1
|
Brie B, Sarmento-Cabral A, Pascual F, Cordoba-Chacon J, Kineman RD, Becu-Villalobos D. Modifications of the GH Axis Reveal Unique Sexually Dimorphic Liver Signatures for Lcn13, Asns, Hamp2, Hao2, and Pgc1a. J Endocr Soc 2024; 8:bvae015. [PMID: 38370444 PMCID: PMC10872697 DOI: 10.1210/jendso/bvae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 02/20/2024] Open
Abstract
Growth hormone (GH) modifies liver gene transcription in a sexually dimorphic manner to meet liver metabolic demands related to sex; thus, GH dysregulation leads to sex-biased hepatic disease. We dissected the steps of the GH regulatory cascade modifying GH-dependent genes involved in metabolism, focusing on the male-predominant genes Lcn13, Asns, and Cyp7b1, and the female-predominant genes Hao2, Pgc1a, Hamp2, Cyp2a4, and Cyp2b9. We explored mRNA expression in 2 settings: (i) intact liver GH receptor (GHR) but altered GH and insulin-like growth factor 1 (IGF1) levels (NeuroDrd2KO, HiGH, aHepIGF1kd, and STAT5bCA mouse lines); and (ii) liver loss of GHR, with or without STAT5b reconstitution (aHepGHRkd, and aHepGHRkd + STAT5bCA). Lcn13 was downregulated in males in most models, while Asns and Cyp7b1 were decreased in males by low GH levels or action, or constant GH levels, but unexpectedly upregulated in both sexes by the loss of liver Igf1 or constitutive Stat5b expression. Hao, Cyp2a4, and Cyp2b9 were generally decreased in female mice with low GH levels or action (NeuroDrd2KO and/or aHepGHRkd mice) and increased in HiGH females, while in contrast, Pgc1a was increased in female NeuroDrd2KO but decreased in STAT5bCA and aHepIGF1kd females. Bioinformatic analysis of RNAseq from aHepGHRkd livers stressed the greater impact of GHR loss on wide gene expression in males and highlighted that GH modifies almost completely different gene signatures in each sex. Concordantly, we show that altering different steps of the GH cascade in the liver modified liver expression of Lcn13, Asns, Cyp7b1, Hao2, Hamp2, Pgc1a, Cyp2a4, and Cyp2b9 in a sex- and gene-specific manner.
Collapse
Affiliation(s)
- Belen Brie
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Andre Sarmento-Cabral
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Florencia Pascual
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Jose Cordoba-Chacon
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rhonda Denise Kineman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| |
Collapse
|
2
|
Pînzariu O, Georgescu CE. Metabolomics in acromegaly: a systematic review. J Investig Med 2023:10815589231169452. [PMID: 37139720 DOI: 10.1177/10815589231169452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The therapeutic response heterogeneity in acromegaly persists, despite the medical-surgical advances of recent years. Thus, personalized medicine implementation, which focuses on each patient, is justified. Metabolomics would decipher the molecular mechanisms underlying the therapeutic response heterogeneity. Identification of altered metabolic pathways would open new horizons in the therapeutic management of acromegaly. This research aimed to evaluate the metabolomic profile in acromegaly and metabolomics' contributions to understanding disease pathogenesis. A systematic review was carried out by querying four electronic databases and evaluating patients with acromegaly through metabolomic techniques. In all, 21 studies containing 362 patients were eligible. Choline, the ubiquitous metabolite identified in growth hormone (GH)-secreting pituitary adenomas (Pas) by in vivo magnetic resonance spectroscopy (MRS), negatively correlated with somatostatin receptors type 2 expression and positively correlated with magnetic resonance imaging T2 signal and Ki-67 index. Moreover, elevated choline and choline/creatine ratio differentiated between sparsely and densely granulated GH-secreting PAs. MRS detected low hepatic lipid content in active acromegaly, which increased after disease control. The panel of metabolites of acromegaly deciphered by mass spectrometry (MS)-based techniques mainly included amino acids (especially branched-chain amino acids and taurine), glyceric acid, and lipids. The most altered pathways in acromegaly were the metabolism of glucose (particularly the downregulation of the pentose phosphate pathway), linoleic acid, sphingolipids, glycerophospholipids, arginine/proline, and taurine/hypotaurine. Matrix-assisted laser desorption/ionization coupled with MS imaging confirmed the functional nature of GH-secreting PAs and accurately discriminated PAs from healthy pituitary tissue.
Collapse
Affiliation(s)
- Oana Pînzariu
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Emanuela Georgescu
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Endocrinology Clinic, Cluj County Emergency Clinical Hospital, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Falch CM, Arlien-Søborg MC, Dal J, Sundaram AYM, Michelsen AE, Ueland T, Olsen LG, Heck A, Bollerslev J, Jørgensen JOL, Olarescu NC. Gene expression profiling of subcutaneous adipose tissue reveals new biomarkers in acromegaly. Eur J Endocrinol 2023; 188:7075007. [PMID: 36895180 DOI: 10.1093/ejendo/lvad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023]
Abstract
CONTEXT Active acromegaly is characterized by lipolysis-induced insulin resistance, which suggests adipose tissue (AT) as a primary driver of metabolic aberrations. OBJECTIVE To study the gene expression landscape in AT in patients with acromegaly before and after disease control in order to understand the changes and to identify disease-specific biomarkers. METHODS RNA sequencing was performed on paired subcutaneous adipose tissue (SAT) biopsies from six patients with acromegaly at time of diagnosis and after curative surgery. Clustering and pathway analyses were performed in order to identify disease activity-dependent genes. In a larger patient cohort (n = 23), the corresponding proteins were measured in serum by immunoassay. Correlations between growth hormone (GH), insulin-like growth factor I (IGF-I), visceral AT (VAT), SAT, total AT, and serum proteins were analyzed. RESULTS 743 genes were significantly differentially expressed (P-adjusted < .05) in SAT before and after disease control. The patients clustered according to disease activity. Pathways related to inflammation, cell adhesion and extracellular matrix, GH and insulin signaling, and fatty acid oxidation were differentially expressed.Serum levels of HTRA1, METRNL, S100A8/A9, and PDGFD significantly increased after disease control (P < .05). VAT correlated with HTRA1 (R = 0.73) and S100A8/A9 (R = 0.55) (P < .05 for both). CONCLUSION AT in active acromegaly is associated with a gene expression profile of fibrosis and inflammation, which may corroborate the hyper-metabolic state and provide a means for identifying novel biomarkers.
Collapse
Affiliation(s)
- Camilla M Falch
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
| | - Mai Christiansen Arlien-Søborg
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital (AUH), Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital (AUH), Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jakob Dal
- Department of Endocrinology and Internal Medicine, Aalborg University Hospital (AAUH), Hobrovej 18-22, 9000 Aalborg, Denmark
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Søndre Skovvej 3E, 9000 Aalborg, Denmark
| | - Arvind Y M Sundaram
- Department of Medical Genetics, University of Oslo, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
| | - Annika E Michelsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
| | - Linn Guro Olsen
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
| | - Ansgar Heck
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
| | - Jens Bollerslev
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
| | - Jens Otto L Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital (AUH), Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Nicoleta C Olarescu
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
4
|
Abstract
Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) are essential to normal growth, metabolism, and body composition, but in acromegaly, excesses of these hormones strikingly alter them. In recent years, the use of modern methodologies to assess body composition in patients with acromegaly has revealed novel aspects of the acromegaly phenotype. In particular, acromegaly presents a unique pattern of body composition changes in the setting of insulin resistance that we propose herein to be considered an acromegaly-specific lipodystrophy. The lipodystrophy, initiated by a distinctive GH-driven adipose tissue dysregulation, features insulin resistance in the setting of reduced visceral adipose tissue (VAT) mass and intra-hepatic lipid (IHL) but with lipid redistribution, resulting in ectopic lipid deposition in muscle. With recovery of the lipodystrophy, adipose tissue mass, especially that of VAT and IHL, rises, but insulin resistance is lessened. Abnormalities of adipose tissue adipokines may play a role in the disordered adipose tissue metabolism and insulin resistance of the lipodystrophy. The orexigenic hormone ghrelin and peptide Agouti-related peptide may also be affected by active acromegaly as well as variably by acromegaly therapies, which may contribute to the lipodystrophy. Understanding the pathophysiology of the lipodystrophy and how acromegaly therapies differentially reverse its features may be important to optimizing the long-term outcome for patients with this disease. This perspective describes evidence in support of this acromegaly lipodystrophy model and its relevance to acromegaly pathophysiology and the treatment of patients with acromegaly.
Collapse
Affiliation(s)
- Pamela U. Freda
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
5
|
Genome-Wide Association Study Reveals Additive and Non-Additive Effects on Growth Traits in Duroc Pigs. Genes (Basel) 2022; 13:genes13081454. [PMID: 36011365 PMCID: PMC9407794 DOI: 10.3390/genes13081454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/24/2022] Open
Abstract
Growth rate plays a critical role in the pig industry and is related to quantitative traits controlled by many genes. Here, we aimed to identify causative mutations and candidate genes responsible for pig growth traits. In this study, 2360 Duroc pigs were used to detect significant additive, dominance, and epistatic effects associated with growth traits. As a result, a total number of 32 significant SNPs for additive or dominance effects were found to be associated with various factors, including adjusted age at a specified weight (AGE), average daily gain (ADG), backfat thickness (BF), and loin muscle depth (LMD). In addition, the detected additive significant SNPs explained 2.49%, 3.02%, 3.18%, and 1.96% of the deregressed estimated breeding value (DEBV) variance for AGE, ADG, BF, and LMD, respectively, while significant dominance SNPs could explain 2.24%, 13.26%, and 4.08% of AGE, BF, and LMD, respectively. Meanwhile, a total of 805 significant epistatic effects SNPs were associated with one of ADG, AGE, and LMD, from which 11 sub-networks were constructed. In total, 46 potential genes involved in muscle development, fat deposition, and regulation of cell growth were considered as candidates for growth traits, including CD55 and NRIP1 for AGE and ADG, TRIP11 and MIS2 for BF, and VRTN and ZEB2 for LMD, respectively. Generally, in this study, we detected both new and reported variants and potential candidate genes for growth traits of Duroc pigs, which might to be taken into account in future molecular breeding programs to improve the growth performance of pigs.
Collapse
|
6
|
Biagetti B, Aulinas A, Casteras A, Pérez-Hoyos S, Simó R. HOMA-IR in acromegaly: a systematic review and meta-analysis. Pituitary 2021; 24:146-158. [PMID: 33085039 DOI: 10.1007/s11102-020-01092-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE This review is aimed at examining whether the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) is higher in Caucasian, adult, treatment-naïve patients with acromegaly (ACRO) than in the reference population independently of diabetes presence and to evaluate the impact of treatment [surgery and somatostatin analogues (SSAs)] on its assessment. METHODS We systematically reviewed in PubMed and Web of Science from July 1985 to December 2019, registered with the code number CRD42020148737. The inclusion criteria comprised studies conducted in Caucasian adult treatment-naïve patients with active ACRO in whom HOMA-IR or basal insulin and glucose were reported. Three reviewers screened eligible publications, extracted the outcomes, and assessed the risk of biases. RESULTS Of 118 originally selected studies, 15 met the inclusion criteria. HOMA-IR was higher in ACRO than the reference population, with mean difference and (95% confidence intervals) of 2.04 (0.65-3.44), even in ACRO patients without diabetes, 1.89 (1.06-2.73). HOMA-IR significantly decreased after treatment with either surgery or SSAs - 2.53 (- 3.24- - 1.81) and - 2.30 (- 3.05- - 1.56); respectively. However, the reduction of HOMA-IR due to SSAs did not improve basal glucose. CONCLUSION HOMA-IR in treatment-naïve ACRO patients is higher than in the reference population, even in patients without diabetes. This finding, confirms that insulin resistance is an early event in ACRO. Our results also suggest that HOMA-IR is not an adequate tool for assessing insulin resistance in those patients treated with SSAs.
Collapse
Affiliation(s)
- Betina Biagetti
- Diabetes and Metabolism Research Unit, Vall D'Hebron Research Institute and CIBERDEM (ISCIII), Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Anna Aulinas
- Department of Endocrinology and Nutrition, Hospital de La Santa Creu I Sant Pau and Sant Pau-Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Research Center for Pituitary Diseases, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERERUnidad 747), ISCIII, Barcelona, Spain
- Faculty of Medicine, University of Vic Central University of Catalonia (UVic/UCC), Vic, Spain
| | - Anna Casteras
- Diabetes and Metabolism Research Unit, Vall D'Hebron Research Institute and CIBERDEM (ISCIII), Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Santiago Pérez-Hoyos
- Genetics Microbiology and Statistics Department, Statistics and Bioinformatics Unit, Vall D'Hebron Research Institute, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall D'Hebron Research Institute and CIBERDEM (ISCIII), Universidad Autónoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Gossing W, Radke L, Biering H, Diederich S, Mai K, Frohme M. The ElonginB/C-Cullin5-SOCS-Box-Complex Is a Potential Biomarker for Growth Hormone Disorders. Biomedicines 2021; 9:biomedicines9020201. [PMID: 33671326 PMCID: PMC7921923 DOI: 10.3390/biomedicines9020201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 01/29/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is the standard biochemical marker for the diagnosis and treatment control of acromegaly and growth hormone deficiency (GHD). However, its limitations necessitate the screening for new specific and sensitive biomarkers. The elonginB/C-cullin5-SOCS-box-complex (ECS-complex) (an intracellular five-protein complex) is stimulated by circulating growth hormone (GH) and regulates GH receptor levels through a negative feedback loop. It mediates the cells' sensitivity for GH and therefore, represents a potent new biomarker for those diseases. In this study, individual ECS-complex proteins were measured in whole blood samples of patients with acromegaly (n = 32) or GHD (n = 12) via ELISA and compared to controls. Hierarchical clustering of the results revealed that by combining the three ECS-complex proteins suppressor of cytokine signaling 2 (SOCS2), cullin-5 and ring-box protein 2 (Rbx-2), 93% of patient samples could be separated from controls, despite many patients having a normal IGF-1 or not receiving medical treatment. SOCS2 showed the best individual diagnostic performance with an overall accuracy of 0.93, while the combination of the three proteins correctly identified all patients and controls. This resulted in perfect sensitivity and specificity for all patient groups, which demonstrates potential benefits of the ECS-complex proteins as clinical biomarkers for the diagnostics of GH-related diseases and substantiates their important role in GH metabolism.
Collapse
Affiliation(s)
- Wilhelm Gossing
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences, 15745 Wildau, Germany; (W.G.); (L.R.); (H.B.)
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.D.); (K.M.)
| | - Lars Radke
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences, 15745 Wildau, Germany; (W.G.); (L.R.); (H.B.)
| | - Henrik Biering
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences, 15745 Wildau, Germany; (W.G.); (L.R.); (H.B.)
- Praxis an der Kaisereiche, Innere Medizin, Endokrinologie, Diabetologie, 12159 Berlin, Germany
| | - Sven Diederich
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.D.); (K.M.)
- MVZ Medicover Berlin-Mitte, Innere Medizin, Endokrinologie, Andrologie, 10117 Berlin, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.D.); (K.M.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10117 Berlin, Germany
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences, 15745 Wildau, Germany; (W.G.); (L.R.); (H.B.)
- Correspondence:
| |
Collapse
|
8
|
Abstract
Acromegaly is characterized by Growth Hormone (GH) and Insulin-like Growth Factor 1 (IGF-1) excess. Uncontrolled acromegaly is associated with a strongly increased risk of cardiovascular disease (CVD), and numerous cardiovascular risk factors remain present after remission. GH and IGF-1 have numerous effects on the immune and cardiovascular system. Since endothelial damage and systemic inflammation are strongly linked to the development of CVD, and have been suggested to be present in both controlled as uncontrolled acromegaly, they may explain the presence of both micro- and macrovascular dysfunction in these patients. In addition, these changes seem to be only partially reversible after remission, as illustrated by the often reported presence of endothelial dysfunction and microvascular damage in controlled acromegaly. Previous studies suggest that insulin resistance, oxidative stress, and endothelial dysfunction are involved in the development of CVD in acromegaly. Not surprisingly, these processes are associated with systemic inflammation and respond to GH/IGF-1 normalizing treatment.
Collapse
Affiliation(s)
- Thalijn L C Wolters
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Adrianus R M M Hermus
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Duran-Ortiz S, Young JA, Jara A, Jensen EA, Basu R, List EO, Qian Y, Kopchick JJ, Berryman DE. Differential gene signature in adipose tissue depots of growth hormone transgenic mice. J Neuroendocrinol 2020; 32:e12893. [PMID: 33043505 PMCID: PMC7606825 DOI: 10.1111/jne.12893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/18/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
Bovine growth hormone (bGH) transgenic mice mimic the clinical condition of acromegaly, having high circulating growth hormone (GH) levels. These mice are giant, have decreased adipose tissue (AT) mass, impaired glucose metabolism and a shortened lifespan. The detrimental effects of excess GH have been suggested, in part, to be a result of its depot-specific actions on AT. To investigate this relationship, we evaluated gene expression, biological mechanisms, cellular pathways and predicted microRNA (miRNA) in two AT depots (subcutaneous [Subq] and epididymal [Epi]) from bGH and littermate controls using RNA sequencing analysis. Two analyses on the differentially expressed genes (DEG) were performed: (i) comparison of the same AT depot between bGH and wild-type (WT) mice (genotype comparison) and (ii) comparison of Subq and Epi AT depots within the same genotype (depot comparison). For the genotype comparison, we found a higher number of significant DEG in the Subq AT depot of bGH mice compared to WT controls, corroborating previous reports that GH has a greater impact on the Subq depot. Furthermore, most of the DEG in bGH mice were not shared by WT mice, suggesting that excess GH induces the expression of genes not commonly present in AT. Through gene ontology and pathway analysis, the genotype comparison revealed that the DEG of the Subq depot of bGH mice relate to fatty acid oxidation, branched-chain amino acid degradation and the immune system. Additionally, the AT depot comparison showed that the immune cell activation and T-cell response appear up-regulated in the Subq compared to the Epi AT depot. The miRNA prediction also suggested a modulation of T-cell-related biological process in Subq. In summary, the present study provides a unique resource for understanding the specific differences in gene expression that are driven by both excess GH action and AT depot location.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Athens, OH
- Molecular and Cellular Biology Program, Ohio University, Athens, OH
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH
| | - Jonathan A. Young
- Edison Biotechnology Institute, Athens, OH
- Molecular and Cellular Biology Program, Ohio University, Athens, OH
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Adam Jara
- Edison Biotechnology Institute, Athens, OH
- Molecular and Cellular Biology Program, Ohio University, Athens, OH
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH
| | | | | | | | | | - John J. Kopchick
- Edison Biotechnology Institute, Athens, OH
- Molecular and Cellular Biology Program, Ohio University, Athens, OH
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Darlene E. Berryman
- Edison Biotechnology Institute, Athens, OH
- Molecular and Cellular Biology Program, Ohio University, Athens, OH
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- Corresponding Author at: Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
10
|
Abstract
Growth hormone (GH) plays a pivotal role in many physiological processes in humans, and in other mammalian and non-mammalian vertebrate species, through actions on somatic growth, tissue development and repair, and intermediary metabolism. This review will focus on mechanisms of GH actions on gene expression, primarily from the perspective of the genes that encode proteins stimulated by GH to regulate somatic growth, especially insulin-like growth factor 1 (IGF-I), but also others that are induced or repressed by GH. Topics to be discussed will include a brief overview of GH-mediated signal transduction pathways and how these cascades alter the functions of responsive transcription factors, with a specific focus on STAT5B, a key member of the signal transducers and activators of transcription family, characterization of essential GH-regulated genes, and elucidation of mechanisms of their regulation from biochemical, genetic, and genomic perspectives.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, TX, 79905, USA.
| |
Collapse
|
11
|
Mota de Sá P, Richard AJ, Stephens JM. Bromodomain and Extraterminal Inhibition by JQ1 Produces Divergent Transcriptional Regulation of Suppressors of Cytokine Signaling Genes in Adipocytes. Endocrinology 2020; 161:5686880. [PMID: 31875887 PMCID: PMC7007879 DOI: 10.1210/endocr/bqz034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/18/2019] [Indexed: 12/27/2022]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway has cell-specific functions. Suppressors of cytokine signaling (SOCS) proteins are negative-feedback regulators of JAK-STAT signaling. STAT5 plays a significant role in adipocyte development and function, and bromodomain and extraterminal (BET) proteins may be involved in STAT5 transcriptional activity. We treated 3T3-L1 adipocytes with the BET inhibitor JQ1 and observed that growth hormone (GH)-induced expression of 2 STAT5 target genes from the SOCS family, Socs3 and Cish, were inversely regulated (increased and decreased, respectively) by BET inhibition. Chromatin immunoprecipitation analyses revealed that changes in STAT5 binding did not correlate with gene expression changes. GH promoted the recruitment of the BET protein BRD2 to the Cish, but not Socs3, promoter. JQ1 treatment ablated this effect as well as the GH-induced binding of ribonucleic acid polymerase II (RNA Pol II) to the Cish transcription start site. BRD2 knockdown also suppressed GH induction of Cish, further supporting the role of BRD2 in Cish transcriptional activation. In contrast, JQ1 increased the binding of activated Pol II to the Socs3 coding region, suggesting enhanced messenger RNA (mRNA) elongation. Our finding that JQ1 transiently reduced the interaction between the positive transcription elongation factor (P-TEFb) and its inhibitor hexamethylene bis-acetamide inducible 1 (HEXIM1) is consistent with a previously described off-target effect of JQ1, whereby P-TEFb becomes more available to be recruited by genes that do not depend on BET proteins for activating transcription. These results demonstrate substantially different transcriptional regulation of Socs3 and Cish and suggest distinct roles in adipocytes for these 2 closely related proteins.
Collapse
Affiliation(s)
- Paula Mota de Sá
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Allison J Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
- Correspondence: Jacqueline Stephens, Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70803. E-mail:
| |
Collapse
|
12
|
Kruse CPS, Cottrill DA, Kopchick JJ. Could calgranulins and advanced glycated end products potentiate acromegaly pathophysiology? Growth Horm IGF Res 2019; 46-47:1-4. [PMID: 31071497 DOI: 10.1016/j.ghir.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/01/2019] [Accepted: 04/16/2019] [Indexed: 01/02/2023]
Abstract
Growth hormone (GH) exerts a diverse set of effects across many tissues including fat, muscle, bone, kidney, heart, and liver. GH is also a diabetogenic hormone in that it inhibits the actions of insulin. Acromegaly, a condition traditionally characterized by increased levels of growth hormone secretion as a result of pituitary adenoma, results in increased tissue growth, lipolysis, and can result in patients with hyperglycemia and hyperinsulinemia. While current treatment modalities have greatly improved prognoses for most patients, a significant number present clinical symptoms of acromegaly with elevated levels of IGF-1 in the absence of increased GH levels, a phenomenon known as micromegaly. This condition presents a challenge to most currently used treatments since the high circulating IGF-1 levels are independent of elevated levels of GH. It has been previously shown that advanced glycation end products (AGE) can stimulate IGF-1 secretion by human monocytes in vitro, demonstrating a possible mechanism for increased IGF-1 levels. To further investigate AGE/GH/IGF-1 interaction, we have reanalyzed a publicly available RNAseq dataset from subcutaneous adipose tissue of patients with acromegaly. S100A1, a member of the calgranulin family of proteins and ligand of the AGE receptor, was shown to be significantly upregulated in patients with acromegaly. These findings identify an important consideration that may help explain the counterintuitive nature of micromegaly, while simultaneously providing new insight into the role of GH in diabetic, inflammatory, and immune pathologies.
Collapse
Affiliation(s)
- Colin P S Kruse
- Edison Biotechnology Institute, Konneker Research Center, 172 Water Tower Dr., Athens, OH 45701, United States of America; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, 317A Porter Hall, Athens, OH 45701, United States of America
| | - David A Cottrill
- Edison Biotechnology Institute, Konneker Research Center, 172 Water Tower Dr., Athens, OH 45701, United States of America; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, 317A Porter Hall, Athens, OH 45701, United States of America; Department of Biological Sciences, Ohio University, 107 Irvine Hall, Athens, OH 45701, United States of America
| | - John J Kopchick
- Edison Biotechnology Institute, Konneker Research Center, 172 Water Tower Dr., Athens, OH 45701, United States of America; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, 317A Porter Hall, Athens, OH 45701, United States of America; Department of Biological Sciences, Ohio University, 107 Irvine Hall, Athens, OH 45701, United States of America; Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, 204 Ohio University, Grosvenor Hall, Athens, OH 45701, United States of America.
| |
Collapse
|
13
|
Schöneberg T, Meister J, Knierim AB, Schulz A. The G protein-coupled receptor GPR34 - The past 20 years of a grownup. Pharmacol Ther 2018; 189:71-88. [PMID: 29684466 DOI: 10.1016/j.pharmthera.2018.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Research on GPR34, which was discovered in 1999 as an orphan G protein-coupled receptor of the rhodopsin-like class, disclosed its physiologic relevance only piece by piece. Being present in all recent vertebrate genomes analyzed so far it seems to improve the fitness of species although it is not essential for life and reproduction as GPR34-deficient mice demonstrate. However, closer inspection of macrophages and microglia, where it is mainly expressed, revealed its relevance in immune cell function. Recent data clearly demonstrate that GPR34 function is required to arrest microglia in the M0 homeostatic non-phagocytic phenotype. Herein, we summarize the current knowledge on its evolution, genomic and structural organization, physiology, pharmacology and relevance in human diseases including neurodegenerative diseases and cancer, which accumulated over the last 20 years.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany.
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alexander Bernd Knierim
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; Leipzig University Medical Center, IFB AdiposityDiseases, 04103 Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Xu SS, Ren X, Yang GL, Xie XL, Zhao YX, Zhang M, Shen ZQ, Ren YL, Gao L, Shen M, Kantanen J, Li MH. Genome-wide association analysis identifies the genetic basis of fat deposition in the tails of sheep (Ovis aries). Anim Genet 2017; 48:560-569. [PMID: 28677334 DOI: 10.1111/age.12572] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/13/2022]
Abstract
Fat-tailed sheep (Ovis aries) can survive in harsh environments and satisfy human's intake of dietary fat. However, the animals require more feed, which increases the cost of farming. Thus, most farmers currently prefer thin-tailed, short-tailed or docked sheep. To date, the molecular mechanism of the formation of fat tails in sheep has not been completely elucidated. Here, we conducted a genome-wide association study using phenotypes and genotypes (the Ovine Infinium HD SNP BeadChip genotype data) of two breeds of contrasting tail types (78 Small-tailed and 78 Large-tailed Han sheep breeds) to identify functional genes and variants associated with fat deposition. We identified four significantly (rs416433540, rs409848439, rs408118325 and rs402128848) and three approximately associated autosomal SNPs (rs401248376, rs402445895 and rs416201901). Gene annotation indicated that the surrounding genes (CREB1, STEAP4, CTBP1 and RIP140, also known as NRIP1) function in lipid storage or fat cell regulation. Furthermore, through an X-chromosome-wide association analysis, we detected significantly associated SNPs in the OARX: 88-89 Mb region, which could be a strong candidate genomic region for fat deposition in tails of sheep. Our results represent a new genomic resource for sheep genetics and breeding. In addition, the findings provide novel insights into genetic mechanisms of fat deposition in the tail of sheep and other mammals.
Collapse
Affiliation(s)
- S-S Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - X Ren
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - G-L Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,Department of Life Sciences, Shangqiu Normal University, Shangqiu, 476000, China
| | - X-L Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Y-X Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - M Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Z-Q Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, 256600, China
| | - Y-L Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, 256600, China
| | - L Gao
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - M Shen
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - J Kantanen
- Green Technology, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - M-H Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
15
|
Troike KM, Henry BE, Jensen EA, Young JA, List EO, Kopchick JJ, Berryman DE. Impact of Growth Hormone on Regulation of Adipose Tissue. Compr Physiol 2017. [PMID: 28640444 DOI: 10.1002/cphy.c160027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing prevalence of obesity and obesity-related conditions worldwide has necessitated a more thorough understanding of adipose tissue (AT) and expanded the scope of research in this field. AT is now understood to be far more complex and dynamic than previously thought, which has also fueled research to reevaluate how hormones, such as growth hormone (GH), alter the tissue. In this review, we will introduce properties of AT important for understanding how GH alters the tissue, such as anatomical location of depots and adipokine output. We will provide an overview of GH structure and function and define several human conditions and cognate mouse lines with extremes in GH action that have helped shape our understanding of GH and AT. A detailed discussion of the GH/AT relationship will be included that addresses adipokine production, immune cell populations, lipid metabolism, senescence, differentiation, and fibrosis, as well as brown AT and beiging of white AT. A brief overview of how GH levels are altered in an obese state, and the efficacy of GH as a therapeutic option to manage obesity will be given. As we will reveal, the effects of GH on AT are numerous, dynamic and depot-dependent. © 2017 American Physiological Society. Compr Physiol 7:819-840, 2017.
Collapse
Affiliation(s)
- Katie M Troike
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Brooke E Henry
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Elizabeth A Jensen
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Jonathan A Young
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Edward O List
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Darlene E Berryman
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
16
|
Corbit KC, Camporez JPG, Tran JL, Wilson CG, Lowe DA, Nordstrom SM, Ganeshan K, Perry RJ, Shulman GI, Jurczak MJ, Weiss EJ. Adipocyte JAK2 mediates growth hormone-induced hepatic insulin resistance. JCI Insight 2017; 2:e91001. [PMID: 28194444 DOI: 10.1172/jci.insight.91001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
For nearly 100 years, growth hormone (GH) has been known to affect insulin sensitivity and risk of diabetes. However, the tissue governing the effects of GH signaling on insulin and glucose homeostasis remains unknown. Excess GH reduces fat mass and insulin sensitivity. Conversely, GH insensitivity (GHI) is associated with increased adiposity, augmented insulin sensitivity, and protection from diabetes. Here, we induce adipocyte-specific GHI through conditional deletion of Jak2 (JAK2A), an obligate transducer of GH signaling. Similar to whole-body GHI, JAK2A mice had increased adiposity and extreme insulin sensitivity. Loss of adipocyte Jak2 augmented hepatic insulin sensitivity and conferred resistance to diet-induced metabolic stress without overt changes in circulating fatty acids. While GH injections induced hepatic insulin resistance in control mice, the diabetogenic action was absent in JAK2A mice. Adipocyte GH signaling directly impinged on both adipose and hepatic insulin signal transduction. Collectively, our results show that adipose tissue governs the effects of GH on insulin and glucose homeostasis. Further, we show that JAK2 mediates liver insulin sensitivity via an extrahepatic, adipose tissue-dependent mechanism.
Collapse
Affiliation(s)
- Kevin C Corbit
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | | | - Jennifer L Tran
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Camella G Wilson
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Dylan A Lowe
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Sarah M Nordstrom
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Kirthana Ganeshan
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | | | - Gerald I Shulman
- Department of Internal Medicine.,Cellular and Molecular Physiology, and.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael J Jurczak
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ethan J Weiss
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| |
Collapse
|
17
|
TOUSKOVA V, KLOUCKOVA J, DUROVCOVA V, LACINOVA Z, KAVALKOVA P, TRACHTA P, KOSAK M, MRAZ M, HALUZIKOVA D, HANA V, MAREK J, KRSEK M, HALUZIK M. The Possible Role of mRNA Expression Changes of GH/IGF-1/Insulin Axis Components in Subcutaneous Adipose Tissue in Metabolic Disturbances of Patients With Acromegaly. Physiol Res 2016; 65:493-503. [DOI: 10.33549/physiolres.933244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We explored the effect of chronically elevated circulating levels of growth hormone (GH)/insulin-like-growth-factor-1 (IGF-1) on mRNA expression of GH/IGF-1/insulin axis components and p85alpha subunit of phosphoinositide-3-kinase (p85alpha) in subcutaneous adipose tissue (SCAT) of patients with active acromegaly and compared these findings with healthy control subjects in order to find its possible relationships with insulin resistance and body composition changes. Acromegaly group had significantly decreased percentage of truncal and whole body fat and increased homeostasis model assessment-insulin resistance (HOMA-IR). In SCAT, patients with acromegaly had significantly increased IGF-1 and IGF-binding protein-3 (IGFBP-3) expression that both positively correlated with serum GH. P85alpha expression in SCAT did not differ from control group. IGF-1 and IGFBP-3 expression in SCAT were not independently associated with percentage of truncal and whole body fat or with HOMA-IR while IGFBP-3 expression in SCAT was an independent predictor of insulin receptor as well as of p85alpha expression in SCAT. Our data suggest that GH overproduction in acromegaly group increases IGF-1 and IGFBP-3 expression in SCAT while it does not affect SCAT p85alpha expression. Increased IGF-1 or IGFBP-3 in SCAT of acromegaly group do not appear to contribute to systemic differences in insulin sensitivity but may have local regulatory effects in SCAT of patients with acromegaly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - M. HALUZIK
- Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
18
|
Karastergiou K, Bredella MA, Lee MJ, Smith SR, Fried SK, Miller KK. Growth hormone receptor expression in human gluteal versus abdominal subcutaneous adipose tissue: Association with body shape. Obesity (Silver Spring) 2016; 24:1090-1096. [PMID: 27015877 PMCID: PMC5084456 DOI: 10.1002/oby.21460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/23/2015] [Accepted: 12/31/2015] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Growth hormone (GH) administration reduces abdominal, but not lower body, fat mass. To gain insight into the underlying mechanisms, this study examined the expression of the GH receptor (GHR) and some of its targets in abdominal and gluteal adipose tissue. METHODS GHR and GH targets in the lipolytic pathway were assessed (quantitative PCR/Western blotting) in adipose aspirates from premenopausal women [n = 15, age 26.9 ± 6.1 years, body mass index (BMI) 28.0 ± 6.8 kg/m(2) ] and men (n = 28, age 29.2 ± 7.0 years, BMI 26.9 ± 3.7 kg/m(2) ). RESULTS GHR mRNA expression was lower in the gluteal depot when compared with the abdominal depot (P = 0.01). Abdominal GHR correlated negatively with age and BMI, whereas gluteal GHR was associated with lower waist-to-hip ratio (WHR), that is, pear shape. In both sites, GHR mRNA correlated strongly with genes important for the regulation of lipolysis: adipose tissue triglyceride lipase (ATGL), hormone-sensitive lipase, perilipin, and CIDEA (all P < 0.001), independently of BMI, WHR, age, and sex. GHR protein was lower in the gluteal fat when compared with the abdominal fat (P = 0.03) and correlated with ATGL protein in the gluteal depot (P < 0.001). CONCLUSIONS GHR levels correlate with levels of lipases and lipid droplet-associated proteins crucial for lipolysis. Thus, higher GHR expression in the abdominal depot when compared with the gluteal depot may underlie the in vivo effect of GH to specifically reduce abdominal adipose tissue mass.
Collapse
Affiliation(s)
- Kalypso Karastergiou
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Miriam A. Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mi-Jeong Lee
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Steven R. Smith
- Sanford/Burnham Medical Research Institute at Lake Nona, Orlando, Florida, USA
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
| | - Susan K. Fried
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Karen K. Miller
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Turgut S, Topsakal S, Ata MT, Herek D, Akın F, Özkan Ş, Turgut G. Leptin Receptor Gene Polymorphism may Affect Subclinical Atherosclerosis in Patients with Acromegaly. Avicenna J Med Biotechnol 2016; 8:145-50. [PMID: 27563428 PMCID: PMC4967549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Acromegaly is associated with increased morbidity and mortality related to cardiovascular diseases. Leptin (LEP) and Leptin Receptor (LEPR) gene polymorphisms can increase cardiovascular risks. The aim of this study was to investigate association between the frequencies of LEP and LEPR gene polymorphisms and subclinical atherosclerosis in acromegalic patients. METHODS Forty-four acromegalic patients and 30 controls were admitted to study. The polymorphisms were identified by using polymerase chain reaction from peripheral blood samples. The levels of systolic and diastolic blood pressure, BMI, fasting plasma glucose, fasting insulin, IGF-I, GH, IGFBP3, leptin, triglyceride, carotid Intima Media Thickness (cIMT) and HDL and LDL cholesterol concentrations were evaluated. RESULTS There was statistically significant difference between the LEPR genotypes of acromegalic patients (GG 11.4%, GA 52.3%, and AA 36.4%) and controls (GG 33.3%, GA 50%, and AA 16.7%) although their LEP genotype distribution was similar. In addition, the prevalence of the LEPR gene G and A alleles was significantly different between patients and controls. No significant difference was found among the G(-2548) A leptin genotypes of groups in terms of the clinical parameters. cIMT significantly increased homozygote LEPR GG genotype group compared to AA subjects in patients. But the other parameters were not different between LEPR genotypes groups of patients and controls. CONCLUSION It can be said that the LEPR gene polymorphism may affect cIMT in patients. The reason is that LEPR GG genotype carriers may have more risk than other genotypes in the development of subclinical atherosclerosis in acromegaly.
Collapse
Affiliation(s)
- Sebahat Turgut
- Department of Physiology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey,Corresponding author: Sebahat Turgut, Ph.D., Pamukkale University, Medical Faculty, Department of Physiology, Denizli, Turkey, Tel: +90 258 2961698, Fax: +90 258 2961765, E-mail:
| | - Senay Topsakal
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| | - Melek Tunç Ata
- Department of Physiology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| | - Duygu Herek
- Department of Radiology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| | - Fulya Akın
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| | - Şeyma Özkan
- Department of Physiology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| | - Günfer Turgut
- Department of Physiology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| |
Collapse
|