1
|
Ruan DF, Fribourg M, Yuki Y, Park YH, Martin MP, Yu H, Kelly GC, Lee B, de Real RM, Lee R, Geanon D, Kim-Schulze S, Chun N, Cravedi P, Carrington M, Heeger PS, Horowitz A. High-dimensional analysis of NK cells in kidney transplantation uncovers subsets associated with antibody-independent graft dysfunction. JCI Insight 2024; 9:e185687. [PMID: 39388279 PMCID: PMC11601574 DOI: 10.1172/jci.insight.185687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Natural killer (NK) cells respond to diseased and allogeneic cells through NKG2A/HLA-E or killer cell immunoglobulin-like receptor (KIR)/HLA-ABC interactions. Correlations between HLA/KIR disparities and kidney transplant pathology suggest an antibody-independent pathogenic role for NK cells in transplantation, but the mechanisms remain unclear. Using CyTOF to characterize recipient peripheral NK cell phenotypes and function, we observed diverse NK cell subsets among participants who responded heterogeneously to allo-stimulators. NKG2A+KIR+ NK cells responded more vigorously than other subsets, and this heightened response persisted after kidney transplantation despite immunosuppression. In test and validation sets from 2 clinical trials, pretransplant donor-induced release of cytotoxicity mediator Ksp37 by NKG2A+ NK cells correlated with reduced long-term allograft function. Separate analyses showed that Ksp37 gene expression in allograft biopsies lacking histological rejection correlated with death-censored graft loss. Our findings support an antibody-independent role for NK cells in transplant injury and support further testing of pretransplant, donor-reactive, NK cell-produced Ksp37 as a risk-assessing, transplantation biomarker.
Collapse
Affiliation(s)
- Dan Fu Ruan
- Department of Immunology and Immunotherapy
- Department of Oncological Sciences
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Tisch Cancer Institute, and
| | - Miguel Fribourg
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Tisch Cancer Institute, and
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yuko Yuki
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Yeon-Hwa Park
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Maureen P. Martin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Haocheng Yu
- Department of Immunology and Immunotherapy
- Department of Oncological Sciences
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Tisch Cancer Institute, and
| | - Geoffrey C. Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ronaldo M. de Real
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rachel Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel Geanon
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Seunghee Kim-Schulze
- Department of Immunology and Immunotherapy
- Department of Oncological Sciences
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicholas Chun
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Tisch Cancer Institute, and
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paolo Cravedi
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Tisch Cancer Institute, and
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Peter S. Heeger
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Amir Horowitz
- Department of Immunology and Immunotherapy
- Department of Oncological Sciences
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Tisch Cancer Institute, and
| |
Collapse
|
2
|
Fuhrmann B, Jiang J, Mcleod P, Huang X, Balaji S, Arp J, Diao H, Ma S, Peng T, Haig A, Gunaratnam L, Zhang ZX, Jevnikar AM. Inhibition of NK cell cytotoxicity by tubular epithelial cell expression of Clr-b and Clr-f. CURRENT RESEARCH IN IMMUNOLOGY 2024; 5:100081. [PMID: 39113760 PMCID: PMC11303997 DOI: 10.1016/j.crimmu.2024.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
NK cells participate in ischemia reperfusion injury (IRI) and transplant rejection. Endogenous regulatory systems may exist to attenuate NK cell activation and cytotoxicity in IRI associated with kidney transplantation. A greater understanding of NK regulation will provide insights in transplant outcomes and could direct new therapeutic strategies. Kidney tubular epithelial cells (TECs) may negatively regulate NK cell activation by their surface expression of a complex family of C-type lectin-related proteins (Clrs). We have found that Clr-b and Clr-f were expressed by TECs. Clr-b was upregulated by inflammatory cytokines TNFα and IFNγ in vitro. Silencing of both Clr-b and Clr-f expression using siRNA resulted in increased NK cell killing of TECs compared to silencing of either Clr-b or Clr-f alone (p < 0.01) and when compared to control TECs (p < 0.001). NK cells treated in vitro with soluble Clr-b and Clr-f proteins reduced their capacity to kill TECs (p < 0.05). Hence, NK cell cytotoxicity can be inhibited by Clr proteins on the surface of TECs. Our study suggests a synergistic effect of Clr molecules in regulating NK cell function in renal cells and this may represent an important endogenous regulatory system to limit NK cell-mediated organ injury during inflammation.
Collapse
Affiliation(s)
- Benjamin Fuhrmann
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jifu Jiang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Patrick Mcleod
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Xuyan Huang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Shilpa Balaji
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jaqueline Arp
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Hong Diao
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Shengwu Ma
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Tianqing Peng
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Aaron Haig
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Multi-Organ Transplantation Program, London Health Sciences Centre, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | - Zhu-Xu Zhang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Multi-Organ Transplantation Program, London Health Sciences Centre, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | - Anthony M. Jevnikar
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Multi-Organ Transplantation Program, London Health Sciences Centre, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Schrezenmeier E, Dörner T, Halleck F, Budde K. Cellular Immunobiology and Molecular Mechanisms in Alloimmunity-Pathways of Immunosuppression. Transplantation 2024; 108:148-160. [PMID: 37309030 DOI: 10.1097/tp.0000000000004646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current maintenance immunosuppression commonly comprises a synergistic combination of tacrolimus as calcineurin inhibitor (CNI), mycophenolic acid, and glucocorticoids. Therapy is often individualized by steroid withdrawal or addition of belatacept or inhibitors of the mechanistic target of rapamycin. This review provides a comprehensive overview of their mode of action, focusing on the cellular immune system. The main pharmacological action of CNIs is suppression of the interleukin-2 pathway that leads to inhibition of T cell activation. Mycophenolic acid inhibits the purine pathway and subsequently diminishes T and B cell proliferation but also exerts a variety of effects on almost all immune cells, including inhibition of plasma cell activity. Glucocorticoids exert complex regulation via genomic and nongenomic mechanisms, acting mainly by downregulating proinflammatory cytokine signatures and cell signaling. Belatacept is potent in inhibiting B/T cell interaction, preventing formation of antibodies; however, it lacks the potency of CNIs in preventing T cell-mediated rejections. Mechanistic target of rapamycin inhibitors have strong antiproliferative activity on all cell types interfering with multiple metabolic pathways, partly explaining poor tolerability, whereas their superior effector T cell function might explain their benefits in the case of viral infections. Over the past decades, clinical and experimental studies provided a good overview on the underlying mechanisms of immunosuppressants. However, more data are needed to delineate the interaction between innate and adaptive immunity to better achieve tolerance and control of rejection. A better and more comprehensive understanding of the mechanistic reasons for failure of immunosuppressants, including individual risk/benefit assessments, may permit improved patient stratification.
Collapse
Affiliation(s)
- Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Ruan DF, Fribourg M, Yuki Y, Park YH, Martin M, Kelly G, Lee B, Miguel de Real R, Lee R, Geanon D, Kim-Schulze S, McCarthy M, Chun N, Cravedi P, Carrington M, Heeger PS, Horowitz A. Understanding the heterogeneity of alloreactive natural killer cell function in kidney transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555962. [PMID: 37732256 PMCID: PMC10508724 DOI: 10.1101/2023.09.01.555962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Human Natural Killer (NK) cells are heterogeneous lymphocytes regulated by variegated arrays of germline-encoded activating and inhibitory receptors. They acquire the ability to detect polymorphic self-antigen via NKG2A/HLA-E or KIR/HLA-I ligand interactions through an education process. Correlations among HLA/KIR genes, kidney transplantation pathology and outcomes suggest that NK cells participate in allograft injury, but mechanisms linking NK HLA/KIR education to antibody-independent pathological functions remain unclear. We used CyTOF to characterize pre- and post-transplant peripheral blood NK cell phenotypes/functions before and after stimulation with allogeneic donor cells. Unsupervised clustering identified unique NK cell subpopulations present in varying proportions across patients, each of which responded heterogeneously to donor cells based on donor ligand expression patterns. Analyses of pre-transplant blood showed that educated, NKG2A/KIR-expressing NK cells responded greater than non-educated subsets to donor stimulators, and this heightened alloreactivity persisted > 6 months post-transplant despite immunosuppression. In distinct test and validation sets of patients participating in two clinical trials, pre-transplant donor-induced release of NK cell Ksp37, a cytotoxicity mediator, correlated with 2-year and 5-year eGFR. The findings explain previously reported associations between NK cell genotypes and transplant outcomes and suggest that pre-transplant NK cell analysis could function as a risk-assessment biomarker for transplant outcomes.
Collapse
Affiliation(s)
- Dan Fu Ruan
- Department of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Fribourg
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuko Yuki
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yeon-Hwa Park
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maureen Martin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Geoffrey Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronaldo Miguel de Real
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Geanon
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Department of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa McCarthy
- Dean’s Flow Cytometry CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas Chun
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paolo Cravedi
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Peter S. Heeger
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- These authors contributed equally
| | - Amir Horowitz
- Department of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- These authors contributed equally
| |
Collapse
|
5
|
Lorenz EC, Hickson LJ, Khairallah P, Najafi B, Kennedy CC. Cellular Senescence and Frailty in Transplantation. CURRENT TRANSPLANTATION REPORTS 2023; 10:51-59. [PMID: 37576589 PMCID: PMC10414789 DOI: 10.1007/s40472-023-00393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/28/2023]
Abstract
Purpose of review To summarizes the literature on cellular senescence and frailty in solid-organ transplantation and highlight the emerging role of senotherapeutics as a treatment for cellular senescence. Recent findings Solid-organ transplant patients are aging. Many factors contribute to aging acceleration in this population, including cellular senescence. Senescent cells accumulate in tissues and secrete proinflammatory and profibrotic proteins which result in tissue damage. Cellular senescence contributes to age-related diseases and frailty. Our understanding of the role cellular senescence plays in transplant-specific complications such as allograft immunogenicity and infections is expanding. Promising treatments, including senolytics, senomorphics, cell-based regenerative therapies, and behavioral interventions, may reduce cellular senescence abundance and frailty in patients with solid-organ transplants. Summary Cellular senescence and frailty contribute to adverse outcomes in solid-organ transplantation. Continued pursuit of understanding the role cellular senescence plays in transplantation may lead to improved senotherapeutic approaches and better graft and patient outcomes.
Collapse
Affiliation(s)
| | - LaTonya J. Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| | | | - Bijan Najafi
- Division of Vascular Surgery and Endovascular Therapy, Baylor College of Medicine, Houston, Texas
| | - Cassie C. Kennedy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Hitz AM, Bläsing KA, Wiegmann B, Bellmàs-Sanz R, Chichelnitskiy E, Wandrer F, Horn LM, Neudörfl C, Keil J, Beushausen K, Ius F, Sommer W, Avsar M, Kühn C, Tudorache I, Salman J, Siemeni T, Haverich A, Warnecke G, Falk CS, Kühne JF. Donor NK and T Cells in the Periphery of Lung Transplant Recipients Contain High Frequencies of Killer Cell Immunoglobulin-Like Receptor-Positive Subsets. Front Immunol 2021; 12:778885. [PMID: 34966390 PMCID: PMC8710687 DOI: 10.3389/fimmu.2021.778885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction For end-stage lung diseases, double lung transplantation (DLTx) is the ultimate curative treatment option. However, acute and chronic rejection and chronic dysfunction are major limitations in thoracic transplantation medicine. Thus, a better understanding of the contribution of immune responses early after DLTx is urgently needed. Passenger cells, derived from donor lungs and migrating into the recipient periphery, are comprised primarily by NK and T cells. Here, we aimed at characterizing the expression of killer cell immunoglobulin-like receptors (KIR) on donor and recipient NK and T cells in recipient blood after DLTx. Furthermore, we investigated the functional status and capacity of donor vs. recipient NK cells. Methods Peripheral blood samples of 51 DLTx recipients were analyzed pre Tx and at T0, T24 and 3wk post Tx for the presence of HLA-mismatched donor NK and T cells, their KIR repertoire as well as activation status using flow cytometry. Results Within the first 3 weeks after DLTx, donor NK and T cells were detected in all patients with a peak at T0. An increase of the KIR2DL/S1-positive subset was found within the donor NK cell repertoire. Moreover, donor NK cells showed significantly higher frequencies of KIR2DL/S1-positive cells (p<0.01) 3wk post DLTx compared to recipient NK cells. This effect was also observed in donor KIR+ T cells 3wk after DLTx with higher proportions of KIR2DL/S1 (p<0.05) and KIR3DL/S1 (p<0.01) positive T cells. Higher activation levels of donor NK and T cells (p<0.001) were detected compared to recipient cells via CD25 expression as well as a higher degranulation capacity upon activation by K562 target cells. Conclusion Higher frequencies of donor NK and T cells expressing KIR compared to recipient NK and T cells argue for their origin in the lung as a part of a highly specialized immunocompetent compartment. Despite KIR expression, higher activation levels of donor NK and T cells in the periphery of recipients suggest their pre-activation during the ex situ phase. Taken together, donor NK and T cells are likely to have a regulatory effect in the balance between tolerance and rejection and, hence, graft survival after DLTx.
Collapse
Affiliation(s)
- Anna-Maria Hitz
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Kim-Alina Bläsing
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, DZL, BREATH Site, Hannover, Germany
| | - Ramon Bellmàs-Sanz
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | | | - Franziska Wandrer
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Lisa-Marie Horn
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Neudörfl
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Kerstin Beushausen
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Fabio Ius
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Wiebke Sommer
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Murat Avsar
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christian Kühn
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Igor Tudorache
- Department of Cardiac Surgery, University Hospital of Duesseldorf, Duesseldorf, Germany
| | - Jawad Salman
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Thierry Siemeni
- Department of Cardiothoracic Surgery, University Hospital Jena, Jena, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, DZL, BREATH Site, Hannover, Germany.,German Center for Infection Research, DZIF, TTU-IICH, Hannover-Braunschweig, Germany
| | - Jenny F Kühne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Chan J, Eide IA, Tannæs TM, Waldum-Grevbo B, Jenssen T, Svensson M. Marine n-3 Polyunsaturated Fatty Acids and Cellular Senescence Markers in Incident Kidney Transplant Recipients: The Omega-3 Fatty Acids in Renal Transplantation (ORENTRA) Randomized Clinical Trial. Kidney Med 2021; 3:1041-1049. [PMID: 34939013 PMCID: PMC8664741 DOI: 10.1016/j.xkme.2021.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rationale & Objective Deterioration of kidney graft function is associated with accelerated cellular senescence. Marine n-3 polyunsaturated fatty acids (PUFAs) have favorable properties that may counteract cellular senescence development and damage caused by the senescence-associated secretory phenotype (SASP) secretome. Our objective was to investigate the potential effects of marine n-3 PUFA supplementation on the SASP secretome in kidney transplant recipients. Study Design Exploratory substudy of the Omega-3 Fatty Acids in Renal Transplantation trial. Setting & Participants Adult kidney transplant recipients with a functional kidney graft (defined as having an estimated glomerular filtration rate of >30 mL/min/1.73 m2) 8 weeks after engraftment were included in this study conducted in Norway. Analytical Approach The intervention consisted of 2.6 g of a marine n-3 PUFA or olive oil (placebo) daily for 44 weeks. The outcome was a predefined panel of SASP components in the plasma and urine. Results A total of 132 patients were enrolled in the Omega-3 Fatty Acids in Renal Transplantation trial, and 66 patients were allocated to receive either the study drug or placebo. The intervention with the marine n-3 PUFA was associated with reduced plasma levels of granulocyte colony-stimulating factor, interleukin 1α, macrophage inflammatory protein 1α, matrix metalloproteinase (MMP)-1, and MMP-13 compared with the intervention in the control group. Limitations Post hoc analysis. Conclusions The results suggest that marine n-3 PUFA supplementation has mitigating effects on the plasma SASP components granulocyte colony-stimulating factor, interleukin 1α, macrophage inflammatory protein 1α, MMP-1, and MMP-13 in kidney transplant recipients. Future studies with kidney transplant recipients in maintenance phase, combined with an evaluation of cellular senescence markers in kidney transplant biopsies, are needed to further elucidate the potential antisenescent effect of marine n-3 PUFAs. This trial is registered as NCT01744067.
Collapse
Affiliation(s)
- Joe Chan
- Department of Renal Medicine, Akershus University Hospital, Lørenskog.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo
| | - Ivar A Eide
- Department of Renal Medicine, Akershus University Hospital, Lørenskog.,Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo
| | - Tone M Tannæs
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, Lørenskog
| | - Bård Waldum-Grevbo
- Department of Nephrology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Trond Jenssen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo.,Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo
| | - My Svensson
- Department of Renal Medicine, Akershus University Hospital, Lørenskog.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo
| |
Collapse
|
8
|
Miyairi S, Ueda D, Yagisawa T, Okada D, Keslar KS, Tanabe K, Dvorina N, Valujskikh A, Baldwin WM, Hazen SL, Fairchild RL. Recipient myeloperoxidase-producing cells regulate antibody-mediated acute versus chronic kidney allograft rejection. JCI Insight 2021; 6:148747. [PMID: 34081629 PMCID: PMC8410093 DOI: 10.1172/jci.insight.148747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Antibody-mediated rejection (ABMR) continues to be a major problem undermining the success of kidney transplantation. Acute ABMR of kidney grafts is characterized by neutrophil and monocyte margination in the tubular capillaries and by graft transcripts indicating NK cell activation, but the myeloid cell mechanisms required for acute ABMR have remained unclear. Dysregulated donor-specific antibody (DSA) responses with high antibody titers are induced in B6.CCR5-/- mice transplanted with complete MHC-mismatched A/J kidneys and are required for rejection of the grafts. This study tested the role of recipient myeloid cell production of myeloperoxidase (MPO) in the cellular and molecular components of acute ABMR. Despite induction of equivalent DSA titers, B6.CCR5-/- recipients rejected A/J kidneys between days 18 and 25, with acute ABMR, whereas B6.CCR5-/-MPO-/- recipients rejected the grafts between days 46 and 54, with histopathological features of chronic graft injury. On day 15, myeloid cells infiltrating grafts from B6.CCR5-/- and B6.CCR5-/-MPO-/- recipients expressed marked phenotypic and functional transcript differences that correlated with the development of acute versus chronic allograft injury, respectively. Near the time of peak DSA titers, activation of NK cells to proliferate and express CD107a was decreased within allografts in B6.CCR5-/-MPO-/- recipients. Despite high titers of DSA, depletion of neutrophils reproduced the inhibition of NK cell activation and decreased macrophage infiltration but increased monocytes producing MPO. Overall, recipient myeloid cells producing MPO regulate graft-infiltrating monocyte/macrophage function and NK cell activation that are required for DSA-mediated acute kidney allograft injury, and their absence switches DSA-mediated acute pathology and graft outcomes to chronic ABMR.
Collapse
Affiliation(s)
- Satoshi Miyairi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Daisuke Ueda
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Takafumi Yagisawa
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Daigo Okada
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Karen S. Keslar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M. Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Yu X, Lang B, Chen X, Tian Y, Qian S, Zhang Z, Fu Y, Xu J, Han X, Ding H, Jiang Y. The inhibitory receptor Tim-3 fails to suppress IFN-γ production via the NFAT pathway in NK-cell, unlike that in CD4 + T cells. BMC Immunol 2021; 22:25. [PMID: 33832435 PMCID: PMC8034152 DOI: 10.1186/s12865-021-00417-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
Background T cell immunoglobulin and mucin domain-containing-3 (Tim-3) is a negative regulator expressed on T cells, and is also expressed on natural killer (NK) cells. The function of Tim-3 chiefly restricts IFNγ-production in T cells, however, the impact of Tim-3 on NK cell function has not been clearly elucidated. Results In this study, we demonstrated down-regulation of Tim-3 expression on NK cells while Tim-3 is upregulated on CD4+ T cells during HIV infection. Functional assays indicated that Tim-3 mediates suppression of CD107a degranulation in NK cells and CD4+ T cells, while it fails to inhibit the production of IFN-γ by NK cells. Analyses of downstream pathways using an antibody to block Tim-3 function demonstrated that Tim-3 can inhibit ERK and NFκB p65 signaling; however, it failed to suppress the NFAT pathway. Further, we found that the NFAT activity in NK cells was much higher than that in CD4+ T cells, indicating that NFAT pathway is important for promotion of IFN-γ production by NK cells. Conclusions Thus, our data show that the expression of Tim-3 on NK cells is insufficient to inhibit IFN-γ production. Collectively, our findings demonstrate a potential mechanism of Tim-3 regulation of NK cells and a target for HIV infection immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00417-9.
Collapse
Affiliation(s)
- Xiaowen Yu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Bin Lang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Xi Chen
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yao Tian
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China
| | - Shi Qian
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Yajing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.
| |
Collapse
|
10
|
Hauser IA, Marx S, Sommerer C, Suwelack B, Dragun D, Witzke O, Lehner F, Schiedel C, Porstner M, Thaiss F, Neudörfl C, Falk CS, Nashan B, Sester M. Effect of everolimus-based drug regimens on CMV-specific T-cell functionality after renal transplantation: 12-month ATHENA subcohort-study results. Eur J Immunol 2020; 51:943-955. [PMID: 33306229 DOI: 10.1002/eji.202048855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/15/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Post-transplant cytomegalovirus (CMV) infections and increased viral replication are associated with CMV-specific T-cell anergy. In the ATHENA-study, de-novo everolimus (EVR) with reduced-exposure tacrolimus (TAC) or cyclosporine (CyA) showed significant benefit in preventing CMV infections in renal transplant recipients as compared to standard TAC + mycophenolic acid (MPA). However, immunomodulatory mechanisms for this effect remain largely unknown. Ninety patients from the ATHENA-study completing the 12-month visit on-treatment (EVR + TAC n = 28; EVR + CyA n = 19; MPA + TAC n = 43) were included in a posthoc analysis. Total lymphocyte subpopulations were quantified. CMV-specific CD4 T cells were determined after stimulation with CMV-antigen, and cytokine-profiles and various T-cell anergy markers were analyzed using flow cytometry. While 25.6% of MPA + TAC-treated patients had CMV-infections, no such events were reported in EVR-treated patients. Absolute numbers of lymphocyte subpopulations were comparable between arms, whereas the percentage of regulatory T cells was significantly higher with EVR + CyA versus MPA + TAC (p = 0.019). Despite similar percentages of CMV-specific T cells, their median expression of CTLA-4 and PD-1 was lower with EVR + TAC (p < 0.05 for both) or EVR + CyA (p = 0.045 for CTLA-4) compared with MPA + TAC. Moreover, mean percentages of multifunctional CMV-specific T cells were higher with EVR + TAC (27.2%) and EVR + CyA (29.4%) than with MPA + TAC (19.0%). In conclusion, EVR-treated patients retained CMV-specific T-cell functionality, which may contribute to enhanced protection against CMV infections.
Collapse
Affiliation(s)
- Ingeborg A Hauser
- Department of Nephrology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Stefanie Marx
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Claudia Sommerer
- Nephrology Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Barbara Suwelack
- Department of Internal Medicine, Transplant Nephrology, University Hospital of Münster, Münster, Germany
| | - Duska Dragun
- Department of Nephrology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Duisburg-Essen, Germany
| | - Frank Lehner
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany.,Helios Hospital Hildesheim, Department of General- and Visceral Surgery, Academic Teaching Hospital of the Hannover Medical School, Hildesheim, Germany
| | | | | | - Friedrich Thaiss
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Neudörfl
- Institute of Transplant Immunology, Hannover Medical School MHH, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School MHH, Hannover, Germany.,German Center for Infection Research DZIF, Hannover, Germany
| | - Björn Nashan
- Department of Hepatobiliary Surgery and Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Organ Transplantation Center, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| |
Collapse
|
11
|
Pontrelli P, Rascio F, Castellano G, Grandaliano G, Gesualdo L, Stallone G. The Role of Natural Killer Cells in the Immune Response in Kidney Transplantation. Front Immunol 2020; 11:1454. [PMID: 32793200 PMCID: PMC7390843 DOI: 10.3389/fimmu.2020.01454] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer cells (NK) represent a population of lymphocytes involved in innate immune response. In addition to their role in anti-viral and anti-tumor defense, they also regulate several aspects of the allo-immune response in kidney transplant recipients. Growing evidence suggests a key role of NK cells in the pathogenesis of immune-mediated graft damage in kidney transplantation. Specific NK cell subsets are associated with operational tolerance in kidney transplant patients. On the other side, allo-reactive NK cells are associated with chronic antibody-mediated rejection and graft loss. Moreover, NK cells can prime the adaptive immune system and promote the migration of other immune cells, such as dendritic cells, into the graft leading to an increased allo-immune response and, eventually, to chronic graft rejection. Finally, activated NK cells can infiltrate the transplanted kidney and cause a direct graft damage. Interestingly, immunosuppression can influence NK cell numbers and function, thus causing an increased risk of post-transplant neoplasia or infection. In this review, we will describe how these cells can influence the innate and the adaptive immune response in kidney transplantation and how immunosuppression can modulate NK behavior.
Collapse
Affiliation(s)
- Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Federica Rascio
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Grandaliano
- Nephrology Unit, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
12
|
Kühne JF, Neudörfl C, Beushausen K, Keil J, Malysheva S, Wandrer F, Haller H, Messerle M, Blume C, Neuenhahn M, Schlott F, Hammerschmidt W, Zeidler R, Falk CS. Differential effects of Belatacept on virus-specific memory versus de novo allo-specific T cell responses of kidney transplant recipients and healthy donors. Transpl Immunol 2020; 61:101291. [PMID: 32330566 DOI: 10.1016/j.trim.2020.101291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
Belatacept, Nulojix®, inhibits the interaction of CD28 on naïve T cells with B7.1/B7.2 (CD80/86) on antigen presenting cells, leading to T cell hyporesponsiveness and anergy and is approved as immunosuppressive drug in kidney transplantation. Due to its specificity for B7.1/2 molecules, side effects are reduced compared to other immunosuppressive drugs like calcineurin- and mTOR-inhibitors. Kidney transplant recipients under Belatacept-based immunosuppression presented with superior renal function and similar graft survival seven years after transplantation compared to cyclosporine treatment. However, de novo Belatacept-based immunosuppression was associated with increased risk of early rejections and viral (EBV) infections in clinical trials, especially in EBV-naïve patients. Since there is no vaccination against EBV infection available, EBV-derived virus like particles (EBV-VLPs) are currently developed as vaccine strategy. Here, we investigated the immunosuppressive effects of Belatacept compared to calcineurin- and mTOR inhibitors on allo- versus virus-specific T cells and the potency of EBV-VLPs to induce virus-specific T cell responses in vitro. Using PBMC of kidney recipients and healthy donors, we could demonstrate selective inhibition of allo-specific de novo T cell responses but not virus-specific memory T cell responses by Belatacept, as measured by IFN-γ production. In contrast, calcineurin inhibitors suppressed IFN-γ production of virus-specific memory CD8+ T cells completely. These results experimentally confirm the concept that Belatacept blocks CD28-mediated costimulation in newly primed naïve T cells but does not interfere with memory T cell responses being already independent from CD28-mediated costimulation. Additionally, we could show that EBV-VLPs induce a significant though weak IFN-γ-mediated T cell response in vitro in both kidney recipients and healthy donors. In summary, we demonstrated that immunosuppression of kidney recipients by Belatacept may primarily suppress de novo allo-specific T cell responses sparing virus-specific memory T cells. Moreover, EBV-VLPs could represent a novel strategy for vaccination of immunocompromised renal transplant recipients to prevent EBV reactivation especially under Belatacept-based immunosuppression.
Collapse
Affiliation(s)
| | - Christine Neudörfl
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Kerstin Beushausen
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Svitlana Malysheva
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Franziska Wandrer
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany; DZIF, German Center for Infectious Diseases, TTU-IICH Hannover-Braunschweig site, Germany
| | - Cornelia Blume
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany; Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Michael Neuenhahn
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany; DZIF, German Center for Infectious Diseases, TTU-IICH Munich site, Germany
| | - Fabian Schlott
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany; DZIF, German Center for Infectious Diseases, TTU-IICH Munich site, Germany
| | | | | | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany; DZIF, German Center for Infectious Diseases, TTU-IICH Hannover-Braunschweig site, Germany.
| |
Collapse
|
13
|
Long-Term Redistribution of Peripheral Lymphocyte Subpopulations after Switching from Calcineurin to mTOR Inhibitors in Kidney Transplant Recipients. J Clin Med 2020; 9:jcm9041088. [PMID: 32290462 PMCID: PMC7230655 DOI: 10.3390/jcm9041088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 01/04/2023] Open
Abstract
Classical immunosuppression based on steroids, calcineurin inhibitors, and mycophenolate results in several unwanted effects and unsatisfactory long-term outcomes in kidney transplantation (KT). New immunosuppressors search for fewer adverse events and increased graft survival but may have a distinct impact on graft function and immunological biomarkers according to their mechanism of action. This prospective study evaluates the immunological effect of tacrolimus to serine/threonine protein kinase mechanistic target of rapamycin inhibitors (mTORi) conversion in 29 KT recipients compared with 16 controls maintained on tacrolimus. We evaluated renal function, human leukocyte antigen (HLA) antibodies and peripheral blood lymphocyte subsets at inclusion and at 3, 12, and 24 months later. Twenty immunophenotyped healthy subjects served as reference. Renal function remained stable in both groups with no significant change in proteinuria. Two patients in the mTORi group developed HLA donor-specific antibodies and none in the control group (7% vs. 0%, p = 0.53). Both groups showed a progressive increase in regulatory T cells, more prominent in patients converted to mTORi within the first 18 months post-KT (p < 0.001). All patients showed a decrease in naïve B cells (p < 0.001), excepting those converted to mTORi without receiving steroids (p = 0.31). Transitional B cells significantly decreased in mTORi patients (p < 0.001), independently of concomitant steroid treatment. Finally, CD56bright and CD94/NK group 2 member A receptor positive (NKG2A+) Natural Killer (NK) cell subsets increased in mTORi- compared to tacrolimus-treated patients (both p < 0.001). Patients switched to mTORi displayed a significant redistribution of peripheral blood lymphocyte subpopulations proposed to be associated with graft outcomes. The administration of steroids modified some of these changes.
Collapse
|
14
|
Mühl H, Bachmann M. IL-18/IL-18BP and IL-22/IL-22BP: Two interrelated couples with therapeutic potential. Cell Signal 2019; 63:109388. [PMID: 31401146 DOI: 10.1016/j.cellsig.2019.109388] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Interleukin (IL)-18 and IL-22 are key components of cytokine networks that play a decisive role in (pathological) inflammation, host defense, and tissue regeneration. Tight regulation of cytokine-driven signaling, inflammation, and immunoactivation is supposed to enable nullification of a given deleterious trigger without mediating overwhelming collateral tissue damage or even activating a cancerous face of regeneration. In fact, feedback regulation by specific cytokine opponents is regarded as a major means by which the immune system is kept in balance. Herein, we shine a light on the interplay between IL-18 and IL-22 and their opponents IL-18 binding protein (IL-18BP) and IL-22BP in order to provide integrated information on their biology, pathophysiological significance, and prospect as targets and/or instruments of therapeutic intervention.
Collapse
Affiliation(s)
- Heiko Mühl
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Theodor-Stern- Kai 7, 60590 Frankfurt am Main, Germany.
| | - Malte Bachmann
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Theodor-Stern- Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Impact of immunosuppressive therapy on brain derived cytokines after liver transplantation. Transpl Immunol 2019; 58:101248. [PMID: 31669260 DOI: 10.1016/j.trim.2019.101248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/27/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND While acute neurotoxic side effects of calcineurin inhibitors (CNI) are well-known, data upon long-term effects on brain structure and function are sparse. We hypothesize that long-term CNI therapy affects the neuroimmune system, thereby, increasing the risk of neurodegeneration. Here, we measured the impact of CNI therapy on plasma levels of brain- and T cell-derived cytokines in a cohort of patients after liver transplantation (LT). METHODS Levels of T cell-mediated cytokines (e.g. Interferon-γ (IFN-γ)) and brain-derived cytokines (e.g. brain derived neurotrophic factor (BDNF), platelet derived growth factor (PDGF)) were measured by multiplex assays in plasma of 82 patients about 10 years after LT (17 with CNI free, 35 with CNI low dose, 30 with standard dose CNI immunosuppression) and 33 healthy controls. Data were related to psychometric test results and parameters of cerebral magnetic resonance imaging. RESULTS IFN-γ levels were significantly higher in the CNI free LT patient group (p=0.027) compared to healthy controls. BDNF levels were significantly lower in LT patients treated with CNI (CNI low: p<0.001; CNI standard: p=0.016) compared to controls. PDGF levels were significantly lower in the CNI low dose group (p=0.004) and for PDGF-AB/BB also in the CNI standard dose group (p=0.029) compared to controls. BDNF and PDGF negatively correlated with cognitive function and brain volume (p<0.05) in the CNI low dose group. CONCLUSION Our results imply that long-term treatment with CNI suppresses BDNF and PDGF expression, both crucial for neuronal signaling, cell survival and synaptic plasticity and thereby may lead to cognitive dysfunction and neurodegeneration.
Collapse
|
16
|
Kildey K, Francis RS, Hultin S, Harfield M, Giuliani K, Law BMP, Wang X, See EJ, John G, Ungerer J, Wilkinson R, Kassianos AJ, Healy H. Specialized Roles of Human Natural Killer Cell Subsets in Kidney Transplant Rejection. Front Immunol 2019; 10:1877. [PMID: 31440252 PMCID: PMC6693357 DOI: 10.3389/fimmu.2019.01877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Human natural killer (NK) cells are key functional players in kidney transplant rejection. However, the respective contributions of the two functionally distinct human NK cell subsets (CD56bright cytokine-producing vs. CD56dim cytotoxic effector) in episodes of allograft rejection remain uncertain, with current immunohistochemical methods unable to differentiate these discrete populations. We report the outcomes of an innovative multi-color flow cytometric-based approach to unequivocally define and evaluate NK cell subsets in human kidney allograft rejection. Methods: We extracted renal lymphocytes from human kidney transplant biopsies. NK cell subsets were identified, enumerated, and phenotyped by multi-color flow cytometry. Dissociation supernatants were harvested and levels of soluble proteins were determined using a multiplex bead-based assay. Results were correlated with the histopathological patterns in biopsies-no rejection, borderline cellular rejection, T cell-mediated rejection (TCMR), and antibody-mediated rejection (AMR). Results: Absolute numbers of only CD56bright NK cells were significantly elevated in TCMR biopsies. In contrast, both CD56bright and CD56dim NK cell numbers were significantly increased in biopsies with histopathological evidence of AMR. Notably, expression of the activation marker CD69 was only significantly elevated on CD56dim NK cells in AMR biopsies compared with no rejection biopsies, indicative of a pathogenic phenotype for this cytotoxic NK cell subset. In line with this, we detected significantly elevated levels of cytotoxic effector molecules (perforin, granzyme A, and granulysin) in the dissociation supernatants of biopsies with a histopathological pattern of AMR. Conclusions: Our results indicate that human NK cell subsets are differentially recruited and activated during distinct types of rejection, suggestive of specialized functional roles.
Collapse
Affiliation(s)
- Katrina Kildey
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - Sebastian Hultin
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | | | - Kurt Giuliani
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Medical School, University of Queensland, Brisbane, QLD, Australia
| | - Becker M. P. Law
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xiangju Wang
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Emily J. See
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - George John
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jacobus Ungerer
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
| | - Ray Wilkinson
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Medical School, University of Queensland, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew J. Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Medical School, University of Queensland, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Helen Healy
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Medical School, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Knoppert SN, Valentijn FA, Nguyen TQ, Goldschmeding R, Falke LL. Cellular Senescence and the Kidney: Potential Therapeutic Targets and Tools. Front Pharmacol 2019; 10:770. [PMID: 31354486 PMCID: PMC6639430 DOI: 10.3389/fphar.2019.00770] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasing health burden (affecting approximately 13.4% of the population). Currently, no curative treatment options are available and treatment is focused on limiting the disease progression. The accumulation of senescent cells has been implicated in the development of kidney fibrosis by limiting tissue rejuvenation and through the secretion of pro-fibrotic and pro-inflammatory mediators termed as the senescence-associated secretory phenotype. The clearance of senescent cells in aging models results in improved kidney function, which shows promise for the options of targeting senescent cells in CKD. There are several approaches for the development of “senotherapies”, the most rigorous of which is the elimination of senescent cells by the so-called senolytic drugs either newly developed or repurposed for off-target effects in terms of selectively inducing apoptosis in senescent cells. Several chemotherapeutics and checkpoint inhibitors currently used in daily oncological practice show senolytic properties. However, the applicability of such senolytic compounds for the treatment of renal diseases has hardly been investigated. A serious concern is that systemic side effects will limit the use of senolytics for kidney fibrosis. Specifically targeting senescent cells and/or targeted drug delivery to the kidney might circumvent these side effects. In this review, we discuss the connection between CKD and senescence, the pharmacological options for targeting senescent cells, and the means to specifically target the kidney.
Collapse
Affiliation(s)
- Sebastian N Knoppert
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Floris A Valentijn
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Internal Medicine, Diakonessenhuis, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
18
|
Figueiredo C, Oldhafer F, Wittauer EM, Carvalho-Oliveira M, Akhdar A, Beetz O, Chen-Wacker C, Yuzefovych Y, Falk CS, Blasczyk R, Vondran FWR. Silencing of HLA class I on primary human hepatocytes as a novel strategy for reduction in alloreactivity. J Cell Mol Med 2019; 23:5705-5714. [PMID: 31180181 PMCID: PMC6653539 DOI: 10.1111/jcmm.14484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
In contrast to the whole liver, primary hepatocytes are highly immunogenic. Thus, alternative strategies of immunomodulation after hepatocyte transplantation are of special interest. Silencing of HLA class I expression is expected to reduce the strength of allogeneic immune responses and to improve graft survival. In this study, primary human hepatocytes (PHH) were isolated using a two-step-collagenase perfusion-technique and co-cultured with allogeneic lymphocytes in terms of a mixed lymphocyte hepatocyte culture. Expression of HLA class I on PHH was silenced using lentiviral vectors encoding for β2-microglobulin-specific short hairpin RNA (shβ2m) or non-specific shRNA (shNS) as control. The delivery of shβ2m into PHH caused a decrease by up to 96% in β2m transcript levels and a down-regulation of HLA class I cell surface expression on PHH by up to 57%. Proliferative T cell alloresponses against HLA-silenced PHH were significantly lower than those observed form fully HLA-expressing PHH. In addition, significantly lower secretion of pro-inflammatory cytokines was observed. Levels of albumin, urea and aspartate-aminotransferase did not differ in supernatants of cultured PHH. In conclusion, silencing HLA class I expression on PHH might represent a promising approach for immunomodulation in the transplant setting without compromising metabolic function of silenced hepatocytes.
Collapse
Affiliation(s)
- Constança Figueiredo
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Excellence Cluster REBIRTH - From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Felix Oldhafer
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Eva-Maria Wittauer
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Marco Carvalho-Oliveira
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Excellence Cluster REBIRTH - From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Ali Akhdar
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Oliver Beetz
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Chen Chen-Wacker
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Excellence Cluster REBIRTH - From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Yuliia Yuzefovych
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Christine S Falk
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany.,Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
19
|
Docherty MH, O'Sullivan ED, Bonventre JV, Ferenbach DA. Cellular Senescence in the Kidney. J Am Soc Nephrol 2019; 30:726-736. [PMID: 31000567 DOI: 10.1681/asn.2018121251] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Senescent cells have undergone permanent growth arrest, adopt an altered secretory phenotype, and accumulate in the kidney and other organs with ageing and injury. Senescence has diverse physiologic roles and experimental studies support its importance in nephrogenesis, successful tissue repair, and in opposing malignant transformation. However, recent murine studies have shown that depletion of chronically senescent cells extends healthy lifespan and delays age-associated disease-implicating senescence and the senescence-associated secretory phenotype as drivers of organ dysfunction. Great interest is therefore focused on the manipulation of senescence as a novel therapeutic target in kidney disease. In this review, we examine current knowledge and areas of ongoing uncertainty regarding senescence in the human kidney and experimental models. We summarize evidence supporting the role of senescence in normal kidney development and homeostasis but also senescence-induced maladaptive repair, renal fibrosis, and transplant failure. Recent studies using senescent cell manipulation and depletion as novel therapies to treat renal disease are discussed, and we explore unanswered questions for future research.
Collapse
Affiliation(s)
| | - Eoin D O'Sullivan
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; and
| | - Joseph V Bonventre
- Renal Division and Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - David A Ferenbach
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK; .,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; and
| |
Collapse
|
20
|
Pradier A, Papaserafeim M, Li N, Rietveld A, Kaestel C, Gruaz L, Vonarburg C, Spirig R, Puga Yung GL, Seebach JD. Small-Molecule Immunosuppressive Drugs and Therapeutic Immunoglobulins Differentially Inhibit NK Cell Effector Functions in vitro. Front Immunol 2019; 10:556. [PMID: 30972058 PMCID: PMC6445861 DOI: 10.3389/fimmu.2019.00556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
Small-molecule immunosuppressive drugs (ISD) prevent graft rejection mainly by inhibiting T lymphocytes. Therapeutic immunoglobulins (IVIg) are used for substitution, antibody-mediated rejection (AbMR) and HLA-sensitized recipients by targeting distinct cell types. Since the effect of ISD and IVIg on natural killer (NK) cells remains somewhat controversial in the current literature, the aim of this comparative study was to investigate healthy donor's human NK cell functions after exposure to ISD and IVIg, and to comprehensively review the current literature. NK cells were incubated overnight with IL2/IL12 and different doses and combinations of ISD and IVIg. Proliferation was evaluated by 3[H]-thymidine incorporation; phenotype, degranulation and interferon gamma (IFNγ) production by flow cytometry and ELISA; direct NK cytotoxicity by standard 51[Cr]-release and non-radioactive DELFIA assays using K562 as stimulator and target cells; porcine endothelial cells coated with human anti-pig antibodies were used as targets in antibody-dependent cellular cytotoxicity (ADCC) assays. We found that CD69, CD25, CD54, and NKG2D were downregulated by ISD. Proliferation was inhibited by methylprednisolone (MePRD), mycophenolic acid (MPA), and everolimus (EVE). MePRD and MPA reduced degranulation, MPA only of CD56bright NK cells. MePRD and IVIg inhibited direct cytotoxicity and ADCC. Combinations of ISD demonstrated cumulative inhibitory effects. IFNγ production was inhibited by MePRD and ISD combinations, but not by IVIg. In conclusion, IVIg, ISD and combinations thereof differentially inhibit NK cell functions. The most potent drug with an effect on all NK functions was MePRD. The fact that MePRD and IVIg significantly block NK cytotoxicity, especially ADCC, has major implications for AbMR as well as therapeutic strategies targeting cancer and immune cells with monoclonal antibodies.
Collapse
Affiliation(s)
- Amandine Pradier
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Maria Papaserafeim
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Ning Li
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Anke Rietveld
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Charlotte Kaestel
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Lyssia Gruaz
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | | | | | - Gisella L Puga Yung
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Jörg D Seebach
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| |
Collapse
|
21
|
Manzia TM, Gazia C, Baiocchi L, Lenci I, Milana M, Santopaolo F, Angelico R, Tisone G. Clinical Operational Tolerance and Immunosuppression Minimization in Kidney Transplantation: Where Do We Stand? Rev Recent Clin Trials 2019; 14:189-202. [PMID: 30868959 DOI: 10.2174/1574887114666190313170205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The 20th century represents a breakthrough in the transplantation era, since the first kidney transplantation between identical twins was performed. This was the first case of tolerance, since the recipient did not need immunosuppression. However, as transplantation became possible, an immunosuppression-free status became the ultimate goal, since the first tolerance case was a clear exception from the hard reality nowadays represented by rejection. METHODS A plethora of studies was described over the past decades to understand the molecular mechanisms responsible for rejection. This review focuses on the most relevant studies found in the literature where renal tolerance cases are claimed. Contrasting, and at the same time, encouraging outcomes are herein discussed and a glimpse on the main renal biomarkers analyzed in this field is provided. RESULTS The activation of the immune system has been shown to play a central role in organ failure, but also it seems to induce a tolerance status when an allograft is performed, despite tolerance is still rare to register. Although there are still overwhelming challenges to overcome and various immune pathways remain arcane; the immunosuppression minimization might be more attainable than previously believed. CONCLUSION . Multiple biomarkers and tolerance mechanisms suspected to be involved in renal transplantation have been investigated to understand their real role, with still no clear answers on the topic. Thus, the actual knowledge provided necessarily leads to more in-depth investigations, although many questions in the past have been answered, there are still many issues on renal tolerance that need to be addressed.
Collapse
Affiliation(s)
- Tommaso Maria Manzia
- Transplant and Hepatobiliary Unit, Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Gazia
- Transplant and Hepatobiliary Unit, Department of Surgery, University of Rome Tor Vergata, Rome, Italy
- Department of Surgery, Abdominal Organ Transplant Program, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
- Wake Forest Institute for Regenerative Medicine, Department of Surgery, Winston-Salem, NC, United States
| | - Leonardo Baiocchi
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Rome, Italy
| | - Ilaria Lenci
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Rome, Italy
| | - Martina Milana
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Rome, Italy
| | | | - Roberta Angelico
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giuseppe Tisone
- Transplant and Hepatobiliary Unit, Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
22
|
Mirzakhani M, Shahbazi M, Oliaei F, Mohammadnia-Afrouzi M. Immunological biomarkers of tolerance in human kidney transplantation: An updated literature review. J Cell Physiol 2018; 234:5762-5774. [PMID: 30362556 DOI: 10.1002/jcp.27480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
The half-life of transplanted kidneys is <10 years. Acute or chronic rejections have a negative impact on transplant outcome. Therefore, achieving to allograft tolerance for improving long-term transplant outcome is a desirable goal of transplantation field. In contrast, there are evidence that distinct immunological characteristics lead to tolerance in some transplant recipients. In contrast, the main reason for allograft loss is immunological responses. Various immune cells including T cells, B cells, dendritic cells, macrophages, natural killer, and myeloid-derived suppressor cells damage graft tissue and, thereby, graft loss happens. Therefore, being armed with the comprehensive knowledge about either preimmunological or postimmunological characteristics of renal transplant patients may help us to achieve an operational tolerance. In the present study, we are going to review and discuss immunological characteristics of renal transplant recipients with rejection and compare them with tolerant subjects.
Collapse
Affiliation(s)
- Mohammad Mirzakhani
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Shahbazi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farshid Oliaei
- Kidney Transplantation Center, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
23
|
Rohn H, Tomoya Michita R, Schwich E, Dolff S, Gäckler A, Trilling M, Le-Trilling VTK, Wilde B, Korth J, Heinemann FM, Horn PA, Kribben A, Witzke O, Rebmann V. The Donor Major Histocompatibility Complex Class I Chain-Related Molecule A Allele rs2596538 G Predicts Cytomegalovirus Viremia in Kidney Transplant Recipients. Front Immunol 2018; 9:917. [PMID: 29867932 PMCID: PMC5953334 DOI: 10.3389/fimmu.2018.00917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/13/2018] [Indexed: 01/14/2023] Open
Abstract
The interaction of major histocompatibility complex class I chain-related protein A (MICA) and its cognate activating receptor natural killer (NK) group 2 member D (NKG2D) receptor plays a significant role in viral immune control. In the context of kidney transplantation (KTx), cytomegalovirus (CMV) frequently causes severe complications. Hypothesizing that functional polymorphisms of the MICA/NKG2D axis might affect antiviral NK and T cell responses to CMV, we explored the association of the MICA-129 Met/Val single nucleotide polymorphism (SNP) (affecting the binding affinity of MICA with the NKG2D receptor), the MICA rs2596538 G/A SNP (influencing MICA transcription), and the NKG2D rs1049174 G/C SNP (determining the cytotoxic potential of effector cells) with the clinical outcome of CMV during the first year after KTx in a cohort of 181 kidney donor-recipients pairs. Univariate analyses identified the donor MICA rs2596538 G allele status as a protective prognostic determinant for CMV disease. In addition to the well-known prognostic factors CMV high-risk sero-status of patients and the application of lymphocyte-depleting drugs, the donor MICA rs2596538 G allele carrier status was confirmed by multivariate analyses as novel-independent factor predicting the development of CMV infection/disease during the first year after KTx. The results of our study emphasize the clinical importance of the MICA/NKG2D axis in CMV control in KTx and point out that the potential MICA transcription in the donor allograft is of clinically relevant importance for CMV immune control in this allogeneic situation. Furthermore, they provide substantial evidence that the donor MICA rs2596538 G allele carrier status is a promising genetic marker predicting CMV viremia after KTx. Thus, in the kidney transplant setting, donor MICA rs2596538 G may help to allow the future development of personal CMV approaches within a genetically predisposed patient cohort.
Collapse
Affiliation(s)
- Hana Rohn
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rafael Tomoya Michita
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Esther Schwich
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Gäckler
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Johannes Korth
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
Zhu L, Aly M, Wang H, Karakizlis H, Weimer R, Morath C, Kuon RJ, Toth B, Ekpoom N, Opelz G, Daniel V. Changes of NK cell subsets with time post-transplant in peripheral blood of renal transplant recipients. Transpl Immunol 2018; 49:59-71. [PMID: 29702201 DOI: 10.1016/j.trim.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND There is evidence that NK cells with low cytotoxicity but strong immunoregulatory characteristics contribute to good graft outcome. We attempted to investigate which NK cell subsets increase post-transplant and might affect graft function. METHOD Lymphocyte and NK cell subsets were determined in whole blood using eight-colour-fluorescence flow cytometry in patients pre-transplant and post-transplant. In total, 31 transplant recipients were studied. RESULTS When cell numbers were compared in 9 patients pre- and 6 months post-transplant, post-transplant CD56dimCD16+ (p = 0.011) NK cells with the phenotype CD158a+ (p = 0.008), CD158e+ (p = 0.038), NKG2A+ (p = 0.008), NKG2D+ (p = 0.011), IFNyR+ (p = 0.008), perforin+ (p = 0.008), granzymeB+ (p = 0.008), perforin+granzymeB+ (p = 0.008) and perforin-granzymeB- (p = 0.021) were lower than those pre-transplant, indicating a post-transplant reduction of cytotoxic NK cells. In 28 patients NK cell subsets were analyzed with respect to time post-transplant (median 888 days post-transplant). CD56dimCD16+ NK cells co-expressing CD158a (p = 0.014), NKG2D (p = 0.047), IL4R (p = 0.038), IL10R (p = 0.008) and IFNy (p = 0.036) as well as CD56bright NK cells with the phenotype TGFß+ (p = 0.017), TGFR+ (p = 0.035), CD158a+ (p = 0.042) and perforin-granzymeB- (p = 0.048) increased with time post-transplant. CONCLUSION Post-transplant, cytotoxic NK cells were lower than pre-transplant and remained low, whereas NK cell subsets with potentially immunoregulatory properties increased.
Collapse
Affiliation(s)
- Li Zhu
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany; Department of Hematology, Tongji Hospital, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Mostafa Aly
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany; Nephrology Unit, Internal Medicine Department, Assiut University, Egypt
| | - Haihao Wang
- Department of Surgery, Tongji Hospital, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Hristos Karakizlis
- Department of Internal Medicine, University of Giessen, Klinikstrasse 33, D-35385 Giessen, Germany
| | - Rolf Weimer
- Department of Internal Medicine, University of Giessen, Klinikstrasse 33, D-35385 Giessen, Germany
| | - Christian Morath
- Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ruben Jeremias Kuon
- Department of Obstetrics and Gynecology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Bettina Toth
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Naruemol Ekpoom
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Gerhard Opelz
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Volker Daniel
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| |
Collapse
|
25
|
van Willigenburg H, de Keizer PLJ, de Bruin RWF. Cellular senescence as a therapeutic target to improve renal transplantation outcome. Pharmacol Res 2018; 130:322-330. [PMID: 29471104 DOI: 10.1016/j.phrs.2018.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/02/2018] [Accepted: 02/12/2018] [Indexed: 01/18/2023]
Abstract
Kidney transplants from aged donors are more vulnerable to ischemic injury, suffer more from delayed graft function and have a lower graft survival compared to kidneys from younger donors. On a cellular level, aging results in an increase in cells that are in a permanent cell cycle arrest, termed senescence, which secrete a range of pro-inflammatory cytokines and growth factors. Consequently, these senescent cells negatively influence the local milieu by causing inflammaging, and by reducing the regenerative capacity of the kidney. Moreover, the oxidative damage that is inflicted by ischemia-reperfusion injury during transplantation can induce senescence and accelerate aging. In this review, we describe recent developments in the understanding of the biology of aging that have led to the development of a new class of therapeutic agents aimed at eliminating senescent cells. These compounds have already shown to be able to restore tissue homeostasis in old mice, improve kidney function and general health- and lifespan. Use of these anti-senescence compounds holds great promise to improve the quality of marginal donor kidneys as well as to remove senescent cells induced by ischemia-reperfusion injury. Altogether, senescent cell removal may increase the donor pool, relieving the growing organ shortage and improve long-term transplantation outcome.
Collapse
Affiliation(s)
- Hester van Willigenburg
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Peter L J de Keizer
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Ron W F de Bruin
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Parkes MD, Halloran PF, Hidalgo LG. Mechanistic Sharing Between NK Cells in ABMR and Effector T Cells in TCMR. Am J Transplant 2018; 18:63-73. [PMID: 28654216 DOI: 10.1111/ajt.14410] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 01/25/2023]
Abstract
Human organ allograft rejection depends on effector lymphocytes: NK cells in antibody-mediated rejection (ABMR) and effector T cells in T cell-mediated rejection (TCMR). We hypothesized that NK cell CD16a stimulation and CD8 T cell TCR/CD3 stimulation represent highly similar effector systems, and should lead to shared molecular changes between ABMR and TCMR. We studied similarity between soluble proteins and the transcripts induced in CD16a stimulated NK cells and TCR/CD3-stimulated T cells in vitro. Of 30 soluble mediators tested, CD16a-activated NK cells and CD3/TCR activated T cells produced the same limited set of five mediators-CCL3, CCL4, CSF2, IFNG, and TNF-and failed to produce 25 others. Many transcripts increased in stimulated NK cells were also increased in CD3-stimulated CD8 T cells (FDR < 0.05), including IFNG, CSF2, CCL3, CCL4, and XCL1. We hypothesized that shared transcripts not produced by other cell types should be expressed both in ABMR and TCMR kidney transplant biopsies. CD160, XCL1, TNFRSF9, and IFNG were selective for TCR/CD3-activated T cells and CD16a-NK cells and all were strongly increased in ABMR and TCMR. The molecules such as CD160 and XCL1 shared between NK cells in ABMR and effector T cells in TCMR may hold insights into important rejection mechanisms.
Collapse
Affiliation(s)
- M D Parkes
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
| | - P F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - L G Hidalgo
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Dugast E, David G, Oger R, Danger R, Judor JP, Gagne K, Chesneau M, Degauque N, Soulillou JP, Paul P, Picard C, Guerif P, Conchon S, Giral M, Gervois N, Retière C, Brouard S. Broad Impairment of Natural Killer Cells from Operationally Tolerant Kidney Transplanted Patients. Front Immunol 2017; 8:1721. [PMID: 29312288 PMCID: PMC5732263 DOI: 10.3389/fimmu.2017.01721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/21/2017] [Indexed: 01/10/2023] Open
Abstract
The role of natural killer (NK) cells in organ transplantation is controversial. This study aims to decipher their role in kidney transplant tolerance in humans. Previous studies highlighted several modulated genes involved in NK cell biology in blood from spontaneously operationally tolerant patients (TOLs; drug-free kidney-transplanted recipients with stable graft function). We performed a phenotypic, functional, and genetic characterization of NK cells from these patients compared to kidney-transplanted patients with stable graft function under immunosuppression and healthy volunteers (HVs). Both operationally TOLs and stable patients harbored defective expression of the NKp46 activator receptor and lytic molecules perforin and granzyme compared to HVs. Surprisingly, NK cells from operationally TOLs also displayed decreased expression of the CD16 activating marker (in the CD56Dim NK cell subset). This decrease was associated with impairment of their functional capacities upon stimulation, as shown by lower interferon gamma (IFNγ) production and CD107a membranous expression in a reverse antibody-dependent cellular cytotoxicity (ADCC) assay, spontaneous lysis assays, and lower target cell lysis in the 51Cr release assay compared to HVs. Conversely, despite impaired K562 cell lysis in the 51Cr release assay, patients with stable graft function harbored a normal reverse ADCC and even increased amounts of IFNγ+ NK cells in the spontaneous lysis assay. Altogether, the strong impairment of the phenotype and functional cytotoxic capacities of NK cells in operationally TOLs may accord with the establishment of a pro-tolerogenic environment, despite remaining highly activated after transplantation in patients with stable graft function.
Collapse
Affiliation(s)
- Emilie Dugast
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Gaëlle David
- Etablissement Français du sang, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Romain Oger
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Jean-Paul Judor
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Katia Gagne
- Etablissement Français du sang, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LabEx Transplantex, Université de Strasbourg, France
| | - Mélanie Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Nicolas Degauque
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | - Pascale Paul
- Nephrology Dialysis Renal Transplantation Center, Assistance Publique des Hôpitaux de Marseille, Hospital de la Conception, UMR 1076, Vascular Research Center of Marseille, INSERM, Aix-Marseille University, Marseille, France
| | - Christophe Picard
- Établissement Français du Sang Alpes Méditerranée, Marseille, France.,ADES UMR 7268, CNRS, EFS, Aix-Marseille Université, Marseille, France
| | - Pierrick Guerif
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,CIC Biotherapy, CHU Nantes, Nantes, France
| | - Sophie Conchon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Magali Giral
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,CIC Biotherapy, CHU Nantes, Nantes, France
| | - Nadine Gervois
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Christelle Retière
- Etablissement Français du sang, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
28
|
Zhu L, Aly M, Wang H, Karakizlis H, Weimer R, Morath C, Kuon RJ, Toth B, Opelz G, Daniel V. Decreased NK cell immunity in kidney transplant recipients late post-transplant and increased NK-cell immunity in patients with recurrent miscarriage. PLoS One 2017; 12:e0186349. [PMID: 29040297 PMCID: PMC5645130 DOI: 10.1371/journal.pone.0186349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/01/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There is evidence that NK-cell reactivity might affect graft outcome in transplant recipients and pregnancy in women. METHOD NK-cell subsets were determined in whole blood using eight-colour-fluorescence flow cytometry in patients before and after renal transplantation, patients with recurrent miscarriage (RM) and healthy controls (HC). RESULTS Patients late post-transplant (late-Tx) with functioning renal transplants showed abnormally low CD56dimCD16+ NK-cells containing both perforin and granzyme (vs HC p = 0.021) whereas RM patients exhibited abnormally high numbers of these cells (vs HC p = 0.043). CD56dimCD16+perforin+granzyme+ NK-cell counts were strikingly different between the two patient groups (p<0.001). In addition, recipients late-Tx showed abnormally low CD8+ NK-cells (vs HC p<0.001) in contrast to RM patients who showed an abnormal increase (vs HC p = 0.008). CD8+ NK-cell counts were strongly different between the two patient groups (p<0.001). Higher perforin+granzyme+CD56dimCD16+ and CD8+ NK-cells were associated with impaired graft function (p = 0.044, p = 0.032). After in-vitro stimulation, CD56dimCD16+ and CD56brightCD16dim/- NK-cells showed strong upregulation of CD107a and IFNy, whereas the content of perforin decreased dramatically as a consequence of perforin release. Recipients late post-Tx showed less in-vitro perforin release (= less cytotoxicity) than HC (p = 0.037) and lower perforin release was associated with good graft function (r = 0.738, p = 0.037). Notably, we observed strong in-vitro perforin release in 2 of 6 investigated RM patients. When circulating IL10+CD56bright NK-cells were analyzed, female recipients late post-Tx (n = 9) showed significantly higher relative and absolute cell numbers than RM patients (p = 0.002 and p = 0.018, respectively); and high relative and absolute IL10+CD56bright NK-cell numbers in transplant recipients were associated with low serum creatinine (p = 0.004 and p = 0.012) and high glomerular filtration rate (p = 0.011 and p = 0.002, respectively). Female recipients late post-Tx exhibited similar absolute but higher relative numbers of IL10+IFNy- NK-cells than RM patients (p>0.05 and p = 0.016, respectively). CONCLUSION NK-cells with lower cytotoxicity and immunoregulatory function might contribute to good long-term graft outcome, whereas circulating NK-cells with normal or even increased cytotoxicity and less immunoregulatory capacity are observed in patients with RM.
Collapse
Affiliation(s)
- Li Zhu
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, Heidelberg, Germany
- Department of Hematology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Mostafa Aly
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, Heidelberg, Germany
- Nephrology unit, Internal Medicine Department, Assiut University, Âssiut, Egypt
| | - Haihao Wang
- Department of Cardiovascular Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hristos Karakizlis
- Department of Internal Medicine, University of Giessen, Klinikstraße 33, Giessen, Germany
| | - Rolf Weimer
- Department of Internal Medicine, University of Giessen, Klinikstraße 33, Giessen, Germany
| | - Christian Morath
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Ruben Jeremias Kuon
- Department of Obstetrics and Gynecology, University Hospital Heidelberg, Im Neuenheimer Feld 440, Heidelberg, Germany
| | - Bettina Toth
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - Gerhard Opelz
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, Heidelberg, Germany
| | - Volker Daniel
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
29
|
Chichelnitskiy E, Himmelseher B, Bachmann M, Pfeilschifter J, Mühl H. Hypothermia Promotes Interleukin-22 Expression and Fine-Tunes Its Biological Activity. Front Immunol 2017; 8:742. [PMID: 28706520 PMCID: PMC5489602 DOI: 10.3389/fimmu.2017.00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023] Open
Abstract
Disturbed homeostasis as a result of tissue stress can provoke leukocyte responses enabling recovery. Since mild hypothermia displays specific clinically relevant tissue-protective properties and interleukin (IL)-22 promotes healing at host/environment interfaces, effects of lowered ambient temperature on IL-22 were studied. We demonstrate that a 5-h exposure of endotoxemic mice to 4°C reduces body temperature by 5.0° and enhances splenic and colonic il22 gene expression. In contrast, tumor necrosis factor-α and IL-17A were not increased. In vivo data on IL-22 were corroborated using murine splenocytes and human peripheral blood mononuclear cells (PBMC) cultured upon 33°C and polyclonal T cell activation. Upregulation by mild hypothermia of largely T-cell-derived IL-22 in PBMC required monocytes and associated with enhanced nuclear T-cell nuclear factor of activated T cells (NFAT)-c2. Notably, NFAT antagonism by cyclosporin A or FK506 impaired IL-22 upregulation at normothermia and entirely prevented its enhanced expression upon hypothermic culture conditions. Data suggest that intact NFAT signaling is required for efficient IL-22 induction upon normothermic and hypothermic conditions. Hypothermia furthermore boosted early signal transducer and activator of transcription 3 activation by IL-22 and shaped downstream gene expression in epithelial-like cells. Altogether, data indicate that hypothermia supports and fine-tunes IL-22 production/action, which may contribute to regulatory properties of low ambient temperature.
Collapse
Affiliation(s)
- Evgeny Chichelnitskiy
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Britta Himmelseher
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
30
|
Carrega P, Ferlazzo G. Natural Killers Are Made Not Born: How to Exploit NK Cells in Lung Malignancies. Front Immunol 2017; 8:277. [PMID: 28348567 PMCID: PMC5346886 DOI: 10.3389/fimmu.2017.00277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/27/2017] [Indexed: 01/01/2023] Open
Abstract
In recent years, progress has been made in the characterization of natural killer (NK) cells in lung malignancies, and we have now gained a better understanding of the frequency, localization, phenotype, and functional status of NK cells infiltrating these tumors. NK cell subset recruited in lung cancer is mainly capable of producing relevant cytokines rather than exerting direct cancer cell killing. Thus, the relevance of NK cells in tumor microenvironment might also go beyond the killing of tumor cells, being NK cells endowed with regulatory functions toward an ample array of immune effectors. Nevertheless, boosting their cytotoxic functions and redirecting the migration of cytotoxic NK cell subset to the tumor site might open new therapeutic avenues for lung cancer. Also, we believe that a deeper investigation into the impact of both conventional (e.g., chemotherapy) or new therapies (e.g., anti-immune checkpoints mAbs) on NK cell homeostasis in lung cancer patients is now required.
Collapse
Affiliation(s)
- Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy; Cell Factory Center, University of Messina, Messina, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy; Cell Factory Center, University of Messina, Messina, Italy; Cell Therapy Program, University Hospital Policlinico G.Martino, Messina, Italy; Division of Clinical Pathology, University Hospital Policlinico G.Martino, Messina, Italy
| |
Collapse
|
31
|
López-Botet M, Vilches C, Redondo-Pachón D, Muntasell A, Pupuleku A, Yélamos J, Pascual J, Crespo M. Dual Role of Natural Killer Cells on Graft Rejection and Control of Cytomegalovirus Infection in Renal Transplantation. Front Immunol 2017; 8:166. [PMID: 28261220 PMCID: PMC5311043 DOI: 10.3389/fimmu.2017.00166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/02/2017] [Indexed: 12/20/2022] Open
Abstract
Allograft rejection constitutes a major complication of solid organ transplantation requiring prophylactic/therapeutic immunosuppression, which increases susceptibility of patients to infections and cancer. Beyond the pivotal role of alloantigen-specific T cells and antibodies in the pathogenesis of rejection, natural killer (NK) cells may display alloreactive potential in case of mismatch between recipient inhibitory killer-cell immunoglobulin-like receptors (KIRs) and graft HLA class I molecules. Several studies have addressed the impact of this variable in kidney transplant with conflicting conclusions; yet, increasing evidence supports that alloantibody-mediated NK cell activation via FcγRIIIA (CD16) contributes to rejection. On the other hand, human cytomegalovirus (HCMV) infection constitutes a risk factor directly associated with the rate of graft loss and reduced host survival. The levels of HCMV-specific CD8+ T cells have been reported to predict the risk of posttransplant infection, and KIR-B haplotypes containing activating KIR genes have been related with protection. HCMV infection promotes to a variable extent an adaptive differentiation and expansion of a subset of mature NK cells, which display the CD94/NKG2C-activating receptor. Evidence supporting that adaptive NKG2C+ NK cells may contribute to control the viral infection in kidney transplant recipients has been recently obtained. The dual role of NK cells in the interrelation of HCMV infection with rejection deserves attention. Further phenotypic, functional, and genetic analyses of NK cells may provide additional insights on the pathogenesis of solid organ transplant complications, leading to the development of biomarkers with potential clinical value.
Collapse
Affiliation(s)
- Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Immunology, Hospital del Mar, Barcelona, Spain; Univ. Pompeu Fabra, Barcelona, Spain
| | - Carlos Vilches
- Immunogenetics-Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro , Majadahonda , Spain
| | - Dolores Redondo-Pachón
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM) , Barcelona , Spain
| | | | - José Yélamos
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Immunology, Hospital del Mar, Barcelona, Spain
| | - Julio Pascual
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Marta Crespo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Nephrology, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
32
|
Redondo-Pachón D, Crespo M, Yélamos J, Muntasell A, Pérez-Sáez MJ, Pérez-Fernández S, Vila J, Vilches C, Pascual J, López-Botet M. Adaptive NKG2C+ NK Cell Response and the Risk of Cytomegalovirus Infection in Kidney Transplant Recipients. THE JOURNAL OF IMMUNOLOGY 2016; 198:94-101. [DOI: 10.4049/jimmunol.1601236] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
|
33
|
Lu J, Zhang X. Immunological characteristics of renal transplant tolerance in humans. Mol Immunol 2016; 77:71-8. [PMID: 27479171 DOI: 10.1016/j.molimm.2016.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
Establishing allograft tolerance is a highly desirable therapeutic goal in kidney transplantation, from which recipients would greatly benefit by withdrawing or minimizing immunosuppression. Identifying biomarkers in predicting tolerance or early diagnosing rejection is essential to direct personalized management. Recent findings have revealed that multiple populations of immune cells have involved in promoting long-term graft function or inducing rejection in renal transplant recipients. Thus, roles of immune cells add another level to predict the renal tolerant state; tailoring their functional and/or phenotypic characteristics would provide insights into mechanism involved in transplant tolerance that may aid in designing new therapies. Here, we review these findings and discuss the current understanding immunological characteristics of renal transplant tolerance in humans, and their potential clinical translation to immune tolerance biomarkers.
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
34
|
Seyda M, Elkhal A, Quante M, Falk CS, Tullius SG. T Cells Going Innate. Trends Immunol 2016; 37:546-556. [PMID: 27402226 DOI: 10.1016/j.it.2016.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cell receptors (NKRs) play a crucial role in the homeostasis of antigen-experienced T cells. Indeed, prolonged antigen stimulation may induce changes in the receptor repertoire of T cells to a profile that features NKRs. Chronic antigen exposure, at the same time, has been shown to trigger the loss of costimulatory CD28 molecules with recently reported intensified antigen thresholds of antigen-experienced CD8(+) T cells. In transplantation, NKRs have been shown to assist allograft rejection in a CD28-independent fashion. We discuss here a role for CD28-negative T cells that have acquired the competency of the NKR machinery, potentially promoting allorecognition either through T cell receptor (TCR) crossreactivity or independently from TCR recognition. Collectively, NKRs can bring about innate-like T cells by providing alternative costimulatory pathways that gain relevance in chronic inflammation, potentially leading to resistance to CD28-targeting immunosuppressants.
Collapse
Affiliation(s)
- Midas Seyda
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Abdallah Elkhal
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Markus Quante
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine S Falk
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover, Germany
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|