1
|
Pinto-Pinho P, Pinto MDL, Monteiro J, Fardilha M, Pinto-Leite R, Colaço B. Pregnancy Complications and Feto-Maternal Monitoring in Rabbits. Vet Sci 2023; 10:622. [PMID: 37888574 PMCID: PMC10610772 DOI: 10.3390/vetsci10100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Rabbit production holds significant relevance in modern agriculture due to its potential as a sustainable source of high-quality protein and efficient feed conversion, contributing to food security and economic diversification. Nevertheless, studies incorporating feto-maternal monitoring in this species are uncommon. This review gathers research on the monitoring and evaluation of factors affecting rabbit gestation, providing a better understanding of the causes of prenatal development abnormalities. These include studies regarding how chronic maternal hypertension, gestational diabetes, maternal stress, ectopic gestation, maternal uterine ischemia and fetal hypoxia, intrauterine growth restriction, superfetation, maternal age, maternal nutritional status, maternal physical condition, maternal and embryonic genotype, and the intrauterine location of rabbit fetuses can potentially impact rabbits' reproduction and maternal and fetal health. Among other monitoring techniques, ultrasonography, considered one of the best tools for diagnosing pregnancy and conducting follow-up, is also reviewed. Details on measurable fetal-development parameters in rabbits and precautions to be considered before and during the examination are also provided. Additional studies are required to understand why some events occur and their consequences throughout gestation, allowing the determination of new biomarkers or cut-offs that can be helpful for early diagnosis and improve reproductive efficiency.
Collapse
Affiliation(s)
- Patrícia Pinto-Pinho
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Laboratory of Signal Transduction, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- Laboratory of Genetics and Andrology, Centro Hospitalar de Trás-os-Montes e Alto Douro, E.P.E, 5000-508 Vila Real, Portugal;
| | - Maria de Lurdes Pinto
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
| | - José Monteiro
- José Azevedo Monteiro, Lda., 4625-679 Vila Boa do Bispo, Portugal;
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rosário Pinto-Leite
- Laboratory of Genetics and Andrology, Centro Hospitalar de Trás-os-Montes e Alto Douro, E.P.E, 5000-508 Vila Real, Portugal;
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
| |
Collapse
|
2
|
Benítez Marín MJ, Blanco Elena JA, Marín Clavijo J, Jiménez López J, Lubián López DM, González Mesa E. Neurodevelopment Outcome in Children with Fetal Growth Restriction at Six Years of Age: A Retrospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11043. [PMID: 36078758 PMCID: PMC9518559 DOI: 10.3390/ijerph191711043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE This study aimed to describe neurodevelopment in fetal growth restriction children at the age of six. Secondly, we tried to demonstrate influencing factors that can improve or exacerbate this development, as well as predictive factors that might select a population at risk to assist with early childhood support. METHOD It was a study of 70 children affected with FGR. FGR was based on these definitions: birth weight below the 3rd percentile or birth weight below the 10th percentile with an abnormal hemodynamic Doppler study. Neurodevelopment was assessed at 6 years old by means of Batelle Development Inventory. A global development quotient under a 100 score was considered a neurodevelopment delay. All variables regarding pregnancy care, delivery episode, postpartum, neonatal care, sociodemographic issues, and the need for support in the first years were studied. RESULTS The mean gestational age at diagnosis was 33.14 weeks (standard deviation (SD = 4.31), with 32.9% of early-onset diagnoses. The mean gestational age at delivery was 35.61 (SD = 3.21), and the cesarean rate was 64.3%. The average age of the children at the moment of the evaluation was 76.20-month-old (SD = 3.70). The mean global development quotient was 97.28 (SD = 13.97). We were able to record a 57.1% of global development delay. In the cases of cognition, only 17.1% of the children registered a delay. Motor and communication skills were the most frequently affected. We discovered that socioeconomic status was positively related to the global development quotient, as well as both gestational age at delivery and middle cerebral artery pulsatility index was positively related to the global development quotient. CONCLUSIONS We found a higher neurodevelopment delay rate (57.1%). We could relate a higher gestational age at delivery and a higher MCA percentile with better global neurodevelopment quotients.
Collapse
Affiliation(s)
- María José Benítez Marín
- Medicine School, Malaga University, 29071 Málaga, Spain
- Obstetrics and Gynecology Service, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - Juan Antonio Blanco Elena
- Medicine School, Malaga University, 29071 Málaga, Spain
- General Surgery Service, Infanta Margarita Hospital, 14940 Córdoba, Spain
| | | | - Jesús Jiménez López
- Obstetrics and Gynecology Service, Regional University Hospital of Malaga, 29011 Málaga, Spain
- Surgical Specialties, Biochemistry and Immunology Department, Málaga University, 29071 Málaga, Spain
- Biomedical Research Institute of Malaga (IBIMA) Research Group in Maternal-Fetal Medicine, Epigenetics, Women’s Diseases and Reproductive Health, 29071 Málaga, Spain
| | - Daniel María Lubián López
- Department of Obstetrics and Gynecology, Faculty of Medicine, University Hospital of Jerez de la Frontera, University of Cadiz, 11407 Cadiz, Spain
| | - Ernesto González Mesa
- Obstetrics and Gynecology Service, Regional University Hospital of Malaga, 29011 Málaga, Spain
- Surgical Specialties, Biochemistry and Immunology Department, Málaga University, 29071 Málaga, Spain
- Biomedical Research Institute of Malaga (IBIMA) Research Group in Maternal-Fetal Medicine, Epigenetics, Women’s Diseases and Reproductive Health, 29071 Málaga, Spain
| |
Collapse
|
3
|
Fang Q, Liu J, Chen L, Chen Q, Wang Y, Li Z, Fu W, Liu Y. Taurine supplementation improves hippocampal metabolism in immature rats with intrauterine growth restriction (IUGR) through protecting neurons and reducing gliosis. Metab Brain Dis 2022; 37:2077-2088. [PMID: 35048325 DOI: 10.1007/s11011-021-00896-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023]
Abstract
Taurine as an essential amino acid in the brain could play an important role in protecting the fetal brain of intrauterine growth restriction (IUGR). The hippocampus with IUGR showed neural metabolic disorder and structure changed that affected memory and learning ability. This study was aimed to identify the effect of taurine supplementation on the metabolism alterations and cellular composition changes of the hippocampus in IUGR immature rats. Metabolite concentrations were determined by magnetic resonance spectroscopy (MRS) in the hippocampus of juvenile rats with IUGR following taurine supplementation with antenatal or postnatal supply. The composition of neural cells in the hippocampus was observed by immunohistochemical staining (IHC) and western blotting (WB). Antenatal taurine supplementation increased the ratios of N-acetylaspartate (NAA) /creatine (Cr) and glutamate (Glu) /Cr of the hippocampus in the IUGR immature rats, but reduced the ratios of choline (Cho) /Cr and myoinositol (mI) /Cr. At the same time, the protein expression of NeuN in the IUGR rats was increased through intrauterine taurine supplementation, and the GFAP expression was reduced. Especially the effect of antenatal taurine was better than postpartum. Furthermore, there existed a positive correlation between the NAA/Cr ratio and the NeuN protein expression (R = 0.496 p < 0.001 IHC; R = 0.568 p < 0.001 WB), the same results existed in the relationship between the mI/Cr ratio and the GFAP protein expression (R = 0.338 p = 0.019 IHC; R = 0.440 p = 0.002 WB). Prenatal taurine supplementation can better improve hippocampal neuronal metabolism by increasing NAA / Cr ratio related to the number of neurons and reducing Cho / Cr ratio related to the number of glial cells.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jing Liu
- Department of Neonatology and Neonatal Intensive Care Unit, Beijing Chaoyang District Maternal and Child Healthcare Hospital, No. 25 Huaweili, Chaoyang District, Beijing, 100101, China.
- Department of Pediatrics, The Second School of Clinical Medicine, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun district, Guangzhou, 510515, Guangdong Province, China.
| | - Lang Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yan Wang
- Neonatal Intensive Care Unit of Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, Fujian Province, China
| | - Wei Fu
- Department of Neonatology and Neonatal Intensive Care Unit, Beijing Chaoyang District Maternal and Child Healthcare Hospital, No. 25 Huaweili, Chaoyang District, Beijing, 100101, China
| | - Ying Liu
- Department of Neonatology and Neonatal Intensive Care Unit, Beijing Chaoyang District Maternal and Child Healthcare Hospital, No. 25 Huaweili, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
4
|
Pla L, Illa M, Loreiro C, Lopez MC, Vázquez-Aristizabal P, Kühne BA, Barenys M, Eixarch E, Gratacós E. Structural Brain Changes during the Neonatal Period in a Rabbit Model of Intrauterine Growth Restriction. Dev Neurosci 2021; 42:217-229. [PMID: 33677448 DOI: 10.1159/000512948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is associated with abnormal neurodevelopment, but the associated structural brain changes are poorly documented. The aim of this study was to describe in an animal model the brain changes at the cellular level in the gray and white matter induced by IUGR during the neonatal period. METHODS The IUGR model was surgically induced in pregnant rabbits by ligating 40-50% of the uteroplacental vessels in 1 horn, whereas the uteroplacental vessels of the contralateral horn were not ligated. After 5 days, IUGR animals from the ligated horn and controls from the nonligated were delivered. On the day of delivery, perinatal data and placentas were collected. On postnatal day 1, functional changes were first evaluated, and thereafter, neuronal arborization in the frontal cortex and density of pre-oligodendrocytes, astrocytes, and microglia in the corpus callosum were evaluated. RESULTS Higher stillbirth in IUGR fetuses together with a reduced birth weight as compared to controls was evidenced. IUGR animals showed poorer functional results, an altered neuronal arborization pattern, and a decrease in the pre-oligodendrocytes, with no differences in microglia and astrocyte densities. CONCLUSIONS Overall, in the rabbit model used, IUGR is related to functional and brain changes evidenced already at birth, including changes in the neuronal arborization and abnormal oligodendrocyte maturation.
Collapse
Affiliation(s)
- Laura Pla
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Illa
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain, .,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain,
| | - Carla Loreiro
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mari Carmen Lopez
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Paula Vázquez-Aristizabal
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Britta Anna Kühne
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Marta Barenys
- GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Elisenda Eixarch
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Eduard Gratacós
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| |
Collapse
|
5
|
Ami O, Maran JC, Musset D, Dubray C, Mage G, Boyer L. Human Birth Imaging Using MRI demonstrates fetal head moldability and brain compression : Prospective cohort study (Preprint). JMIR Form Res 2021; 6:e27421. [DOI: 10.2196/27421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 11/02/2022] [Indexed: 11/05/2022] Open
|
6
|
Bahado-Singh RO, Turkoglu O, Yilmaz A, Kumar P, Zeb A, Konda S, Sherman E, Kirma J, Allos M, Odibo A, Maulik D, Graham SF. Metabolomic identification of placental alterations in fetal growth restriction. J Matern Fetal Neonatal Med 2020; 35:447-456. [PMID: 32041426 DOI: 10.1080/14767058.2020.1722632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Fetal growth restriction (FGR), viz., birth weight <10th percentile is a common pregnancy complication which increases the risk of adverse fetal and newborn outcomes. The placenta is the key organ for fetal growth as it controls oxygen and nutrient availability. This study aims to elucidate the mechanisms of and identify putative placental biomarkers for FGR using high-resolution metabolomics.Methods: Placenta samples from 19 FGR cases and 30 controls were analyzed using proton magnetic resonance (1H NMR) spectroscopy and direct flow injection mass spectrometry with reverse-phase liquid-chromatography mass spectrometry (DI-LC-MS/MS). Significant concentration differences (p-value <.05) in 179 of the 220 metabolites were measured.Results: Of the 179 metabolites, 176 (98.3%) had reduced placental levels in FGR cases. The best performing metabolite model: 3-hydroxybutyrate, glycine and PCaaC42:0 achieved an AUC (95% CI) = 0.912 (0.814-1.000) with a sensitivity of 86.7% and specificity of 84.2% for FGR detection. Metabolite set enrichment analysis (MSEA) revealed significant (p < .05) perturbation of multiple placental metabolite pathways including urea metabolism, ammonia recycling, porphyrin metabolism, bile acid biosynthesis, galactose metabolism and perturbed protein biosynthesis.Conclusion: The placental metabolic pathway analysis revealed abnormalities that are consistent with fetal hepatic dysfunction in FGR. Near global reduction of metabolite concentrations was found in the placenta from FGR cases and metabolites demonstrated excellent diagnostic accuracy for FGR detection.
Collapse
Affiliation(s)
- Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, Michigan, USA
| | - Onur Turkoglu
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, Michigan, USA
| | - Ali Yilmaz
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, Michigan, USA
| | - Praveen Kumar
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, Michigan, USA
| | - Amna Zeb
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, Michigan, USA
| | - Shruti Konda
- Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Eric Sherman
- University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph Kirma
- Oakland University, William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Mathew Allos
- Oakland University, William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Anthony Odibo
- Morsani College of Medicine, USF Health, Tampa, Florida, USA
| | - Dev Maulik
- Department of Obstetrics and Gynecology, Kansas City School of Medicine, University of Missouri, Kansas City, Missouri, USA
| | - Stewart F Graham
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, Michigan, USA
| |
Collapse
|
7
|
Li R, Wang X, Wang B, Li J, Song Y, Luo B, Chen Y, Zhang C, Wang H, Xu D. Gestational 1-nitropyrene exposure causes gender-specific impairments on postnatal growth and neurobehavioral development in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:123-129. [PMID: 31082575 DOI: 10.1016/j.ecoenv.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
1-Nitropyrene (1-NP), a typical nitrated polycyclic aromatic hydrocarbon, is widely distributed in the environment and is well known for its mutagenic effects. Recently, we found that gestational 1-NP exposure induced fetal growth restriction. In this study, we further evaluated the effect of in utero 1-NP exposure on postnatal growth and neurobehavioral development in the offspring. Pregnant mice were administered with 1-NP (10 μg/kg) by gavage daily in late pregnancy (GD13-GD17). The body weight of each offspring was measured from PND1 to 12 weeks postpartum. Exploration and anxiety related activities were detected by open-field test at 6 weeks postpartum. Learning and memory were assessed by Morris Water Maze at 7 weeks postpartum. And depressive-like behaviors were estimated by sucrose preference test at 10 weeks postpartum. Significant body weight reduction was observed in 1-NP-exposed female offspring at PND1, PND14 and PND21 while the lower body weight was only found at PND1 for 1-NP-exposed male offspring. Exploration and anxiety activities at puberty, and depressive-like behavior in adulthood were not disturbed in offspring prenatally exposed to 1-NP. Interestingly, spatial learning and memory ability at puberty was impaired in females but not in males prenatally exposed to 1-NP. These findings suggest that gestational 1-NP exposure delays postnatal growth and impaired neurobehavioral development in a gender-dependent manner.
Collapse
Affiliation(s)
- Ran Li
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China; Basic Medical College, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xilu Wang
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Bo Wang
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Jian Li
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Yaping Song
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Biao Luo
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Yuanhua Chen
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Dexiang Xu
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Lopez-Tello J, Arias-Alvarez M, Gonzalez-Bulnes A, Sferuzzi-Perri AN. Models of Intrauterine growth restriction and fetal programming in rabbits. Mol Reprod Dev 2019; 86:1781-1809. [PMID: 31538701 DOI: 10.1002/mrd.23271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/02/2019] [Indexed: 12/23/2022]
Abstract
Intrauterine growth restriction (IUGR) affects approximately 10% of human pregnancies globally and has immediate and life-long consequences for offspring health. However, the mechanisms underlying the pathogenesis of IUGR and its association with later health and disease outcomes are poorly understood. To address these knowledge gaps, the use of experimental animals is critically important. Since the 50's different environmental, pharmacological, and surgical manipulations have been performed in the rabbit to improve our knowledge of the control of fetal growth, fetal responses to IUGR, and mechanisms by which offspring may be programmed by an adverse gestational environment. The purpose of this review is therefore to summarize the utility of the rabbit as a model for IUGR research. It first summarizes the knowledge of prenatal and postnatal development in the rabbit and how these events relate to developmental milestones in humans. It then describes the methods used to induce IUGR in rabbits and the knowledge gained about the mechanisms determining prenatal and postnatal outcomes of the offspring. Finally, it discusses the application of state of the art approaches in the rabbit, including high-resolution ultrasound, magnetic resonance imaging, and gene targeting, to gain a deeper integrative understanding of the physiological and molecular events governing the development of IUGR. Overall, we hope to engage and inspire investigators to employ the rabbit as a model organism when studying pregnancy physiology so that we may advance our understanding of mechanisms underlying IUGR and its consequences in humans and other mammalian species.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Maria Arias-Alvarez
- Department of Animal Production. Veterinary Faculty, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | | | - Amanda N Sferuzzi-Perri
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Malhotra A, Sepehrizadeh T, Dhollander T, Wright D, Castillo-Melendez M, Sutherland AE, Pham Y, Ditchfield M, Polglase GR, de Veer M, Jenkin G, Pannek K, Shishegar R, Miller SL. Advanced MRI analysis to detect white matter brain injury in growth restricted newborn lambs. NEUROIMAGE-CLINICAL 2019; 24:101991. [PMID: 31473545 PMCID: PMC6728876 DOI: 10.1016/j.nicl.2019.101991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022]
Abstract
Background Fetal growth restriction (FGR) is a serious pregnancy complication associated with increased risk of adverse neurodevelopment and neuromorbidity. Current imaging techniques, including conventional magnetic resonance imaging (MRI), are not sensitive enough to detect subtle structural abnormalities in the FGR brain. We examined whether advanced MRI analysis techniques have the capacity to detect brain injury (particularly white matter injury) caused by chronic hypoxia-induced fetal growth restriction in newborn preterm lambs. Methods Surgery was undertaken in twin bearing pregnant ewes at 88–90 days gestation (term = 150 days) to induce FGR in one fetus. At 127 days gestation (~32 weeks human brain development), FGR and control (appropriate for gestational age, AGA) lambs were delivered by caesarean section, intubated and ventilated. Conventional and advanced brain imaging was conducted within the first two hours of life using a 3T MRI scanner. T1-weighted (T1w) and T2-weighted (T2w) structural imaging, magnetic resonance spectroscopy (MRS), and diffusion MRI (dMRI) data were acquired. Diffusion tensor imaging (DTI) modelling and analysis of dMRI data included the following regions of interest (ROIs): subcortical white matter, periventricular white matter, cerebellum, hippocampus, corpus callosum and thalamus. Fixel-based analysis of 3-tissue constrained spherical deconvolution (CSD) of the dMRI data was performed and compared between FGR and AGA lambs. Lambs were euthanised immediately after the scans and brain histology performed in the regions of interest to correlate with imaging. Results FGR and AGA lamb (body weight, mean (SD): 2.2(0.5) vs. 3.3(0.3) kg, p = .002) MRI brain scans were analysed. There were no statistically significant differences observed between the groups in conventional T1w, T2w or MRS brain data. Mean, axial and radial diffusivity, and fractional anisotropy indices obtained from DTI modelling also did not show any statistically significant differences between groups in the ROIs. Fixel-based analysis of 3-tissue CSD, however, did reveal a decrease in fibre cross-section (FC, p < .05) but not in fibre density (FD) or combined fibre density and cross-section (FDC) in FGR vs. AGA lamb brains. The specific tracts that showed a decrease in FC were in the regions of the periventricular white matter, hippocampus and cerebellar white matter, and were supported by histological evidence of white matter hypomyelination and disorganisation in corresponding FGR lamb brain regions. Conclusions The neuropathology associated with FGR in neonatal preterm lambs is subtle and imaging detection may require advanced MRI and tract-based analysis techniques. Fixel-based analysis of 3-tissue CSD demonstrates that the preterm neonatal FGR brain shows evidence of macrostructural (cross-sectional) deficits in white matter subsequent to altered antenatal development. These findings can inform analysis of similar brain pathology in neonatal infants. FGR brain injury can be subtle, and not easily detected on conventional imaging. Fixel-based analysis showed differences in fibre content of FGR lamb brain tracts. Histological stain confirmed myelination deficits in corresponding brain regions.
Collapse
Affiliation(s)
- Atul Malhotra
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.
| | | | - Thijs Dhollander
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - David Wright
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | | | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Kerstin Pannek
- Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia
| | - Rosita Shishegar
- Monash Biomedical Imaging, Monash University, Melbourne, Australia; The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; CSIRO Health and Biosecurity, Parkville, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Simões RV, Cabañas ME, Loreiro C, Illa M, Crispi F, Gratacós E. Assessment of prenatal cerebral and cardiac metabolic changes in a rabbit model of fetal growth restriction based on 13C-labelled substrate infusions and ex vivo multinuclear HRMAS. PLoS One 2018; 13:e0208784. [PMID: 30589837 PMCID: PMC6307735 DOI: 10.1371/journal.pone.0208784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/25/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND We have used a previously reported rabbit model of fetal growth restriction (FGR), reproducing perinatal neurodevelopmental and cardiovascular impairments, to investigate the main relative changes in cerebral and cardiac metabolism of term FGR fetuses during nutrient infusion. METHODS FGR was induced in 9 pregnant New Zealand rabbits at 25 days of gestation: one horn used as FGR, by partial ligation of uteroplacental vessels, and the contralateral as control (appropriate for gestation age, AGA). At 30 days of gestation, fasted mothers under anesthesia were infused i.v. with 1-13C-glucose (4 mothers), 2-13C-acetate (3 mothers), or not infused (2 mothers). Fetal brain and heart samples were quickly harvested and frozen down. Brain cortex and heart apex regions from 30 fetuses were studied ex vivo by HRMAS at 4°C, acquiring multinuclear 1D and 2D spectra. The data were processed, quantified by peak deconvolution or integration, and normalized to sample weight. RESULTS Most of the total 13C-labeling reaching the fetal brains/hearts (80-90%) was incorporated to alanine and lactate (cytosol), and to the glutamine-glutamate pool (mitochondria). Acetate-derived lactate (Lac C2C3) had a slower turnover in FGR brains (~ -20%). In FGR hearts, mitochondrial turnover of acetate-derived glutamine (Gln C4) was slower (-23%) and there was a stronger accumulation of phospholipid breakdown products (glycerophosphoethanolamine and glycerophosphocholine, +50%), resembling the profile of non-infused control hearts. CONCLUSIONS Our results indicate specific functional changes in cerebral and cardiac metabolism of FGR fetuses under nutrient infusion, suggesting glial impairment and restricted mitochondrial metabolism concomitant with slower cell membrane turnover in cardiomyocytes, respectively. These prenatal metabolic changes underlie neurodevelopmental and cardiovascular problems observed in this FGR model and in clinical patients, paving the way for future studies aimed at evaluating metabolic function postnatally and in response to stress and/or treatment.
Collapse
Affiliation(s)
- Rui V. Simões
- Fetal i+d Fetal Medicine Reseach Center, BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), ICGON, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, SPAIN
- * E-mail:
| | - Miquel E. Cabañas
- Servei de Resonància Magnètica Nuclear, Universitat Autònoma de Barcelona (UAB), SPAIN
| | - Carla Loreiro
- Fetal i+d Fetal Medicine Reseach Center, BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), ICGON, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, SPAIN
| | - Miriam Illa
- Fetal i+d Fetal Medicine Reseach Center, BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), ICGON, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, SPAIN
| | - Fatima Crispi
- Fetal i+d Fetal Medicine Reseach Center, BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), ICGON, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, SPAIN
| | - Eduard Gratacós
- Fetal i+d Fetal Medicine Reseach Center, BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), ICGON, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, SPAIN
| |
Collapse
|
11
|
Intrauterine growth restriction and development of the hippocampus: implications for learning and memory in children and adolescents. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:755-764. [PMID: 30236384 DOI: 10.1016/s2352-4642(18)30245-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
Intrauterine growth restriction (IUGR) is often the result of compromised placental function and suboptimal uteroplacental blood flow. Children born with IUGR have impaired cognitive functioning and specific memory deficits, indicating long-lasting impairments in hippocampal functioning; indeed, hippocampal volume is reduced in infants with IUGR. Animal studies have provided valuable insight into the nature of deficits in hippocampal-dependent functions observed in children born with IUGR; outcomes of experimental IUGR reveal reduced neuron numbers and morphological alterations in the cornu ammonis fields 1 and 3 and dentate gyrus subregions of the hippocampus. However, whether such early and ongoing structural changes in the hippocampus could account for deficits in spatial memory reported in adolescent rats with IUGR is yet to be established. Understanding the association between hippocampal structural and functional alterations in IUGR will aid in the development of interventions to minimise the effect of IUGR on the hippocampus and long-term cognitive outcomes.
Collapse
|
12
|
A magnetic resonance multi-atlas for the neonatal rabbit brain. Neuroimage 2018; 179:187-198. [PMID: 29908313 PMCID: PMC6203700 DOI: 10.1016/j.neuroimage.2018.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 02/08/2023] Open
Abstract
The rabbit model has become increasingly popular in neurodevelopmental studies as it is best suited to bridge the gap in translational research between small and large animals. In the context of preclinical studies, high-resolution magnetic resonance imaging (MRI) is often the best modality to investigate structural and functional variability of the brain, both in vivo and ex vivo. In most of the MRI-based studies, an important requirement to analyze the acquisitions is an accurate parcellation of the considered anatomical structures. Manual segmentation is time-consuming and typically poorly reproducible, while state-of-the-art automated segmentation algorithms rely on available atlases. In this work we introduce the first digital neonatal rabbit brain atlas consisting of 12 multi-modal acquisitions, parcellated into 89 areas according to a hierarchical taxonomy. Delineations were performed iteratively, alternating between segmentation propagation, label fusion and manual refinements, with the aim of controlling the quality while minimizing the bias introduced by the chosen sequence. Reliability and accuracy were assessed with cross-validation and intra- and inter-operator test-retests. Multi-atlas, versioned controlled segmentations repository and supplementary materials download links are available from the software repository documentation at https://github.com/gift-surg/SPOT-A-NeonatalRabbit.
Collapse
|
13
|
Schneider NY, Datiche F, Coureaud G. Brain anatomy of the 4-day-old European rabbit. J Anat 2018; 232:747-767. [PMID: 29441579 DOI: 10.1111/joa.12789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2018] [Indexed: 01/31/2023] Open
Abstract
The European rabbit (Oryctolagus cuniculus) is a widely used model in fundamental, medical and veterinary neurosciences. Besides investigations in adults, rabbit pups are relevant to study perinatal neurodevelopment and early behaviour. To date, the rabbit is also the only species in which a pheromone - the mammary pheromone (MP) - emitted by lactating females and active on neonatal adaptation has been described. The MP is crucial since it contributes directly to nipple localisation and oral seizing in neonates, i.e. to their sucking success. It may also be one of the non-photic cues arising from the mother, which stimulates synchronisation of the circadian system during pre-visual developmental stages. Finally, the MP promotes neonatal odour associative and appetitive conditioning in a remarkably rapid and efficient way. For these different reasons, the rabbit offers a currently unique opportunity to determine pheromonal-induced brain processing supporting adaptation early in life. Therefore, it is of interest to create a reference work of the newborn rabbit pup brain, which may constitute a tool for future multi-disciplinary and multi-approach research in this model, and allow comparisons related to the neuroethological basis of social and feeding behaviour among newborns of various species. Here, in line with existing experimental studies, and based on original observations, we propose a functional anatomical description of brain sections in 4-day-old rabbits with a particular focus on seven brain regions which appear important for neonatal perception of sensory signals emitted by the mother, circadian adaptation to the short and single daily nursing of the mother in the nest, and expression of specific motor actions involved in nipple localisation and milk intake. These brain regions involve olfactory circuits, limbic-related areas important in reward, motivation, learning and memory formation, homeostatic areas engaged in food anticipation, and regions implicated in circadian rhythm and arousal, as well as in motricity.
Collapse
Affiliation(s)
- Nanette Y Schneider
- Centre des Sciences du Goût et de l'Alimentation (Research Center for Taste and Feeding Behavior), CNRS UMR, 6265, INRA 1324, Université de Bourgogne Franche-Comté, Dijon, France
| | - Frédérique Datiche
- Centre des Sciences du Goût et de l'Alimentation (Research Center for Taste and Feeding Behavior), CNRS UMR, 6265, INRA 1324, Université de Bourgogne Franche-Comté, Dijon, France
| | - Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon (Lyon Neuroscience Research Center) INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
14
|
Detection and assessment of brain injury in the growth-restricted fetus and neonate. Pediatr Res 2017; 82:184-193. [PMID: 28234891 DOI: 10.1038/pr.2017.37] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/14/2017] [Indexed: 11/08/2022]
Abstract
Fetal growth restriction (FGR) is a common complication of pregnancy and, in severe cases, is associated with elevated rates of perinatal mortality, neonatal morbidity, and poor neurodevelopmental outcomes. The leading cause of FGR is placental insufficiency, with the placenta failing to adequately meet the increasing oxygen and nutritional needs of the growing fetus with advancing gestation. The resultant chronic fetal hypoxia induces a decrease in fetal growth, and a redistribution of blood flow preferentially to the brain. However, this adaptation does not ensure normal brain development. Early detection of brain injury in FGR, allowing for the prediction of short- and long-term neurodevelopmental consequences, remains a significant challenge. Furthermore, in FGR infants the detection and diagnosis of neuropathology is complicated by preterm birth, the etiological heterogeneity of FGR, timing of onset of growth restriction, its severity, and coexisting complications. In this review, we examine existing and emerging diagnostic tools from human and preclinical studies for the detection and assessment of brain injury in FGR fetuses and neonates. Increased detection rates, and early detection of brain injury associated with FGR, will offer opportunities for developing and assessing interventions to improve long-term outcomes.
Collapse
|
15
|
Hunter DS, Hazel SJ, Kind KL, Owens JA, Pitcher JB, Gatford KL. Programming the brain: Common outcomes and gaps in knowledge from animal studies of IUGR. Physiol Behav 2016; 164:233-48. [DOI: 10.1016/j.physbeh.2016.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
|