1
|
Skerrett-Byrne DA, Stanger SJ, Trigg NA, Anderson AL, Sipilä P, Bernstein IR, Lord T, Schjenken JE, Murray HC, Verrills NM, Dun MD, Pang TY, Nixon B. Phosphoproteomic analysis of the adaption of epididymal epithelial cells to corticosterone challenge. Andrology 2024; 12:1038-1057. [PMID: 38576152 DOI: 10.1111/andr.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The epididymis has long been of interest owing to its role in promoting the functional maturation of the male germline. More recent evidence has also implicated the epididymis as an important sensory tissue responsible for remodeling of the sperm epigenome, both under physiological conditions and in response to diverse forms of environmental stress. Despite this knowledge, the intricacies of the molecular pathways involved in regulating the adaptation of epididymal tissue to paternal stressors remains to be fully resolved. OBJECTIVE The overall objective of this study was to investigate the direct impact of corticosterone challenge on a tractable epididymal epithelial cell line (i.e., mECap18 cells), in terms of driving adaptation of the cellular proteome and phosphoproteome signaling networks. MATERIALS AND METHODS The newly developed phosphoproteomic platform EasyPhos coupled with sequencing via an Orbitrap Exploris 480 mass spectrometer, was applied to survey global changes in the mECap18 cell (phospho)proteome resulting from sub-chronic (10-day) corticosterone challenge. RESULTS The imposed corticosterone exposure regimen elicited relatively subtle modifications of the global mECap18 proteome (i.e., only 73 out of 4171 [∼1.8%] proteins displayed altered abundance). By contrast, ∼15% of the mECap18 phosphoproteome was substantially altered following corticosterone challenge. In silico analysis of the corresponding parent proteins revealed an activation of pathways linked to DNA damage repair and oxidative stress responses as well as a reciprocal inhibition of pathways associated with organismal death. Corticosterone challenge also induced the phosphorylation of several proteins linked to the biogenesis of microRNAs. Accordingly, orthogonal validation strategies confirmed an increase in DNA damage, which was ameliorated upon selective kinase inhibition, and an altered abundance profile of a subset of microRNAs in corticosterone-treated cells. CONCLUSIONS Together, these data confirm that epididymal epithelial cells are reactive to corticosterone challenge, and that their response is tightly coupled to the opposing action of cellular kinases and phosphatases.
Collapse
Affiliation(s)
- David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Natalie A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Petra Sipilä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Ilana R Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| |
Collapse
|
2
|
Aisha J, Sangeeta K, Yenugu S. Effect of Spag11a gene knockout on the epididymis in mice: A histopathological and molecular analyses. Cell Biochem Funct 2024; 42:e4096. [PMID: 39020527 DOI: 10.1002/cbf.4096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The sperm-associated antigen 11a (Spag11a) gene is exclusively expressed in the caput epididymis. Our previous studies demonstrated that small interfering RNA (siRNA)-mediated ablation of this gene resulted in increased proliferation of epididymal epithelial cells. Further, active immunization-mediated ablation of SPAG11A protein increased the susceptibility of male reproductive tract tissues to diethylnitrosamine (DEN)-induced tumorigenesis. In this study, we report that the caput epididymis of Spag11a knockout mice displayed hyperplasia and inflammation, while the caput epididymis of wild-type mice exhibited normal anatomical structure. Global transcriptome analyses in the caput epididymis of knockout mice indicated differential expression of genes involved in a variety of cellular processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses suggested that the absence of Spag11a may activate microRNAs associated with cancer, chemical carcinogenesis-receptor activation, and chemical carcinogenesis-DNA adducts pathways; which may contribute to the promotion of tumorigenesis in the epididymis. The susceptibility of caput epididymis to chemically induced carcinogenesis in Spag11a knockout mice was analyzed. Histological analyses indicated that while the epididymis of wild-type mice did not show any signs of tumorigenesis, knockout mice displayed hyperplasia, anaplasia, dysplasia, neoplasia, and inflammation in the caput epididymis. Our results provide concrete evidence that deletion of Spag11a induces histopathological and molecular changes that contribute to tumorigenesis. It is possible that the expression of Spag11a gene could be one of the reasons for the rarity of epididymal cancers. The involvement of an epididymal gene in tumorigenesis is being demonstrated for the first time.
Collapse
Affiliation(s)
- Jamil Aisha
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| | - Kumari Sangeeta
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Wijayarathna R, Hedger MP. New aspects of activin biology in epididymal function and immunopathology. Andrology 2024; 12:964-972. [PMID: 37644728 DOI: 10.1111/andr.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The activins (A and B) and their binding protein, follistatin, play crucial roles in development, immunoregulation and inflammation throughout the body. In the male reproductive tract of the mouse, activin A and B production is largely confined to the initial segment and proximal caput of the epididymis and the efferent ducts, under normal conditions, with very low expression in the corpus, cauda and vas deferens. However, activin A protein is present throughout the epididymis and vas deferens and is largely associated with the epithelium and interstitial macrophages. Conversely, the activin-binding protein follistatin is produced in the distal epididymis, with very high expression in the vas deferens. Activin activity in the distal tract is inhibited by follistatin, and the activin-follistatin balance is important for regulating coiling of the duct during epididymal development. In further experiments, as described in this report, in situ hybridisation was used to localise activin A mRNA principally to cells in the periductal zone and interstitium in the efferent ducts and proximal caput. Activin B mRNA, on the other hand, was localised to periductal cells in the efferent ducts and proximal epididymis and, most notably, to epithelial cells in the initial segment. Activin A is implicated in the regulation of mononuclear phagocyte function and immune responses in the caput and stimulates the expression of the key immunoregulatory protein, indoleamine 2,3-dioxygenase in this region. Activin A production in the corpus and cauda increases dramatically during bacterial epididymitis in mice, promoting inflammation and fibrosis and causing damage to the epithelium and obstruction of the epididymal duct. Consequently, it appears that the activin-follistatin axis is crucial for maintaining normal epididymal structure and function, but disruption of this balance during inflammation has deleterious effects on male fertility. Follistatin has therapeutic potential in ameliorating the proinflammatory and profibrotic effects of activins.
Collapse
Affiliation(s)
- Rukmali Wijayarathna
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Melbourne, Australia
| | - Mark P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|
4
|
Wang H, Wang X, Li T, An X, Chen N, Shi H, Su M, Ma K, Hao Z, Duan X, Ma Y. Differential tissue expression of sex steroid-synthesizing enzyme CYP11A1 in male Tibetan sheep ( Ovis aries). Anim Biotechnol 2023; 34:2900-2909. [PMID: 36169054 DOI: 10.1080/10495398.2022.2125401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Steroid metabolism is a fundament to testicular development and function. The cytochrome P450, family 11, subfamily A, polypeptide 1 (CYP11A1) is a key rate-limiting enzyme for catalyzing the conversion of cholesterol to pregnenolone. However, despite its importance, what expression and roles of CYP11A1 possesses and how it regulates the testicular development and spermatogenesis in Tibetan sheep remains largely unknown. Based on this, we evaluated the expression and localization patterns of CYP11A1 in testes and epididymides of Tibetan sheep at three developmental stages (three-month-old, pre-puberty; one-year-old, sexual maturity and three-year-old, adult) by quantitative real-time PCR (qPCR), western blot and immunofluorescence. The results showed that CYP11A1 mRNA and protein were expressed in testes and epididymides throughout the development stages and obviously more intense in one- and three-year-old groups than three-month-old group (except for the caput epididymidis). Immunofluorescence assay showed that the CYP11A1 protein was mainly located in Leydig cells and epididymal epithelial cells. In addition, positive signals of CYP11A1 protein were observed in germ cells, epididymal connective tissue and sperms stored in the epididymal lumen. Collectively, these results suggested that the CYP11A1 gene might be mainly involved in regulating spermatogenesis and androgen synthesis in developmental Tibetan sheep testis and epididymis.
Collapse
Affiliation(s)
- Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Xia Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Xuejiao An
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Nana Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Huibin Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Manchun Su
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Ziyun Hao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Xinming Duan
- Nongfayuan (Zhejiang) Agricultural Development Co., Ltd., Huzhou, Zhejiang, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
- Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin, China
| |
Collapse
|
5
|
Skerrett-Byrne DA, Anderson AL, Bromfield EG, Bernstein IR, Mulhall JE, Schjenken JE, Dun MD, Humphrey SJ, Nixon B. Global profiling of the proteomic changes associated with the post-testicular maturation of mouse spermatozoa. Cell Rep 2022; 41:111655. [DOI: 10.1016/j.celrep.2022.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
|
6
|
Gong J, Wang P, Liu JC, Li J, Zeng QX, Yang C, Li Y, Yu D, Cao D, Duan YG. Integrative Analysis of Small RNA and mRNA Expression Profiles Identifies Signatures Associated With Chronic Epididymitis. Front Immunol 2022; 13:883803. [PMID: 35634321 PMCID: PMC9130659 DOI: 10.3389/fimmu.2022.883803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic epididymitis (CE) refers to a long-lasting inflammatory condition of the epididymis, which is considered the most common site of intrascrotal inflammation and an important aetiological factor of male infertility. Recent studies demonstrate that small RNAs secreted from epididymal epithelium modulate embryo development and offspring phenotypes via sperm transmission, and the resulting modifications may lead to transgenerational inheritance. However, to date, the genome-wide analysis of small RNA together with the transcriptomic expression profiles of human epididymis and CE is still lacking. In this study, we facilitated next-generation sequencing and bioinformatics to comprehensively analyze the small RNA and mRNA in an integrative way and identified signatures associated with CE. Both of the small RNA and mRNA expression data demonstrated relatively larger molecular differences among the segmental region of the epididymides, including caput, corpus, and cauda, than that of the inflammatory conditions. By comparing the inflamed caputs to the controls, a total of 1727 genes (1220 upregulated and 507 downregulated; 42 most significant genes, adjusted P <0.05) and 34 miRNAs (23 upregulated and 11 downregulated) were identified as differentially expressed. In silico functional enrichment analysis showed their roles in regulating different biological activities, including leukocyte chemotaxis, extracellular milieu reconstruction, ion channel and transporter-related processes, and nervous system development. Integrative analysis of miRNA and mRNA identified a regulatory network consisting of 22 miRNAs and 31 genes (miRNA-mRNA) which are strong candidates for CE. In addition, analysis about other species of small RNA, including (miRNA), piwi-interacting RNA (piRNA), tRNA-derived small RNA (tsRNA), Y RNA, and rsRNA identified the distinct expression pattern of tsRNA in CE. In summary, our study performed small RNA and miRNA profiling and integrative analysis in human CE. The findings will help to understand the role of miRNA-mRNA in the pathogenesis of CE and provide molecular candidates for the development of potential biomarkers for human CE.
Collapse
Affiliation(s)
- Jialei Gong
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Peng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin-Chuan Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jianlin Li
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qun-Xiong Zeng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chen Yang
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Yanfeng Li
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
7
|
Wang JH, Chuang YF, Chen J, Singh V, Lin FL, Wilson R, Tu L, Ma C, Wong RCB, Wang PY, Zhong J, Hewitt AW, van Wijngaarden P, Dusting GJ, Liu GS. An Integrative Multi-Omics Analysis Reveals MicroRNA-143 as Potential Therapeutics to Attenuate Retinal Angiogenesis. Nucleic Acid Ther 2022; 32:251-266. [PMID: 35363088 DOI: 10.1089/nat.2021.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinal neovascularization is a severe complication of proliferative diabetic retinopathy (PDR). MicroRNAs (miRNAs) are master regulators of gene expression that play an important role in retinal neovascularization. In this study, we show that miR-143-3p is significantly downregulated in the retina of a rat model of oxygen-induced retinopathy (OIR) by miRNA-sequencing. Intravitreal injection of synthetic miR-143 mimics significantly ameliorate retinal neovascularization in OIR rats. miR-143 is identified to be highly expressed in the neural retina particularly in the ganglion cell layer and retinal vasculature. In miR-143 treated cells, the functional evaluation showed a decrease in cell migration and delayed endothelial vessel-like tube remodeling. The multiomics analysis suggests that miR-143 negatively impacts endothelial cell activity through regulating cell-matrix adhesion and mediating hypoxia-inducible factor-1 signaling. We predict hub genes regulated by miR-143 that may be involved in mediating endothelial cell function by cytoHubba. We also demonstrate that the retinal neovascular membranes in patients with PDR principally consist of endothelial cells by CIBERSORTx. We then identify 2 hub genes, thrombospondin 1 and plasminogen activator inhibitor, direct targets of miR-143, that significantly altered in the PDR patients. These findings suggest that miR-143 appears to be essential for limiting endothelial cell-matrix adhesion, thus suppressing retinal neovascularization.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Yu-Fan Chuang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jinying Chen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.,Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Vikrant Singh
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Leilei Tu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Chenkai Ma
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | | | - Jingxiang Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia.,Aier Eye Institute, Changsha, Hunan, China
| |
Collapse
|
8
|
Xing K, Chen Y, Wang L, Lv X, Li Z, Qi X, Wang X, Xiao L, Ni H, Guo Y, Sheng X. Epididymal mRNA and miRNA transcriptome analyses reveal important genes and miRNAs related to sperm motility in roosters. Poult Sci 2022; 101:101558. [PMID: 34844112 PMCID: PMC8633681 DOI: 10.1016/j.psj.2021.101558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm motility is a crucial trait in chicken production, and the epididymis is an essential organ in the reproductive system. Currently, the molecular mechanisms underlying sperm motility in the epididymis are unclear. In this study, 8 cDNA libraries and eight miRNA libraries were constructed from roosters (4 chickens per group) with diverse sperm motility. After a comparative analysis of epididymal transcriptomes, we detected 84 differentially expressed genes (DEGs) using the edgeR package. Integrated interpretation of DEGs indicated that MMP9, SLN, WT1, PLIN1, and LRRIQ1 are the most promising candidate genes affecting sperm motility in the epididymis of roosters. MiR-146a, mir-135b, and mir-205 could play important regulatory roles in sperm maturation, capacitation, and motility. Additionally, a comprehensive analysis of the mRNA and miRNAs transcriptomes in silico identified a promising gene-miRNA pair miR-135b-HPS5, which may be a vital regulator of sperm motility in the epididymis. Our findings provide novel integrated information of miRNAs and genes that shed light on the regulatory mechanisms of fertility in roosters.
Collapse
Affiliation(s)
- Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Chen
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Zheng Li
- Beijing Institute of Feed Control, Beijing 100107, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
9
|
Santiago J, Silva JV, Howl J, Santos MAS, Fardilha M. All you need to know about sperm RNAs. Hum Reprod Update 2021; 28:67-91. [PMID: 34624094 DOI: 10.1093/humupd/dmab034] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Spermatogenesis generates a small and highly specialised type of cell that is apparently incapable of transcription and translation. For many years, this dogma was supported by the assumption that (i) the compact sperm nucleus, resulting from the substitution of histones by protamine during spermatogenesis, renders the genome inaccessible to the transcriptional machinery; and (ii) the loss of most organelles, including endoplasmic reticulum and ribosomes, limits or prevents translational activity. Despite these observations, several types of coding and non-coding RNAs have been identified in human sperm. Their functional roles, particularly during fertilisation and embryonic development, are only now becoming apparent. OBJECTIVE AND RATIONALE This review aimed to summarise current knowledge of the origin, types and functional roles of sperm RNAs, and to evaluate the clinical benefits of employing these transcripts as biomarkers of male fertility and reproductive outcomes. The possible contribution of sperm RNAs to intergenerational or transgenerational phenotypic inheritance is also addressed. SEARCH METHODS A comprehensive literature search on PubMed was conducted using the search terms 'sperm' AND 'RNA'. Searches focussed upon articles written in English and published prior to August 2020. OUTCOMES The development of more sensitive and accurate RNA technologies, including RNA sequencing, has enabled the identification and characterisation of numerous transcripts in human sperm. Though a majority of these RNAs likely arise during spermatogenesis, other data support an epididymal origin of RNA transmitted to maturing sperm by extracellular vesicles. A minority may also be synthesised by de novo transcription in mature sperm, since a small portion of the sperm genome remains packed by histones. This complex RNA population has important roles in paternal chromatin packaging, sperm maturation and capacitation, fertilisation, early embryogenesis and developmental maintenance. In recent years, additional lines of evidence from animal models support a role for sperm RNAs in intergenerational or transgenerational inheritance, modulating both the genotype and phenotype of progeny. Importantly, several reports indicate that the sperm RNA content of fertile and infertile men differs considerably and is strongly modulated by the environment, lifestyle and pathological states. WIDER IMPLICATIONS Transcriptional profiling has considerable potential for the discovery of fertility biomarkers. Understanding the role of sperm transcripts and comparing the sperm RNA fingerprint of fertile and infertile men could help to elucidate the regulatory pathways contributing to male factor infertility. Such data might also provide a molecular explanation for several causes of idiopathic male fertility. Ultimately, transcriptional profiling may be employed to optimise ART procedures and overcome some of the underlying causes of male infertility, ensuring the birth of healthy children.
Collapse
Affiliation(s)
- Joana Santiago
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.,i3S-Institute for Innovation and Health Research, University of Porto, Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - John Howl
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, UK
| | - Manuel A S Santos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
10
|
Trigg NA, Skerrett-Byrne DA, Xavier MJ, Zhou W, Anderson AL, Stanger SJ, Katen AL, De Iuliis GN, Dun MD, Roman SD, Eamens AL, Nixon B. Acrylamide modulates the mouse epididymal proteome to drive alterations in the sperm small non-coding RNA profile and dysregulate embryo development. Cell Rep 2021; 37:109787. [PMID: 34610313 DOI: 10.1016/j.celrep.2021.109787] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/10/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Paternal exposure to environmental stressors elicits distinct changes to the sperm sncRNA profile, modifications that have significant post-fertilization consequences. Despite this knowledge, there remains limited mechanistic understanding of how paternal exposures modify the sperm sncRNA landscape. Here, we report the acute sensitivity of the sperm sncRNA profile to the reproductive toxicant acrylamide. Furthermore, we trace the differential accumulation of acrylamide-responsive sncRNAs to coincide with sperm transit of the proximal (caput) segment of the epididymis, wherein acrylamide exposure alters the abundance of several transcription factors implicated in the expression of acrylamide-sensitive sncRNAs. We also identify extracellular vesicles secreted from the caput epithelium in relaying altered sncRNA profiles to maturing spermatozoa and dysregulated gene expression during early embryonic development following fertilization by acrylamide-exposed spermatozoa. These data provide mechanistic links to account for how environmental insults can alter the sperm epigenome and compromise the transcriptomic profile of early embryos.
Collapse
Affiliation(s)
- Natalie A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Miguel J Xavier
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Wei Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC 3052, Australia; Gynaecology Research Centre, The Royal Women's Hospital, Parkville, VIC 3052, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Aimee L Katen
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Priority Research Centre for Drug Development, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, Lambton, NSW 2305, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Priority Research Centre for Drug Development, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Andrew L Eamens
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
11
|
Turri F, Capra E, Lazzari B, Cremonesi P, Stella A, Pizzi F. A Combined Flow Cytometric Semen Analysis and miRNA Profiling as a Tool to Discriminate Between High- and Low-Fertility Bulls. Front Vet Sci 2021; 8:703101. [PMID: 34355036 PMCID: PMC8329915 DOI: 10.3389/fvets.2021.703101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Predicting bull fertility is one of the main challenges for the dairy breeding industry and artificial insemination (AI) centers. Semen evaluation performed in the AI center is not fully reliable to determine the level of bull fertility. Spermatozoa are rich in active miRNA. Specific sperm-borne miRNAs can be linked to fertility. The aim of our study is to propose a combined flow cytometric analysis and miRNA profiling of semen bulls with different fertility to identify markers that can be potentially used for the prediction of field fertility. Sperm functions were analyzed in frozen-thawed semen doses (CG: control group) and high-quality sperm (HQS) fraction collected from bulls with different field fertility levels (estimated relative conception rate or ERCR) by using advanced techniques, such as the computer-assisted semen analysis system, flow cytometry, and small RNA-sequencing. Fertility groups differ for total and progressive motility and in the abnormality degree of the chromatin structure (P < 0.05). A backward, stepwise, multiple regression analysis was applied to define a model with high relation between in vivo (e.g., ERCR) and in vitro (i.e., semen quality and DE-miRNA) fertility data. The analysis produced two models that accounted for more than 78% of the variation of ERCR (CG: R2 = 0.88; HQS: R2 = 0.78), identifying a suitable combination of parameters useful to predict bull fertility. The predictive equation on CG samples included eight variables: four kinetic parameters and four DNA integrity indicators. For the HQS fraction, the predictive equation included five variables: three kinetic parameters and two DNA integrity indicators. A significant relationship was observed between real and predicted fertility in CG (R2 = 0.88) and HQS fraction (R2 = 0.82). We identified 15 differentially expressed miRNAs between high- and low-fertility bulls, nine of which are known (miR-2285n, miR-378, miR-423-3p, miR-191, miR-2904, miR-378c, miR-431, miR-486, miR-2478) while the remaining are novel. The multidimensional preference analysis model partially separates bulls according to their fertility, clustering three semen quality variable groups relative to motility, DNA integrity, and viability. A positive association between field fertility, semen quality parameters, and specific miRNAs was revealed. The integrated approach could provide a model for bull selection in AI centers, increasing the reproductive efficiency of livestock.
Collapse
Affiliation(s)
- Federica Turri
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| | - Emanuele Capra
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| | - Flavia Pizzi
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| |
Collapse
|
12
|
Wu C, Wang C, Zhai B, Zhao Y, Zhao Z, Yuan Z, Zhang M, Tian K, Fu X. Study of microRNA Expression Profile in Different Regions of Ram Epididymis. Reprod Domest Anim 2021; 56:1209-1219. [PMID: 34169586 DOI: 10.1111/rda.13978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
The regional expression of epididymal genes provides a guarantee for sperm maturation. As a class of endogenous non-coding small RNAs, microRNAs (miRNAs) play an important role in spermatogenesis, maturation and fertilization. Currently, the regulatory role of miRNA in the epididymis is poorly understood. Here, transcriptome sequencing was used to analyse miRNA expression profiles in three regions of the epididymis of rams, including caput, corpus and cauda. The results showed that there were 13 known miRNAs between the caput and corpus controls, 29 between the caput and cauda and 22 differences between the corpus and cauda. Based on the analysis of miRNA target genes by GO and KEGG, a negative regulation network of miRNA-mRNA was constructed in which let-7, miR-541-5p, miR-133b and miR-150 may play an important regulatory role in the maturation regulation of ram epididymal sperm. This research provides a reference for studying the regulation mechanism of sperm maturation in male epididymis and improving semen quality and male reproductive performance.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China.,Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China.,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chunxin Wang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Bo Zhai
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yunhui Zhao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhuo Zhao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhiyu Yuan
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Mingxin Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| |
Collapse
|
13
|
Vashisht A, Gahlay GK. Using miRNAs as diagnostic biomarkers for male infertility: opportunities and challenges. Mol Hum Reprod 2021; 26:199-214. [PMID: 32084276 DOI: 10.1093/molehr/gaaa016] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
The non-coding genome has been extensively studied for its role in human development and diseases. MicroRNAs (miRNAs) are small non-coding RNAs, which can regulate the expression of hundreds of genes at the post-transcriptional level. Therefore, any defects in miRNA biogenesis or processing can affect the genes and have been linked to several diseases. Male infertility is a clinical disorder with a significant number of cases being idiopathic. Problems in spermatogenesis and epididymal maturation, testicular development, sperm maturation or migration contribute to male infertility, and many of these idiopathic cases are related to issues with the miRNAs which tightly regulate these processes. This review summarizes the recent research on various such miRNAs and puts together the candidate miRNAs that may be used as biomarkers for diagnosis. The development of strategies for male infertility treatment using anti-miRs or miRNA mimics is also discussed. Although promising, the development of miRNA diagnostics and therapeutics is challenging, and ways to overcome some of these challenges are also reviewed.
Collapse
Affiliation(s)
- A Vashisht
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - G K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
14
|
Zhao W, Hussain Solangi T, Wu Y, Yang X, Xu C, Wang H, Zheng X, Cai X, Zhu J. Comparative rna-seq analysis of region-specific miRNA expression in the epididymis of cattleyak. Reprod Domest Anim 2021; 56:555-576. [PMID: 33438262 DOI: 10.1111/rda.13893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
The epididymis is the site of post-testicular sperm maturation, which constitutes the acquisition of sperm motility and the ability to recognize and fertilize oocytes. The role of miRNA in male reproductive system, including the control of different steps leading to proper fertilization such as gametogenesis, sperm maturation and maintenance of male fertility where the deletion of Dicer in mouse germ cells led to infertility, has been demonstrated. The identification of miRNA expression in a region-specific manner will therefore provide valuable insight into the functional differences between the regions of the epididymis. In this study, we employed RNA-seq technology to explore the expression pattern of miRNAs and establish some miRNAs of significant interest with regard to epididymal sperm maturation in the CY epididymis. We identified a total of 431 DE known miRNAs; 119, 185 and 127 DE miRNAs were detected for caput versus corpus, corpus versus cauda and caput versus cauda region pairs, respectively. Our results demonstrate region-specific miRNA expression in the CY epididymis. The GO and KEGG enrichment for the predicted target genes indicated the functional values of miRNAs. Furthermore, we observed that the expression of miR-200a was downregulated in the caput, compared with cauda. Since the family of miR-200 has previously been suggested to contribute to the distinct physiological function of sperm maturation in epididymis of adult rat, we speculate that the downregulation of miR-200a in CY caput epididymis may play an important role of sperm maturation in the epididymis of CY. Therefore, our findings may not only increase our understanding of the molecular mechanisms regulated by the miRNA functions in region-specific miRNA expression in the CY epididymis, it could provide a valuable information to understand the mechanism of male infertility of CY.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Tajmal Hussain Solangi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yitao Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiankang Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hongmei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xuxin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China.,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China.,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
15
|
Mihalas BP, Redgrove KA, Bernstein IR, Robertson MJ, McCluskey A, Nixon B, Holt JE, McLaughlin EA, Sutherland JM. Dynamin 2-dependent endocytosis is essential for mouse oocyte development and fertility. FASEB J 2020; 34:5162-5177. [PMID: 32065700 DOI: 10.1096/fj.201902184r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/18/2020] [Accepted: 01/29/2020] [Indexed: 12/27/2022]
Abstract
During folliculogenesis, oocytes are dependent on metabolic and molecular support from surrounding somatic cells. Here, we examined the role of the dynamin (DNM) family of mechanoenzymes in mediating endocytotic uptake into growing follicular oocytes. We found DNM1 and DNM2 to be highly expressed in growing follicular oocytes as well as in mature germinal vesicle (GV) and metaphase II (MII) stage oocytes. Moreover, oocyte-specific conditional knockout (cKO) of DNM2 (DNM2Δ) led to complete sterility, with follicles arresting at the preantral stage of development. In addition, DNM2Δ ovaries were characterized by disrupted follicular growth as well as oocyte and follicle apoptosis. Further, the loss of DNM activity, either through DNM2 cKO or through pharmacological inhibition (Dyngo 6a) led to the impairment of endocytotic pathways in preantral oocytes as well as in mature GV and MII oocytes, respectively. Loss of DNM activity resulted in the redistribution of endosomes and the misslocalization of clathrin and actin, suggesting dysfunctional endocytosis. Notably, there was no observable effect on the fertility of DNM1Δ females. Our study has provided new insight into the complex and dynamic nature of oocyte growth during folliculogenesis, suggesting a role for DNM2 in mediating the endocytotic events that are essential for oocyte development.
Collapse
Affiliation(s)
- Bettina P Mihalas
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medial Research Institute, New Lambton Heights, NSW, Australia
| | - Kate A Redgrove
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medial Research Institute, New Lambton Heights, NSW, Australia
| | - Ilana R Bernstein
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medial Research Institute, New Lambton Heights, NSW, Australia
| | - Mark J Robertson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre in Chemical Biology, University of Newcastle, Callaghan, NSW, Australia
| | - Adam McCluskey
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre in Chemical Biology, University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medial Research Institute, New Lambton Heights, NSW, Australia
| | - Janet E Holt
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medial Research Institute, New Lambton Heights, NSW, Australia.,School of Science, Western Sydney University, Penrith, NSW, Australia.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medial Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
16
|
Sangeeta K, Yenugu S. siRNA-mediated knockdown of sperm-associated antigen 11a (Spag11a) mRNA in epididymal primary epithelial cells affects proliferation: a transcriptome analyses. Cell Tissue Res 2019; 379:601-612. [PMID: 31691005 DOI: 10.1007/s00441-019-03107-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022]
Abstract
Differential expression of a variety of proteins in the four major regions of the epididymis contributes to maturation of spermatozoa and region-specific cellular functions as well. Proliferation of epithelial cells of the epididymis is highly controlled and thus is one of the major reasons for the nonoccurrence of cancers in this organ system. The molecular mechanisms and the contribution of region-specific genes in epithelial cell proliferation are not yet fully understood. In this study, for the first time, we analyzed the role of sperm-associated antigen 11a (Spag11a), a caput-specific beta-defensin-like antimicrobial gene in governing epididymal cell proliferation and global gene expression. siRNA-mediated knockdown of Spag11a mRNA in epididymal primary epithelial cells resulted in increased cell proliferation. Out of the 68,842 genes analyzed, 4182 genes were differentially expressed (2154 upregulated and 2028 downregulated). A variety of genes that participate in different cellular processes and pathways were differentially regulated. Genes that are important for epithelial cell proliferation were found to be differentially regulated and these changes were confirmed by real-time PCR. Overexpression of Spag11a in immortalized rat caput epididymal cells resulted in decreased proliferation capacity. Results of this study indicate that Spag11a plays a crucial role in governing epididymal epithelial cell proliferation.
Collapse
Affiliation(s)
- Kumari Sangeeta
- Department of Animal Biology, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
17
|
Browne JA, Leir SH, Eggener SE, Harris A. Region-specific microRNA signatures in the human epididymis. Asian J Androl 2019; 20:539-544. [PMID: 30058558 PMCID: PMC6219309 DOI: 10.4103/aja.aja_40_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The epithelium of the human epididymis maintains an appropriate luminal environment for sperm maturation that is essential for male fertility. Regional expression of small noncoding RNAs such as microRNAs contributes to segment-specific gene expression and differentiated functions. MicroRNA profiles were reported in human epididymal tissues but not specifically in the epithelial cells derived from those regions. Here, we reveal miRNA signatures of primary cultures of caput, corpus, and cauda epididymis epithelial cells and of the tissues from which they were derived. We identify 324 epithelial cell-derived microRNAs and 259 tissue-derived microRNAs in the epididymis, some of which displayed regionalized expression patterns in cells and/or tissues. Caput cell-enriched miRNAs included miR-573 and miR-155. Cauda cell-enriched miRNAs included miR-1204 and miR-770. Next, we determined the gene ontology pathways associated with in silico predicted target genes of the differentially expressed miRNAs. The effect of androgen receptor stimulation on miRNA expression was also investigated. These data show novel epithelial cell-derived miRNAs that may regulate the expression of important gene networks that are responsible for the regionalized gene expression and function of the epididymis.
Collapse
Affiliation(s)
- James A Browne
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.,Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.,Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Scott E Eggener
- Section of Urology, University of Chicago Medical Center, Chicago, IL 60611, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.,Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
18
|
Weigel Muñoz M, Carvajal G, Curci L, Gonzalez SN, Cuasnicu PS. Relevance of CRISP proteins for epididymal physiology, fertilization, and fertility. Andrology 2019; 7:610-617. [DOI: 10.1111/andr.12638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/15/2019] [Accepted: 03/30/2019] [Indexed: 12/18/2022]
Affiliation(s)
- M. Weigel Muñoz
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| | - G. Carvajal
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| | - L. Curci
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| | - S. N. Gonzalez
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| | - P. S. Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME-CONICET); Buenos Aires Argentina
| |
Collapse
|
19
|
Mihalas BP, Camlin NJ, Xavier MJ, Peters AE, Holt JE, Sutherland JM, McLaughlin EA, Eamens AL, Nixon B. The small non-coding RNA profile of mouse oocytes is modified during aging. Aging (Albany NY) 2019; 11:2968-2997. [PMID: 31128574 PMCID: PMC6555462 DOI: 10.18632/aging.101947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/29/2019] [Indexed: 01/31/2023]
Abstract
Oocytes are reliant on messenger RNA (mRNA) stores to support their survival and integrity during a protracted period of transcriptional dormancy as they await ovulation. Oocytes are, however, known to experience an age-associated alteration in mRNA transcript abundance, a phenomenon that contributes to reduced developmental potential. Here we have investigated whether the expression profile of small non-protein-coding RNAs (sRNAs) is similarly altered in aged mouse oocytes. The application of high throughput sequencing revealed substantial changes to the global sRNA profile of germinal vesicle stage oocytes from young (4-6 weeks) and aged mice (14-16 months). Among these, 160 endogenous small-interfering RNAs (endo-siRNAs) and 10 microRNAs (miRNAs) were determined to differentially accumulate within young and aged oocytes. Further, we revealed decreased expression of two members of the kinesin protein family, Kifc1 and Kifc5b, in aged oocytes; family members selectively targeted for expression regulation by endo-siRNAs of elevated abundance. The implications of reduced Kifc1 and Kifc5b expression were explored using complementary siRNA-mediated knockdown and pharmacological inhibition strategies, both of which led to increased rates of aneuploidy in otherwise healthy young oocytes. Collectively, our data raise the prospect that altered sRNA abundance, specifically endo-siRNA abundance, could influence the quality of the aged oocyte.
Collapse
Affiliation(s)
- Bettina P Mihalas
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Science and Pharmacy, the University of Newcastle, Callaghan, New South Wales 2308, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Nicole J Camlin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21218, United States
| | - Miguel J Xavier
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Science and Pharmacy, the University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Alexandra E Peters
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Science and Pharmacy, the University of Newcastle, Callaghan, New South Wales 2308, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Janet E Holt
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Science and Pharmacy, the University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Science and Pharmacy, the University of Newcastle, Callaghan, New South Wales 2308, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Science and Pharmacy, the University of Newcastle, Callaghan, New South Wales 2308, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
- School of Science, the University of Canberra, Bruce, Australian Capital Territory 2617, Australia
| | - Andrew L Eamens
- School of Environmental and Life Sciences, the University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Science and Pharmacy, the University of Newcastle, Callaghan, New South Wales 2308, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| |
Collapse
|
20
|
Chu C, Zhang YL, Yu L, Sharma S, Fei ZL, Drevet JR. Epididymal small non-coding RNA studies: progress over the past decade. Andrology 2019; 7:681-689. [PMID: 31044548 DOI: 10.1111/andr.12639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/01/2019] [Accepted: 03/30/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Small non-coding RNAs (sncRNAs) accomplish a huge variety of biological functions. Over the past decade, we have witnessed the substantial progress in the epididymal sncRNA studies. In the Epididymis 7, we had the true privilege of having a whole session to share our findings and exchange ideas on the epididymal sncRNA studies. OBJECTIVES This mini-review attempts to provide an overview of what is known about the sncRNAs in the mammalian epididymis and discuss the future directions in this field. METHODS We surveyed literature regarding the sncRNA studies in the mammalian epididymis, and integrated some of our unpublished findings as well. We focus on the progress in methodology and the advances in our understanding of the expression and functions of epididymal sncRNAs. RESULTS AND DISCUSSION The applications of high-throughput approaches have made great contributions in the discovery of new sncRNA species and profiling their dynamics in the epithelial cells, the passing spermatozoa, and the luminal environment. The diverse classes of epididymal sncRNAs exert important biological functions from the in situ regulation of epididymal gene expression to the epigenetic inheritance in the offspring. CONCLUSION Although still in its infancy, we believe that the research on epididymal sncRNAs will not only lead to a better understanding of their physiological and pathological functions, but also contribute to the whole landscape of the RNA field.
Collapse
Affiliation(s)
- C Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Y L Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - L Yu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - S Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Z L Fei
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - J R Drevet
- Genetics Reproduction & Development Laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
21
|
Nixon B, De Iuliis GN, Dun MD, Zhou W, Trigg NA, Eamens AL. Profiling of epididymal small non-protein-coding RNAs. Andrology 2019; 7:669-680. [PMID: 31020794 DOI: 10.1111/andr.12640] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/04/2019] [Accepted: 03/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Our understanding of epididymal physiology and function has been transformed over the three decades in which the International Meeting Series on the Epididymis has been hosted. This transformation has occurred along many fronts, but among the most significant advances has been the unexpected discovery of the diversity of small non-protein-coding RNAs (sRNAs) expressed in the epididymal epithelium and differentially accumulated in the luminal population of spermatozoa. OBJECTIVES Here we survey recent literature pertaining to profiling the sRNA landscape of the mammalian epididymis with the goal of demonstrating the contribution that these key regulatory elements, and their associated pathways, make to epididymal physiology and sperm maturation. RESULTS AND DISCUSSION High throughput sequencing strategies have fueled an unprecedented advance in our understanding of RNA biology. In the last decade, such high throughput profiling tools have been increasingly applied to study the mammalian epididymis, presaging the discovery of diverse classes of sRNA expressed along the length of the tract. Among the best studied sRNA classes are the microRNAs (miRNA), a sRNA species shown to act in concert with endocrine signals to fine-tune the segmental patterning of epididymal gene expression. In addition to performing this homeostatic role, epithelial cell-derived sRNAs also selectively accumulate into the epididymosomes and spermatozoa that occupy the duct lumen. This exciting discovery alludes to a novel form of intracellular communication that contributes to the establishment of the sperm epigenome and its modification under conditions of paternal stress. CONCLUSION Compelling literature has identified sRNAs as a crucial regulatory tier that allows the epididymis to fulfill its combined roles of sperm transport, maturation, and storage. Continued research in this emerging field will contribute to our growing understanding of the etiology of male factor infertility and potentially allow for the future design of rational therapeutic options for these individuals.
Collapse
Affiliation(s)
- B Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - G N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - M D Dun
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - W Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - N A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - A L Eamens
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
22
|
Tsetsarkin KA, Maximova OA, Liu G, Kenney H, Teterina N, Bloom ME, Grabowski JM, Mlera L, Nagata BM, Moore I, Martens C, Amaro-Carambot E, Lamirande EW, Whitehead SS, Pletnev AG. Routes of Zika virus dissemination in the testis and epididymis of immunodeficient mice. Nat Commun 2018; 9:5350. [PMID: 30559387 PMCID: PMC6297220 DOI: 10.1038/s41467-018-07782-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023] Open
Abstract
Sexual transmission and persistence of Zika virus (ZIKV) in the male reproductive tract (MRT) poses new challenges for controlling virus outbreaks and developing live-attenuated vaccines. To elucidate routes of ZIKV dissemination in the MRT, we here generate microRNA-targeted ZIKV clones that lose the infectivity for (1) the cells inside seminiferous tubules of the testis, or (2) epithelial cells of the epididymis. We trace ZIKV dissemination in the MRT using an established mouse model of ZIKV pathogenesis. Our results support a model in which ZIKV infects the testis via a hematogenous route, while infection of the epididymis can occur via two routes: (1) hematogenous/lymphogenous and (2) excurrent testicular. Co-targeting of the ZIKV genome with brain-, testis-, and epididymis-specific microRNAs restricts virus infection of these organs, but does not affect virus-induced protective immunity in mice and monkeys. These defined alterations of ZIKV tropism represent a rational design of a safe live-attenuated ZIKV vaccine.
Collapse
Affiliation(s)
- Konstantin A Tsetsarkin
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892-3203, MD, USA
| | - Olga A Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892-3203, MD, USA
| | - Guangping Liu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892-3203, MD, USA
| | - Heather Kenney
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892-3203, MD, USA
| | - Natalia Teterina
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892-3203, MD, USA
| | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 59840, MT, USA
| | - Jeffrey M Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 59840, MT, USA
| | - Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 59840, MT, USA
| | - Bianca M Nagata
- Infectious Disease and Pathogenesis Section, Comparative Medicine Branch, NIAID, NIH, Rockville, 20892, MD, USA
| | - Ian Moore
- Infectious Disease and Pathogenesis Section, Comparative Medicine Branch, NIAID, NIH, Rockville, 20892, MD, USA
| | - Craig Martens
- Research Technologies (RT) Section, RT Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 58940, MT, USA
| | | | | | | | - Alexander G Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892-3203, MD, USA.
| |
Collapse
|
23
|
Mihalas BP, Bromfield EG, Sutherland JM, De Iuliis GN, McLaughlin EA, Aitken RJ, Nixon B. Oxidative damage in naturally aged mouse oocytes is exacerbated by dysregulation of proteasomal activity. J Biol Chem 2018; 293:18944-18964. [PMID: 30305393 DOI: 10.1074/jbc.ra118.005751] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
An increase in oxidative protein damage is a leading contributor to the age-associated decline in oocyte quality. By removing such damaged proteins, the proteasome plays an essential role in maintaining the fidelity of oocyte meiosis. In this study, we established that decreased proteasome activity in naturally aged, germinal vesicle (GV) mouse oocytes positively correlates with increased protein modification by the lipid aldehyde 4-hydroxynonenal (4-HNE). Furthermore, attenuation of proteasome activity in GV oocytes of young animals was accompanied by an increase in 4-HNE-modified proteins, including α-tubulin, thereby contributing to a reduction in tubulin polymerization, microtubule stability, and integrity of oocyte meiosis. A decrease in proteasome activity was also recapitulated in the GV oocytes of young animals following exposure to oxidative insults in the form of either hydrogen peroxide (H2O2) or 4-HNE. We also observed that upon oxidative insult, 4-HNE exhibits elevated adduction to multiple proteasomal subunits. Notably, the inclusion of the antioxidant penicillamine, to limit propagation of oxidative stress cascades, led to a complete recovery of proteasome activity and enhanced clearance of 4-HNE-adducted α-tubulin during a 6-h post-treatment recovery period. This strategy also proved effective in reducing the incidence of oxidative stress-induced aneuploidy following in vitro oocyte maturation, but was ineffective for naturally aged oocytes. Taken together, our results implicate proteasome dysfunction as an important factor in the accumulation of oxidatively induced protein damage in the female germline. This discovery holds promise for the design of therapeutic interventions to address the age-dependent decline in oocyte quality.
Collapse
Affiliation(s)
- Bettina P Mihalas
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and
| | - Elizabeth G Bromfield
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and
| | - Jessie M Sutherland
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and
| | - Geoffry N De Iuliis
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and
| | - Eileen A McLaughlin
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and.,the School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - R John Aitken
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and
| | - Brett Nixon
- From the Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia and
| |
Collapse
|
24
|
Reza AMMT, Choi YJ, Han SG, Song H, Park C, Hong K, Kim JH. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos. Biol Rev Camb Philos Soc 2018; 94:415-438. [PMID: 30151880 PMCID: PMC7379200 DOI: 10.1111/brv.12459] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are active regulators of numerous biological and physiological processes including most of the events of mammalian reproduction. Understanding the biological functions of miRNAs in the context of mammalian reproduction will allow a better and comparative understanding of fertility and sterility in male and female mammals. Herein, we summarize recent progress in miRNA‐mediated regulation of mammalian reproduction and highlight the significance of miRNAs in different aspects of mammalian reproduction including the biogenesis of germ cells, the functionality of reproductive organs, and the development of early embryos. Furthermore, we focus on the gene expression regulatory feedback loops involving hormones and miRNA expression to increase our understanding of germ cell commitment and the functioning of reproductive organs. Finally, we discuss the influence of miRNAs on male and female reproductive failure, and provide perspectives for future studies on this topic.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| |
Collapse
|
25
|
Zhou W, Sipilä P, De Iuliis GN, Dun MD, Nixon B. Analysis of Epididymal Protein Synthesis and Secretion. J Vis Exp 2018. [PMID: 30199011 DOI: 10.3791/58308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mammalian epididymis generates one of the most complex intraluminal fluids of any endocrine gland in order to support the post-testicular maturation and storage of spermatozoa. Such complexity arises due to the combined secretory and absorptive activity of the lining epithelial cells. Here, we describe the techniques for the analysis of epididymal protein synthesis and secretion by focusing on the model protein family of dynamin (DNM) mechanoenzymes; large GTPases that have the potential to regulate bi-directional membrane trafficking events. For the study of protein expression in epididymal tissue, we describe robust methodology for immunofluorescence labeling of target proteins in paraffin-embedded sections and the subsequent detection of the spatial distribution of these proteins via immunofluorescence microscopy. We also describe optimized methodology for the isolation and characterization of exosome like vesicles, known as epididymosomes, which are secreted into the epididymal lumen to participate in intercellular communication with maturing sperm cells. As a complementary approach, we also describe the immunofluorescence detection of target proteins in an SV40-immortalized mouse caput epididymal epithelial (mECap18) cell line. Moreover, we discuss the utility of the mECap18 cell line as a suitable in vitro model with which to explore the regulation of epididymal secretory activity. For this purpose, we describe the culturing requirements for the maintenance of the mECap18 cell line and the use of selective pharmacological inhibition regimens that are capable of influencing their secretory protein profile. The latter are readily assessed via harvesting of conditioned culture medium, concentration of secreted proteins via trichloroacetic acid/acetone precipitation and their subsequent analysis via SDS-PAGE and immunoblotting. We contend that these combined methods are suitable for the analysis of alternative epididymal protein targets as a prelude to determining their functional role in sperm maturation and/or storage.
Collapse
Affiliation(s)
- Wei Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle; Hunter Medical Research Institute
| | - Petra Sipilä
- Department of Physiology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle; Hunter Medical Research Institute
| | - Matthew D Dun
- Hunter Medical Research Institute; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle; Hunter Medical Research Institute;
| |
Collapse
|
26
|
Zhou W, De Iuliis GN, Dun MD, Nixon B. Characteristics of the Epididymal Luminal Environment Responsible for Sperm Maturation and Storage. Front Endocrinol (Lausanne) 2018; 9:59. [PMID: 29541061 PMCID: PMC5835514 DOI: 10.3389/fendo.2018.00059] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The testicular spermatozoa of all mammalian species are considered functionally immature owing to their inability to swim in a progressive manner and engage in productive interactions with the cumulus-oocyte complex. The ability to express these key functional attributes develops progressively during the cells' descent through the epididymis, a highly specialized ductal system that forms an integral part of the male reproductive tract. The functional maturation of the spermatozoon is achieved via continuous interactions with the epididymal luminal microenvironment and remarkably, occurs in the complete absence of de novo gene transcription or protein translation. Compositional analysis of the luminal fluids collected from the epididymis of a variety of species has revealed the complexity of this milieu, with a diversity of inorganic ions, proteins, and small non-coding RNA transcripts having been identified to date. Notably, both the quantitative and qualitative profile of each of these different luminal elements display substantial segment-to-segment variation, which in turn contribute to the regionalized functionality of this long tubule. Thus, spermatozoa acquire functional maturity in the proximal segments before being stored in a quiescent state in the distal segment in preparation for ejaculation. Such marked division of labor is achieved via the combined secretory and absorptive activity of the epithelial cells lining each segment. Here, we review our current understanding of the molecular mechanisms that exert influence over the unique intraluminal environment of the epididymis, with a particular focus on vesicle-dependent mechanisms that facilitate intercellular communication between the epididymal soma and maturing sperm cell population.
Collapse
Affiliation(s)
- Wei Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Matthew D. Dun
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- *Correspondence: Brett Nixon,
| |
Collapse
|
27
|
Hutcheon K, McLaughlin EA, Stanger SJ, Bernstein IR, Dun MD, Eamens AL, Nixon B. Analysis of the small non-protein-coding RNA profile of mouse spermatozoa reveals specific enrichment of piRNAs within mature spermatozoa. RNA Biol 2017; 14:1776-1790. [PMID: 28816603 DOI: 10.1080/15476286.2017.1356569] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Post-testicular sperm maturation and storage within the epididymis is a key determinant of gamete quality and fertilization competence. Here we demonstrate that mouse spermatozoa possess a complex small non-protein-coding RNA (sRNA) profile, the composition of which is markedly influenced by their epididymal transit. Thus, although microRNAs (miRNAs) are highly represented in the spermatozoa of the proximal epididymis, this sRNA class is largely diminished in mature spermatozoa of the distal epididymis. Coincident with this, a substantial enrichment in Piwi-interacting RNA (piRNA) abundance in cauda spermatozoa was detected. Further, features of cauda piRNAs, including; predominantly 29-31 nts in length; preference for uracil at their 5' terminus; no adenine enrichment at piRNA nt 10, and; predominantly mapping to intergenic regions of the mouse genome, indicate that these piRNAs are generated by the PIWIL1-directed primary piRNA production pathway. Accordingly, PIWIL1 was detected via immunoblotting and mass spectrometry in epididymal spermatozoa. These data provide insight into the complexity and dynamic nature of the sRNA profile of spermatozoa and raise the intriguing prospect that piRNAs are generated in situ in maturing spermatozoa. Such information is of particular interest in view of the potential role for paternal sRNAs in influencing conception, embryo development and intergenerational inheritance.
Collapse
Affiliation(s)
- Kate Hutcheon
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia
| | - Eileen A McLaughlin
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia.,c School of Biological Sciences , University of Auckland , Auckland , New Zealand
| | - Simone J Stanger
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia
| | - Ilana R Bernstein
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia
| | - Matthew D Dun
- d Priority Research Centre for Cancer Research, Innovation and Translation , Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle , Callaghan , NSW , Australia
| | - Andrew L Eamens
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia
| | - Brett Nixon
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia
| |
Collapse
|
28
|
Degryse S, de Bock CE, Demeyer S, Govaerts I, Bornschein S, Verbeke D, Jacobs K, Binos S, Skerrett-Byrne DA, Murray HC, Verrills NM, Van Vlierberghe P, Cools J, Dun MD. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 2017; 32:788-800. [PMID: 28852199 PMCID: PMC5843905 DOI: 10.1038/leu.2017.276] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/17/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
Mutations in the interleukin-7 receptor (IL7R) or the Janus kinase 3 (JAK3) kinase occur frequently in T-cell acute lymphoblastic leukemia (T-ALL) and both are able to drive cellular transformation and the development of T-ALL in mouse models. However, the signal transduction pathways downstream of JAK3 mutations remain poorly characterized. Here we describe the phosphoproteome downstream of the JAK3(L857Q)/(M511I) activating mutations in transformed Ba/F3 lymphocyte cells. Signaling pathways regulated by JAK3 mutants were assessed following acute inhibition of JAK1/JAK3 using the JAK kinase inhibitors ruxolitinib or tofacitinib. Comprehensive network interrogation using the phosphoproteomic signatures identified significant changes in pathways regulating cell cycle, translation initiation, mitogen-activated protein kinase and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signaling, RNA metabolism, as well as epigenetic and apoptotic processes. Key regulatory proteins within pathways that showed altered phosphorylation following JAK inhibition were targeted using selumetinib and trametinib (MEK), buparlisib (PI3K) and ABT-199 (BCL2), and found to be synergistic in combination with JAK kinase inhibitors in primary T-ALL samples harboring JAK3 mutations. These data provide the first detailed molecular characterization of the downstream signaling pathways regulated by JAK3 mutations and provide further understanding into the oncogenic processes regulated by constitutive kinase activation aiding in the development of improved combinatorial treatment regimens.
Collapse
Affiliation(s)
- S Degryse
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - C E de Bock
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - S Demeyer
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - I Govaerts
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - S Bornschein
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - D Verbeke
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - K Jacobs
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - S Binos
- Thermo Fisher Scientific, Scoresby, Victoria, Australia
| | - D A Skerrett-Byrne
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - H C Murray
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - N M Verrills
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - P Van Vlierberghe
- Department of Pediatrics and Genetics, Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - J Cools
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - M D Dun
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
29
|
The lipid peroxidation product 4-hydroxynonenal contributes to oxidative stress-mediated deterioration of the ageing oocyte. Sci Rep 2017; 7:6247. [PMID: 28740075 PMCID: PMC5524799 DOI: 10.1038/s41598-017-06372-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
An increase in intraovarian reactive oxygen species (ROS) has long been implicated in the decline in oocyte quality associated with maternal ageing. Oxidative stress (OS)-induced lipid peroxidation and the consequent generation of highly electrophilic aldehydes, such as 4-hydroxynonenal (4-HNE), represents a potential mechanism by which ROS can inflict damage in the ageing oocyte. In this study, we have established that aged oocytes are vulnerable to damage by 4-HNE resulting from increased cytosolic ROS production within the oocyte itself. Further, we demonstrated that the age-related induction of OS can be recapitulated by exposure of germinal vesicle (GV) oocytes to exogenous H2O2. Such treatments stimulated an increase in 4-HNE generation, which remained elevated during in vitro oocyte maturation to metaphase II. Additionally, exposure of GV oocytes to either H2O2 or 4-HNE resulted in decreased meiotic completion, increased spindle abnormalities, chromosome misalignments and aneuploidy. In seeking to account for these data, we revealed that proteins essential for oocyte health and meiotic development, namely α-, β-, and γ-tubulin are vulnerable to adduction via 4-HNE. Importantly, 4-HNE-tubulin adduction, as well as increased aneuploidy rates, were resolved by co-treatment with the antioxidant penicillamine, demonstrating a possible therapeutic mechanism to improve oocyte quality in older females.
Collapse
|
30
|
Paternal environmental enrichment transgenerationally alters affective behavioral and neuroendocrine phenotypes. Psychoneuroendocrinology 2017; 77:225-235. [PMID: 28104556 DOI: 10.1016/j.psyneuen.2016.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/04/2016] [Accepted: 11/11/2016] [Indexed: 02/05/2023]
Abstract
Recent studies have demonstrated that paternal stress in rodents can result in modification of offspring behavior. Environmental enrichment, which enhances cognitive stimulation and physical activity, modifies various behaviors and reduces stress responses in adult rodents. We investigated the transgenerational influence of paternal environmental enrichment on offspring behavior and physiological stress response. Adult C57BL/6J male mice (F0) were exposed to either environmental enrichment or standard housing for four weeks and then pair-mated with naïve females. The F2 generation was generated using F1 male offspring. Male and female F1 and F2 offspring were tested for anxiety using the elevated-plus maze and large open field at 8 weeks of age. Depression-related behavior was assessed using the forced-swim test. Hypothalamic-pituitary-adrenal (HPA) axis function was determined by quantification of serum corticosterone and adrenocorticotropic hormone (ACTH) levels at baseline and after forced-swim stress. Paternal environmental enrichment was associated with increased body weights of male F1 and F2 offspring. There was no significant effect on F1 offspring anxiety and depression-related behaviors. There were no changes in anxiety-related behaviors in the F2 offspring, however these mice displayed a reduced latency to immobility in the forced-swim test. Furthermore, F2 females had significantly higher serum corticosterone levels post-stress, but not ACTH. These results show that paternal environmental enrichment exerts a sex-specific transgenerational impact on the behavioral and physiological response to stress. Our findings have implications for the modelling of psychiatric disorders in rodents.
Collapse
|
31
|
Fullston T, Ohlsson-Teague EMC, Print CG, Sandeman LY, Lane M. Sperm microRNA Content Is Altered in a Mouse Model of Male Obesity, but the Same Suite of microRNAs Are Not Altered in Offspring's Sperm. PLoS One 2016; 11:e0166076. [PMID: 27814400 PMCID: PMC5096664 DOI: 10.1371/journal.pone.0166076] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity is increasing worldwide and has tripled in men of reproductive age since the 1970s. Concerningly, obesity is not only comorbid with other chronic diseases, but there is mounting evidence that it increases the non-communicable disease load in their children (eg mortality, obesity, autism). Animal studies have demonstrated that paternal obesity increases the risk of metabolic (eg glucose metabolism defects, obesity) and reproductive disorders in offspring. Epigenetic changes within sperm are clear mechanistic candidates that are associated with both changes to the father’s environment and offspring phenotype. Specifically there is emerging evidence that a father’s sperm microRNA content both responds to paternal environmental cues and alters the gene expression profile and subsequent development of the early embryo. We used a mouse model of high fat diet (HFD) induced obesity to investigate whether male obesity could modulate sperm microRNA content. We also investigated whether this alteration to a father’s sperm microRNA content lead to a similar change in the sperm of male offspring. Our investigations were initially guided by a Taqman PCR array, which indicated the differential abundance of 28 sperm borne microRNAs in HFD mice. qPCR confirmation in a much larger cohort of founder males demonstrated that 13 of these microRNAs were differentially abundant (11 up-regulated; 2 down-regulated) due to HFD feeding. Despite metabolic and reproductive phenotypes also being observed in grand-offspring fathered via the male offspring lineage, there was no evidence that any of the 13 microRNAs were also dysregulated in male offspring sperm. This was presumably due to the variation seen within both groups of offspring and suggests other mechanisms might act between offspring and grand-offspring. Thus 13 sperm borne microRNAs are modulated by a father’s HFD and the presumed transfer of this altered microRNA payload to the embryo at fertilisation potentially acts to alter the embryonic molecular makeup post-fertilisation, altering its growth trajectory, ultimately affecting adult offspring phenotype and may contribute to paternal programming.
Collapse
Affiliation(s)
- Tod Fullston
- Discipline of Obstetrics & Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Freemason’s Foundation Centre for Men’s Health, The University of Adelaide, Adelaide, South Australia 5005, Australia
- * E-mail:
| | - E. Maria C. Ohlsson-Teague
- Discipline of Obstetrics & Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Cristin G. Print
- Department of Molecular Medicine & Pathology and New Zealand Bioinformatics Institute, University of Auckland, Auckland 1142, New Zealand
| | - Lauren Y. Sandeman
- Discipline of Obstetrics & Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Michelle Lane
- Discipline of Obstetrics & Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Freemason’s Foundation Centre for Men’s Health, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Monash IVF Group, Melbourne, Victoria 3168, Australia
| |
Collapse
|
32
|
Jerczynski O, Lacroix-Pépin N, Boilard E, Calvo E, Bernet A, Fortier MA, Björkgren I, Sipilä P, Belleannée C. Role of Dicer1-Dependent Factors in the Paracrine Regulation of Epididymal Gene Expression. PLoS One 2016; 11:e0163876. [PMID: 27695046 PMCID: PMC5047620 DOI: 10.1371/journal.pone.0163876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022] Open
Abstract
Dicer1 is an endoribonuclease involved in the biogenesis of functional molecules such as microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs). These small non-coding RNAs are important regulators of post-transcriptional gene expression and participate in the control of male fertility. With the knowledge that 1) Dicer1-dependent factors are required for proper sperm maturation in the epididymis, and that 2) miRNAs are potent mediators of intercellular communication in most biological systems, we investigated the role of Dicer1-dependent factors produced by the proximal epididymis (initial segment/caput)- including miRNAs- on the regulation of epididymal gene expression in the distal epididymis regions (i.e. corpus and cauda). To this end, we performed comparative microarray and ANOVA analyses on control vs. Defb41iCre/wt;Dicer1fl/fl mice in which functional Dicer1 is absent from the principal cells of the proximal epididymis. We identified 35 and 33 transcripts that displayed significant expression level changes in the corpus and cauda regions (Fold change > 2 or < -2; p < 0.002), respectively. Among these transcripts, Zn-alpha 2-glycoprotein (Azgp1) encodes for a sperm equatorial protein whose expression in the epididymis of Dicer1 cKO mice is significantly increased compared to controls. In addition, 154 miRNAs, including miR-210, miR-672, miR-191 and miR-204, showed significantly impaired biogenesis in the absence of Dicer1 from the principal cells of the proximal epididymis (Fold change > 2 or < -2; p < 0.01). These miRNAs are secreted via extracellular vesicles (EVs) derived from the DC2 epididymal principal cell line, and their expression correlates with target transcripts involved in distinct biological pathways, as evidenced by in silico analysis. Albeit correlative and based on in silico approach, our study proposes that Dicer1-dependent factors trigger- directly or not-significant genes expression changes in distinct regions of this organ. The paracrine control of functions important to post-testicular sperm maturation by Dicer1-dependent factors may open new avenues for the identification of molecular targets important to male fertility control.
Collapse
Affiliation(s)
- Olivia Jerczynski
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| | - Nicolas Lacroix-Pépin
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| | - Eric Boilard
- Department of Immunity and Infectious Diseases, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| | - Ezequiel Calvo
- Endocrinology unit, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| | - Agathe Bernet
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| | - Michel A. Fortier
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| | - Ida Björkgren
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Petra Sipilä
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Clémence Belleannée
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| |
Collapse
|
33
|
Sipilä P, Björkgren I. Segment-specific regulation of epididymal gene expression. Reproduction 2016; 152:R91-9. [DOI: 10.1530/rep-15-0533] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/23/2016] [Indexed: 01/24/2023]
Abstract
The epididymis is necessary for post-testicular sperm maturation. During their epididymal transit, spermatozoa gain ability for progressive movement and fertilization. The epididymis is composed of several segments that have distinct gene expression profiles that enable the establishment of the changing luminal environment required for sperm maturation. The epididymal gene expression is regulated by endocrine, lumicrine, and paracrine factors in a segment-specific manner. Thus, in addition to its importance for male fertility, the epididymis is a valuable model tissue for studying the regulation of gene expression. This review concentrates on recent advances in understanding the androgen, small RNA, and epigenetically mediated regulation of segment-specific gene expression in the epididymis.
Collapse
|
34
|
Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep 2016; 6:31794. [PMID: 27549865 PMCID: PMC4994100 DOI: 10.1038/srep31794] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Recent evidence has shown that the sperm epigenome is vulnerable to dynamic modifications arising from a variety of paternal environment exposures and that this legacy can serve as an important determinant of intergenerational inheritance. It has been postulated that such exchange is communicated to maturing spermatozoa via the transfer of small non-protein-coding RNAs (sRNAs) in a mechanism mediated by epididymosomes; small membrane bound vesicles released by the soma of the male reproductive tract (epididymis). Here we confirm that mouse epididymosomes encapsulate an impressive cargo of >350 microRNAs (miRNAs), a developmentally important sRNA class, the majority (~60%) of which are also represented by the miRNA signature of spermatozoa. This includes >50 miRNAs that were found exclusively in epididymal sperm and epididymosomes, but not in the surrounding soma. We also documented substantial changes in the epididymosome miRNA cargo, including significant fold changes in almost half of the miRNAs along the length of the epididymis. Finally, we provide the first direct evidence for the transfer of several prominent miRNA species between mouse epididymosomes and spermatozoa to afford novel insight into a mechanism of intercellular communication by which the sRNA payload of sperm can be selectively modified during their post-testicular maturation.
Collapse
|
35
|
Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. Transl Psychiatry 2016; 6:e837. [PMID: 27300263 PMCID: PMC4931607 DOI: 10.1038/tp.2016.109] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Recent studies have suggested that physiological and behavioral traits may be transgenerationally inherited through the paternal lineage, possibly via non-genomic signals derived from the sperm. To investigate how paternal stress might influence offspring behavioral phenotypes, a model of hypothalamic-pituitary-adrenal (HPA) axis dysregulation was used. Male breeders were administered water supplemented with corticosterone (CORT) for 4 weeks before mating with untreated female mice. Female, but not male, F1 offspring of CORT-treated fathers displayed altered fear extinction at 2 weeks of age. Only male F1 offspring exhibited altered patterns of ultrasonic vocalization at postnatal day 3 and, as adults, showed decreased time in open on the elevated-plus maze and time in light on the light-dark apparatus, suggesting a hyperanxiety-like behavioral phenotype due to paternal CORT treatment. Interestingly, expression of the paternally imprinted gene Igf2 was increased in the hippocampus of F1 male offspring but downregulated in female offspring. Male and female F2 offspring displayed increased time spent in the open arm of the elevated-plus maze, suggesting lower levels of anxiety compared with control animals. Only male F2 offspring showed increased immobility time on the forced-swim test and increased latency to feed on the novelty-supressed feeding test, suggesting a depression-like phenotype in these animals. Collectively, these data provide evidence that paternal CORT treatment alters anxiety and depression-related behaviors across multiple generations. Analysis of the small RNA profile in sperm from CORT-treated males revealed marked effects on the expression of small noncoding RNAs. Sperm from CORT-treated males contained elevated levels of three microRNAs, miR-98, miR-144 and miR-190b, which are predicted to interact with multiple growth factors, including Igf2 and Bdnf. Sustained elevation of glucocorticoids is therefore involved in the transmission of paternal stress-induced traits across generations in a process involving small noncoding RNA signals transmitted by the male germline.
Collapse
|
36
|
Dacheux JL, Dacheux F, Druart X. Epididymal protein markers and fertility. Anim Reprod Sci 2016; 169:76-87. [DOI: 10.1016/j.anireprosci.2016.02.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 02/05/2023]
|
37
|
Anderson AL, Stanger SJ, Mihalas BP, Tyagi S, Holt JE, McLaughlin EA, Nixon B. Assessment of microRNA expression in mouse epididymal epithelial cells and spermatozoa by next generation sequencing. GENOMICS DATA 2015; 6:208-11. [PMID: 26697376 PMCID: PMC4664737 DOI: 10.1016/j.gdata.2015.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 11/09/2022]
Abstract
The mammalian epididymis is a highly specialized region of the male reproductive tract that is lined with a continuous layer of epithelial cells that display a remarkable level of regionalized secretory and absorptive activity. The luminal environment created by this combined secretory and absorptive activity is directly responsible for promoting the functional maturation of spermatozoa and their maintenance in a quiescent and viable state prior to ejaculation. This study was designed to identify the complement of microRNAs (miRNAs) that are expressed within the mouse epididymal epithelial cells and the maturing populations of spermatozoa. Through the use of Next Generation Sequencing technology we have demonstrated that both epididymal epithelial cells and spermatozoa harbour a complex repertoire of miRNAs that have substantially different expression profiles along the length of the tract. These data, deposited in the Gene Expression Omnibus (GEO) with the accession numbers GSE70197 and GSE70198, afford valuable insight into the post-transcriptional control of gene expression within the epididymis and provide the first evidence for the dynamic transformation of the miRNA content of maturing sperm cells. Ultimately such information promises to inform our understanding of the aetiology of male infertility. Herein we provide a detailed description of the methodology used to generate these important data.
Collapse
Affiliation(s)
- Amanda L Anderson
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Simone J Stanger
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bettina P Mihalas
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sonika Tyagi
- Australian Genome Research Facility Ltd, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Janet E Holt
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eileen A McLaughlin
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Brett Nixon
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
38
|
Nixon B, Stanger SJ, Mihalas BP, Reilly JN, Anderson AL, Tyagi S, Holt JE, McLaughlin EA. The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation. Biol Reprod 2015; 93:91. [PMID: 26333995 DOI: 10.1095/biolreprod.115.132209] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/24/2015] [Indexed: 11/01/2022] Open
Abstract
In recent years considerable effort has been devoted to understanding the epigenetic control of sperm development, leading to an increased appreciation of the importance of RNA interference pathways, and in particular miRNAs, as key regulators of spermatogenesis and epididymal maturation. It has also been shown that sperm are endowed with an impressive array of miRNA that have been implicated in various aspects of fertilization and embryo development. However, to date there have been no reports on whether the sperm miRNA signature is static or whether it is influenced by their prolonged maturation within the male reproductive tract. To investigate this phenomenon, we employed next-generation sequencing to systematically profile the miRNA signature of maturing mouse spermatozoa. In so doing we have provided the first evidence for the posttesticular modification of the sperm miRNA profile under normal physiological conditions. Such modifications include the apparent loss and acquisition of an impressive cohort of some 113 and 115 miRNAs, respectively, between the proximal and distal epididymal segments. Interestingly, the majority of these changes occur late in maturation and include the uptake of novel miRNA species in addition to a significant increase in many miRNAs natively expressed in immature sperm. Because sperm are not capable of de novo transcription, these findings identify the epididymis as an important site in establishing the sperm epigenome with the potential to influence the peri-conceptual environment of the female reproductive tract, contribute to the inheritance of acquired characteristics, and/or alter the developmental trajectory of the resulting offspring.
Collapse
Affiliation(s)
- Brett Nixon
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Simone J Stanger
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bettina P Mihalas
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Jackson N Reilly
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Amanda L Anderson
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sonika Tyagi
- Australian Genome Research Facility Ltd, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Janet E Holt
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eileen A McLaughlin
- Reproductive Science Group, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|