1
|
Ge B, Dong K, Li R, Bi X, Liu Q, Zhang W, Chen Y, Lu C. Isolation and functional characterization of cold-induced gene (AmCIP) promoter from Ammopiptanthus mongolicus. Gene 2024; 909:148311. [PMID: 38401831 DOI: 10.1016/j.gene.2024.148311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
AmCIP is a dehydrin-like protein which involved in abiotic stress tolerance in xerophytes evergreen woody plant A. mongolicus. AmCIP could be induced in the cotyledon and radicle during cold acclimation. To further elucidate the regulation of the upstream region of the gene, we isolated and characterized the promoter of AmCIP. Herein, a 1115 bp 5'-flanking region of AmCIP genomic DNA was isolated and cloned by genome walking from A. mongolicus and the segment sequence was identified as "PrAmCIP" promoter. Analysis of the promoter sequence revealed the presences of some basic cis-acting elements, which were related to various environmental stresses and plant hormones. GUS histochemical staining of transgene tobacco showed that PrAmCIP was induced by 4℃, 55℃, NaCl, mannitol and ABA, whereas it could hardly drive GUS gene expression under normal conditions. Furthermore, we constructed three deletion fragments and genetically transformed them into Arabidopsis thaliana. GUS histochemical staining showed that the MYCATERD1 element of the CP7 fragment (-189 ∼ -1) may be a key element in response to drought. In conclusion, we provide an inducible promoter, PrAmCIP, which can be applied to the development of transgenic plants for abiotic stresse tolerance.
Collapse
Affiliation(s)
- Bohao Ge
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Kuo Dong
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Rongchen Li
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaorui Bi
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qianru Liu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuzhen Chen
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Cunfu Lu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Karas M, Vešelényiová D, Boszorádová E, Nemeček P, Gerši Z, Moravčíková J. Comparative Analysis of Dehydrins from Woody Plant Species. Biomolecules 2024; 14:250. [PMID: 38540671 PMCID: PMC10967807 DOI: 10.3390/biom14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
We conducted analyses on 253 protein sequences (Pfam00257) derived from 25 woody plant species, including trees, shrubs, and vines. Our goal was to gain insights into their architectural types, biochemical characteristics, and potential involvement in mitigating abiotic stresses, such as drought, cold, or salinity. The investigated protein sequences (253) comprised 221 angiosperms (85 trees/shrubs and 36 vines) and 32 gymnosperms. Our sequence analyses revealed the presence of seven architectural types: Kn, KnS, SKn, YnKn, YnSKn, FSKn, and FnKn. The FSKn type predominated in tree and shrub dehydrins of both gymnosperms and angiosperms, while the YnSKn type was more prevalent in vine dehydrins. The YnSKn and YnKn types were absent in gymnosperms. Gymnosperm dehydrins exhibited a shift towards more negative GRAVY scores and Fold Indexes. Additionally, they demonstrated a higher Lys content and lower His content. By analyzing promoter sequences in the angiosperm species, including trees, shrubs, and vines, we found that these dehydrins are induced by the ABA-dependent and light-responsive pathways. The presence of stress- and hormone-related cis-elements suggests a protective effect against dehydration, cold, or salinity. These findings could serve as a foundation for future studies on woody dehydrins, especially in the context of biotechnological applications.
Collapse
Affiliation(s)
- Milan Karas
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.K.); (D.V.); (Z.G.)
| | - Dominika Vešelényiová
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.K.); (D.V.); (Z.G.)
| | - Eva Boszorádová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07 Nitra, Slovakia;
| | - Peter Nemeček
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Zuzana Gerši
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.K.); (D.V.); (Z.G.)
| | - Jana Moravčíková
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.K.); (D.V.); (Z.G.)
| |
Collapse
|
3
|
Wang Y, Wang J, Sarwar R, Zhang W, Geng R, Zhu KM, Tan XL. Research progress on the physiological response and molecular mechanism of cold response in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1334913. [PMID: 38352650 PMCID: PMC10861734 DOI: 10.3389/fpls.2024.1334913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Low temperature is a critical environmental stress factor that restricts crop growth and geographical distribution, significantly impacting crop quality and yield. When plants are exposed to low temperatures, a series of changes occur in their external morphology and internal physiological and biochemical metabolism. This article comprehensively reviews the alterations and regulatory mechanisms of physiological and biochemical indices, such as membrane system stability, redox system, fatty acid content, photosynthesis, and osmoregulatory substances, in response to low-temperature stress in plants. Furthermore, we summarize recent research on signal transduction and regulatory pathways, phytohormones, epigenetic modifications, and other molecular mechanisms mediating the response to low temperatures in higher plants. In addition, we outline cultivation practices to improve plant cold resistance and highlight the cold-related genes used in molecular breeding. Last, we discuss future research directions, potential application prospects of plant cold resistance breeding, and recent significant breakthroughs in the research and application of cold resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Li X, Feng H, Liu S, Cui J, Liu J, Shi M, Zhao J, Wang L. Dehydrin CaDHN2 Enhances Drought Tolerance by Affecting Ascorbic Acid Synthesis under Drought in Peppers. PLANTS (BASEL, SWITZERLAND) 2023; 12:3895. [PMID: 38005792 PMCID: PMC10675185 DOI: 10.3390/plants12223895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Peppers (Capsicum annuum L.), as a horticultural crop with one of the highest ascorbic acid contents, are negatively affected by detrimental environmental conditions both in terms of quality and productivity. In peppers, the high level of ascorbic acid is not only a nutrient substance but also plays a role in environmental stress, i.e., drought stress. When suffering from drought stress, plants accumulate dehydrins, which play important roles in the stress response. Here, we isolated an SK3-type DHN gene CaDHN2 from peppers. CaDHN2 was located in the nucleus, cytoplasm, and cell membrane. In CaDHN2-silenced peppers, which are generated by virus-induced gene silencing (VIGS), the survival rate is much lower, the electrolytic leakage is higher, and the accumulation of reactive oxygen species (ROS) is greater when compared with the control under drought stress. Moreover, when CaDHN2 (CaDHN2-OE) is overexpressed in Arabidopsis, theoverexpressing plants show enhanced drought tolerance, increased antioxidant enzyme activities, and lower ROS content. Based on yeast two-hybrid (Y2H), GST-pull down, and bimolecular fluorescence complementation (BiFC) results, we found that CaDHN2 interacts with CaGGP1, the key enzyme in ascorbic acid (AsA) synthesis, in the cytoplasm. Accordingly, the level of ascorbic acid is highly reduced in CaDHN2-silenced peppers, indicating that CaDHN2 interacts with CaGGP1 to affect the synthesis of ascorbic acid under drought stress, thus improving the drought tolerance of peppers. Our research provides a basis for further study of the function of DHN genes.
Collapse
Affiliation(s)
- Xin Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Hao Feng
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.F.); (M.S.); (J.Z.)
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Junjun Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Jiannan Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Mingyu Shi
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.F.); (M.S.); (J.Z.)
| | - Jielong Zhao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.F.); (M.S.); (J.Z.)
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| |
Collapse
|
5
|
Arce RC, Carrillo N, Pierella Karlusich JJ. The chloroplast redox-responsive transcriptome of solanaceous plants reveals significant nuclear gene regulatory motifs associated to stress acclimation. PLANT MOLECULAR BIOLOGY 2022; 108:513-530. [PMID: 35044587 DOI: 10.1007/s11103-022-01240-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Transcriptomes of solanaceous plants expressing a plastid-targeted antioxidant protein were analysed to identify chloroplast redox networks modulating the expression of nuclear genes associated with stress acclimation. Plastid functions depend on the coordinated expression of nuclear genes, many of them associated to developmental and stress response pathways. Plastid-generated signals mediate this coordination via retrograde signaling, which includes sensing of chloroplast redox state and levels of reactive oxygen species (ROS), although it remains a poorly understood process. Chloroplast redox poise and ROS build-up can be modified by recombinant expression of a plastid-targeted antioxidant protein, i.e., cyanobacterial flavodoxin, with the resulting plants displaying increased tolerance to multiple environmental challenges. Here we analysed the transcriptomes of these flavodoxin-expressing plants to study the coordinated transcriptional responses of the nucleus to the chloroplast redox status and ROS levels during normal growth and stress responses (drought or biotic stress) in tobacco and potato, members of the economically important Solanaceae family. We compared their transcriptomes against those from stressed and mutant plants accumulating ROS in different subcellular compartments and found distinct ROS-related imprints modulated by flavodoxin expression and/or stress. By introducing our datasets in a large-scale interaction network, we identified transcriptional factors related to ROS and stress responses potentially involved in flavodoxin-associated signaling. Finally, we discovered identical cis elements in the promoters of many genes that respond to flavodoxin in the same direction as in wild-type plants under stress, suggesting a priming effect of flavodoxin before stress manifestation. The results provide a genome-wide picture illustrating the relevance of chloroplast redox status on biotic and abiotic stress responses and suggest new cis and trans targets to generate stress-tolerant solanaceous crops.
Collapse
Affiliation(s)
- Rocío C Arce
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Juan J Pierella Karlusich
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
6
|
Plant Dehydrins: Expression, Regulatory Networks, and Protective Roles in Plants Challenged by Abiotic Stress. Int J Mol Sci 2021; 22:ijms222312619. [PMID: 34884426 PMCID: PMC8657568 DOI: 10.3390/ijms222312619] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Dehydrins, also known as Group II late embryogenesis abundant (LEA) proteins, are classic intrinsically disordered proteins, which have high hydrophilicity. A wide range of hostile environmental conditions including low temperature, drought, and high salinity stimulate dehydrin expression. Numerous studies have furnished evidence for the protective role played by dehydrins in plants exposed to abiotic stress. Furthermore, dehydrins play important roles in seed maturation and plant stress tolerance. Hence, dehydrins might also protect plasma membranes and proteins and stabilize DNA conformations. In the present review, we discuss the regulatory networks of dehydrin gene expression including the abscisic acid (ABA), mitogen-activated protein (MAP) kinase cascade, and Ca2+ signaling pathways. Crosstalk among these molecules and pathways may form a complex, diverse regulatory network, which may be implicated in regulating the same dehydrin.
Collapse
|
7
|
Mulat MW, Sinha VB. Distribution and abundance of CREs in the promoters depicts crosstalk by WRKYs in Tef [Eragrostis tef (Zucc.) Troetter]. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Ksouri N, Castro-Mondragón JA, Montardit-Tarda F, van Helden J, Contreras-Moreira B, Gogorcena Y. Tuning promoter boundaries improves regulatory motif discovery in nonmodel plants: the peach example. PLANT PHYSIOLOGY 2021; 185:1242-1258. [PMID: 33744946 PMCID: PMC8133646 DOI: 10.1093/plphys/kiaa091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/07/2020] [Indexed: 05/04/2023]
Abstract
The identification of functional elements encoded in plant genomes is necessary to understand gene regulation. Although much attention has been paid to model species like Arabidopsis (Arabidopsis thaliana), little is known about regulatory motifs in other plants. Here, we describe a bottom-up approach for de novo motif discovery using peach (Prunus persica) as an example. These predictions require pre-computed gene clusters grouped by their expression similarity. After optimizing the boundaries of proximal promoter regions, two motif discovery algorithms from RSAT::Plants (http://plants.rsat.eu) were tested (oligo and dyad analysis). Overall, 18 out of 45 co-expressed modules were enriched in motifs typical of well-known transcription factor (TF) families (bHLH, bZip, BZR, CAMTA, DOF, E2FE, AP2-ERF, Myb-like, NAC, TCP, and WRKY) and a few uncharacterized motifs. Our results indicate that small modules and promoter window of [-500 bp, +200 bp] relative to the transcription start site (TSS) maximize the number of motifs found and reduce low-complexity signals in peach. The distribution of discovered regulatory sites was unbalanced, as they accumulated around the TSS. This approach was benchmarked by testing two different expression-based clustering algorithms (network-based and hierarchical) and, as control, genes grouped for harboring ChIPseq peaks of the same Arabidopsis TF. The method was also verified on maize (Zea mays), a species with a large genome. In summary, this article presents a glimpse of the peach regulatory components at genome scale and provides a general protocol that can be applied to other species. A Docker software container is released to facilitate the reproduction of these analyses.
Collapse
Affiliation(s)
- Najla Ksouri
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Jaime A Castro-Mondragón
- Aix-Marseille Univ, INSERM UMR_S 1090, Theory and Approaches of Genome Complexity (TAGC), F-13288 Marseille, France
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Francesc Montardit-Tarda
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Jacques van Helden
- Aix-Marseille Univ, INSERM UMR_S 1090, Theory and Approaches of Genome Complexity (TAGC), F-13288 Marseille, France
- CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Evry, France
| | - Bruno Contreras-Moreira
- Laboratory of Computational and Structural Biology, Department of Genetics and Plant Production, Estación Experimental de Aula Dei–Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
- Present address: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yolanda Gogorcena
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Author for communication:
| |
Collapse
|
9
|
Ahres M, Gierczik K, Boldizsár Á, Vítámvás P, Galiba G. Temperature and Light-Quality-Dependent Regulation of Freezing Tolerance in Barley. PLANTS 2020; 9:plants9010083. [PMID: 31936533 PMCID: PMC7020399 DOI: 10.3390/plants9010083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 01/10/2023]
Abstract
It is established that, besides the cold, incident light also has a crucial role in the cold acclimation process. To elucidate the interaction between these two external hardening factors, barley plantlets were grown under different light conditions with low, normal, and high light intensities at 5 and 15 °C. The expression of the HvCBF14 gene and two well-characterized members of the C-repeat binding factor (CBF)-regulon HvCOR14b and HvDHN5 were studied. In general, the expression level of the studied genes was several fold higher at 5 °C than that at 15 °C independently of the applied light intensity or the spectra. The complementary far-red (FR) illumination induced the expression of HvCBF14 and also its target gene HvCOR14b at both temperatures. However, this supplementation did not affect significantly the expression of HvDHN5. To test the physiological effects of these changes in environmental conditions, freezing tests were also performed. In all the cases, we found that the reduced R:FR ratio increased the frost tolerance of barley at every incident light intensity. These results show that the combined effects of cold, light intensity, and the modification of the R:FR light ratio can greatly influence the gene expression pattern of the plants, which can result in increased plant frost tolerance.
Collapse
Affiliation(s)
- Mohamed Ahres
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360 Keszthely, Hungary;
- Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary; (K.G.); (Á.B.)
| | - Krisztián Gierczik
- Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary; (K.G.); (Á.B.)
| | - Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary; (K.G.); (Á.B.)
| | - Pavel Vítámvás
- Department of Genetics and Plant Breeding, Crop Research Institute, 161 06 Prague 6, Czech Republic;
| | - Gábor Galiba
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360 Keszthely, Hungary;
- Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary; (K.G.); (Á.B.)
- Correspondence: ; Tel.:+36-22-460-523
| |
Collapse
|
10
|
Identification and Functional Characterization of a Soybean ( Glycine max) Thioesterase that Acts on Intermediates of Fatty Acid Biosynthesis. PLANTS 2019; 8:plants8100397. [PMID: 31597241 PMCID: PMC6843456 DOI: 10.3390/plants8100397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/21/2019] [Accepted: 10/02/2019] [Indexed: 11/16/2022]
Abstract
(1) Background: Plants possess many acyl-acyl carrier protein (acyl-ACP) thioesterases (TEs) with unique specificity. One such TE is methylketone synthase 2 (MKS2), an enzyme with a single-hotdog-fold structure found in several tomato species that hydrolyzes 3-ketoacyl-ACPs to give free 3-ketoacids. (2) Methods: In this study, we identified and characterized a tomato MKS2 homolog gene, namely, GmMKS2, in the genome of soybean (Glycine max). (3) Results: GmMKS2 underwent alternative splicing to produce three alternative transcripts, but only one encodes a protein with thioesterase activity when recombinantly expressed in Escherichia coli. Heterologous expression of the main transcript of GmMKS2, GmMKS2-X2, in E. coli generated various types of fatty acids, including 3-ketoacids-with 3-ketotetradecenoic acid (14:1) being the most abundant-cis-Δ5-dodecanoic acid, and 3-hydroxyacids, suggesting that GmMKS2 acts as an acyl-ACP thioesterase. In plants, the GmMKS2-X2 transcript level was found to be higher in the roots compared to other examined organs. In silico analysis revealed that there is a substantial enrichment of putative cis-regulatory elements related to disease-resistance responses and abiotic stress responses in the promoter of this gene. (4) Conclusions: GmMKS2 showed broad substrate specificities toward a wide range of acyl-ACPs that varied in terms of chain length, oxidation state, and saturation degree. Our results suggest that GmMKS2 might have a stress-related physiological function in G. max.
Collapse
|
11
|
Luo D, Hou X, Zhang Y, Meng Y, Zhang H, Liu S, Wang X, Chen R. CaDHN5, a Dehydrin Gene from Pepper, Plays an Important Role in Salt and Osmotic Stress Responses. Int J Mol Sci 2019; 20:ijms20081989. [PMID: 31018553 PMCID: PMC6514665 DOI: 10.3390/ijms20081989] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 01/09/2023] Open
Abstract
Dehydrins (DHNs), as a sub-family of group two late embryogenesis-abundant (LEA) proteins, have attracted considerable interest owing to their functions in enhancing abiotic stress tolerance in plants. Our previous study showed that the expression of CaDHN5 (a dehydrin gene from pepper) is strongly induced by salt and osmotic stresses, but its function was not clear. To understand the function of CaDHN5 in the abiotic stress responses, we produced pepper (Capsicum annuum L.) plants, in which CaDHN5 expression was down-regulated using VIGS (Virus-induced Gene Silencing), and transgenic Arabidopsis plants overexpressing CaDHN5. We found that knock-down of CaDHN5 suppressed the expression of manganese superoxide dismutase (MnSOD) and peroxidase (POD) genes. These changes caused more reactive oxygen species accumulation in the VIGS lines than control pepper plants under stress conditions. CaDHN5-overexpressing plants exhibited enhanced tolerance to salt and osmotic stresses as compared to the wild type and also showed increased expression of salt and osmotic stress-related genes. Interestingly, our results showed that many salt-related genes were upregulated in our transgenic Arabidopsis lines under salt or osmotic stress. Taken together, our results suggest that CaDHN5 functions as a positive regulator in the salt and osmotic stress signaling pathways.
Collapse
Affiliation(s)
- Dan Luo
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xiaoming Hou
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yumeng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yuancheng Meng
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Huafeng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Suya Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xinke Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Rugang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
12
|
Mota APZ, Oliveira TN, Vinson CC, Williams TCR, Costa MMDC, Araujo ACG, Danchin EGJ, Grossi-de-Sá MF, Guimaraes PM, Brasileiro ACM. Contrasting Effects of Wild Arachis Dehydrin Under Abiotic and Biotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:497. [PMID: 31057593 PMCID: PMC6482428 DOI: 10.3389/fpls.2019.00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/01/2019] [Indexed: 05/22/2023]
Abstract
Plant dehydrins (DNHs) belong to the LEA (Late Embryogenesis Abundant) protein family and are involved in responses to multiple abiotic stresses. DHNs are classified into five subclasses according to the organization of three conserved motifs (K-; Y-; and S-segments). In the present study, the DHN protein family was characterized by molecular phylogeny, exon/intron organization, protein structure, and tissue-specificity expression in eight Fabaceae species. We identified 20 DHN genes, encompassing three (YnSKn, SKn, and Kn) subclasses sharing similar gene organization and protein structure. Two additional low conserved DHN Φ-segments specific to the legume SKn-type of proteins were also found. The in silico expression patterns of DHN genes in four legume species (Arachis duranensis, A. ipaënsis, Glycine max, and Medicago truncatula) revealed that their tissue-specific regulation is associated with the presence or absence of the Y-segment. Indeed, DHN genes containing a Y-segment are mainly expressed in seeds, whereas those without the Y-segment are ubiquitously expressed. Further qRT-PCR analysis revealed that, amongst stress responsive dehydrins, a SKn-type DHN gene from A. duranensis (AdDHN1) showed opposite response to biotic and abiotic stress with a positive regulation under water deficit and negative regulation upon nematode infection. Furthermore, transgenic Arabidopsis lines overexpressing (OE) AdDHN1 displayed improved tolerance to multiple abiotic stresses (freezing and drought) but increased susceptibility to the biotrophic root-knot nematode (RKN) Meloidogyne incognita. This contradictory role of AdDHN1 in responses to abiotic and biotic stresses was further investigated by qRT-PCR analysis of transgenic plants using a set of stress-responsive genes involved in the abscisic acid (ABA) and jasmonic acid (JA) signaling pathways and suggested an involvement of DHN overexpression in these stress-signaling pathways.
Collapse
Affiliation(s)
- Ana Paula Zotta Mota
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thais Nicolini Oliveira
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
| | - Christina Cleo Vinson
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Edrisi Maryan K, Samizadeh Lahiji H, Farrokhi N, Hasani Komeleh H. Analysis of Brassica napus dehydrins and their Co-Expression regulatory networks in relation to cold stress. Gene Expr Patterns 2018; 31:7-17. [PMID: 30408599 DOI: 10.1016/j.gep.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 10/27/2022]
Abstract
Dehydrins (DHNs) are plant specific cold and drought stress-responsive proteins that belong to late embryogenesis abundant (LEA) protein families. B. napus DHNs (BnDHNs) were computationally analyzed to establish gene regulatory- and protein-protein interaction networks. Promoter analyses suggested functionality of phytohormones in BnDHNs gene network. The relative expressions of some BnDHNs were analyzed using qRT-PCR in seedling leaves of both cold-tolerant (Zarfam) and -sensitive (Sari Gul) canola treated/untreated by cold. Our expression data were indicative of the importance of BnDHNs in cold tolerance in Zarfam. BnDHNs were classified into three classes according to the expression pattern. Moreover, expression of three BnDHN types, SKn (BnLEA10 and BnLEA18), YnKn (BnLEA90) and YnSKn (BnLEA104) were significantly high in the tolerant cultivar at 12 h of cold treatment. Our findings put forward the possibility of considering these genes as screening biomarker to determine cold-tolerant breeding lines; something that needs to be further corroborated. Furthermore, these genes may have some implications in developing such tolerant lines via transgenesis.
Collapse
Affiliation(s)
- Khazar Edrisi Maryan
- Department of Plant Biotechnology, Faculty of Agriculture, University of Guilan, Rasht, Iran
| | | | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences and Biotechnology, Shahid Beheshti University. G.C., Evin, Tehran, Iran.
| | - Hassan Hasani Komeleh
- Department of Plant Biotechnology, Faculty of Agriculture, University of Guilan, Rasht, Iran
| |
Collapse
|
14
|
Yu Z, Wang X, Zhang L. Structural and Functional Dynamics of Dehydrins: A Plant Protector Protein under Abiotic Stress. Int J Mol Sci 2018; 19:ijms19113420. [PMID: 30384475 PMCID: PMC6275027 DOI: 10.3390/ijms19113420] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022] Open
Abstract
Abiotic stress affects the growth and development of crops tremendously, worldwide. To avoid adverse environmental effects, plants have evolved various efficient mechanisms to respond and adapt to harsh environmental factors. Stress conditions are associated with coordinated changes in gene expressions at a transcriptional level. Dehydrins have been extensively studied as protectors in plant cells, owing to their vital roles in sustaining the integrity of membranes and lactate dehydrogenase (LDH). Dehydrins are highly hydrophilic and thermostable intrinsically disordered proteins (IDPs), with at least one Lys-rich K-segment. Many dehydrins are induced by multiple stress factors, such as drought, salt, extreme temperatures, etc. This article reviews the role of dehydrins under abiotic stress, regulatory networks of dehydrin genes, and the physiological functions of dehydrins. Advances in our understanding of dehydrin structures, gene regulation and their close relationships with abiotic stresses demonstrates their remarkable ability to enhance stress tolerance in plants.
Collapse
Affiliation(s)
- Zhengyang Yu
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Xin Wang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Linsheng Zhang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
15
|
Stival Sena J, Giguère I, Rigault P, Bousquet J, Mackay J. Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. TREE PHYSIOLOGY 2018; 38:442-456. [PMID: 29040752 DOI: 10.1093/treephys/tpx125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Temperatures are expected to increase over the next century in all terrestrial biomes and particularly in boreal forests, where drought-induced mortality has been predicted to rise. Genomics research is helping to develop hypotheses regarding the molecular basis of drought tolerance and recent work proposed that the osmo-protecting dehydrin proteins have undergone a clade-specific expansion in the Pinaceae, a major group of conifer trees. The objectives of this study were to identify all of the putative members of the gene family, trace their evolutionary origin, examine their structural diversity and test for drought-responsive expression. We identified 41 complete dehydrin coding sequences in Picea glauca, which is four times more than most angiosperms studied to date, and more than in pines. Phylogenetic reconstructions indicated that the family has undergone an expansion in conifers, with parallel evolution implicating the sporadic resurgence of certain amino acid sequence motifs, and a major duplication giving rise to a clade specific to the Pinaceae. A variety of plant dehydrin structures were identified with variable numbers of the A-, E-, S- and K-segments and an N-terminal (N1) amino acid motif including assemblages specific to conifers. The expression of several of the spruce dehydrins was tissue preferential under non-stressful conditions or responded to water stress after 7-18 days without watering, reflecting changes in osmotic potential. We found that dehydrins with N1 K2 and N1 AESK2 sequences were the most responsive to the lack of water. Together, the family expansion, drought-responsive expression and structural diversification involving loss and gain of amino acid motifs suggests that subfunctionalization has driven the diversification seen among dehydrin gene duplicates. Our findings clearly indicate that dehydrins represent a large family of candidate genes for drought tolerance in spruces and in other Pinaceae that may underpin adaptability in spatially and temporally variable environments.
Collapse
Affiliation(s)
- Juliana Stival Sena
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
- Canada Research Chair in Forest Genomics, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
| | - Isabelle Giguère
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
| | - Philippe Rigault
- Gydle Inc., 1135 Grande Allée Ouest Suite 220, Québec QC G1S 1E7, Canada
| | - Jean Bousquet
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
- Canada Research Chair in Forest Genomics, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
| | - John Mackay
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
- Canada Research Chair in Forest Genomics, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
16
|
The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs. Sci Rep 2016; 6:26090. [PMID: 27193058 PMCID: PMC4872257 DOI: 10.1038/srep26090] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/25/2016] [Indexed: 12/18/2022] Open
Abstract
Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha(-1) was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency.
Collapse
|
17
|
Howe GT, Horvath DP, Dharmawardhana P, Priest HD, Mockler TC, Strauss SH. Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus. FRONTIERS IN PLANT SCIENCE 2015; 6:989. [PMID: 26734012 PMCID: PMC4681841 DOI: 10.3389/fpls.2015.00989] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/29/2015] [Indexed: 05/19/2023]
Abstract
To survive winter, many perennial plants become endodormant, a state of suspended growth maintained even in favorable growing environments. To understand vegetative bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary buds from Populus trees growing under natural conditions. Of 44,441 Populus gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1%) were differentially expressed among the three dormancy states, and 429 (1.0%) were differentially expressed during only one of the two dormancy transitions (FDR p-value < 0.05). Of all differentially expressed genes, 69% were down-regulated from paradormancy to endodormancy, which was expected given the lower metabolic activity associated with endodormancy. Dormancy transitions were accompanied by changes in genes associated with DNA methylation (via RNA-directed DNA methylation) and histone modifications (via Polycomb Repressive Complex 2), confirming and extending knowledge of chromatin modifications as major features of dormancy transitions. Among the chromatin-associated genes, two genes similar to SPT (SUPPRESSOR OF TY) were strongly up-regulated during endodormancy. Transcription factor genes and gene sets that were atypically up-regulated during endodormancy include a gene that seems to encode a trihelix transcription factor and genes associated with proteins involved in responses to ethylene, cold, and other abiotic stresses. These latter transcription factors include ETHYLENE INSENSITIVE 3 (EIN3), ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP), ETHYLENE RESPONSE FACTOR (ERF), ZINC FINGER PROTEIN 10 (ZAT10), ZAT12, and WRKY DNA-binding domain proteins. Analyses of phytohormone-associated genes suggest important changes in responses to ethylene, auxin, and brassinosteroids occur during endodormancy. We found weaker evidence for changes in genes associated with salicylic acid and jasmonic acid, and little evidence for important changes in genes associated with gibberellins, abscisic acid, and cytokinin. We identified 315 upstream sequence motifs associated with eight patterns of gene expression, including novel motifs and motifs associated with the circadian clock and responses to photoperiod, cold, dehydration, and ABA. Analogies between flowering and endodormancy suggest important roles for genes similar to SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL), DORMANCY ASSOCIATED MADS-BOX (DAM), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1).
Collapse
Affiliation(s)
- Glenn T. Howe
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA
| | - David P. Horvath
- Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research ServiceFargo, ND, USA
| | - Palitha Dharmawardhana
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
| | - Henry D. Priest
- Donald Danforth Plant Science CenterSaint Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in Saint LouisSaint Louis, MO, USA
| | - Todd C. Mockler
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
- Donald Danforth Plant Science CenterSaint Louis, MO, USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA
- *Correspondence: Steven H. Strauss,
| |
Collapse
|