1
|
Colominas-Ciuró R, Gray FE, Arikan K, Zahn S, Meier C, Criscuolo F, Bize P. Effects of persistent organic pollutants on telomere dynamics are sex and age-specific in a wild long-lived bird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173785. [PMID: 38851349 DOI: 10.1016/j.scitotenv.2024.173785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Chemical pollution is a major man-made environmental threat to ecosystems and natural animal populations. Of concern are persistent organic pollutants (POPs), which can persist in the environment for many years. While bioaccumulating throughout the lives of wild animals, POPs can affect their health, reproduction, and survival. However, measuring long-term effects of POPs in wild populations is challenging, and therefore appropriate biomarkers are required in wildlife ecotoxicology. One potential target is telomere length, since telomere preservation has been associated to survival and longevity, and stressors as chemical pollution can disrupt its maintenance. Here, we investigated the effects of different classes of POPs on relative telomere length (RTL) and its rate of change (TROC) in wild long-lived Alpine swifts (Tachymarptis melba). As both RTL and TROC are often reported to differ between sexes and with chronological age, we tested for sex- and age-specific (pre-senescent vs. senescent, ≥ 9 age of years, individuals) effects of POPs. Our results showed that senescent females presented longer RTL and elongated telomeres over time compared to pre-senescent females and males. These sex- and age-related differences in RTL and TROC were influenced by POPs, but differently depending on whether they were organochlorine pesticides (OCPs) or industrial polychlorinated biphenyls (PCBs). OCPs (particularly drins) were negatively associated with RTL, with the strongest negative effects being found in senescent females. Conversely, PCBs led to slower rates of telomere shortening, especially in females. Our study indicates diametrically opposed effects of OCPs on RTL and PCBs on TROC, and these effects were more pronounced in females and senescent individuals. The mechanisms behind these effects (e.g., increased oxidative stress by OCPs; upregulation of telomerase activity by PCBs) remain unknown. Our results highlight the importance in wildlife ecotoxicology to account for sex- and age-related effects when investigating the health effects of pollutants on biomarkers such as telomeres.
Collapse
Affiliation(s)
| | | | - Kalender Arikan
- Department of Biology Education, Faculty of Education, Hacettepe University, Turkey
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, France
| | | | | | - Pierre Bize
- Swiss Ornithological Institute, Switzerland.
| |
Collapse
|
2
|
Zuo S, Sasitharan V, Di Tanna GL, Vonk JM, De Vries M, Sherif M, Ádám B, Rivillas JC, Gallo V. Is exposure to pesticides associated with biological aging? A systematic review and meta-analysis. Ageing Res Rev 2024; 99:102390. [PMID: 38925480 DOI: 10.1016/j.arr.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Exposure to pesticides is a risk factor for various diseases, yet its association with biological aging remains unclear. We aimed to systematically investigate the relationship between pesticide exposure and biological aging. METHODS PubMed, Embase and Web of Science were searched from inception to August 2023. Observational studies investigating the association between pesticide exposure and biomarkers of biological aging were included. Three-level random-effect meta-analysis was used to synthesize the data. Risk of bias was assessed by the Newcastle-Ottawa Scale. RESULTS Twenty studies evaluating the associations between pesticide exposure and biomarkers of biological aging in 10,368 individuals were included. Sixteen reported telomere length and four reported epigenetic clocks. Meta-analysis showed no statistically significant associations between pesticide exposure and the Hannum clock (pooled β = 0.27; 95 %CI: -0.25, 0.79), or telomere length (pooled Hedges'g = -0.46; 95 %CI: -1.10, 0.19). However, the opposite direction of effects for the two outcomes showed an indication of possible accelerated biological aging. After removal of influential effect sizes or low-quality studies, shorter telomere length was found in higher-exposed populations. CONCLUSION The existing evidence for associations between pesticide exposure and biological aging is limited due to the scarcity of studies on epigenetic clocks and the substantial heterogeneity across studies on telomere length. High-quality studies incorporating more biomarkers of biological aging, focusing more on active chemical ingredients of pesticides and accounting for potential confounders are needed to enhance our understanding of the impact of pesticides on biological aging.
Collapse
Affiliation(s)
- Shanshan Zuo
- University of Groningen, Campus Fryslân, Department of Sustainable Health, Leeuwarden, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands.
| | | | - Gian Luca Di Tanna
- University of Applied Sciences and Arts of Southern Switzerland, Department of Business Economics, Health and Social Care, Lugano, Switzerland
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - Maaike De Vries
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - Moustafa Sherif
- United Arab Emirates University, College of Medicine and Health Sciences, Institute of Public Health, Al Ain, United Arab Emirates
| | - Balázs Ádám
- United Arab Emirates University, College of Medicine and Health Sciences, Institute of Public Health, Al Ain, United Arab Emirates
| | - Juan Carlos Rivillas
- Imperial College London, MRC Centre Environment and Health, School of Public Health, Department of Epidemiology and Biostatistics, London, United Kingdom
| | - Valentina Gallo
- University of Groningen, Campus Fryslân, Department of Sustainable Health, Leeuwarden, the Netherlands
| |
Collapse
|
3
|
Dehdashti B, Miri M, Khanahmad H, Feizi A, Mohammadi F, Rouholamin S, Amin MM. In-Utero exposure to potential sources of indoor air pollution and umbilical cord blood leukocyte telomere length. ENVIRONMENTAL RESEARCH 2024; 252:118791. [PMID: 38552826 DOI: 10.1016/j.envres.2024.118791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Indoor air pollution (IAP) has been associated with various adverse health effects. However, the evidence regarding such an association with leukocyte telomere length (LTL) in cord blood samples is still scarce. Therefore, the present study aimed to assess the relationship between exposure to indicators of IAP and LTL in umbilical cord blood samples. This cross-sectional study was based on 188 mother-newborn pairs who participated in our study between 2020 and 2022 in Isfahan, Iran. Umbilical LTL was measured by quantitative real-time polymerase chain reaction (qRT-PCR) technique. Linear mixed-effect models were used to assess the relationship between IAP indicators and umbilical LTL, adjusted for relevant covariates. The median (interquartile range (IQR)) of umbilical LTL was 0.92 (0.47). In fully adjusted models, frequency of using degreasing spray during pregnancy (times per month) (β = -0.047, 95% CI:0.09, -0.05, P-value = 0.02), using air freshener spray during pregnancy (β = -0.26, 95% CI: -0.5, -0.02, P-value = 0.03) and frequency of using insecticides during pregnancy (times per month) (β = -0.025, 95% CI: -0.047, -0.003, P-value = 0.02) were significantly associated with shorter umbilical LTL. There was a positive significant relationship between the frequency of using cleaning spray during pregnancy (times per month) with umbilical LTL (β = 0.019, 95% CI: 0.005, 0.033, P-value = 0.01). Furthermore, the direct connection of the parking with home and the frequency of using barbecue (times per week) were marginally associated with shorter umbilical LTL. For other indicators of IAP, we did not observe any statistically significant associations. Overall, this study suggested a negative association between prenatal exposure to IAP during pregnancy and umbilical LTL.
Collapse
Affiliation(s)
- Bahare Dehdashti
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non- Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Miri
- Leishmaniasis Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Safoura Rouholamin
- Department of Obstetrics and Gynecology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non- Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Salberg S, Smith MJ, Lamont R, Chen Z, Beauchamp MH, Craig W, Doan Q, Gravel J, Zemek R, Lannin NA, Yeates KO, Mychasiuk R. Shorter Telomere Length Is Associated With Older Age, Poor Sleep Hygiene, and Orthopedic Injury, but Not Mild Traumatic Brain Injury, in a Cohort of Canadian Children. J Head Trauma Rehabil 2024:00001199-990000000-00178. [PMID: 39019487 DOI: 10.1097/htr.0000000000000982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
BACKGROUND Predicting recovery following pediatric mild traumatic brain injury (mTBI) remains challenging. The identification of objective biomarkers for prognostic purposes could improve clinical outcomes. Telomere length (TL) has previously been used as a prognostic marker of cellular health in the context of mTBI and other neurobiological conditions. While psychosocial and environmental factors are associated with recovery outcomes following pediatric mTBI, the relationship between these factors and TL has not been investigated. This study sought to examine the relationships between TL and psychosocial and environmental factors, in a cohort of Canadian children with mTBI or orthopedic injury (OI). METHODS Saliva was collected at a postacute (median 7 days) timepoint following injury to assess TL from a prospective longitudinal cohort of children aged 8 to 17 years with either mTBI (n = 202) or OI (n = 90), recruited from 3 Canadian sites. Questionnaires regarding psychosocial and environmental factors were obtained at a postacute follow-up visit and injury outcomes were assessed at a 3-month visit. Univariable associations between TL and psychosocial, environmental, and outcome variables were assessed using Spearman's correlation. Further adjusted analyses of these associations were performed by including injury group, age, sex, and site as covariates in multivariable generalized linear models with a Poisson family, log link function, and robust variance estimates. RESULTS After adjusting for age, sex, and site, TL in participants with OI was 7% shorter than those with mTBI (adjusted mean ratio = 0.93; 95% confidence interval, 0.89-0.98; P = .003). As expected, increasing age was negatively associated with TL (Spearman's r = -0.14, P = .016). Sleep hygiene at 3 months was positively associated with TL (adjusted mean ratio = 1.010; 95% confidence interval, 1.001-1.020; P = .039). CONCLUSION The relationships between TL and psychosocial and environmental factors in pediatric mTBI and OI are complex. TL may provide information regarding sleep quality in children recovering from mTBI or OI; however, further investigation into TL biomarker validity should employ a noninjured comparison group.
Collapse
Affiliation(s)
- S Salberg
- Author Affiliations: Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia (Drs Salberg, Smith, Lannin, Mychasiuk and Chen); Department of Psychology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada (Dr Lamont); Department of Psychology, Montreal University, Montreal, Quebec, Canada, and Sainte-Justine Hospital Research Center, Montrea, Quebec, Canada (Dr Beauchamp); Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada (Dr Craig); Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada (Dr Doan); Department of Pediatric Emergency Medicine, CHU Sainte-Justine, Montreal, Quebec, Canada, and Université de Montreal, Montreal, Quebec, Canada (Dr Gravel); Department of Pediatrics and Emergency Medicine, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada (Dr Zemek); Alfred Health, Melbourne, Australia (Dr Lannin); and Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada (Dr Yeates)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Scorza FA, Finsterer J, Beltramim L, Bombardi LM, de Almeida ACG. Telomere Length and Pesticide Residues in Food: A Causal Link? J Acad Nutr Diet 2024; 124:311-312. [PMID: 37924942 DOI: 10.1016/j.jand.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Affiliation(s)
- Fulvio A Scorza
- Ministério do Desenvolvimento Agrário e Agricultura Familiar São Paulo, Brasil; Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo São Paulo, Brasil
| | | | - Larissa Beltramim
- Ministério do Desenvolvimento Agrário e Agricultura Familiar São Paulo, Brasil
| | - Larissa M Bombardi
- Faculdade de Filosofia, Letras e Ciências Humanas. Universidade de São Paulo São Paulo, Brasil
| | - Antonio-Carlos G de Almeida
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei City, São Paulo, Brasil
| |
Collapse
|
6
|
Lu J, Zhang C, Wang W, Xu W, Chen W, Tao L, Li Z, Zhang Y, Cheng J. Exposure to environmental concentrations of glyphosate induces cardiotoxicity through cellular senescence and reduced cell proliferation capacity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115112. [PMID: 37290295 DOI: 10.1016/j.ecoenv.2023.115112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Glyphosate (GLY), the preeminent herbicide utilized globally, is known to be exposed to the environment and population on a chronic basis. Exposure to GLY and the consequent health risks are alarming public health problems that are attracting international attention. However, the cardiotoxicity of GLY has been a matter of dispute and uncertainty. Here, AC16 cardiomyocytes and zebrafish were exposed to GLY. This study found that low concentrations of GLY lead to morphological enlargement of AC16 human cardiomyocytes, indicating a senescent state. The increased expression of P16, P21, and P53 following exposure to GLY demonstrated that GLY causes senescence in AC16. Moreover, it was mechanistically confirmed that GLY-induced senescence in AC16 cardiomyocytes was produced by ROS-mediated DNA damage. In terms of in vivo cardiotoxicity, GLY decreased the proliferative capacity of cardiomyocytes in zebrafish through the notch signaling pathway, resulting in a reduction of cardiomyocytes. It was also found that GLY caused zebrafish cardiotoxicity associated with DNA damage and mitochondrial damage. KEGG analysis after RNA-seq shows a significant enrichment of protein processing pathways in the endoplasmic reticulum (ER) after GLY exposure. Importantly, GLY induced ER stress in AC16 cells and zebrafish by activating PERK-eIF2α-ATF4 pathway. Our study has thus provided the first novel insights into the mechanism underlying GLY-induced cardiotoxicity. Furthermore, our findings emphasize the need for increased attention to the potential cardiotoxic effects of GLY.
Collapse
Affiliation(s)
- Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Zhang
- Department of Pathology,UT southwestern Medical Center, Dallas, TX 75390, United States
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weidong Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
7
|
Capriati M, Hao C, D'Cruz SC, Monfort C, Chevrier C, Warembourg C, Smagulova F. Genome-wide analysis of sex-specific differences in the mother-child PELAGIE cohort exposed to organophosphate metabolites. Sci Rep 2023; 13:8003. [PMID: 37198424 DOI: 10.1038/s41598-023-35113-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
In recent decades, the detrimental effects of environmental contaminants on human health have become a serious public concern. Organophosphate (OP) pesticides are widely used in agriculture, and the negative impacts of OP and its metabolites on human health have been demonstrated. We hypothesized that exposure to OPs during pregnancy could impose damaging effects on the fetus by affecting various processes. We analyzed sex-specific epigenetic responses in the placenta samples obtained from the mother-child PELAGIE cohort. We assayed the telomere length and mitochondrial copy numbers using genomic DNA. We analyzed H3K4me3 by using chromatin immunoprecipitation followed by qPCR (ChIP‒qPCR) and high-throughput sequencing (ChIP-seq). The human study was confirmed with mouse placenta tissue analysis. Our study revealed a higher susceptibility of male placentas to OP exposure. Specifically, we observed telomere length shortening and an increase in γH2AX levels, a DNA damage marker. We detected lower histone H3K9me3 occupancy at telomeres in diethylphosphate (DE)-exposed male placentas than in nonexposed placentas. We found an increase in H3K4me3 occupancy at the promoters of thyroid hormone receptor alpha (THRA), 8-oxoguanine DNA glycosylase (OGG1) and insulin-like growth factor (IGF2) in DE-exposed female placentas. H3K4me3 occupancy at PPARG was increased in both male and female placentas exposed to dimethylphosphate (DM). The genome-wide sequencing of selected samples revealed sex-specific differences induced by DE exposure. Specifically, we found alterations in H3K4me3 in genes related to the immune system in female placenta samples. In DE-exposed male placentas, a decrease in H3K4me3 occupancy at development-related, collagen and angiogenesis-related genes was observed. Finally, we observed a high number of NANOG and PRDM6 binding sites in regions with altered histone occupancy, suggesting that the effects were possibly mediated via these factors. Our data suggest that in utero exposure to organophosphate metabolites affects normal placental development and could potentially impact late childhood.
Collapse
Affiliation(s)
- Martina Capriati
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Chunxiang Hao
- School of Medicine, Linyi University, Linyi, 276000, China
| | - Shereen Cynthia D'Cruz
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Christine Monfort
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Cecile Chevrier
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Charline Warembourg
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Fatima Smagulova
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
8
|
Ali JH, Abdeen Z, Azmi K, Berman T, Jager K, Barnett-Itzhaki Z, Walter M. Influence of exposure to pesticides on telomere length and pregnancy outcome: Diethylphosphates but not Dimethylphosphates are associated with accelerated telomere attrition in a Palestinian cohort. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114801. [PMID: 36989559 DOI: 10.1016/j.ecoenv.2023.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Exposure to environmental pesticides during pregnancy is associated with adverse health outcomes such as low birth weight and impaired neuro-development. In this study, we assessed maternal leukocyte telomere lengths (TL) in Palestinian pregnant women and compared the data with urinary organophosphate concentrations, demographic, lifestyle and dietary factors, birth weight, body length, gestational age, and head circumference. Women with high urine levels of creatinine adjusted diethylphosphate(DE)derived pesticide metabolites DEP, DETP or DEDTP had shorter telomeres (p = 0.05). Women living in proximity to agricultural fields had shorter telomeres compared to women not living in proximity to agricultural fields (p = 0.011). Regular consumption of organic food was associated with shorter telomeres (p = 0.01), whereas the consumption of other vegetables such as artichokes was rather associated with longer telomeres. By contrast, urine levels of dimethylphosphate(DM)-derived pesticide metabolites DMTP and DMDTP were associated with lower birth weight (p = 0.05) but not with shrter telomeres. In conclusion organophosphate pesticides and living in proximity to agriculture are associated with shorter TL, likely due to higher consumption of contaminated fruits and vegetables and/or the transport of pesticides to non-treatment sites. DE and DM substituted pesticides seem to have different effects on telomeres and development.
Collapse
Affiliation(s)
- Jaber Haj Ali
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Rostock, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin, Berlin, Germany; Consulting Medical Laboratory, Nablus, Palestine
| | - Ziad Abdeen
- Al-Quds Nutrition and Health Research Institute, Al-Quds University, Jerusalem, Palestine
| | - Kifaya Azmi
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Al-Quds University, Abu Deis, The West Bank, Palestine; Al-Quds Public Health Society, Jerusalem, Palestine
| | - Tamar Berman
- Public Health Services, Ministry of Health, Jerusalem, Israel; Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kathrin Jager
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Rostock, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Zohar Barnett-Itzhaki
- Ruppin Research Group in Environmental and Social Sustainability, Ruppin Academic Center, Emek Hefer, Israel
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Rostock, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
9
|
Bitencourt de Morais Valentim JM, Fagundes TR, Okamoto Ferreira M, Lonardoni Micheletti P, Broto Oliveira GE, Cremer Souza M, Geovana Leite Vacario B, da Silva JC, Scandolara TB, Gaboardi SC, Zanetti Pessoa Candiotto L, Mara Serpeloni J, Rodrigues Ferreira Seiva F, Panis C. Monitoring residues of pesticides in food in Brazil: A multiscale analysis of the main contaminants, dietary cancer risk estimative and mechanisms associated. Front Public Health 2023; 11:1130893. [PMID: 36908412 PMCID: PMC9992878 DOI: 10.3389/fpubh.2023.1130893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Pesticides pose a risk for cancer development and progression. People are continuously exposed to such substances by several routes, including daily intake of contaminated food and water, especially in countries that are highly pesticide consumers and have very permissive legislation about pesticide contamination as Brazil. This work investigated the relationship among pesticides, food contamination, and dietary cancer risk. Methods Analyzed two social reports from the Brazilian Government: the Program for Analysis of Residues of Pesticides in Food (PARA) and The National Program for Control of Waste and Contaminants (PNCRC). Results and discussion First, we characterized the main pesticide residues detected over the maximum limits allowed by legislation or those prohibited for use in food samples analyzed across the country. Based on this list, we estimated the dietary cancer risks for some of the selected pesticides. Finally, we searched for data about dietary cancer risks and carcinogenic mechanisms of each pesticide. We also provided a critical analysis concerning the pesticide scenario in Brazil, aiming to discuss the food contamination levels observed from a geographical, political, and public health perspective. Exposures to pesticides in Brazil violate a range of human rights when food and water for human consumption are contaminated.
Collapse
Affiliation(s)
| | - Tatiane Renata Fagundes
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, Brazil
| | - Mariane Okamoto Ferreira
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
| | | | | | - Milena Cremer Souza
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | | | | | - Shaiane Carla Gaboardi
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
- Instituto Federal Catarinense, Blumenau, Brazil
| | | | - Juliana Mara Serpeloni
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, Brazil
| | - Carolina Panis
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
| |
Collapse
|
10
|
Exposure to Airborne Pesticides and Its Residue in Blood Serum of Paddy Farmers in Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116806. [PMID: 35682390 PMCID: PMC9180057 DOI: 10.3390/ijerph19116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022]
Abstract
Background: Pesticides manage pests and diseases in agriculture, but they harm the health of agricultural workers. Concentrations of thirteen pesticides were determined in personal air and blood serum of 85 paddy farmers and 85 non-farmers, thereafter associated with health symptoms. Method: Samples were analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Results: The median concentration of pesticides in personal air samples ranged from 10.69 to 188.49 ng/m3 for farmers and from 5.79 to 73.66 ng/m3 for non-farmers. The median concentration of pesticides in blood serum was from 58.27 to 210.12 ng/mL for farmers and 47.83 to 62.74 ng/mL for non-farmers. Concentration of eleven pesticides in personal air and twelve pesticides in blood serum were significantly higher in farmers than non-farmers (p < 0.05). All pesticides detected in personal air correlated significantly with concentration in the blood serum of farmers (p < 0.05). Health symptoms reported by farmers were dizziness (49.4%), nausea (47.1%), cough (35.3%), chest pain (30.6%), breathing difficulty (23.5%), sore throat (22.4%), vomiting (18.8%), phlegm (16.5%), and wheezing (15.3%). Concentration of pesticides in personal air, blood serum, and health symptoms were not significantly associated. Conclusion: Occupational exposure to pesticides significantly contaminates blood serum of farmers compared to non-farmers.
Collapse
|
11
|
Alonso-Pedrero L, Donat-Vargas C, Bes-Rastrollo M, Ojeda-Rodríguez A, Zalba G, Razquin C, Martínez-González MA, Marti A. Dietary Exposure to Polychlorinated Biphenyls and Dioxins and Its Relationship to Telomere Length in Subjects Older Than 55 Years from the SUN Project. Nutrients 2022; 14:nu14020353. [PMID: 35057533 PMCID: PMC8779661 DOI: 10.3390/nu14020353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Exposure to persistent organic pollutants (POPs) may influence telomere length (TL), which is considered as a marker of biological age associated with the risk of chronic disease. We hypothesized that dietary exposure to polychlorinated biphenyls (PCBs) and dioxins could affect TL. Our aim was to evaluate the association of dietary exposure to PCBs and dioxins with TL. In this cross-sectional study of 886 subjects older than 55 y (mean age: 67.7; standard deviation (SD): 6.1; 27% women) from the “Seguimiento Universidad de Navarra” (SUN) project. TL was determined by real-time quantitative polymerase chain reaction and dietary PCBs and dioxins exposure was collected using a validated 136-item Food Frequency Questionnaire. Multivariable linear regression models were used to control for potential confounding factors. Shorter TL was associated with dietary total PCBs (SD of T/S ratio/(ng/day) = −0.30 × 10−7; 95% CI, −0.55 × 10−7 to −0.06 × 10−7), dioxin-like PCBs (DL-PCBs) (SD of T/S ratio/(pg WHO TEQ (Toxic Equivalents)/day) = −6.17 × 10−7; 95% CI, −11.30 × 10−7 to −1.03 × 10−7), and total TEQ exposure (SD of T/S ratio/(pg WHO TEQ/day) = −5.02 × 10−7; 95% CI, −9.44 × 10−7 to −0.61 × 10−7), but not with dioxins (SD of T/S ratio/(pg WHO TEQ/day) = −13.90 × 10−7; 95% CI, −37.70 × 10−7 to 9.79 × 10−7). In this sample of middle-aged and older Spanish adults, dietary exposure to total PCBs and DL-PCBs alone and together with dioxins was associated with shorter TL. Further longitudinal studies, preferably with POPs measured in biological samples, are needed to confirm this finding.
Collapse
Affiliation(s)
- Lucia Alonso-Pedrero
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain; (L.A.-P.); (A.O.-R.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (M.B.-R.); (G.Z.); (M.A.M.-G.)
| | - Carolina Donat-Vargas
- Departament of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, CEI UAM+ CSIC, 28049 Madrid, Spain;
- Unit of Nutritional and Cardiovascular Epidemiology, Environmental Medicine Institute (IMM), Karolinska Institutet, 17177 Stockholm, Sweden
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBERobn), Spanish National Institute of Health Carlos III, 28029 Madrid, Spain;
| | - Maira Bes-Rastrollo
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (M.B.-R.); (G.Z.); (M.A.M.-G.)
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBERobn), Spanish National Institute of Health Carlos III, 28029 Madrid, Spain;
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
| | - Ana Ojeda-Rodríguez
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain; (L.A.-P.); (A.O.-R.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (M.B.-R.); (G.Z.); (M.A.M.-G.)
| | - Guillermo Zalba
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (M.B.-R.); (G.Z.); (M.A.M.-G.)
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | - Cristina Razquin
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBERobn), Spanish National Institute of Health Carlos III, 28029 Madrid, Spain;
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
| | - Miguel A. Martínez-González
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (M.B.-R.); (G.Z.); (M.A.M.-G.)
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBERobn), Spanish National Institute of Health Carlos III, 28029 Madrid, Spain;
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Amelia Marti
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain; (L.A.-P.); (A.O.-R.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (M.B.-R.); (G.Z.); (M.A.M.-G.)
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBERobn), Spanish National Institute of Health Carlos III, 28029 Madrid, Spain;
- Correspondence: ; Tel.: +34-948-425600 (ext. 806244)
| |
Collapse
|
12
|
Fernandes SG, Dsouza R, Khattar E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: Implications in human aging. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103633. [PMID: 33711516 DOI: 10.1016/j.etap.2021.103633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
External environment affects cellular physiological processes and impact the stability of our genome. The most important structural components of our linear chromosomes which endure the impact by these agents, are the chromosomal ends called telomeres. Telomeres preserve the integrity of our genome by preventing end to end fusions and telomeric loss through by inhibiting DNA damage response (DDR) activation. This is accomplished by the presence of a six membered shelterin complex at telomeres. Further, telomeres cannot be replicated by normal DNA polymerase and require a special enzyme called telomerase which is expressed only in stem cells, few immune cells and germ cells. Telomeres are rich in guanine content and thus become extremely prone to damage arising due to physiological processes like oxidative stress and inflammation. External environmental factors which includes various physical, biological and chemical agents also affect telomere homeostasis by increasing oxidative stress and inflammation. In the present review, we highlight the effect of these external factors on telomerase activity and telomere length. We also discuss how the external agents affect the physiological processes, thus modulating telomere stability. Further, we describe its implication in the development of aging and its related pathologies.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| |
Collapse
|
13
|
Torres-Rojas C, Zhuang D, Jimenez-Carrion P, Silva I, O'Callaghan JP, Lu L, Zhao W, Mulligan MK, Williams RW, Jones BC. Systems Genetics and Systems Biology Analysis of Paraquat Neurotoxicity in BXD Recombinant Inbred Mice. Toxicol Sci 2021; 176:137-146. [PMID: 32294219 DOI: 10.1093/toxsci/kfaa050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Paraquat (PQ) is an herbicide used in many countries, including the United States. It is also implicated as a risk factor for sporadic Parkinson's disease, especially in those living in agricultural areas and drinking well water. Studies linking PQ to sporadic Parkinson's disease are not consistent however and there appears to be interindividual differential susceptibility. One likely reason is genetically based differential susceptibility to paraquat neurotoxicity in subpopulations. To address this issue, we tested the effects of paraquat in a genetic reference population of mice (the BXD recombinant inbred strain family). In our earlier work, we showed that in genetically susceptible mice, paraquat increases iron in the ventral midbrain, the area containing the substantia nigra. Our hypothesis is that genetic variability contributes to diverse PQ-related susceptibility and iron concentration. To test this hypothesis, we treated male mice from 28 to 39 BXD strains plus the parental strains with 1 of 3 doses of paraquat, 1, 5, and 10 mg/kg 3 times on a weekly basis. At the end of the treatment period, we analyzed the ventral midbrain for concentrations of iron, copper, and zinc, also we measured the concentration of paraquat in cerebellum, and proinflammatory cytokines in serum and cerebellum. The effect on paraquat-treated mice with 5 mg/kg and principal component analysis of iron showed suggestive quantitative trait loci on chromosome 5. Overall, our results suggest that gene Prkag2 and related networks may serve as potential targets against paraquat toxicity and demonstrate the utility of genetically diverse mouse models for the study of complex human toxicity.
Collapse
Affiliation(s)
- Carolina Torres-Rojas
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Daming Zhuang
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Paola Jimenez-Carrion
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Isabel Silva
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-NIOSH, Morgantown, West Virginia 26505
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Wenyuan Zhao
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Megan K Mulligan
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Robert W Williams
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Byron C Jones
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|
14
|
Liu Y, Wang J, Huang Z, Liang J, Xia Q, Xia Q, Liu X. Environmental pollutants exposure: A potential contributor for aging and age-related diseases. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103575. [PMID: 33385577 DOI: 10.1016/j.etap.2020.103575] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Telomeres are "protective messengers" at the ends of eukaryotic chromosomes that protect them from degradation, end to end fusion and recombination. Admittedly, telomeres progressively shorten with age that can also be significantly accelerated by pathological conditions, which are often considered as potential contributors for cellular senescence. It is commonly believed that constant accumulation of senescent cells may lead to dysfunctional tissues and organs, thereby accelerating aging process and subsequent occurrence of age-related diseases. In particular, epidemiological data has indicated a significant association between environmental pollutants exposure and a high incidence of age-related diseases. Moreover, there is growing evidence that environmental toxicity has a detrimental impact on telomere length. Overall, a consensus is emerging that environmental pollutants exposure could lead to accelerated telomere erosion and further induce premature senescence, which may be responsible for the acceleration of aging and the high morbidity and mortality rates of age-related diseases.
Collapse
Affiliation(s)
- Yaru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, 230022, China
| | - Jiequan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui, 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui, 230000, China
| | - Zhaogang Huang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, 230022, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui, 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui, 230000, China
| | - Qingrong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui, 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui, 230000, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, 230022, China.
| | - Xinhua Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
15
|
Chattopadhyay S, Law S. Morphogen signaling by Wnt/β-catenin pathway and microenvironmental alteration in the bone marrow of agricultural pesticide exposure-induced experimental aplastic anemia. J Biochem Mol Toxicol 2020; 34:e22523. [PMID: 32410290 DOI: 10.1002/jbt.22523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/14/2020] [Accepted: 04/27/2020] [Indexed: 11/08/2022]
Abstract
The etiologic link between pesticide toxicity and aplastic anemia in agricultural and agro-industrial setting has been frequently reported in epidemiological studies conducted worldwide. Chronic pesticide toxicity causes long-term bone marrow injury and perturbs the normal hematopoietic physiology, including survival of hematopoietic progenitor cells and bone marrow's blood cell forming ability. The purpose of this study is to understand the mechanism of pesticide toxicity-mediated bone marrow aplasia by studying Wnt/β-catenin signaling pathway and microenvironmental stromal components. An agricultural pesticide formulation comprising of cypermethrin, chlorpyriphos, and hexaconazole was used to induce bone marrow aplasia in inbred Swiss albino mice. Marrow failure followed by the onset of aplastic condition was confirmed by pancytopenic peripheral blood and hypocellular bone marrow filled with adipocytes. Significant downregulation of canonical Wnt/β-catenin signaling was identified by expression analysis of Wnt3a, β-catenin, and telomerase reverse transcriptase in the aplastic bone marrow hematopoietic stem/progenitor compartment. Along with signaling deregulation, disruption in both the osteoblastic and vascular stromal components was observed in the pesticide-exposed bone marrow microenvironment when compared to control. In this study, we tried to establish the correlation among disease pathophysiology, signaling deregulation in the hematopoietic cells, and bone marrow microenvironmental alteration during environmental exposure-mediated aplastic hematopoietic catastrophe, which may shed light on the unexplored mechanistic perspective of this fatal blood disease.
Collapse
Affiliation(s)
- Sukalpa Chattopadhyay
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
16
|
Çobanoğlu H, Coşkun M, Coşkun M, Çayır A. Different working conditions shift the genetic damage levels of pesticide-exposed agriculture workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31750-31759. [PMID: 32504430 DOI: 10.1007/s11356-020-09463-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
In the current study, we had two main purposes. Firstly, we aimed to compare genetic damages in the agricultural workers of two different types of environmental conditions including the greenhouse and open fields. Secondly, we aimed to compare genetic damages in the total agricultural workers as the exposed group (greenhouse and open field workers) (n = 114) and the non-exposed control group (n = 98) living in the same area in Canakkale, Turkey. For these purposes, we investigated the incidence of micronucleus (MN), nucleoplasmic bridges (NPBs), and nuclear buds (NBUDs) in peripheral blood lymphocytes. We observed that the frequencies of MN, NPB, and NBUD obtained for the greenhouse workers were statistically significantly higher than those obtained for the open field workers. When the results of the control group were compared with those of the total workers, there were statistically significant differences in terms of MN and NBUD frequencies. We found that age and MN were correlated at a significant level in both the agricultural workers and the control group. The MN frequency of the female workers was 1.5 times greater than that of the male workers, and it was a significant level in the agricultural workers.
Collapse
Affiliation(s)
- Hayal Çobanoğlu
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Münevver Coşkun
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Mahmut Coşkun
- Faculty of Medicine, Çanakkale Onsekiz Mart University, Terzioglu Campus, 17100, Çanakkale, Turkey
| | - Akın Çayır
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey.
| |
Collapse
|
17
|
Bastos PL, Bastos AFTDL, Gurgel ADM, Gurgel IGD. Carcinogenicity and mutagenicity of malathion and its two analogues: a systematic review. CIENCIA & SAUDE COLETIVA 2020; 25:3273-3298. [PMID: 32785560 DOI: 10.1590/1413-81232020258.10672018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/11/2018] [Indexed: 11/22/2022] Open
Abstract
Malathion has been widely used worldwide in arbovirus control programs. In 2015, it was classified by the International Agency for Research on Cancer (IARC) as a probable carcinogen to humans. This work aimed to systematize the evidence of the carcinogenic and mutagenic effects associated with the exposure of malathion and its analogs, malaoxon and isomalathion. The search was carried out in Toxline, PubMed and Scopus databases for original papers published from 1983 to 2015. In all, 73 papers were selected from a total of 273 eligible papers. The results of in vitro and in vivo studies showed mainly genetic and chromosomal damages caused by malathion. The epidemiological studies evidenced significant positive associations for thyroid, breast, and ovarian cancers in menopausal women. This evidence of the carcinogenic effect of malathion should be considered before its use in arbovirus control programs.
Collapse
Affiliation(s)
- Priscilla Luna Bastos
- Secretaria Estadual de Saúde de Pernambuco. R. Dona Maria Augusta Nogueira 519, Bongi. 50751-530 Recife PE Brasil.
| | | | | | | |
Collapse
|
18
|
Karimi B, Nabizadeh R, Yunesian M. Association Between Leukocyte Telomere Length and Serum Concentrations of PCBs and Organochlorine Pesticides. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:122-130. [PMID: 32300848 DOI: 10.1007/s00244-020-00732-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) through food, water, and air occurred during the life, which may change telomere length (TL) in peripheral blood leukocytes. The present study was designed to investigate the association between TL and serum levels of PCBs and OCPs in Tehran male's population. Whole blood samples were randomly taken from 300 adult males, aged between 25 and 40 years. TL was determined by real-time PCR to measure the number of the telomere (T) repeats to the number of a single-copy gene (S). We applied the multivariate linear regression model to compare the effect of each lipid adjusted serum levels of PCBs and OCPs congener on the TL, with adjustment for age, body mass index, education, smoking, and food patterns. Each doubling of the nondioxin-like PCBs, dioxin-like PCBs, and OCPs levels were associated with 1.9% [95% confidence interval (CI) - 0.70 to 5.40%], 2.5% (95% CI 0.30-8.3%), and - 2.4% (95% CI - 0.70 to - 6.2%) variation in the TL, respectively. The percent difference in the TL with exposure to nondioxin-like PCBs, dioxin-like PCBs, and OCPs for participants with older than age 37 years were 6.45% (95% CI 2.81-16.50%), 4.52% (95% CI 1.60-10.54%), and - 7.44% (95% CI - 1.55 to - 15.51%), respectively. Exposures to nondioxin-like PCBs (except for PCB 28 and 52) with high chlorine in structure and dioxin-like PCBs were related to longer TLs. Conversely, serum levels of OCPs can be associated with oxidative stress and systemic inflammation that lead to telomere shortening.
Collapse
Affiliation(s)
- Behrooz Karimi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arāk, Iran.
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab St., Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab St., Tehran, Iran
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Kargar St., Enghelab Sq., Tehran, Iran
| |
Collapse
|
19
|
Karimi B, Nabizadeh Nodehi R, Yunesian M. Serum level of PCBs and OCPs and leukocyte telomere length among adults in Tehran, Iran. CHEMOSPHERE 2020; 248:126092. [PMID: 32041072 DOI: 10.1016/j.chemosphere.2020.126092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/14/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) may change leukocyte telomere length (TL) at the end of the DNA sequence. The purpose of this study was to investigate the association between PCBs and OCPs exposure with TL in Tehran adult males. Whole-blood samples were randomly taken from three hundred adult males in population-based cross-section study from October 2016 to November 2017. We studied the serum levels of PCBs, OCPs as well as socio-demographic characteristics of individuals. The quantitative PCR was used to investigate the number of the telomere (T) repeats to the number of a single copy gene. We measured the effect of each PCBs and OCPs congeners on TL using linear regressions adjusted for age, BMI, smoking, and dietary patterns. The median level of the six non-dioxin-likes, five dioxin-likes PCBs three OCPs and TL in the study population were 344.5, 306.0, 45.0 ng/g lipid and 5377.7 ± 573.4 base pairs, respectively. In the adjusted model, the percent difference in the TLs with exposure to Σnon-dioxin-like PCBs, Σdioxin-like PCBs, and OCPs were 1.93 (-0.70 to 5.4), 3.4 (1.8-8.3) and -2.4 (-0.80 to -6.2), respectively. In the fourth quartile compared to the first quartile, the percent difference in the TLs due to Σnon-dioxin-like PCBs, Σdioxin-like PCBs, and OCP exposure were 0.01 (-0.01 to 0.05), 10.3 (2.9-18.1) and -0.20 (-0.10 to -4.5), respectively. Exposures to ndl-PCBs and dl-PCBs (except for PCB28) were related to longer TLs, but OCPs exposure can be related to telomere shortening.
Collapse
Affiliation(s)
- Behrooz Karimi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran.
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab St., Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab St., Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Kargar St., Enghelab Sq., Tehran, Iran
| |
Collapse
|
20
|
Ock J, Kim J, Choi YH. Organophosphate insecticide exposure and telomere length in U.S. adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:135990. [PMID: 31905589 DOI: 10.1016/j.scitotenv.2019.135990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Organophosphate insecticides have been widely used for >30 years, and are reported to be associated with various age-related chronic diseases. While shortening of telomere length has been considered as a marker of cellular aging, only a few small studies have been conducted to examine any difference of telomere length in workers exposed to organophosphates versus controls. Epidemiologic studies of the dose-response associations between environmental organophosphate exposure and telomere length in the general population are few. OBJECTIVE This study aimed to evaluate the association between levels of organophosphate insecticide exposure and telomere length in the general population. METHODS We analyzed data for 1724 participants aged 20 years or more from the National Health and Nutrition Examination Survey 1999-2002. Organophosphate insecticide exposure was estimated using measures of urinary concentrations for 3,5,6-trichloro-2-pyridinol (TCPY) and six non-specific dialkyl phosphate metabolites, e.g., diethyl thiophosphate (DETP). Multiple linear regression was conducted to assess the association between organophosphate exposure and telomere length. RESULTS After controlling for sociodemographic and physical factors and urinary creatinine, participants in the second quartile for urinary TCPY had 0.06 (95% CI: 0.02-0.10) T/S ratio shorter telomere length than those in the lowest quartile. By contrast, participants in the second and third tertiles of urinary DETP had 0.08 (95% CI: 0.02-0.14) and 0.06 (95% CI, 0.01-0.11) T/S ratio longer telomere length than those in the lowest tertile. For other five metabolites, there was no association with telomere length. CONCLUSIONS Levels of environmental exposures to certain organophosphate insecticides may be linked to altered telomere length in adults in the general population. Although our findings may need to be replicated, we provide the first evidence that environmental exposure to organophosphates may contribute to the alteration of telomere length, which is potentially related to biological aging and to the development of various chronic diseases.
Collapse
Affiliation(s)
- Jeongwon Ock
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Junghoon Kim
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yoon-Hyeong Choi
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Republic of Korea; Gachon Advanced Institute for Health Sciences and Technology, Incheon, Republic of Korea.
| |
Collapse
|
21
|
Zhou X, Wei W, Duan X, Zhang H, Feng X, Wang T, Wang P, Ding M, Liu S, Li L, Yao W, Wang Q, Acquaye RM, Liang H, Wang W, Yang Y. Effect of TRF1 rs3863242 polymorphism on telomere length in omethoate-exposed workers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:525-529. [PMID: 32077369 DOI: 10.1080/03601234.2020.1728167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Telomere length was found to be associated with omethoate exposure and polymorphisms in certain genes among occupational workers. However, whether the polymorphisms in telomere-binding protein genes influence telomere length remains unclear. To explore the correlation between telomere length and polymorphisms in telomere-binding protein genes, telomere length in peripheral blood leukocytes was determined by real-time quantitative polymerase chain reaction in 180 omethoate-exposed workers and 115 healthy controls. Polymorphisms in 10 pairs of alleles were detected using flight mass spectrometry or polymerase chain reaction-restriction fragment length polymorphism technique. The results showed that individuals with GG genotype in TRF1 rs3863242 had longer telomere lengths than those with AG + AA genotype in the control group (p = 0.005). The multiple regression analysis suggested that both omethoate exposure (b = 0.526, p < 0.001) and TRF1 rs3863242 GG (b = 0.220, p = 0.002) were related to a longer telomere length. In conclusion, GG genotype in TRF1 rs3863242 is linked to prolongation of telomere length, and individuals with GG genotype are recommended to strengthen health protection in a Chinese occupational omethoate-exposed population.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wan Wei
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoran Duan
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Zhang
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaolei Feng
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Tuanwei Wang
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengpeng Wang
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Mingcui Ding
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Suxiang Liu
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, Henan, China
| | - Lei Li
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, Henan, China
| | - Wu Yao
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Wang
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Reuben Mensah Acquaye
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyong Liang
- BioMiao Biological Technology Co., Ltd, Beijing, China
| | - Wei Wang
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Lerro CC, Andreotti G, Wong JYY, Blair A, Rothman N, Beane Freeman LE. 2,4-D exposure and urinary markers of oxidative DNA damage and lipid peroxidation: a longitudinal study. Occup Environ Med 2020; 77:276-280. [DOI: 10.1136/oemed-2019-106267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/18/2019] [Accepted: 12/31/2019] [Indexed: 11/04/2022]
Abstract
Objective2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide that is commonly used commercially, agriculturally and residentially worldwide. There is concern about its potential for carcinogenicity based on studies in laboratory animals demonstrating the potential for induction of oxidative stress. We conducted a longitudinal biomarker study of 31 pesticide applicators in Kansas who heavily applied 2,4-D and 34 non-applicator controls.MethodsWe used multivariable generalised linear mixed-effect models to evaluate the association between urinary 2,4-D and natural log-transformed 8-iso prostaglandin F2α (8-isoprostane) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), adjusting for urinary creatinine, age, tobacco use and concomitant use of the herbicide picloram.ResultsCompared with non-applicator controls, urinary 2,4-D in the third quartile of exposure was associated with elevated 8-isoprostane (eβ=1.38, 95% CI 1.03 to 1.84). There was no association among the highest exposed and no exposure-response trend. 2,4-D exposure was not associated with 8-OHdG. Results were unchanged when restricted to participants who only applied 2,4-D (no picloram use).ConclusionsWe did not find evidence that increasing 2,4-D exposure was associated with 8-isoprostane or 8-OHdG. Future work should carefully evaluate potential confounders of this association, such as diet and physical activity, as well as additional biological markers of oxidative stress and damage.
Collapse
|
23
|
Louzon M, Coeurdassier M, Gimbert F, Pauget B, de Vaufleury A. Telomere dynamic in humans and animals: Review and perspectives in environmental toxicology. ENVIRONMENT INTERNATIONAL 2019; 131:105025. [PMID: 31352262 DOI: 10.1016/j.envint.2019.105025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Telomeres (TLs) play major roles in stabilizing the genome and are usually shortened with ageing. The maintenance of TLs is ensured by two mechanisms involving telomerase (TA) enzyme and alternative lengthening telomeres (ALT). TL shortening and/or TA inhibition have been related to health effects on organisms (leading to reduced reproductive lifespan and survival), suggesting that they could be key processes in toxicity mechanisms (at molecular and cellular levels) and relevant as an early warning of exposure and effect of chemicals on human health and animal population dynamics. Consequently, a critical analysis of knowledge about relationships between TL dynamic and environmental pollution is essential to highlight the relevance of TL measurement in environmental toxicology. The first objective of this review is to provide a survey on the basic knowledge about TL structure, roles, maintenance mechanisms and causes of shortening in both vertebrates (including humans) and invertebrates. Overall, TL length decreases with ageing but some unexpected exceptions are reported (e.g., in species with different lifespans, such as the nematode Caenorhabditis elegans or the crustacean Homarus americanus). Inconsistent results reported in various biological groups or even between species of the same genus (e.g., the microcrustacean Daphnia sp.) indicate that the relation usually proposed between TL shortening and a decrease in TA activity cannot be generalized and depends on the species, stage of development or lifespan. Although the scientific literature provides evidence of the effect of ageing on TL shortening, much less information on the relationships between shortening, maintenance of TLs, influence of other endogenous and environmental drivers, including exposure to chemical pollutants, is available, especially in invertebrates. The second objective of this review is to connect knowledge on TL dynamic and exposure to contaminants. Most of the studies published on humans rely on correlative epidemiological approaches and few in vitro experiments. They have shown TL attrition when exposed to contaminants, such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), pesticides and metallic elements (ME). In other vertebrates, the studies we found deals mainly with birds and, overall, report a disturbance of TL dynamic consecutively to exposure to chemicals, including metals and organic compounds. In invertebrates, no data are available and the potential of TL dynamic in environmental risk assessment remains to be explored. On the basis of the main gaps identified some research perspectives (e.g., impact of endogenous and environmental drivers, dose response effects, link between TL length, TA activity, longevity and ageing) are proposed to better understand the potential of TL and TA measurements in humans and animals in environmental toxicology.
Collapse
Affiliation(s)
- Maxime Louzon
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Michael Coeurdassier
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Frédéric Gimbert
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Benjamin Pauget
- TESORA, Le Visium, 22 avenue Aristide Briand, 94110 Arcueil, France
| | - Annette de Vaufleury
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France.
| |
Collapse
|
24
|
Lerro CC, Andreotti G, Koutros S, Lee WJ, Hofmann JN, Sandler DP, Parks CG, Blair A, Lubin JH, Beane Freeman LE. Alachlor Use and Cancer Incidence in the Agricultural Health Study: An Updated Analysis. J Natl Cancer Inst 2019; 110:950-958. [PMID: 29471327 DOI: 10.1093/jnci/djy005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/08/2018] [Indexed: 11/13/2022] Open
Abstract
Background The herbicide alachlor has been widely used in US agriculture since its introduction in 1969. Experimental animal studies show that alachlor causes tumors in vivo; however, few epidemiologic studies have examined associations with human cancer risk. We evaluated alachlor use and cancer incidence in the Agricultural Health Study, updating an earlier analysis that suggested associations with lymphohematopoietic cancers with an additional 540 142 person-years of follow-up and 5113 cancer cases. Methods Pesticide applicators in Iowa and North Carolina reported lifetime alachlor use at enrollment (1993-1997) and follow-up (1999-2005). Exposure was characterized by cumulative intensity-weighted days. We estimated relative risks (RRs) and 95% confidence intervals (CIs) using Poisson regression for incident cancers from enrollment through 2012(NC)/2013(IA). Models adjusted for age, tobacco, alcohol, and other pesticides. All statistical tests are two-sided. Results Among 49 685 applicators, 25 640 (51.6%) used alachlor, with 3534 alachlor-exposed cancers. The relative risks of laryngeal cancer (nexposed = 34) increased in the second (RR = 4.68, 95% CI = 1.95 to 11.23), third (RR = 6.04, 95% CI = 2.44 to 14.99), and fourth quartiles (RR = 7.10, 95% CI = 2.58 to 19.53) of intensity-weighted days of use compared with no use (Ptrend = .001). Risk of myeloid leukemia was elevated, though not statistically significantly so, in the fourth quartile of intensity-weighted days of use (RR = 1.82, 95% CI = 0.85 to 3.87, Ptrend = .17). Conclusions We observed a strong positive association with use of alachlor and laryngeal cancer and a weaker association with myeloid leukemia. The strength and robustness of the association with laryngeal cancer suggests that long-term occupational exposure to alachlor may be a risk factor for laryngeal cancer. This first report requires confirmation.
Collapse
Affiliation(s)
- Catherine C Lerro
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Dale P Sandler
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Christine G Parks
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Jay H Lubin
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
25
|
Parks CG, Santos ADSE, Lerro CC, DellaValle CT, Ward MH, Alavanja MC, Berndt SI, Beane Freeman LE, Sandler DP, Hofmann JN. Lifetime Pesticide Use and Antinuclear Antibodies in Male Farmers From the Agricultural Health Study. Front Immunol 2019; 10:1476. [PMID: 31354699 PMCID: PMC6637299 DOI: 10.3389/fimmu.2019.01476] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
Farming and pesticide use have been associated with systemic autoimmune diseases, and while certain organochlorine insecticides and other pesticides are suspected to influence risk, the role of specific pesticides in the development of systemic autoimmunity is not known. We measured serum antinuclear autoantibodies (ANA) by immunofluorescence on Hep-2 cells in 668 male farmers in the study of Biomarkers of Exposure and Effect in Agriculture (BEEA; 2010-2013), an Agricultural Health Study (AHS) subcohort. We examined ANA in relation to lifetime use of 46 pesticides first reported at AHS enrollment (1993-1997) and updated at intervals through BEEA enrollment. Odds ratios (OR) and 95% confidence intervals (CI) were estimated after adjusting for age, state, education, season of blood draw, current pesticide use, and correlated pesticides. Having ANA antibodies (3 or 4+ intensity at a 1:80 dilution, 21% of study participants) was associated with a reported history of seeking medical care due to exposure to pesticides (OR 2.15; 95%CI 1.17, 3.95), use of the fumigant methyl bromide (OR 3.16; 95%CI 1.05, 9.5), and use of petroleum oil/distillates (OR 1.50; 95%CI 1.00, 2.25). Using a higher threshold (3 or 4+ at a 1:160 dilution, 9%) ANA positivity was associated with the carbamate insecticide aldicarb (OR 4.82; 95%CI 1.33, 17.5) and greater combined use of four cyclodiene organochlorine insecticides (top tertile of intensity-weighted lifetime days vs. no use; OR T3 3.20; 95%CI 1.10, 9.27). By contrast, greater use of non-cyclodiene organochlorine insecticides was inversely associated with ANA (1:80 dilution 3 or 4+, OR T3 0.24; 95%CI 0.08, 0.72). Specific autoantibodies (to extractable nuclear antigens and anti-dsDNA), measured on those with ANA detected at the 1:80 dilution 3 or 4+, were seen in 15 individuals (2%), and were associated with use of two or more cyclodiene organochlorine insecticides and several other pesticides (e.g., carbofuran, ethylene dibromide). These findings suggest that specific pesticide exposures may have long-term effects on ANA prevalence and support the hypothesis that certain organochlorine insecticides may increase the risk of developing systemic autoimmunity.
Collapse
Affiliation(s)
- Christine G. Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | | | - Catherine C. Lerro
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Curt T. DellaValle
- All of Us Research Program, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Mary H. Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Michael C. Alavanja
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Sonja I. Berndt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Laura E. Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Jonathan N. Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
26
|
Ferrari L, Pavanello S, Bollati V. Molecular and epigenetic markers as promising tools to quantify the effect of occupational exposures and the risk of developing non-communicable diseases. LA MEDICINA DEL LAVORO 2019; 110:168-190. [PMID: 31268425 PMCID: PMC7812541 DOI: 10.23749/mdl.v110i3.8538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
Non-communicable diseases (NCDs) are chronic diseases that are by far the leading cause of death in the world. Many occupational hazards, together with social, economic and demographic factors, have been associated to NCDs development. Genetic susceptibility or environmental exposures alone are not usually sufficient to explain the pathogenesis of NCDs, but can be integrated in a more complex scenario that can result in pathological phenotypes. Epigenetics is a crucial component of this scenario, as its changes are related to specific exposures, therefore potentially able to display the effects of environment on the genome, filling the gap between genetic asset and environment in explaining disease development. To date, the most promising biomarkers have been assessed in occupational cohorts as well as in case/control studies and include DNA methylation, histone modifications, microRNA expression, extracellular vesicles, telomere length, and mitochondrial alterations.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122 Milan, Italy..
| | | | | |
Collapse
|
27
|
Wang W, Zhang H, Duan X, Feng X, Wang T, Wang P, Ding M, Zhou X, Liu S, Li L, Liu J, Tang L, Niu X, Zhang Y, Li G, Yao W, Yang Y. Association of genetic polymorphisms of miR-145 gene with telomere length in omethoate-exposed workers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:82-88. [PMID: 30684755 DOI: 10.1016/j.ecoenv.2019.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/05/2018] [Accepted: 01/07/2019] [Indexed: 05/25/2023]
Abstract
Omethoate, an organophosphorous pesticide, causes a variety of health effects, especially the damage of chromosome DNA. The aim of the study was to assess the correlation between polymorphisms of encoding miRNA genes and telomere length in omethoate-exposure workers. 180 workers with more than 8 years omethoate-exposure and 115 healthy controls were recruited in the study. Genotyping for the selected single nucleotide polymorphisms loci were performed using the flight mass spectrometry. Real-time fluorescent quantitative polymerase chain reaction(PCR) method was applied to determine the relative telomere length(RTL) in human peripheral blood leukocytes DNA. After adjusting the covariate of affecting RTL, covariance analysis showed that the female was significantly longer than that of the male in control group(P < 0.046). For the miR-145 rs353291 locus, this study showed that RTL of mutation homozygous AG+GG individuals was longer than that of wild homozygous AA in the exposure group (P = 0.039). In the control group, RTL with wild homozygous TT genotype in miR-30a rs2222722 polymorphism locus was longer than that of the mutation homozygous CC genotype (P = 0.038). After multiple linear regression analysis, the independent variables of entering into the model were omethoate-exposure (b = 0.562, P < 0.001), miR-145 rs353291 (AG+GG) (b = 0.205, P = 0.010). The prolongation of relative telomere length in omethoate exposed workers was associated with AG+GG genotypes in rs353291 polymorphism of encoding miR-145 gene.
Collapse
Affiliation(s)
- Wei Wang
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaolei Feng
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tuanwei Wang
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Wang
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingcui Ding
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoshan Zhou
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Suxiang Liu
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Lei Li
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Junling Liu
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Lixia Tang
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Xinhua Niu
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Yuhong Zhang
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Guoyu Li
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Wu Yao
- Department of Occupational health and occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
28
|
Shrestha S, Kamel F, Umbach DM, Freeman LEB, Koutros S, Alavanja M, Blair A, Sandler DP, Chen H. High Pesticide Exposure Events and Olfactory Impairment among U.S. Farmers. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:17005. [PMID: 30648881 PMCID: PMC6378679 DOI: 10.1289/ehp3713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Olfactory impairment (OI) is common among older adults and independently predicts all-cause mortality and the risk of several major neurodegenerative diseases. Pesticide exposure may impair olfaction, but empirical evidence is lacking. OBJECTIVE We aimed to examine high pesticide exposure events (HPEEs) in relation to self-reported OI in participants in the Agricultural Health Study (AHS). METHODS We conducted multivariable logistic regression to examine the associations between HPEEs reported at enrollment (1993–1997) and self-reported OI at the latest AHS follow-up (2013–2015) among 11,232 farmers, using farmers without HPEEs as the reference or unexposed group. RESULTS A total of 1,186 (10.6%) farmers reported OI. A history of HPEEs reported at enrollment was associated with a higher likelihood of reporting OI two decades later {odds ratio [Formula: see text] [95% confidence interval (CI): 1.28, 1.73]}. In the analyses on the HPEE involving the highest exposure, the association appears to be stronger when there was a [Formula: see text] delay between HPEE and washing with soap and water [e.g., [Formula: see text] (95% CI: 1.48, 2.89) for 4-6 h vs. [Formula: see text] (95% CI: 1.11, 1.75) for [Formula: see text]]. Further, significant associations were observed both for HPEEs involving the respiratory or digestive tract [[Formula: see text] (95% CI: 1.22, 1.92)] and dermal contact [[Formula: see text] (95% CI: 1.22, 1.78)]. Finally, we found significant associations with several specific pesticides involved in the highest exposed HPEEs, including two organochlorine insecticides (DDT and lindane) and four herbicides (alachlor, metolachlor, 2,4-D, and pendimethalin). HPEEs that occurred after enrollment were also associated with OI development. CONCLUSIONS HPEEs may cause long-lasting olfactory deficit. Future studies should confirm these findings with objectively assessed OI and also investigate potential mechanisms. https://doi.org/10.1289/EHP3713.
Collapse
Affiliation(s)
- Srishti Shrestha
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Freya Kamel
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, Maryland, USA
| | - Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, Maryland, USA
| | - Michael Alavanja
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, Maryland, USA
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, Maryland, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Honglei Chen
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
29
|
Kahl VFS, Dhillon V, Fenech M, de Souza MR, da Silva FN, Marroni NAP, Nunes EA, Cerchiaro G, Pedron T, Batista BL, Cappetta M, Mártinez-López W, Simon D, da Silva J. Occupational Exposure to Pesticides in Tobacco Fields: The Integrated Evaluation of Nutritional Intake and Susceptibility on Genomic and Epigenetic Instability. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7017423. [PMID: 29967663 PMCID: PMC6009020 DOI: 10.1155/2018/7017423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/14/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
Pesticides used at tobacco fields are associated with genomic instability, which is proposed to be sensitive to nutritional intake and may also induce epigenetic changes. We evaluated the effect of dietary intake and genetic susceptibility polymorphisms in MTHFR (rs1801133) and TERT (rs2736100) genes on genomic and epigenetic instability in tobacco farmers. Farmers, when compared to a nonexposed group, showed increased levels of different parameters of DNA damage (micronuclei, nucleoplasmic bridges, and nuclear buds), evaluated by cytokinesis-block micronucleus cytome assay. Telomere length (TL) measured by quantitative PCR was shorter in exposed individuals. Global DNA methylation was significantly decreased in tobacco farmers. The exposed group had lower dietary intake of fiber, but an increase in cholesterol; vitamins such as B6, B12, and C; β-carotene; and α-retinol. Several trace and ultratrace elements were found higher in farmers than in nonfarmers. The MTHFR CT/TT genotype influenced nucleoplasmic bridges, nuclear buds, and TL in the exposed group, whereas TERT GT/TT only affected micronucleus frequency. We observed a positive correlation of TL and lipids and an inverse correlation of TL and fibers. The present data suggest an important role of dietary intake and subjects' genetic susceptibility to xenobiotics-induced damages and epigenetic alterations in tobacco farmers occupationally exposed to mixtures of pesticides.
Collapse
Affiliation(s)
- Vivian F. Silva Kahl
- Laboratory of Toxicological Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001 Canoas, RS, Brazil
| | - Varinderpal Dhillon
- Health and Biosecurity Flagship, Commonwealth Scientific and Industrial Research Organization (CSIRO), Gate 13 Kintore Avenue, Adelaide, SA, Australia
| | - Michael Fenech
- Health and Biosecurity Flagship, Commonwealth Scientific and Industrial Research Organization (CSIRO), Gate 13 Kintore Avenue, Adelaide, SA, Australia
| | - Melissa Rosa de Souza
- Laboratory of Toxicological Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001 Canoas, RS, Brazil
| | - Fabiane Nitzke da Silva
- Laboratory of Toxicological Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001 Canoas, RS, Brazil
| | - Norma Anair Possa Marroni
- Laboratory of Oxidative Stress, Post-Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001 Canoas, RS, Brazil
- Laboratory of Experimental Hepatology-Physiology, Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350 Porto Alegre, RS, Brazil
| | - Emilene Arusievicz Nunes
- Postgraduate Program in Biosystems, Foundation Federal University of ABC (UFABC), Av. dos Estados, 5001 Santo André, SP, Brazil
| | - Giselle Cerchiaro
- Postgraduate Program in Biosystems, Foundation Federal University of ABC (UFABC), Av. dos Estados, 5001 Santo André, SP, Brazil
| | - Tatiana Pedron
- Postgraduate Program in Science and Technology/Chemistry, Foundation Federal University of ABC (UFABC), Av. dos Estados, 5001 Santo André, SP, Brazil
| | - Bruno Lemos Batista
- Postgraduate Program in Science and Technology/Chemistry, Foundation Federal University of ABC (UFABC), Av. dos Estados, 5001 Santo André, SP, Brazil
| | - Mónica Cappetta
- Laboratory of Genetic Epidemiology, Genetics Department, Medicine School, Universidad de la República, Gral. Flores, 2125 Montevideo, Uruguay
| | - Wilner Mártinez-López
- Epigenetics and Genomic Instability Laboratory, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Daniel Simon
- Laboratory of Human Molecular Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001 Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Toxicological Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001 Canoas, RS, Brazil
| |
Collapse
|
30
|
Abstract
Studies of rare and common illnesses have led to remarkable progress in the understanding of the role of telomeres (nucleoprotein complexes at chromosome ends essential for chromosomal integrity) in human disease. Telomere biology disorders encompass a growing spectrum of conditions caused by rare pathogenic germline variants in genes encoding essential aspects of telomere function. Dyskeratosis congenita, a disorder at the severe end of this spectrum, typically presents in childhood with the classic triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia, accompanied by a very high risk of bone marrow failure, cancer, pulmonary fibrosis, and other medical problems. In contrast, the less severe end of the telomere biology disorder spectrum consists of middle-age or older adults with just one feature typically seen in dyskeratosis congenita, such as pulmonary fibrosis or bone marrow failure. In the common disease realm, large-scale molecular epidemiology studies have discovered novel associations between illnesses, such as cancer, heart disease, and mental health, and both telomere length and common genetic variants in telomere biology genes. This review highlights recent findings of telomere biology in human disease from both the rare and common disease perspectives. Multi-disciplinary collaborations between clinicians, basic scientists, and epidemiologist are essential as we seek to incorporate new telomere biology discoveries to improve health outcomes.
Collapse
Affiliation(s)
- Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Innovations in agriculture and medicine as well as industrial and domestic technologies are essential for the growing and aging global population. These advances generally require the use of novel natural or synthetic chemical agents with the potential to affect human health. Here, we attempt to highlight environmental chemicals and select drugs with the potential to exacerbate aging by directly affecting molecular aging cascades focusing particular attention on the brain. Finally, we call attention to some potential fruitful areas of research, particularly with advanced molecular profiling that could aid in prevention or mitigation of environmental chemical toxic influences in the periphery and the brain. RECENT FINDINGS We briefly summarize new research and highlight a recent study designed to prospectively identify agrochemicals with the potential to induce neurological diseases and place these discoveries into the already rich neurodegeneration and aging literature. Collectively, the research reviewed briefly here highlight chemicals with the true potential to accelerate aging, particularly in the brain, by eliciting elevated free radical stress and mitochondrial dysfunction. We make general recommendations about improved methodological approaches toward identification and regulation of chemicals that are gerontogenic to the brain.
Collapse
Affiliation(s)
- Brandon L Pearson
- DZNE, German Center for Neurodegenerative Diseases, Sigmund-Freud Str 27, 53127, Bonn, Germany.
| | - Dan Ehninger
- DZNE, German Center for Neurodegenerative Diseases, Sigmund-Freud Str 27, 53127, Bonn, Germany
| |
Collapse
|
32
|
Kahl VFS, da Silva J, da Silva FR. Influence of exposure to pesticides on telomere length in tobacco farmers: A biology system approach. Mutat Res 2016; 791-792:19-26. [PMID: 27566293 DOI: 10.1016/j.mrfmmm.2016.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 06/06/2023]
Abstract
Various pesticides in the form of mixtures must be used to keep tobacco crops pest-free. Recent studies have shown a link between occupational exposure to pesticides in tobacco crops and increased damage to the DNA, mononuclei, nuclear buds and binucleated cells in buccal cells as well as micronuclei in lymphocytes. Furthermore, pesticides used specifically for tobacco crops shorten telomere length (TL) significantly. However, the molecular mechanism of pesticide action on telomere length is not fully understood. Our study evaluated the interaction between a complex mixture of chemical compounds (tobacco cultivation pesticides plus nicotine) and proteins associated with maintaining TL, as well as the biological processes involved in this exposure by System Biology tools to provide insight regarding the influence of pesticide exposure on TL maintenance in tobacco farmers. Our analysis showed that one cluster was associated with TL proteins that act in bioprocesses such as (i) telomere maintenance via telomere lengthening; (ii) senescence; (iii) age-dependent telomere shortening; (iv) DNA repair (v) cellular response to stress and (vi) regulation of proteasome ubiquitin-dependent protein catabolic process. We also describe how pesticides and nicotine regulate telomere length. In addition, pesticides inhibit the ubiquitin proteasome system (UPS) and consequently increase proteins of the shelterin complex, avoiding the access of telomerase in telomere and, nicotine activates UPS mechanisms and promotes the degradation of human telomerase reverse transcriptase (hTERT), decreasing telomerase activity.
Collapse
Affiliation(s)
- Vivian Francília Silva Kahl
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.
| | | |
Collapse
|
33
|
Gil FN, Bellí G, Viegas CA. TheSaccharomyces cerevisiaeresponse to stress caused by the herbicidal active substance alachlor requires the iron regulon transcription factor Aft1p. Environ Microbiol 2016; 19:485-499. [DOI: 10.1111/1462-2920.13439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 06/27/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Fátima N. Gil
- iBB-Institute for Bioengineering and Biosciences; Instituto Superior Técnico (IST), Universidade de Lisboa (UL); Av. Rovisco Pais Lisboa 1049-001 Portugal
| | - Gemma Bellí
- Department of Basic Medical Sciences; IRBLleida, University of Lleida; Rovira Roure 80 Lleida 25198 Spain
| | - Cristina A. Viegas
- iBB-Institute for Bioengineering and Biosciences; Instituto Superior Técnico (IST), Universidade de Lisboa (UL); Av. Rovisco Pais Lisboa 1049-001 Portugal
- Department of Bioengineering; Instituto Superior Técnico (IST), Universidade de Lisboa (UL); Av. Rovisco Pais Lisboa 1049-001 Portugal
| |
Collapse
|
34
|
Naksen W, Prapamontol T, Mangklabruks A, Chantara S, Thavornyutikarn P, Robson MG, Ryan PB, Barr DB, Panuwet P. A single method for detecting 11 organophosphate pesticides in human plasma and breastmilk using GC-FPD. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1025:92-104. [PMID: 27232054 PMCID: PMC4930899 DOI: 10.1016/j.jchromb.2016.04.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 01/03/2023]
Abstract
Organophosphate (OP) pesticides are widely used for crop protection in many countries including Thailand. Aside from causing environmental contamination, they affect human health especially by over-stimulating of the neurotransmission system. OP pesticides, as with other non-persistent pesticides, degrade quickly in the environment as well as are metabolized quite rapidly in humans. Assessing human exposures to these compounds requires analytical methods that are sensitive, robust, and most importantly, suitable for specific laboratory settings. The aim of this study was to develop and validate an analytical method for measuring 11 OP pesticide residues in human plasma and breast milk. Analytes in both plasma and breast milk samples were extracted with acetone and methylene chloride, cleaned-up using aminopropyl solid phase extraction cartridges, and analyzed by gas chromatography with flame photometric detection. The optimized method exhibited good linearity, with the coefficients of determination of 0.996-0.999 and <7% error about the slope. Extraction recoveries from spiked plasma and breast milk samples at low and medium concentrations (0.8-5.0 and 1.6-10ngmL(-1), respectively) ranged from 59.4% (ethion) to 94.0% (chlorpyrifos). Intra-batch and inter-batch precisions ranged from 2.3-18.9% and 5.8-19.5%, respectively. Method detection limits of plasma and breast milk ranged from 0.18-1.36 and 0.09-2.66ngmL(-1), respectively. We analyzed 63 plasma and 30 breastmilk samples collected from farmworkers in Chiang Mai Province to determine the suitability of this method for occupational exposure assessment. Of the 11 pesticides measured, seven were detected in plasma samples and five were detected in breast milk samples. Mass spectrometry was used to confirm results. Overall, this method is rapid and reliable. It offers the laboratories with limited access to mass spectrometry a capacity to investigate levels OP pesticides in plasma and breastmilk in those occupationally exposed for health risk assessment.
Collapse
Affiliation(s)
- Warangkana Naksen
- Environment and Health Research Unit, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tippawan Prapamontol
- Environment and Health Research Unit, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Ampica Mangklabruks
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somporn Chantara
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Prasak Thavornyutikarn
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mark G Robson
- Department of Plant Biology & Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - P Barry Ryan
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Parinya Panuwet
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
35
|
Kleinstreuer NC, Sullivan K, Allen D, Edwards S, Mendrick DL, Embry M, Matheson J, Rowlands JC, Munn S, Maull E, Casey W. Adverse outcome pathways: From research to regulation scientific workshop report. Regul Toxicol Pharmacol 2016; 76:39-50. [PMID: 26774756 PMCID: PMC11027510 DOI: 10.1016/j.yrtph.2016.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 01/20/2023]
Abstract
An adverse outcome pathway (AOP) helps to organize existing knowledge on chemical mode of action, starting with a molecular initiating event such as receptor binding, continuing through key events, and ending with an adverse outcome such as reproductive impairment. AOPs can help identify knowledge gaps where more research is needed to understand the underlying mechanisms, aid in chemical hazard characterization, and guide the development of new testing approaches that use fewer or no animals. A September 2014 workshop in Bethesda, Maryland considered how the AOP concept could improve regulatory assessments of chemical toxicity. Scientists from 21 countries, representing industry, academia, regulatory agencies, and special interest groups, attended the workshop, titled Adverse Outcome Pathways: From Research to Regulation. Workshop plenary presentations were followed by breakout sessions that considered regulatory acceptance of AOPs and AOP-based tools, criteria for building confidence in an AOP for regulatory use, and requirements to build quantitative AOPs and AOP networks. Discussions during the closing session emphasized a need to increase transparent and inclusive collaboration, especially with disciplines outside of toxicology. Additionally, to increase impact, working groups should be established to systematically prioritize and develop AOPs. Multiple collaborative projects and follow-up activities resulted from the workshop.
Collapse
Affiliation(s)
- Nicole C Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | - David Allen
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| | - Stephen Edwards
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Donna L Mendrick
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Michelle Embry
- ILSI Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | - Sharon Munn
- Joint Research Centre, European Commission, Ispra, Italy
| | - Elizabeth Maull
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Warren Casey
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
36
|
Affiliation(s)
- Shahinaz M. Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States
| |
Collapse
|
37
|
Hofmann JN, Beane Freeman LE, Lynch CF, Andreotti G, Thomas KW, Sandler DP, Savage SA, Alavanja MC. The Biomarkers of Exposure and Effect in Agriculture (BEEA) Study: Rationale, Design, Methods, and Participant Characteristics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1338-47. [PMID: 26555155 PMCID: PMC4674328 DOI: 10.1080/15287394.2015.1091414] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Agricultural exposures including pesticides, endotoxin, and allergens have been associated with risk of various cancers and other chronic diseases, although the biological mechanisms underlying these associations are generally unclear. To facilitate future molecular epidemiologic investigations, in 2010 the study of Biomarkers of Exposure and Effect in Agriculture (BEEA) was initiated within the Agricultural Health Study, a large prospective cohort in Iowa and North Carolina. Here the design and methodology of BEEA are described and preliminary frequencies for participant characteristics and current agricultural exposures are reported. At least 1,600 male farmers over 50 years of age will be enrolled in the BEEA study. During a home visit, participants are asked to complete a detailed interview about recent agricultural exposures and provide samples of blood, urine, and (since 2013) house dust. As of mid-September 2014, in total, 1,233 participants have enrolled. Most of these participants (83%) were still farming at the time of interview. Among those still farming, the most commonly reported crops were corn (81%) and soybeans (74%), and the most frequently noted animals were beef cattle (35%) and hogs (13%). There were 861 (70%) participants who reported occupational pesticide use in the 12 months prior to interview; among these participants, the most frequently noted herbicides were glyphosate (83%) and 2,4-D (72%), and most commonly reported insecticides were malathion (21%), cyfluthrin (13%), and permethrin (12%). Molecular epidemiologic investigations within BEEA have the potential to yield important new insights into the biological mechanisms through which these or other agricultural exposures influence disease risk.
Collapse
Affiliation(s)
- Jonathan N. Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | | | | | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Kent W. Thomas
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Michael C. Alavanja
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| |
Collapse
|