurah AGN, Mohd Yunus MH, Idrus RBH, Yazid MD. A Three-Dimensional Xeno-Free Culture Condition for Wharton's Jelly-Mesenchymal Stem Cells: The Pros and Cons. Int J Mol Sci 2023; 24:ijms24043745. [PMID: 36835154 PMCID: PMC9960744 DOI: 10.3390/ijms24043745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/15/2023] Open
Abstract
Xeno-free three-dimensional cultures are gaining attention for mesenchymal stem cell (MSCs) expansion in clinical applications. We investigated the potential of xeno-free serum alternatives, human serum and human platelet lysate, to replace the current conventional use of foetal bovine serum for subsequent MSCs microcarrier cultures. In this study, Wharton's Jelly MSCs were cultured in nine different media combinations to identify the best xeno-free culture media for MSCs culture. Cell proliferation and viability were identified, and the cultured MSCs were characterised in accordance with the minimal criteria for defining multipotent mesenchymal stromal cells by the International Society for Cellular Therapy (ISCT). The selected culture media was then used in the microcarrier culture of MSCs to determine the potential of a three-dimensional culture system in the expansion of MSCs for future clinical applications, and to identify the immunomodulatory potential of cultured MSCs. Low Glucose DMEM (LG) + Human Platelet (HPL) lysate media appeared to be good candidates for replacing conventional MSCs culture media in our monolayer culture system. MSCs cultured in LG-HPL achieved high cell yield, with characteristics that remained as described by ISCT, although the overall mitochondrial activity of the cells was lower than the control and the subsequent effects remained unknown. MSC microcarrier culture, on the other hand, showed comparable cell characteristics with monolayer culture, yet had stagnated cell proliferation, which is potentially due to the inactivation of FAK. Nonetheless, both the MSCs monolayer culture and the microcarrier culture showed high suppressive activity on TNF-α, and only the MSC microcarrier culture has a better suppression of IL-1 secretion. In conclusion, LG-HPL was identified as a good xeno-free media for WJMSCs culture, and although further mechanistic research is needed, the results show that the xeno-free three-dimensional culture maintained MSC characteristics and improved immunomodulatory activities, suggesting the potential of translating the monolayer culture into this culture system in MSC expansion for future clinical application.
Collapse
Affiliation(s)
- Benson Koh
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, Petaling Jaya 47301, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Too Lih Yuan
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Abdul Ghani Nur Azurah
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-3-9145-6995
| |
Collapse
|
6
|
Erythropoietin in Glaucoma: From Mechanism to Therapy. Int J Mol Sci 2023; 24:ijms24032985. [PMID: 36769310 PMCID: PMC9917746 DOI: 10.3390/ijms24032985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Glaucoma can cause irreversible vision loss and is the second leading cause of blindness worldwide. The disease mechanism is complex and various factors have been implicated in its pathogenesis, including ischemia, excessive oxidative stress, neurotropic factor deprivation, and neuron excitotoxicity. Erythropoietin (EPO) is a hormone that induces erythropoiesis in response to hypoxia. However, studies have shown that EPO also has neuroprotective effects and may be useful for rescuing apoptotic retinal ganglion cells in glaucoma. This article explores the relationship between EPO and glaucoma and summarizes preclinical experiments that have used EPO to treat glaucoma, with an aim to provide a different perspective from the current view that glaucoma is incurable.
Collapse
|
7
|
Zhou L, Zhang H, Wu S, He Y, Guo K. In vitro induction and intraocular application in oxygen-induced retinopathy of adipose-derived mesenchymal stem cells. Mol Vis 2022; 28:432-440. [PMID: 36601410 PMCID: PMC9767843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Purpose We designed a study to find theoretical evidence for the induction, movement, fusion, proliferation, and safety of human adipose mesenchymal stem cells (hADSCs) in intraocular application. Methods HADSCs were induced to confirm that they can express the characteristics of endothelial cells (ECs) in vitro. HADSCs were intraocularly injected into oxygen-induced retinopathy (OIR) mice to check the movement, fusion, proliferation, and prognosis in vivo. Electron microscopy was used to check retinal changes to confirm the safety of hADSCs in intraocular application. Results After induction, hADSCs expressed von Willebrand Factor (vWF), the cell marker of ECs. The hADSCs were distributed above the retina after an intravitreal injection in the OIR mice. The injected cells did not fuse with the retina and gathered in the central and peripheral areas, which is the lesion area of the OIR model. Five days after the hADSC intravitreal injection, the area of neovascularization was reduced by 94.83% compared with that of the OIR group. Hematologic staining and electron microscopy did not show noticeable proliferation and degeneration of the retina. Conclusions This study provides evidence for the intraocular application of hADSCs.
Collapse
Affiliation(s)
- Lvlv Zhou
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haifeng Zhang
- Department of Physiology, Inner Mongolia Medical University, Inner Mongolia, China
| | - Sarina Wu
- Inner Mongolia Institute of Traditional Chinese Medicine, Inner Mongolia Medical University, Inner Mongolia, China
| | - Yuhong He
- Department of Ophthalmology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Kai Guo
- Department of Ophthalmology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| |
Collapse
|
8
|
Norte-Muñoz M, Botelho MF, Schoeberlein A, Chaves J, Neto Murta J, Ponsaerts P, Agudo-Barriuso M, Costa E. Insights and future directions for the application of perinatal derivatives in eye diseases: A critical review of preclinical and clinical studies. Front Bioeng Biotechnol 2022; 10:969927. [PMID: 36425647 PMCID: PMC9679153 DOI: 10.3389/fbioe.2022.969927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/17/2022] [Indexed: 09/05/2023] Open
Abstract
Perinatal derivatives (PnD) are gaining interest as a source for cell-based therapies. Since the eye is easily accessible to local administration, eye diseases may be excellent candidates to evaluate novel therapeutic approaches. With this work, we performed a systematic review of published preclinical and clinical studies addressing PnD in the treatment of ocular diseases. We have set two specific objectives: (i) to investigate the current level of standardization in applied technical procedures in preclinical studies and (ii) to assess clinical efficacy in clinical trials. Hereto, we selected studies that applied amniotic membrane (hAM) and mesenchymal stromal cells derived from amniotic membrane (hAMSC), placenta (hPMSC), umbilical cord (hUC-MSC) and Wharton's Jelly (hUC-WJ-MSC), excluding those where cells were not transplanted individually, following a systematic PubMed search for preclinical studies and consultation of clinical studies on https://clinicaltrials.gov and https://www.clinicaltrialsregister.eu/. Our bibliographic search retrieved 26 pre-clinical studies and 27 clinical trials. There was a considerable overlap regarding targeted ocular structures. Another common feature is the marked tendency towards (i) locally administered treatments and (ii) the PnD type. In the cornea/ocular surface, hAM was preferred and usually applied directly covering the ocular surface. For neuroretinal disorders, intra-ocular injection of umbilical or placental-derived cells was preferred. In general, basic research reported favourable outcomes. However, due to lack of standardization between different studies, until now there is no clear consensus regarding the fate of administered PnD or their mode of action. This might be accountable for the low index of clinical translation. Regarding clinical trials, only a minority provided results and a considerable proportion is in "unknown status". Nevertheless, from the limited clinical evidence available, hAM proved beneficial in the symptomatic relief of bullous keratopathy, treating dry eye disease and preventing glaucoma drainage device tube exposure. Regarding neuroretinal diseases, application of Wharton's Jelly MSC seems to become a promising future approach. In conclusion, PnD-based therapies seem to be beneficial in the treatment of several ocular diseases. However, much is yet to be done both in the pre-clinical and in the clinical setting before they can be included in the daily ophthalmic practice.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Experimental Ophthalmology Group, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Maria Filomena Botelho
- Institute of Biophysics and Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - João Chaves
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joaquim Neto Murta
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Ophtalmology Universitary Clinic and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Marta Agudo-Barriuso
- Experimental Ophthalmology Group, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Esmeralda Costa
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Ophtalmology Universitary Clinic and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Chen X, Jiang Y, Duan Y, Zhang X, Li X. Mesenchymal-Stem-Cell-Based Strategies for Retinal Diseases. Genes (Basel) 2022; 13:genes13101901. [PMID: 36292786 PMCID: PMC9602395 DOI: 10.3390/genes13101901] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022] Open
Abstract
Retinal diseases are major causes of irreversible vision loss and blindness. Despite extensive research into their pathophysiology and etiology, pharmacotherapy effectiveness and surgical outcomes remain poor. Based largely on numerous preclinical studies, administration of mesenchymal stem cells (MSCs) as a therapeutic strategy for retinal diseases holds great promise, and various approaches have been applied to the therapies. However, hindered by the retinal barriers, the initial vision for the stem cell replacement strategy fails to achieve the anticipated effect and has now been questioned. Accumulating evidence now suggests that the paracrine effect may play a dominant role in MSC-based treatment, and MSC-derived extracellular vesicles emerge as a novel compelling alternative for cell-free therapy. This review summarizes the therapeutic potential and current strategies of this fascinating class of cells in retinal degeneration and other retinal dysfunctions.
Collapse
|
10
|
Afarid M, Mahmoodi S, Baghban R. Recent achievements in nano-based technologies for ocular disease diagnosis and treatment, review and update. J Nanobiotechnology 2022; 20:361. [PMID: 35918688 PMCID: PMC9344723 DOI: 10.1186/s12951-022-01567-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Ocular drug delivery is one of the most challenging endeavors among the various available drug delivery systems. Despite having suitable drugs for the treatment of ophthalmic disease, we have not yet succeeded in achieving a proper drug delivery approach with the least adverse effects. Nanotechnology offers great opportunities to overwhelm the restrictions of common ocular delivery systems, including low therapeutic effects and adverse effects because of invasive surgery or systemic exposure. The present review is dedicated to highlighting and updating the recent achievements of nano-based technologies for ocular disease diagnosis and treatment. While further effort remains, the progress illustrated here might pave the way to new and very useful ocular nanomedicines.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Brown C, Agosta P, McKee C, Walker K, Mazzella M, Alamri A, Svinarich D, Chaudhry GR. Human primitive mesenchymal stem cell-derived retinal progenitor cells improved neuroprotection, neurogenesis, and vision in rd12 mouse model of retinitis pigmentosa. Stem Cell Res Ther 2022; 13:148. [PMID: 35395806 PMCID: PMC8994263 DOI: 10.1186/s13287-022-02828-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 01/05/2023] Open
Abstract
Background Currently, there is no treatment for retinal degenerative diseases (RDD) such as retinitis pigmentosa (RP). Stem cell-based therapies could provide promising opportunities to repair the damaged retina and restore vision. Thus far, primarily adult mesenchymal stem cells (MSCs) have been investigated in preclinical and clinical studies, and the results have not been convincing. We applied a new approach in which primitive (p) MSC-derived retinal progenitor cells (RPCs) were examined to treat retinal degeneration in an rd12 mouse model of RP. Methods Well-characterized pMSCs and RPCs labeled with PKH26 were intravitreally injected into rd12 mice. The vision and retinal function of transplanted animals were analyzed using electroretinography. Animals were killed 4 and 8 weeks after cell transplantation for histological, immunological, molecular, and transcriptomic analyses of the retina. Results Transplanted RPCs significantly improved vision and retinal thickness as well as function in rd12 mice. pMSCs and RPCs homed to distinct retinal layers. pMSCs homed to the retinal pigment epithelium, and RPCs migrated to the neural layers of the retina, where they improved the thickness of the respective layers and expressed cell-specific markers. RPCs induced anti-inflammatory and neuroprotective responses as well as upregulated the expression of genes involved in neurogenesis. The transcriptomic analysis showed that RPCs promoted neurogenesis and functional recovery of the retina through inhibition of BMP and activation of JAK/STAT and MAPK signaling pathways. Conclusions Our study demonstrated that RPCs countered inflammation, provided retinal protection, and promoted neurogenesis resulting in improved retinal structure and physiological function in rd12 mice. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02828-w.
Collapse
Affiliation(s)
- Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Patrina Agosta
- Ascension Providence Hospital, Southfield, MI, 48075, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Matteo Mazzella
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Ali Alamri
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | | | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA. .,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA.
| |
Collapse
|
12
|
Abd Rashid M, Chenshen L, Ee Hwan AK, AlSaeedy H, Mok PL, Subbiah SK, Isa HM, Yong TK, Nizam Harun MH, B S Mohamad SMS, Min Hwei AN, Luu CD, Catherine Bastion ML. Rescue of photoreceptor with human mesenchyme stem cell and human mesenchyme stem cell expressing erythropoietin in total degeneration of retina animal model. Indian J Ophthalmol 2022; 70:921-929. [PMID: 35225544 PMCID: PMC9114553 DOI: 10.4103/ijo.ijo_472_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Purpose: This study aimed to investigate the efficacy of human-derived umbilical cord mesenchymal stem cells (HDUMSC) and human-derived umbilical cord mesenchymal stem cells expressing erythropoietin (HDUMSC-EPO) to rescue total degenerated retina in a rat model. Methods: The study included four treatment groups, namely negative control using normal saline (HBSS) injection, positive control using sodium iodide 60 mg/kg (SI), SI treated with HDUMSC, and SI treated with HDUMSC-EPO given via subretinal and intravenous routes, to test the efficacy of retinal regeneration following SI-induced retinal degeneration. Retinal function in both phases was tested via electroretinography (ERG) and histological staining examining the outer nuclear layer (ONL). Results: There was a statistically significant result (P < 0.05) in the SI treated with HDUMSC-EPO only when comparing day 11 (mean = 23.6 μv), day 18 (mean = 25.2 μv), day 26 (mean = 26.3 μv), and day 32 (mean = 28.2 μv) to the b-wave ERG on day 4 rescue injection day (mean = 12.5 μv). The SI treated with HDUMSC-EPO showed significant improvement in b-wave ERG readings in the Sprague–Dawley (SD) rat but did not restore baseline readings prior to degeneration (day 0). Both treated groups’ ONL thicknesses did not show significant changes compared to the negative control group (HBSS) following rescue therapy. Conclusion: Total retinal degeneration following intravenous SI injection was observed at 60 mg/kg. SI treated with HDUMSC and HDUMSC-EPO showed no regenerative potential compared to baseline in SI-induced total retina degeneration on ERG or histology, whereas SI treated with HDUMSC-EPO group showed a substantial increase in b-wave ERG amplitude over time.
Collapse
Affiliation(s)
- Munirah Abd Rashid
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Lam Chenshen
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Avin Koh Ee Hwan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jawf Province, Saudi Arabia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hiba AlSaeedy
- Department of Medical Microbiology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Pooi Ling Mok
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jawf Province, Saudi Arabia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology, Universiti Putra Malaysia, Serdang, Malaysia; Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Hazlita Md Isa
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Then Kong Yong
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre; Brighton Healthcare, UKM Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Hairul Nizam Harun
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Syed Mohamed Suhail B S Mohamad
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Angela Ng Min Hwei
- Tissue Engineering Centre, UKM Medical Centre, Cheras, Kuala Lumpur,, Malaysia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| |
Collapse
|
13
|
Sheptulin VA, Fedorov AA, Kovrigina AM, Lazuk AV, Grusha YO. [Granulomatous inflammation of the orbit as a complication of stem cells injection (case study)]. Vestn Oftalmol 2021; 137:94-98. [PMID: 34965074 DOI: 10.17116/oftalma202113706194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article present a case report of orbital granulomatous inflammation after a retrobulbar injection of allogenous stem cells. Experimental treatment resulted in an orbital tumor that required surgical excision. Lymphogranulomatous inflammation with a secondary abscess was verified by morphological and immunohistochemical analyses. This case demonstrates the possible dangerous complications of the "off-label" therapy amid the rising popularity of stem cells treatment.
Collapse
Affiliation(s)
| | - A A Fedorov
- Research Institute of Eye Diseases, Moscow, Russia
| | - A M Kovrigina
- National Medical Research Center of Hematology, Ministry of Health of Russia Moscow, Russia
| | | | - Y O Grusha
- Research Institute of Eye Diseases, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
14
|
Looi SY, Bastion MLC, Leow SN, Luu CD, Hairul NMH, Ruhaslizan R, Wong HS, Wan Haslina AH, Ng MH, Idrus Ruszymah BH, Then KY. Therapeutic potential of human umbilical cord-derived mesenchymal stem cells transplantation in rats with optic nerve injury. Indian J Ophthalmol 2021; 70:201-209. [PMID: 34937239 PMCID: PMC8917541 DOI: 10.4103/ijo.ijo_473_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose: There are no effective treatments currently available for optic nerve transection injuries. Stem cell therapy represents a feasible future treatment option. This study investigated the therapeutic potential of human umbilical cord–derived mesenchymal stem cell (hUC-MSC) transplantation in rats with optic nerve injury. Methods: Sprague–Dawley (SD) rats were divided into three groups: a no-treatment control group (n = 6), balanced salt solution (BSS) treatment group (n = 6), and hUC-MSCs treatment group (n = 6). Visual functions were assessed by flash visual evoked potential (fVEP) at baseline, Week 3, and Week 6 after optic nerve crush injury. Right eyes were enucleated after 6 weeks for histology. Results: The fVEP showed shortened latency delay and increased amplitude in the hUC-MSCs treated group compared with control and BSS groups. Higher cellular density was detected in the hUC-MSC treated group compared with the BSS and control groups. Co-localized expression of STEM 121 and anti-S100B antibody was observed in areas of higher nuclear density, both in the central and peripheral regions. Conclusion: Peribulbar transplantation of hUC-MSCs demonstrated cellular integration that can potentially preserve the optic nerve function with a significant shorter latency delay in fVEP and higher nuclear density on histology, and immunohistochemical studies observed cell migration particularly to the peripheral regions of the optic nerve.
Collapse
Affiliation(s)
- Sook Y Looi
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Melbourne, Australia
| | - Mae-Lynn C Bastion
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Melbourne, Australia
| | - Sue N Leow
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Melbourne, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - N M H Hairul
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Melbourne, Australia
| | - Raduan Ruhaslizan
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Melbourne, Australia
| | - Hon S Wong
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Melbourne, Australia
| | - Abdul H Wan Haslina
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Melbourne, Australia
| | - Min H Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - B Hj Idrus Ruszymah
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kong Y Then
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Melbourne, Australia; International Specialist Eye Centre, Midvalley, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Mundy DC, Goldberg JL. Nanoparticles as Cell Tracking Agents in Human Ocular Cell Transplantation Therapy. CURRENT OPHTHALMOLOGY REPORTS 2021. [DOI: 10.1007/s40135-021-00275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Jalali MS, Sarkaki A, Farbood Y, Azandeh SS, Mansouri E, Ghasemi Dehcheshmeh M, Saki G. Neuroprotective effects of Wharton's jelly-derived mesenchymal stem cells on motor deficits due to Parkinson's disease. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1173-1181. [PMID: 35083003 PMCID: PMC8751748 DOI: 10.22038/ijbms.2021.54091.12159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) have been recognized as a potential tool to replace damaged cells by improving the survival of the dopaminergic cells in Parkinson's disease (PD). In this study, we examined the effects of hWJ-MSCs and associated with L-dopa/carbidopa on motor disturbances in the PD model. MATERIALS AND METHODS PD was induced by injection of 6-hydroxydopamine (6-OHDA) (16 μg/2 μl into medial forebrain bundle (MFB)). Sham group received a vehicle instead of 6-OHDA. PD+C group received hWJ-MSCs twice on the 14th and 28th days post PD induction. PD+C+D group received hWJ-MSCs and also L-dopa/carbidopa (10/30 mg/kg). PD+D group received L-dopa/carbidopa alone. Four months later, motor activities (the parameters of locomotor and muscle stiffness) were evaluated, dopaminergic neurons were counted in substantia nigra pars compacta (SNc), the level of dopamine (DA), and tyrosine hydroxylase (TH) were measured in the striatum. RESULTS Data indicated that motor activities, the number of dopaminergic neurons, and levels of DA and TH activities were significantly reduced in PD rats as compared to the sham group (P<0.001). However, the same parameters were improved in the treated groups when compared with the PD group (P<0.001 and P<0.01, respectively). CONCLUSION The chronic treatment of PD rats with hWJ-MSCs and L-dopa/carbidopa, improved motor activity, which may be the result of increased TH activity and due to released DA from dopaminergic neurons.
Collapse
Affiliation(s)
- Maryam Sadat Jalali
- Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoub Farbood
- Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Saeed Azandeh
- Department of Anatomical Sciences, Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Department of Anatomical Sciences, Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ghasem Saki
- Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Nano-Biomaterials for Retinal Regeneration. NANOMATERIALS 2021; 11:nano11081880. [PMID: 34443710 PMCID: PMC8399153 DOI: 10.3390/nano11081880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
Nanoscience and nanotechnology have revolutionized key areas of environmental sciences, including biological and physical sciences. Nanoscience is useful in interconnecting these sciences to find new hybrid avenues targeted at improving daily life. Pharmaceuticals, regenerative medicine, and stem cell research are among the prominent segments of biological sciences that will be improved by nanostructure innovations. The present review was written to present a comprehensive insight into various emerging nanomaterials, such as nanoparticles, nanowires, hybrid nanostructures, and nanoscaffolds, that have been useful in mice for ocular tissue engineering and regeneration. Furthermore, the current status, future perspectives, and challenges of nanotechnology in tracking cells or nanostructures in the eye and their use in modified regenerative ophthalmology mechanisms have also been proposed and discussed in detail. In the present review, various research findings on the use of nano-biomaterials in retinal regeneration and retinal remediation are presented, and these findings might be useful for future clinical applications.
Collapse
|
18
|
Wu JH, Wang DY, Sheng L, Qian WQ, Xia SJ, Jiang Q. Human umbilical cord Wharton's jelly-derived mesenchymal stem cell transplantation could improve diabetic intracavernosal pressure. Asian J Androl 2021; 24:171-175. [PMID: 33975986 PMCID: PMC8887109 DOI: 10.4103/aja.aja_33_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mesenchymal stem cells (MSCs) secrete various cytokines with angiogenic and neuroprotective effects. This study aimed to assess the effects of human umbilical cord Wharton's jelly-derived MSCs (hWJ-MSCs) on diabetes-related intracavernosal pressure (ICP) impairment in rats. hWJ-MSCs were isolated from human umbilical cord Wharton's jelly and transplanted into the corpus cavernosum of streptozotocin (STZ)-induced diabetic rats by unilateral injection. The erectile function was evaluated at 4 weeks, as well as the expression levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), endothelial nitric oxide synthase (eNOS), and insulin-like growth factor 1 (IGF1). STZ-induced diabetic rats showed impaired ICP, which was significantly improved by hWJ-MSC treatment. VEGF, eNOS, IGF1, and bFGF expression levels were higher in hWJ-MSC injection sites than those in control ones in STZ-induced diabetic rats. These results suggest that hWJ-MSC transplantation might improve diabetic erectile dysfunction through increased production of paracrine growth factors, highlighting a novel potential therapeutic option for erectile dysfunction.
Collapse
Affiliation(s)
- Jian-Hong Wu
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China.,Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Dong-Ya Wang
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Lu Sheng
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Wei-Qing Qian
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China.,Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qi Jiang
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China.,Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
19
|
Koh AEH, Alsaeedi HA, Rashid MBA, Lam C, Harun MHN, Ng MH, Mohd Isa H, Then KY, Bastion MLC, Farhana A, Khursheed Alam M, Subbiah SK, Mok PL. Transplanted Erythropoietin-Expressing Mesenchymal Stem Cells Promote Pro-survival Gene Expression and Protect Photoreceptors From Sodium Iodate-Induced Cytotoxicity in a Retinal Degeneration Model. Front Cell Dev Biol 2021; 9:652017. [PMID: 33987180 PMCID: PMC8111290 DOI: 10.3389/fcell.2021.652017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) are highly regarded as a potential treatment for retinal degenerative disorders like retinitis pigmentosa and age-related macular degeneration. However, donor cell heterogeneity and inconsistent protocols for transplantation have led to varied outcomes in clinical trials. We previously showed that genetically-modifying MSCs to express erythropoietin (MSCEPO) improved its regenerative capabilities in vitro. Hence, in this study, we sought to prove its potential in vivo by transplanting MSCsEPO in a rat retinal degeneration model and analyzing its retinal transcriptome using RNA-Seq. Firstly, MSCsEPO were cultured and expanded before being intravitreally transplanted into the sodium iodate-induced model. After the procedure, electroretinography (ERG) was performed bi-weekly for 30 days. Histological analyses were performed after the ERG assessment. The retina was then harvested for RNA extraction. After mRNA-enrichment and library preparation, paired-end RNA-Seq was performed. Salmon and DESeq2 were used to process the output files. The generated dataset was then analyzed using over-representation (ORA), functional enrichment (GSEA), and pathway topology analysis tools (SPIA) to identify enrichment of key pathways in the experimental groups. The results showed that the MSCEPO-treated group had detectable ERG waves (P <0.05), which were indicative of successful phototransduction. The stem cells were also successfully detected by immunohistochemistry 30 days after intravitreal transplantation. An initial over-representation analysis revealed a snapshot of immune-related pathways in all the groups but was mainly overexpressed in the MSC group. A subsequent GSEA and SPIA analysis later revealed enrichment in a large number of biological processes including phototransduction, regeneration, and cell death (Padj <0.05). Based on these pathways, a set of pro-survival gene expressions were extracted and tabulated. This study provided an in-depth transcriptomic analysis on the MSCEPO-treated retinal degeneration model as well as a profile of pro-survival genes that can be used as candidates for further genetic enhancement studies on stem cells.
Collapse
Affiliation(s)
- Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hiba Amer Alsaeedi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Munirah Binti Abd Rashid
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Chenshen Lam
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Hairul Nizam Harun
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Hazlita Mohd Isa
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kong Yong Then
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Malaysia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
20
|
Jalali MS, Saki G, Farbood Y, Azandeh SS, Mansouri E, Ghasemi Dehcheshmeh M, Sarkaki A. Therapeutic effects of Wharton's jelly-derived Mesenchymal Stromal Cells on behaviors, EEG changes and NGF-1 in rat model of the Parkinson's disease. J Chem Neuroanat 2021; 113:101921. [PMID: 33600923 DOI: 10.1016/j.jchemneu.2021.101921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022]
Abstract
Human Wharton's jelly-derived Mesenchymal Stromal Cells (hWJ-MSCs) have shown beneficial effects in improving the dopaminergic cells in the Parkinson's disease (PD). In the present study, the effects of hWJ-MSCs on hyperalgesia, anxiety deficiency and Pallidal local electroencephalogram (EEG) impairment, alone and combined with L-dopa, were examined in a rat model of PD. Adult male Wistar rats were divided into five groups: 1) sham, 2) PD, 3) PD + C (Cell therapy), 4) PD + C+D (Drug), and 5) PD + D. PD was induced by injection of 6-OHDA (16 μg/2 μl into medial forebrain bundle (MFB)). PD + C group received hWJ-MSCs (1 × 106 cells, intravenous (i.v.)) twice post PD induction. PD + C+D groups received hWJ-MSCs combined with L-Dopa/Carbidopa, (10/30 mg/kg, intraperitoneally (i.p.)). PD + D group received L-Dopa/Carbidopa alone. Four months later, analgesia, anxiety-like behaviors, were evaluated and Pallidal local EEG was recorded. Level of insulin-like growth factor 1 (IGF-1) was measured in the striatum and dopaminergic neurons were counted in substantia nigra (SNc). According to data, MFB-lesioned rats showed hyperalgesia in tail flick, anxiety-like symptoms in cognitive tests, impairment of electrical power of pallidal local EEG as field potential, count of dopaminergic neurons in SNc and level of IGF-1 in striatum. These complications restored significantly by MSCs treatment (p < 0.001). Our findings confirm that chronic treatment with hWJ-MSC, alone and in combination with L-Dopa, improved nociception and cognitive deficit in PD rats which may be the result of increasing IGF-1 and protect the viability of dopaminergic neurons.
Collapse
Affiliation(s)
- Maryam Sadat Jalali
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoub Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Saeed Azandeh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
21
|
Lam C, Alsaeedi HA, Koh AEH, Harun MHN, Hwei ANM, Mok PL, Luu CD, Yong TK, Subbiah SK, Bastion MLC. Human Dental Pulp Stem Cells (DPSCs) Therapy in Rescuing Photoreceptors and Establishing a Sodium Iodate-Induced Retinal Degeneration Rat Model. Tissue Eng Regen Med 2021; 18:143-154. [PMID: 33415670 DOI: 10.1007/s13770-020-00312-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Different methods have been used to inject stem cells into the eye for research. We previously explored the intravitreal route. Here, we investigate the efficacy of intravenous and subretinal-transplanted human dental pulp stem cells (DPSCs) in rescuing the photoreceptors of a sodium iodate-induced retinal degeneration model. METHODS Three groups of Sprague Dawley rats were used: intervention, vehicle group and negative control groups (n = 6 in each). Intravenous injection of 60 mg/kg sodium iodate (day 0) induced retinal degeneration. On day 4 post-injection of sodium iodate, the rats in the intervention group received intravenous DPSC and subretinal DPSC in the right eye; rats in the vehicle group received subretinal Hank's balance salt solution and intravenous normal saline; while negative control group received nothing. Electroretinogram (ERG) was performed to assess the retinal function at day 0 (baseline), day 4, day 11, day 18, day 26, and day 32. By the end of the study at day 32, the rats were euthanized, and both their enucleated eyes were sent for histology. RESULTS No significant difference in maximal ERG a-wave (p = 0.107) and b-wave, (p = 0.153) amplitude was seen amongst the experimental groups. However, photopic 30 Hz flicker amplitude of the study eye showed significant differences in the 3 groups (p = 0.032). Within the intervention group, there was an improvement in 30 Hz flicker ERG response of all 6 treated right eyes, which was injected with subretinal DPSC; while the 30 Hz flicker ERG of the non-treated left eyes remained flat. Histology showed improved outer nuclear layer thickness in intervention group; however, findings were not significant compared to the negative and vehicle groups. CONCLUSION Combination of subretinal and intravenous injection of DPSCs may have potential to rescue cone function from a NaIO3-induced retinal injury model.
Collapse
Affiliation(s)
- Chenshen Lam
- Faculty of Medicine, Department of Ophthalmology, UKM Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Hiba Amer Alsaeedi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Hairul Nizam Harun
- Faculty of Medicine, Department of Ophthalmology, UKM Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Angela Ng Min Hwei
- Tissue Engineering Centre, UKM Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, 3002, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, 3010, Australia
| | - Then Kong Yong
- Brighton Healthcare Suite G-2, Ground Floor, Bio X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Malaysia
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Mae-Lynn Catherine Bastion
- Faculty of Medicine, Department of Ophthalmology, UKM Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Jalali MS, Sarkaki A, Farbood Y, Azandeh SS, Mansouri E, Ghasemi Dehcheshmeh M, Saki G. Transplanted Wharton’s jelly mesenchymal stem cells improve memory and brain hippocampal electrophysiology in rat model of Parkinson’s disease. J Chem Neuroanat 2020; 110:101865. [DOI: 10.1016/j.jchemneu.2020.101865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
|
23
|
Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration. Cell Death Differ 2020; 28:1041-1061. [PMID: 33082517 PMCID: PMC7937676 DOI: 10.1038/s41418-020-00636-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Photoreceptor apoptosis is recognized as one key pathogenesis of retinal degeneration, the counteraction of which represents a promising approach to safeguard visual function. Recently, mesenchymal stem cell transplantation (MSCT) has demonstrated immense potential to treat ocular disorders, in which extracellular vesicles (EVs), particularly exosomes, have emerged as effective ophthalmological therapeutics. However, whether and how MSCT protects photoreceptors against apoptotic injuries remains largely unknown. Here, we discovered that intravitreal MSCT counteracted photoreceptor apoptosis and alleviated retinal morphological and functional degeneration in a mouse model of photoreceptor loss induced by N-methyl-N-nitrosourea (MNU). Interestingly, effects of MSCT were inhibited after blockade of exosomal generation by GW4869 preconditioning. Furthermore, MSC-derived exosomal transplantation (EXOT) effectively suppressed MNU-provoked photoreceptor injury. Notably, therapeutic efficacy of MSCT and EXOT on MNU-induced retinal degeneration was long-lasting as photoreceptor preservance and retinal maintenance were detected even after 1–2 months post to injection for only once. More importantly, using a natural occurring retinal degeneration model caused by a nonsense mutation of Phosphodiesterase 6b gene (Pde6bmut), we confirmed that MSCT and EXOT prevented photoreceptor loss and protected long-term retinal function. In deciphering therapeutic mechanisms regarding potential exosome-mediated communications, we identified that miR-21 critically maintained photoreceptor viability against MNU injury by targeting programmed cell death 4 (Pdcd4) and was transferred from MSC-derived exosomes in vivo for functional regulation. Moreover, miR-21 deficiency aggravated MNU-driven retinal injury and was restrained by EXOT. Further experiments revealed that miR-21 mediated therapeutic effects of EXOT on MNU-induced photoreceptor apoptosis and retinal dysfunction. These findings uncovered the efficacy and mechanism of MSCT-based photoreceptor protection, indicating exosomal miR-21 as a therapeutic for retinal degeneration.
Collapse
|
24
|
Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton's jelly-derived mesenchymal stem cells: prospective analysis of 1-year results. Stem Cell Res Ther 2020; 11:353. [PMID: 32787913 PMCID: PMC7425139 DOI: 10.1186/s13287-020-01870-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The aim of the study was to investigate annual structural and functional results, and their correlation with inheritance pattern of retinitis pigmentosa (RP) patients who were treated with Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs). MATERIAL AND METHODS This prospective, sequential, open-label phase-3 clinical study was conducted at Ankara University Faculty of Medicine, Department of Ophthalmology, between April 2019 and May 2020. The study included 34 eyes from 32 retinitis pigmentosa patients of various genotypes who were enrolled in the stem cells clinical trial. The patients were followed for 12 months after the WJ-MSCs transplantation into subtenon space and evaluated with consecutive examinations. Genetic mutations were investigated using a retinitis pigmentosa panel sequencing method consisting of 90 genes. All patients underwent a complete routine ophthalmic examination with best corrected visual acuity, optical coherence tomography angiography, visual field, and full-field electroretinography. Quantitative data obtained from baseline (T0), 6th month (T1), and 12th month (T2) examinations were compared. RESULTS According to timepoints at T0, T1, and T2: The mean outer retinal thickness was 100.3 μm, 119.1 μm, and 118.0 μm, respectively (p = 0.01; T0 < T1, T2). The mean horizontal ellipsoid zone width were 2.65 mm, 2.70 mm, and 2.69 mm respectively (p = 0.01; T0 < T1, T2). The mean best corrected visual acuity (BCVA) were 70.5 letters, 80.6 letters, and 79.9 letters, respectively (p = 0.01; T0 < T1, T2). The mean fundus perimetry deviation index (FPDI) was 8.0%, 11.4%, and 11.6%, respectively (p = 0.01; T0 < T1, T2). The mean full-field flicker ERG parameters at T0, T1, and T2: amplitudes were 2.4 mV, 5.0 mV, and 4.6 mV, respectively (p = 0.01; T0 < T1, T2). Implicit time were 43.3 ms, 37.9 ms, and 38.6 ms, respectively (p = 0.01; T0 > T1, T2). According to inheritance pattern, BCVA, FPDI, ERG amplitude, and implicit time data improved significantly in autosomal dominant (AD) and in autosomal recessive (AR) RP at 1 year follow-up (pAD = 0.01, pAR = 0.01; pAD = pAR > pX-linked). No ocular or systemic adverse events related to the surgical methods and/or WJ-MSCs were observed during the 1 year follow-up period. CONCLUSION Subtenon transplantation of WJ-MSCs was found to be effective and safe in the treatment of RP during the first year, similar to the sixth month's results. In autosomal dominant and autosomal recessive inheritance of RP, regardless of the genetic mutations, subtenon administration of WJ-MSCs can be considered an effective and safe option without any adverse effect for slowing or stopping the disease progression. TRIAL REGISTRATION ClinicalTrials.gov, NCT04224207 . Registered 8 January 2020.
Collapse
Affiliation(s)
- Emin Özmert
- Faculty of Medicine Department of Ophthalmology, Ankara University, Ankara, Turkey
| | - Umut Arslan
- Bioretina Eye Clinic, Ankara University Technopolis, Neorama Ofis 55-56 Yaşam Cad. No 13/A Beştepe, Yenimahalle, Ankara, Turkey
| |
Collapse
|
25
|
Nelidova D, Morikawa RK, Cowan CS, Raics Z, Goldblum D, Scholl HPN, Szikra T, Szabo A, Hillier D, Roska B. Restoring light sensitivity using tunable near-infrared sensors. Science 2020; 368:1108-1113. [DOI: 10.1126/science.aaz5887] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 04/09/2020] [Indexed: 12/29/2022]
Abstract
Enabling near-infrared light sensitivity in a blind human retina may supplement or restore visual function in patients with regional retinal degeneration. We induced near-infrared light sensitivity using gold nanorods bound to temperature-sensitive engineered transient receptor potential (TRP) channels. We expressed mammalian or snake TRP channels in light-insensitive retinal cones in a mouse model of retinal degeneration. Near-infrared stimulation increased activity in cones, ganglion cell layer neurons, and cortical neurons, and enabled mice to perform a learned light-driven behavior. We tuned responses to different wavelengths, by using nanorods of different lengths, and to different radiant powers, by using engineered channels with different temperature thresholds. We targeted TRP channels to human retinas, which allowed the postmortem activation of different cell types by near-infrared light.
Collapse
Affiliation(s)
- Dasha Nelidova
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Rei K. Morikawa
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Cameron S. Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Zoltan Raics
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - David Goldblum
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Hendrik P. N. Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Tamas Szikra
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Arnold Szabo
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Daniel Hillier
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Deutsches Primatzentrum, Leibniz Institute for Primate Research, Göttingen, Germany
- Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Centella asiatica (L.)-Neurodifferentiated Mesenchymal Stem Cells Promote the Regeneration of Peripheral Nerve. Tissue Eng Regen Med 2020; 17:237-251. [PMID: 32036567 DOI: 10.1007/s13770-019-00235-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Centella asiatica (L.) is a plant with neuroprotective and neuroregenerative properties; however, its effects on the neurodifferentiation of mesenchymal stem cells (MSCs) and on peripheral nerve injury are poorly explored. This study aimed to investigate the effects of C. asiatica (L.)-neurodifferentiated MSCs on the regeneration of peripheral nerve in a critical-size defect animal model. METHODS Nerve conduit was developed using decellularised artery seeded with C. asiatica-neurodifferentiated MSCs (ndMSCs). A 1.5 cm sciatic nerve injury in Sprague-Dawley rat was bridged with reversed autograft (RA) (n = 3, the gold standard treatment), MSC-seeded conduit (MC) (n = 4) or ndMSC-seeded conduit (NC) (n = 4). Pinch test and nerve conduction study were performed every 2 weeks for a total of 12 weeks. At the 12th week, the conduits were examined by histology and transmission electron microscopy. RESULTS NC implantation improved the rats' sensory sensitivity in a similar manner to RA. At the 12th week, nerve conduction velocity was the highest in NC compared with that of RA and MC. Axonal regeneration was enhanced in NC and RA as shown by the expression of myelin basic protein (MBP). The average number of myelinated axons was significantly higher in NC than in MC but significantly lower than in RA. The myelin sheath thickness was higher in NC than in MC but lower than in RA. CONCLUSION NC showed promising effects on nerve regeneration and functional restoration similar to those of RA. These findings revealed the neuroregenerative properties of C. asiatica and its potential as an alternative strategy for the treatment of critical size nerve defect.
Collapse
|
27
|
Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton's jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Res Ther 2020; 11:25. [PMID: 31931872 PMCID: PMC6958670 DOI: 10.1186/s13287-020-1549-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The aim of this study is to determine if umbilical cord Wharton's jelly derived mesenchymal stem cells implanted in sub-tenon space have beneficial effects on visual functions in retinitis pigmentosa patients by reactivating the degenerated photoreceptors in dormant phase. MATERIAL AND METHODS This prospective, open-label, phase-3 clinical trial was conducted between April of 2019 and October of 2019 at Ankara University Faculty of Medicine, Department of Ophthalmology. 32 RP patients (34 eyes) were included in the study. The patients were followed for 6 months after the Wharton's jelly derived mesenchymal stem cell administration, and evaluated with consecutive examinations. All patients underwent a complete routine ophthalmic examination, and best corrected visual acuity, optical coherens tomography angiography, visual field, multifocal and full-field electroretinography were performed. The quantitative results were obtained from a comparison of the pre-injection and final examination (6th month) values. RESULTS The mean best corrected visual acuity was 70.5 letters prior to Wharton's jelly derived mesenchymal stem cell application and 80.6 letters at the 6th month (p = 0.01). The mean visual field median deviation value was 27.3 dB before the treatment and 24.7 dB at the 6th month (p = 0.01). The mean outer retinal thickness was 100.3 μm before the treatment and 119.1 μm at 6th month (p = 0.01). In the multifocal electroretinography results, P1 amplitudes improved in ring1 from 24.8 to 39.8 nv/deg2 (p = 0.01), in ring2 from 6.8 to 13.6 nv/deg2 (p = 0.01), and in ring3 from 3.1 to 5.7 nv/deg2 (p = 0.02). P1 implicit times improved in ring1 from 44.2 to 32.4 ms (p = 0.01), in ring2 from 45.2 to 33.2 ms (p = 0.02), and in ring3 from 41.9 to 32.4 ms (p = 0.01). The mean amplitude improved in 16 Tds from 2.4 to 5.0 nv/deg2 (p = 0.01) and in 32 Tds from 2.4 to 4.8 nv/deg2 (p = 0.01) in the full-field flicker electroretinography results. Full field flicker electroretinography mean implicit time also improved in 16 Tds from 43.3 to 37.9 ms (p = 0.01). No ocular or systemic adverse events related to the two types of surgical methods and/or Wharton's jelly derived mesenchymal stem cells itself were observed during the follow-up period. CONCLUSION RP is a genetic disorder that can result in blindness with outer retinal degeneration. Regardless of the type of genetic mutation, sub-tenon Wharton's jelly derived mesenchymal stem cell administration appears to be an effective and safe option. There are no serious adverse events or ophthalmic / systemic side effects for 6 months follow-up. Although the long-term adverse effects are still unknown, as an extraocular approach, subtenon implantation of the stem cells seems to be a reasonable way to avoid the devastating side effects of intravitreal/submacular injection. Further studies that include long-term follow-up are needed to determine the duration of efficacy and the frequency of application. TRIAL REGISTRATION SHGM56733164. Redistered 28 January 2019 https://shgm.saglik.gov.tr/organ-ve-doku-nakli-koordinatorlugu/56733164/203 E.507.
Collapse
Affiliation(s)
- Emin Özmert
- Faculty of Medicine Department of Ophthalmology, Ankara University, Ankara, Turkey
| | - Umut Arslan
- Ankara University Technopolis, Neorama Ofis 55-56 Yaşam Cad, No 13/A Beştepe /Yenimahalle, Ankara, Turkey.
| |
Collapse
|
28
|
Tai L, Huang CJ, Choo KB, Cheong SK, Kamarul T. Oxidative Stress Down-Regulates MiR-20b-5p, MiR-106a-5p and E2F1 Expression to Suppress the G1/S Transition of the Cell Cycle in Multipotent Stromal Cells. Int J Med Sci 2020; 17:457-470. [PMID: 32174776 PMCID: PMC7053300 DOI: 10.7150/ijms.38832] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress has been linked to senescence and tumorigenesis via modulation of the cell cycle. Using a hydrogen peroxide (H2O2)-induced oxidative stress-induced premature senescence (OSIPS) model previously reported by our group, this study aimed to investigate the effects of oxidative stress on microRNA (miRNA) expression in relation to the G1-to-S-phase (G1/S) transition of the cell cycle and cell proliferation. On global miRNA analysis of the OSIPS cells, twelve significantly up- or down-regulated miRNAs were identified, the target genes of which are frequently associated with cancers. Four down-regulated miR-17 family miRNAs are predicted to target key pro- and anti-proliferative proteins of the p21/cyclin D-dependent kinase (CDK)/E2F1 pathway to modulate G1/S transition. Two miR-17 miRNAs, miR-20-5p and miR-106-5p, were confirmed to be rapidly and stably down-regulated under oxidative stress. While H2O2 treatment hampered G1/S transition and suppressed DNA synthesis, miR-20b-5p/miR-106a-5p over-expression rescued cells from growth arrest in promoting G1/S transition and DNA synthesis. Direct miR-20b-5p/miR-106a-5p regulation of p21, CCND1 and E2F1 was demonstrated by an inverse expression relationship in miRNA mimic-transfected cells. However, under oxidative stress, E2F1 expression was down-regulated, consistent with hampered G1/S transition and suppressed DNA synthesis and cell proliferation. To explain the observed E2F1 down-regulation under oxidative stress, a scheme is proposed which includes miR-20b-5p/miR-106a-5p-dependent regulation, miRNA-E2F1 autoregulatory feedback and E2F1 response to repair oxidative stress-induced DNA damages. The oxidative stress-modulated expression of miR-17 miRNAs and E2F1 may be used to develop strategies to retard or reverse MSC senescence in culture, or senescence in general.
Collapse
Affiliation(s)
- Lihui Tai
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Postgraduate Program, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Kong Bung Choo
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Soon Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Dean's Office, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group, National Orthopedic Centre of Excellence for Research and Learning & Department of Orthopedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Salehi H, Razavi S, Esfandiari E, Kazemi M, Amini S, Amirpour N. Application of Hanging Drop Culture for Retinal Precursor-Like Cells Differentiation of Human Adipose-Derived Stem Cells Using Small Molecules. J Mol Neurosci 2019; 69:597-607. [PMID: 31363912 DOI: 10.1007/s12031-019-01388-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
Retinal degenerative diseases lead to blindness due to poorly regenerative potential of the retina. Recently, cell therapy is more considered for degenerative diseases. Autologous mesenchymal stem cells derived from adipose tissue are a suitable source for this purpose. Therefore, we conducted a stepwise efficient method to differentiate human adipose-derived stem cells (hADSCs) into retinal precursor-like cells in vitro. We compared two differentiation protocols, monolayer and hanging drop cultures. Through the defined medium and 3D hanging drop culture method, we could achieve up to 75% retinal precursor gene expression profile (PAX6, RAX, CHX10, and CRX) from hADSCs. By imitation of in vivo development, for direct conversion of stem cells into retinal cells, the suppression of the BMP, Nodal, and Wnt signaling pathways was carried out by using three small molecules. The hADSCs were primarily differentiated into anterior neuroectodermal cells by expression of OTX2, SIX3, and Β-TUB III and then the differentiated cells were propelled into the retinal cells. According to our data from real-time PCR, RT-PCR, immunocytochemistry, and functional assay, it seems that the hanging drop method improved retinal precursor differentiation yield which these precursor-like cells respond to glutamate neurotransmitter. Regarding the easy accessibility and immunosuppressive properties of hADSCs and more efficient hanging drop method, this study may be useful for future autologous cell therapy of retinal degenerative disorders.
Collapse
Affiliation(s)
- Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetic, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahram Amini
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Amirpour
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
30
|
Sihota R, Sen S, Mohanty S, Ahmad M, Ravi A, Gupta V, Bhatla N. Effect of intracameral human cord blood-derived stem cells on lasered rabbit trabecular meshwork. Int Ophthalmol 2019; 39:2757-2766. [PMID: 31140023 DOI: 10.1007/s10792-019-01120-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study aimed to investigate the effect of intracameral human cord blood stem cells on lasered rabbit trabecular meshwork. METHODS Immediately following diode laser application to the trabecular meshwork, human cord blood stem cells were injected intracamerally, in one eye of 12 albino rabbits. The other eye of ten rabbits was lasered controls and two eyes were normal controls. Rabbits were killed after 4, 8 and 12 weeks. RESULTS Lasered control rabbit eyes showed significant disruption of trabecular architecture, loss and pleomorphism of trabecular endothelial cells and progressive narrowing of trabecular spaces till 12 weeks. In contrast, lasered eyes, concurrently injected with human cord blood stem cells, showed relatively preserved endothelial cellularity and structure of the trabecular meshwork, at all time points. Human CD34- and CD44-positive cells were identified in 7/8 eyes treated with stem cells, at 4 and 8 weeks, and 2 of 3 at 12 weeks. Many PKH26-labeled human cord blood cells were visible throughout the trabecular area at 4 weeks. They gradually decreased in number by 8 weeks, and at 12 weeks, they appeared to be oriented along trabecular beams. CONCLUSIONS There was a relative preservation of cellularity and architecture of the trabecular meshwork in eyes injected with human cord blood stem cells, as compared to lasered control eyes up to 12 weeks, without significant inflammation. This suggests a probable role for such stem cells in eyes with glaucoma, having trabecular dysfunction.
Collapse
Affiliation(s)
- Ramanjit Sihota
- Glaucoma Research Facility and Clinical Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Seema Sen
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mohammad Ahmad
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alok Ravi
- Glaucoma Research Facility and Clinical Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Viney Gupta
- Glaucoma Research Facility and Clinical Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neerja Bhatla
- Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
31
|
Ding SLS, Koh AEH, Kumar S, Ali Khan MS, Alzahrani B, Mok PL. Genetically-modified human mesenchymal stem cells to express erythropoietin enhances differentiation into retinal photoreceptors: An in-vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 195:33-38. [PMID: 31060031 DOI: 10.1016/j.jphotobiol.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Dysfunctional or death of retinal photoreceptors is an irreversible phenomenon that is closely associated with a broad range of retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration (AMD), resulting in successive loss of visual function and blindness. In search for viable treatment for retinal degenerative diseases, mesenchymal stem cells (MSCs) has demonstrated promising therapeutic capabilities to repair and replace damaged photoreceptor cells in both in vitro and in vivo conditions. Nevertheless, the dearth of MSC differentiation capacity into photoreceptors has limited its use in cell replacement therapy. Erythropoietin (EPO) has vital role in early neural retinal cell differentiation and demonstrated rescue potential on dying photoreceptor cells. Hence, we aimed to evaluate the differentiation capacity of MSCs into photoreceptor cells in the presence of human EPO protein. We derived the MSC from human Wharton's jelly of umbilical cord and transduced the cells with lentivirus particles encoding EPO and green fluorescent protein (GFP) as reporter gene. The transduced cells were selectively cultured and induced to differentiate into photoreceptors by exposing to photoreceptor differentiation cocktail. Our preliminary results showed that transduced cells exposed to induction medium had an enhanced differentiation capacity when compared to non-transduced cells. Our results demonstrated a novel strategy to increase the yield of in vitro photoreceptor differentiation and may be potentially useful in improving the efficiency of stem cell transplantation for ocular disorders.
Collapse
Affiliation(s)
- Suet Lee Shirley Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohammed Safwan Ali Khan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| |
Collapse
|
32
|
Ding SSL, Subbiah SK, Khan MSA, Farhana A, Mok PL. Empowering Mesenchymal Stem Cells for Ocular Degenerative Disorders. Int J Mol Sci 2019; 20:E1784. [PMID: 30974904 PMCID: PMC6480671 DOI: 10.3390/ijms20071784] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) have been employed in numerous pre-clinical and clinical settings for various diseases. MSCs have been used in treating degenerative disorders pertaining to the eye, for example, age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and optic neuritis. Despite the known therapeutic role and mechanisms of MSCs, low cell precision towards the targeted area and cell survivability at tissue needing repair often resulted in a disparity in therapeutic outcomes. In this review, we will discuss the current and feasible strategy options to enhance treatment outcomes with MSC therapy. We will review the application of various types of biomaterials and advances in nanotechnology, which have been employed on MSCs to augment cellular function and differentiation for improving treatment of visual functions. In addition, several modes of gene delivery into MSCs and the types of associated therapeutic genes that are important for modulation of ocular tissue function and repair will be highlighted.
Collapse
Affiliation(s)
- Shirley Suet Lee Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohammed Safwan Ali Khan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas University, College Station, Texas 77843, USA.
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| |
Collapse
|
33
|
Lucas-Ruiz F, Galindo-Romero C, García-Bernal D, Norte-Muñoz M, Rodríguez-Ramírez KT, Salinas-Navarro M, Millán-Rivero JE, Vidal-Sanz M, Agudo-Barriuso M. Mesenchymal stromal cell therapy for damaged retinal ganglion cells, is gold all that glitters? Neural Regen Res 2019; 14:1851-1857. [PMID: 31290434 PMCID: PMC6676874 DOI: 10.4103/1673-5374.259601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stromal cells are an excellent source of stem cells because they are isolated from adult tissues or perinatal derivatives, avoiding the ethical concerns that encumber embryonic stem cells. In preclinical models, it has been shown that mesenchymal stromal cells have neuroprotective and immunomodulatory properties, both of which are ideal for central nervous system treatment and repair. Here we will review the current literature on mesenchymal stromal cells, focusing on bone marrow mesenchymal stromal cells, adipose-derived mesenchymal stromal cells and mesenchymal stromal cells from the umbilical cord stroma, i.e., Wharton's jelly mesenchymal stromal cells. Finally, we will discuss the use of these cells to alleviate retinal ganglion cell degeneration following axonal trauma.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Caridad Galindo-Romero
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - David García-Bernal
- Unidad de Terapia Celular y Trasplante Hematopoyético, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - María Norte-Muñoz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Kristy T Rodríguez-Ramírez
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Manuel Salinas-Navarro
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Jose E Millán-Rivero
- Unidad de Terapia Celular y Trasplante Hematopoyético, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Marta Agudo-Barriuso
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
34
|
Millán-Rivero JE, Nadal-Nicolás FM, García-Bernal D, Sobrado-Calvo P, Blanquer M, Moraleda JM, Vidal-Sanz M, Agudo-Barriuso M. Human Wharton's jelly mesenchymal stem cells protect axotomized rat retinal ganglion cells via secretion of anti-inflammatory and neurotrophic factors. Sci Rep 2018; 8:16299. [PMID: 30389962 PMCID: PMC6214908 DOI: 10.1038/s41598-018-34527-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is emerging as an ideal tool to restore the wounded central nervous system (CNS). MSCs isolated from extra-embryonic tissues have some advantages compared to MSCs derived from adult ones, such as an improved proliferative capacity, life span, differentiation potential and immunomodulatory properties. In addition, they are more immunoprivileged, reducing the probability of being rejected by the recipient. Umbilical cords (UCs) are a good source of MSCs because they are abundant, safe, non-invasively harvested after birth and, importantly, they are not encumbered with ethical problems. Here we show that the intravitreal transplant of Wharton´s jelly mesenchymal stem cells isolated from three different human UCs (hWJMSCs) delays axotomy-induced retinal ganglion cell (RGC) loss. In vivo, hWJMSCs secrete anti-inflammatory molecules and trophic factors, the latter alone may account for the elicited neuroprotection. Interestingly, this expression profile differs between naive and injured retinas, suggesting that the environment in which the hWJMSCs are modulates their secretome. Finally, even though the transplant itself is not toxic for RGCs, it is not innocuous as it triggers a transient but massive infiltration of Iba1+cells from the choroid to the retina that alters the retinal structure.
Collapse
Affiliation(s)
- Jose E Millán-Rivero
- Unidad de Terapia Celular y Trasplante Hematopoyético. Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Dpto Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Francisco M Nadal-Nicolás
- Dpto Oftalmología, Universidad de Murcia, Murcia, Spain.,Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - David García-Bernal
- Unidad de Terapia Celular y Trasplante Hematopoyético. Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Dpto Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Paloma Sobrado-Calvo
- Dpto Oftalmología, Universidad de Murcia, Murcia, Spain.,Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Miguel Blanquer
- Unidad de Terapia Celular y Trasplante Hematopoyético. Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Dpto Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Jose M Moraleda
- Unidad de Terapia Celular y Trasplante Hematopoyético. Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Dpto Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Dpto Oftalmología, Universidad de Murcia, Murcia, Spain.,Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marta Agudo-Barriuso
- Dpto Oftalmología, Universidad de Murcia, Murcia, Spain. .,Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
35
|
Shirley Ding SL, Kumar S, Ali Khan MS, Ling Mok P. Human Mesenchymal Stem Cells Expressing Erythropoietin Enhance Survivability of Retinal Neurons Against Oxidative Stress: An In Vitro Study. Front Cell Neurosci 2018; 12:190. [PMID: 30108483 PMCID: PMC6079241 DOI: 10.3389/fncel.2018.00190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022] Open
Abstract
Retinal degeneration is a prominent feature in ocular disorders. In exploring possible treatments, Mesenchymal Stem Cells (MSCs) have been recognized to yield therapeutic role for retinal degenerative diseases. Studies have also displayed that erythropoietin (EPO) administration into degenerative retina models confers significant neuroprotective actions in limiting pathological cell death. In this study, we aimed to use MSCs to deliver EPO and to evaluate the ability of EPO to rescue retinal neurons from dying upon reactive oxidative stress induction. We derived human MSCs from Wharton's jelly (hWJMSCs) of the umbilical cord and cells were transduced with lentivirus particles encoding EPO and a reporter gene of green fluorescent protein (GFP). The supernatants of both transduced and non-transduced cells were collected and used as a pre-conditioning medium for Y79 retinoblastoma cells (retinal neuron cell line) following exposure to glutamate induction. Retinal cells exposed to glutamate showed reduced mitochondrial depolarization and enhanced improvement in cell viability when incubated with pre-conditioned media of transduced cells. Our results established a proof-of-concept that MSCs could be used as a candidate for the delivery of EPO therapeutic gene in the treatment of retinal degenerations.
Collapse
Affiliation(s)
- Suet Lee Shirley Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Mohammed Safwan Ali Khan
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmacology, Anwarul Uloom College of Pharmacy affiliated to Jawaharlal Nehru Technological University-Hyderabad, Hyderabad, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
36
|
Masse F, Ouellette M, Lamoureux G, Boisselier E. Gold nanoparticles in ophthalmology. Med Res Rev 2018; 39:302-327. [DOI: 10.1002/med.21509] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Florence Masse
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Mathieu Ouellette
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Guillaume Lamoureux
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Elodie Boisselier
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| |
Collapse
|
37
|
Over-expression of CNTF in bone marrow mesenchymal stem cells protects RPE cells from short-wavelength, blue-light injury. In Vitro Cell Dev Biol Anim 2018; 54:355-365. [PMID: 29564604 DOI: 10.1007/s11626-018-0243-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/13/2018] [Indexed: 12/20/2022]
Abstract
Increasing evidence has demonstrated that excessive blue-light (BL) with high photochemical energy and phototoxicity could induce apoptosis in retinal pigment epithelium (RPE) cells. RPE apoptosis leads to retina damage and further aggravate age-related macular degeneration (ARMD). Because of their neuroprotective, plasticity, and immunomodulatory ability, bone marrow mesenchymal stem cells (BMSCs) are recognized for retinal neuroprotection. RPE cells possess ciliary neurotrophic factor (CNTF) receptor complexes and can respond to CNTF; hence, we investigated the effects of BMSCs over-expressing CNTF on BL-injured RPE cells. BL-injured RPE cells were co-cultured with CNTF-BMSCs and GFP-BMSCs for 24 and 48 h. Superoxide dismutase and malondialdehyde assays were conducted to examine the effects of CNTF-BMSCs on the oxidative stress of RPE cells. VEGF protein secretion by RPE was determined by ELISA, and western blotting analysis was used to determine apoptotic protein expression and autophagic flux. Immunofluorescence was used to demonstrate the relationship between autophagy and apoptosis. We found that CNTF-BMSCs enhanced antioxidant capacity, decreased VEGF secretion, promoted autophagic flux, and inhibited apoptosis in BL-injured RPE cells, compared to GFP-BMSCs. Our findings suggest that CNTF over-expression enhances the protective effects of BMSCs on RPE cells, thus indicating subretinal-transplantation of CNTF-BMSCs may be a promising therapy for BL-injured retina.
Collapse
|
38
|
Li Z, Zhang Z, Ming WK, Chen X, Xiao XM. Tracing GFP-labeled WJMSCs in vivo using a chronic salpingitis model: an animal experiment. Stem Cell Res Ther 2017; 8:272. [PMID: 29191249 PMCID: PMC5709981 DOI: 10.1186/s13287-017-0714-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/22/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
Background The present study was conducted to evaluate the distribution of Wharton’s jelly-derived mesenchymal stem cells (WJMSCs) and their repairing function on the oviduct. Methods WJMSCs were transfected with the LV3-GFP-PURO lentivirus. Female New Zealand rabbits (n = 24) were divided randomly into control A and B groups and experimental C and D groups to establish inflammation models. Sterile saline solution or WJMSCs were injected into rabbits via ear veins and/or genital tract perfusion once weekly for 3 weeks. All rabbits were humanely sacrificed 1 week after the last perfusion to collect the oviduct, uterus, liver, and bladder for examination. Green fluorescent protein (GFP) and cytokeratin 7 (CK7) were imaged using a Leica Qwin Plus V3 fluorescence confocal microscope and analyzed as mean optical densities in an Image-Pro Plus analysis system. Results We found that lentivirus expressing the GFP gene produced an efficient transfection. The mean optical density values of GFP and CK7 in the oviducts were higher in the experimental D group than those in the control A and experimental C groups. No GFP fluorescence deposits occurred in the bladder of the control A group or experimental C group. Colocalization of CK7 and WJMSCs was observed in the oviducts in all groups. Conclusions WJMSCs exhibited homing characteristics and migrated to the injured oviduct to promote epithelial cell growth. Additionally, local treatment resulted in higher efficiency.
Collapse
Affiliation(s)
- Zhe Li
- The Department of Obstetrics and Gynecology, 1st Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Zhao Zhang
- The Department of Obstetrics and Gynecology, 1st Affiliated Hospital of Jinan University, Guangzhou, 510000, China.,The Department of Reproduction, Southern Medical University Affiliate Dongguan People's Hospital, Dongguan, China
| | - Wai-Kit Ming
- The Department of Obstetrics and Gynecology, 1st Affiliated Hospital of Jinan University, Guangzhou, 510000, China.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Xin Chen
- The Department of Obstetrics and Gynecology, 1st Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Xiao-Min Xiao
- The Department of Obstetrics and Gynecology, 1st Affiliated Hospital of Jinan University, Guangzhou, 510000, China.
| |
Collapse
|
39
|
Bonilla-Porras AR, Arevalo-Arbelaez A, Alzate-Restrepo JF, Velez-Pardo C, Jimenez-Del-Rio M. PARKIN overexpression in human mesenchymal stromal cells from Wharton's jelly suppresses 6-hydroxydopamine-induced apoptosis: Potential therapeutic strategy in Parkinson's disease. Cytotherapy 2017; 20:45-61. [PMID: 29079356 DOI: 10.1016/j.jcyt.2017.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND AIMS Stem cell transplantation is an excellent option for regenerative or replacement therapy. However, deleterious microenvironmental and endogenous factors (e.g., oxidative stress) compromise ongoing graft survival and longevity. Therefore, (transient or stable) genetically modified cells may be reasonably thought to resist oxidative stress-induced damage. Genetic engineering of mesenchymal stromal cells (MSCs) obtained from Wharton's jelly tissue may offer some therapeutic potential. PARKIN is a multifunctional ubiquitin ligase able to protect dopaminergic cells against stress-related signaling. We, therefore, evaluated the effect of the neurotoxicant 6-hydroxydopamine (6-OHDA) on regulated cell death signaling in MSCs and investigated whether overexpression of PARKIN in MSCs was capable of modulating the effect of 6-OHDA. METHODS We transiently transfected Wharton's jelly-derived MSCs with an mCherry-PARKIN vector using the Lipofectamine LTX method. Naïve MSCs and MSCs overexpressing PARKIN were exposed to increasing concentrations of 6-OHDA. We used light and fluorescence microscopy, flow cytometry, immunocytochemistry staining, in-cell Western and Western blot analysis. RESULTS After 12-24 h of 6-OHDA exposure, we detected dichlorofluorescein (DCF)-positive cells (80%) indicative of reactive oxygen species (H2O2) production, reduced cell viability (40-50%), decreased mitochondrial membrane potential (ΔΨm, ~35-45%), DNA fragmentation (18-30%), and G1-arrested cell cycle in the MSCs. 6-OHDA exposure increased the expression of the transcription factor c-JUN, increased the expression of the mitochondria maintenance Phosphatase and tensin homologue-induced putative kinase 1 (PINK1) protein and increased the expression of pro-apoptotic PUMA, caspase-3 and apoptosis-inducing factor (AIF). 6-OHDA exposure also significantly augmented the oxidation of the oxidative stress sensor, DJ-1. Overexpression of PARKIN in MSCs not only significantly reduced the expression of cell death and oxidative stress markers but also significantly reduced DCF-positive cells (~50% reduction). DISCUSSION 6-OHDA induced apoptosis in MSCs via generation of H2O2, activation of c-JUN and PUMA, mitochondrial depolarization and nuclei fragmentation. Our findings suggest that PARKIN protects MSCs against 6-OHDA toxicity by partly interacting with H2O2, reducing the expression of c-JUN, PUMA, AIF and caspase-3, and maintaining the mitochondrial ΔΨm.
Collapse
Affiliation(s)
- A R Bonilla-Porras
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - A Arevalo-Arbelaez
- National Center for Genome Sequencing, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - J F Alzate-Restrepo
- National Center for Genome Sequencing, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - C Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia.
| | - M Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia.
| |
Collapse
|
40
|
Raik S, Kumar A, Bhattacharyya S. Insights into cell-free therapeutic approach: Role of stem cell "soup-ernatant". Biotechnol Appl Biochem 2017; 65:104-118. [PMID: 28321921 DOI: 10.1002/bab.1561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/02/2017] [Indexed: 12/16/2022]
Abstract
Current advances in medicine have revolutionized the field of regenerative medicine dramatically with newly evolved therapies for repair or replacement of degenerating or injured tissues. Stem cells (SCs) can be harvested from different sources for clinical therapeutics, which include fetal tissues, umbilical cord blood, embryos, and adult tissues. SCs can be isolated and differentiated into desired lineages for tissue regeneration and cell replacement therapy. However, several loopholes need to be addressed properly before this can be extended for large-scale therapeutic application. These include a careful approach for patient safety during SC treatments and tolerance of recipients. SC treatments are associated with a number of risk factors and require successful integration and survival of transplanted cells in the desired microenvironment with concurrent tissue regeneration. Recent studies have focused on developing alternatives that can replace the cell-based therapy using paracrine factors. The development of stem "cell free" therapies can be devoted mainly to the use of soluble factors (secretome), extracellular vesicles, and mitochondrial transfer. The present review emphasizes on the paradigms related to the use of SC-based therapeutics and the potential applications of a cell-free approach as an alternative to cell-based therapy in the area of regenerative medicine.
Collapse
Affiliation(s)
- Shalini Raik
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Ajay Kumar
- Department of Biophysics, PGIMER, Chandigarh, India
| | | |
Collapse
|
41
|
Cellular Reparative Mechanisms of Mesenchymal Stem Cells for Retinal Diseases. Int J Mol Sci 2017; 18:ijms18081406. [PMID: 28788088 PMCID: PMC5577990 DOI: 10.3390/ijms18081406] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
The use of multipotent mesenchymal stem cells (MSCs) has been reported as promising for the treatment of numerous degenerative disorders including the eye. In retinal degenerative diseases, MSCs exhibit the potential to regenerate into retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Delivery of MSCs was found to improve retinal morphology and function and delay retinal degeneration. In this review, we revisit the therapeutic role of MSCs in the diseased eye. Furthermore, we reveal the possible cellular mechanisms and identify the associated signaling pathways of MSCs in reversing the pathological conditions of various ocular disorders such as age-related macular degeneration (AMD), retinitis pigmentosa, diabetic retinopathy, and glaucoma. Current stem cell treatment can be dispensed as an independent cell treatment format or with the combination of other approaches. Hence, the improvement of the treatment strategy is largely subjected by our understanding of MSCs mechanism of action.
Collapse
|
42
|
Higuchi A, Kumar SS, Benelli G, Alarfaj AA, Munusamy MA, Umezawa A, Murugan K. Stem Cell Therapies for Reversing Vision Loss. Trends Biotechnol 2017; 35:1102-1117. [PMID: 28751147 DOI: 10.1016/j.tibtech.2017.06.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/17/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022]
Abstract
Current clinical trials that evaluate human pluripotent stem cell (hPSC)-based therapies predominantly target treating macular degeneration of the eyes because the eye is an isolated tissue that is naturally weakly immunogenic. Here, we discuss current bioengineering approaches and biomaterial usage in combination with stem cell therapy for macular degeneration disease treatment. Retinal pigment epithelium (RPE) differentiated from hPSCs is typically used in most clinical trials for treating patients, whereas bone marrow mononuclear cells (BMNCs) or mesenchymal stem cells (MSCs) are intravitreally transplanted, undifferentiated, into patient eyes. We also discuss reported negative effects of stem cell therapy, such as patients becoming blind following transplantation of adipose-derived stem cells, which are increasingly used by 'stem-cell clinics'.
Collapse
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Road, Jhongli, Taoyuan 32001, Taiwan; Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Akihiko Umezawa
- Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India; Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| |
Collapse
|
43
|
Mok PL, Leow SN, Koh AEH, Mohd Nizam HH, Ding SLS, Luu C, Ruhaslizan R, Wong HS, Halim WHWA, Ng MH, Idrus RBH, Chowdhury SR, Bastion CML, Subbiah SK, Higuchi A, Alarfaj AA, Then KY. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer. Int J Mol Sci 2017; 18:ijms18020345. [PMID: 28208719 PMCID: PMC5343880 DOI: 10.3390/ijms18020345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/09/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.
Collapse
Affiliation(s)
- Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Sue Ngein Leow
- Department of Ophthalmology, Hospital Sultanah Aminah, 80100 Johor Bahru, Johor, Malaysia.
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Hairul Harun Mohd Nizam
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Suet Lee Shirley Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Chi Luu
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne 3002, Australia.
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne 3002, Australia.
| | - Raduan Ruhaslizan
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Hon Seng Wong
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | | | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Ruszymah Binti Hj Idrus
- Department of Physiology, Universiti Kebangsaan Malaysia Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Catherine Mae-Lynn Bastion
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Suresh Kumar Subbiah
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan 32001, Taiwan.
- Department of Reproduction, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Kong Yong Then
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
44
|
Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, Zam A, Zawadzki RJ, Werner JS, Nolta JA. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res 2017; 56:148-165. [PMID: 27784628 PMCID: PMC5237620 DOI: 10.1016/j.preteyeres.2016.10.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy.
Collapse
Affiliation(s)
- Susanna S Park
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA.
| | - Elad Moisseiev
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA.
| | - Gerhard Bauer
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| | - Johnathon D Anderson
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| | - Maria B Grant
- Department of Ophthalmology, Glick Eye Institute, Indiana University, Indianapolis, IN, USA.
| | - Azhar Zam
- UC Davis RISE Eye-Pod Small Animal Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA.
| | - Robert J Zawadzki
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA; UC Davis RISE Eye-Pod Small Animal Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA.
| | - John S Werner
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA.
| | - Jan A Nolta
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
45
|
Muduli S, Lee HHC, Yang JS, Chen TY, Higuchi A, Kumar SS, Alarfaj AA, Munusamy MA, Benelli G, Murugan K, Liu CY, Chen YF, Chang Y, Moorthy B, Wang HC, Hsu ST, Ling QD. Proliferation and osteogenic differentiation of amniotic fluid-derived stem cells. J Mater Chem B 2017; 5:5345-5354. [DOI: 10.1039/c7tb01152k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The osteogenic differentiation of stem cells.
Collapse
|
46
|
Overview of retinal differentiation potential of mesenchymal stem cells: A promising approach for retinal cell therapy. Ann Anat 2016; 210:52-63. [PMID: 27986614 DOI: 10.1016/j.aanat.2016.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/10/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
Retinal disease caused by retinal cell apoptosis leads to irreversible vision loss. Stem cell investigation efforts have been made to solve and cure retinal disorders. There are several sources of stem cells which have been used in these experiments. Numerous studies demonstrated that transplanted stem cells can migrate into and integrate in different layers of retina. Among these, mesenchymal stem cells (MSCs) were considered a promising source for cell therapy. Here, we review the literature assessing the potential of MSCs to differentiate into retinal cells in vivo and in vitro as well as their clinical application. However, more investigation is required to define the protocols that optimize stem cell differentiation and their functional integration in the retina.
Collapse
|
47
|
Bakondi B, Girman S, Lu B, Wang S. Multimodal Delivery of Isogenic Mesenchymal Stem Cells Yields Synergistic Protection from Retinal Degeneration and Vision Loss. Stem Cells Transl Med 2016; 6:444-457. [PMID: 28191768 PMCID: PMC5442813 DOI: 10.5966/sctm.2016-0181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022] Open
Abstract
We previously demonstrated that subretinal injection (SRI) of isogenic mesenchymal stem cells (MSCs) reduced the severity of retinal degeneration in Royal College of Surgeons rats in a focal manner. In contrast, intravenous MSC infusion (MSCIV ) produced panoptic retinal rescue. By combining these treatments, we now show that MSCIV supplementation potentiates the MSCSRI -mediated rescue of photoreceptors and visual function. Electrophysiological recording from superior colliculi revealed 3.9-fold lower luminance threshold responses (LTRs) and 22% larger functional rescue area from combined treatment compared with MSCSRI alone. MSCIV supplementation of sham (saline) injection also improved LTRs 3.4-fold and enlarged rescue areas by 27% compared with saline alone. We confirmed the involvement of MSC chemotaxis for vision rescue by modulating C-X-C chemokine receptor 4 activity before MSCIV but without increased retinal homing. Rather, circulating platelets and lymphocytes were reduced 3 and 7 days after MSCIV , respectively. We demonstrated MSCSRI -mediated paracrine support of vision rescue by SRI of concentrated MSC-conditioned medium and assessed function by electroretinography and optokinetic response. MSC-secreted peptides increased retinal pigment epithelium (RPE) metabolic activity and clearance of photoreceptor outer segments ex vivo, which was partially abrogated by antibody blockade of trophic factors in concentrated MSC-conditioned medium, or their cognate receptors on RPE. These data support multimodal mechanisms for MSC-mediated retinal protection that differ by administration route and synergize when combined. Thus, using MSCIV as adjuvant therapy might improve cell therapies for retinal dystrophy and warrants further translational evaluation. Stem Cells Translational Medicine 2017;6:444-457.
Collapse
Affiliation(s)
- Benjamin Bakondi
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
48
|
Bashar AE, Metcalfe AL, Viringipurampeer IA, Yanai A, Gregory-Evans CY, Gregory-Evans K. An ex vivo gene therapy approach in X-linked retinoschisis. Mol Vis 2016; 22:718-33. [PMID: 27390514 PMCID: PMC4919093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/22/2016] [Indexed: 10/28/2022] Open
Abstract
PURPOSE X-linked retinoschisis (XLRS) is juvenile-onset macular degeneration caused by haploinsufficiency of the extracellular cell adhesion protein retinoschisin (RS1). RS1 mutations can lead to either a non-functional protein or the absence of protein secretion, and it has been established that extracellular deficiency of RS1 is the underlying cause of the phenotype. Therefore, we hypothesized that an ex vivo gene therapy strategy could be used to deliver sufficient extracellular RS1 to reverse the phenotype seen in XLRS. Here, we used adipose-derived, syngeneic mesenchymal stem cells (MSCs) that were genetically modified to secrete human RS1 and then delivered these cells by intravitreal injection to the retina of the Rs1h knockout mouse model of XLRS. METHODS MSCs were electroporated with two transgene expression systems (cytomegalovirus (CMV)-controlled constitutive and doxycycline-induced Tet-On controlled inducible), both driving expression of human RS1 cDNA. The stably transfected cells, using either constitutive mesenchymal stem cell (MSC) or inducible MSC cassettes, were assayed for their RS1 secretion profile. For single injection studies, 100,000 genetically modified MSCs were injected into the vitreous cavity of the Rs1h knockout mouse eye at P21, and data were recorded at 2, 4, and 8 weeks post-injection. The control groups received either unmodified MSCs or vehicle injection. For the multiple injection studies, the mice received intravitreal MSC injections at P21, P60, and P90 with data collection at P120. For the single- and multiple-injection studies, the outcomes were measured with electroretinography, optokinetic tracking responses (OKT), histology, and immunohistochemistry. RESULTS Two lines of genetically modified MSCs were established and found to secrete RS1 at a rate of 8 ng/million cells/day. Following intravitreal injection, RS1-expressing MSCs were found mainly in the inner retinal layers. Two weeks after a single injection of MSCs, the area of the schisis cavities was reduced by 65% with constitutive MSCs and by 83% with inducible MSCs, demonstrating improved inner nuclear layer architecture. This benefit was maintained up to 8 weeks post-injection and corresponded to a significant improvement in the electroretinogram (ERG) b-/a-wave ratio at 8 weeks (2.6 inducible MSCs; 1.4 untreated eyes, p<0.05). At 4 months after multiple injections, the schisis cavity areas were reduced by 78% for inducible MSCs and constitutive MSCs, more photoreceptor nuclei were present (700/µm constitutive MSC; 750/µm inducible MSC; 383/µm untreated), and the ERG b-wave was significantly improved (threefold higher with constitutive MSCs and twofold higher with inducible MSCs) compared to the untreated control group. CONCLUSIONS These results establish that extracellular delivery of RS1 rescues the structural and functional deficits in the Rs1h knockout mouse model and that this ex vivo gene therapy approach can inhibit progression of disease. This proof-of-principle work suggests that other inherited retinal degenerations caused by a deficiency of extracellular matrix proteins could be targeted by this strategy.
Collapse
|
49
|
Shirley Ding SL, Leow SN, Munisvaradass R, Koh EH, Bastion MLC, Then KY, Kumar S, Mok PL. Revisiting the role of erythropoietin for treatment of ocular disorders. Eye (Lond) 2016; 30:1293-1309. [PMID: 27285322 DOI: 10.1038/eye.2016.94] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Erythropoietin (EPO) is a glycoprotein hormone conventionally thought to be responsible only in producing red blood cells in our body. However, with the discovery of the presence of EPO and EPO receptors in the retinal layers, the EPO seems to have physiological roles in the eye. In this review, we revisit the role of EPO in the eye. We look into the biological role of EPO in the development of the eye and the physiologic roles that it has. Apart from that, we seek to understand the mechanisms and pathways of EPO that contributes to the therapeutic and pathological conditions of the various ocular disorders such as diabetic retinopathy, retinopathy of prematurity, glaucoma, age-related macular degeneration, optic neuritis, and retinal detachment. With these understandings, we discuss the clinical applications of EPO for treatment of ocular disorders, modes of administration, EPO formulations, current clinical trials, and its future directions.
Collapse
Affiliation(s)
- S L Shirley Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - S N Leow
- Department of Ophthalmology, Hospital Sultanah Aminah, Johor Bahru, Malaysia
| | - R Munisvaradass
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - E H Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - M L C Bastion
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - K Y Then
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - S Kumar
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - P L Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
50
|
Davis RJ, Blenkinsop TA, Campbell M, Borden SM, Charniga CJ, Lederman PL, Frye AM, Aguilar V, Zhao C, Naimark M, Kiehl TR, Temple S, Stern JH. Human RPE Stem Cell-Derived RPE Preserves Photoreceptors in the Royal College of Surgeons Rat: Method for Quantifying the Area of Photoreceptor Sparing. J Ocul Pharmacol Ther 2016; 32:304-9. [PMID: 27182605 DOI: 10.1089/jop.2015.0162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Numerous preclinical studies have shown that transplantation of stem cell-derived retinal pigment epithelial cell (RPE) preserves photoreceptor cell anatomy in the dystrophic Royal College of Surgeons (RCS) rat. How rescue is spatially distributed over the eye, relative to the transplantation site, is less clear. To understand spatial variations in transplant efficacy, we have developed a method to measure the spatial distribution of rescued photoreceptor cells. METHODS Human RPE Stem Cell-derived RPE (RPESC-RPE) cells were subretinally injected into RCS rat eyes. After tissue recovery and orientating the globe, a series of retinal sections were cut through the injected area. Sections were stained with DAPI (4',6-diamidino-2-phenylindole) and a number of photoreceptor nuclei were counted across the nasal-temporal and superior-inferior axes. These data were used to construct 2D maps of the area of photoreceptor cell saving. RESULTS Photoreceptor cell preservation was detected in the injected temporal hemisphere and occupied areas greater than 4 mm(2) centered near the injection sites. Rescue was directed toward the central retina and superior and inferior poles, with maximal number of rescued photoreceptor cells proximal to the injection sites. CONCLUSIONS RPESC-RPE transplantation preserves RCS photoreceptor cells. The photoreceptor cell contour maps readily convey the extent of rescue across the eye. The consistent alignment and quantification of results using this method allow the application of other downstream statistical analyses and comparisons to better understand transplantation therapy in the eye.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amber M Frye
- 1 Neural Stem Cell Institute , Rensselaer, New York
| | | | - Cuiping Zhao
- 1 Neural Stem Cell Institute , Rensselaer, New York
| | | | | | - Sally Temple
- 1 Neural Stem Cell Institute , Rensselaer, New York
| | | |
Collapse
|