1
|
Yang TY, Hung WC, Tsai TH, Lu PL, Wang SF, Wang LC, Lin YT, Tseng SP. Potentials of organic tellurium-containing compound AS101 to overcome carbapenemase-producing Escherichia coli. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:1016-1025. [PMID: 37516546 DOI: 10.1016/j.jmii.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/11/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND The issue of carbapenem-resistant Escherichia coli was aggravated yearly. The previous studies reported the varied but critical epidemiology of carbapenem-resistant E. coli among which the carbapenemase-producing strains were regarded as one of the most notorious issues. AS101, an organic tellurium-containing compound undergoing clinical trials, was revealed with antibacterial activities. However, little is known about the antibacterial effect of AS101 against carbapenemase-producing E. coli (CPEC). MATERIALS AND METHODS The minimum inhibitory concentration (MIC) of AS101 against the 15 isolates was examined using a broth microdilution method. The scanning electron microscopy, pharmaceutical manipulations, reactive oxygen species level, and DNA fragmentation assay were carried out to investigate the antibacterial mechanism. The sepsis mouse model was employed to assess the in vivo treatment effect. RESULTS The blaNDM (33.3%) was revealed as the dominant carbapenemase gene among the 15 CPEC isolates, followed by the blaKPC gene (26.7%). The MICs of AS101 against the 15 isolates ranged from 0.5 to 32 μg/ml, and 99.9% of bacterial eradication was observed at 8 h, 4 h, and 2 h for 1×, 2×, and 4 × MIC, respectively. The mechanistic investigations suggest that AS101 would enter the bacterial cell, and induce ROS generation, leading to DNA fragmentation. The in vivo study exhibited that AS101 possessed a steady treatment effect in a sepsis mouse model, with an up to 83.3% of survival rate. CONCLUSION The in vitro activities, mechanisms, and in vivo study of AS101 against CPEC were unveiled. Our finding provided further evidence for the antibiotic development of AS101.
Collapse
Affiliation(s)
- Tsung-Ying Yang
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, Taiwan; Research Organization for Nano and Life Innovation, Future Innovation Institute, Waseda University, Japan; Research Institute for Science and Engineering, Waseda University, Japan; School of Education, Waseda University, Japan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Han Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Tzu Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Mattioni Marchetti V, Hrabak J, Bitar I. Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat. Front Cell Infect Microbiol 2023; 13:1178547. [PMID: 37469601 PMCID: PMC10352792 DOI: 10.3389/fcimb.2023.1178547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial resistance is well-known to be a global health and development threat. Due to the decrease of effective antimicrobials, re-evaluation in clinical practice of old antibiotics, as fosfomycin (FOS), have been necessary. FOS is a phosphonic acid derivate that regained interest in clinical practice for the treatment of complicated infection by multi-drug resistant (MDR) bacteria. Globally, FOS resistant Gram-negative pathogens are raising, affecting the public health, and compromising the use of the antibiotic. In particular, the increased prevalence of FOS resistance (FOSR) profiles among Enterobacterales family is concerning. Decrease in FOS effectiveness can be caused by i) alteration of FOS influx inside bacterial cell or ii) acquiring antimicrobial resistance genes. In this review, we investigate the main components implicated in FOS flow and report specific mutations that affect FOS influx inside bacterial cell and, thus, its effectiveness. FosA enzymes were identified in 1980 from Serratia marcescens but only in recent years the scientific community has started studying their spread. We summarize the global epidemiology of FosA/C2/L1-2 enzymes among Enterobacterales family. To date, 11 different variants of FosA have been reported globally. Among acquired mechanisms, FosA3 is the most spread variant in Enterobacterales, followed by FosA7 and FosA5. Based on recently published studies, we clarify and represent the molecular and genetic composition of fosA/C2 genes enviroment, analyzing the mechanisms by which such genes are slowly transmitting in emerging and high-risk clones, such as E. coli ST69 and ST131, and K. pneumoniae ST11. FOS is indicated as first line option against uncomplicated urinary tract infections and shows remarkable qualities in combination with other antibiotics. A rapid and accurate identification of FOSR type in Enterobacterales is difficult to achieve due to the lack of commercial phenotypic susceptibility tests and of rapid systems for MIC detection.
Collapse
Affiliation(s)
- Vittoria Mattioni Marchetti
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| |
Collapse
|
3
|
Obaidat MM, Gharaibeh WA. Sheep and goat milk in Jordan is a reservoir of multidrug resistant extended spectrum and AmpC beta-lactamases Escherichia coli. Int J Food Microbiol 2022; 377:109834. [PMID: 35841807 DOI: 10.1016/j.ijfoodmicro.2022.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Limited data is available on the prevalence and antimicrobial resistance of extended spectrum (ESBL) and AmpC β-lactamases Escherichia coli in sheep and goats in Jordan. This study determined the molecular prevalence and antimicrobial-resistance of ESBL and AmpC β-lactamases E. coli in 155 sheep and goat flocks across Jordan by testing 948 milk samples. The samples were enriched in MacConkey broth, and then plated on MacConkey agar with cefotaxime. The presence of ESBL and AmpC genes in the E. coli isolates was determined by PCR and the resistance toward critically important antimicrobials was tested by disc diffusion. In total, 1016 E. coli isolates were isolated from the cefotaxime supplemented MacConkey, 382 isolates harbored ESBL genes and 54 harbored blaCMY. The prevalence of blaCTX-M, blaTEM, blaCMY and blaSHVE. coli in the milk samples were 33.5 %, 31.7 %, 5.7 %. and 1.1 %, respectively. At the flock level, 30.3 % flocks had β-lactamase E. coli, specifically 25.2 %, 20.7 %, 5.2 % and 2.6 % had blaCTX-M, blaTEM, blaCMY and blaSHV E. coli, respectively. About 52.2 % of the isolates harbored both blaCTX-M and blaTEM. A high percentage (>59 %) of ESBL and AmpC β-lactamases E. coli resisted sulfamethoxazole/trimethoprim, tetracycline and nalidixic acid. Overall, 93.5 % and 96.3 % of ESBL and AmpC E. coli were resistant to ≥1 another antimicrobial class and 44.5 % and 44.4 % were resistant to ≥3 another antimicrobial class, respectively. This study shows that sheep and goat milk is a reservoir of multidrug resistant ESBL and AmpC β-lactamases E. coli, thus good hygienic practices and judicious antimicrobials use are important in small ruminants' farming.
Collapse
Affiliation(s)
- Mohammad M Obaidat
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Ar-Ramtha, Irbid, Jordan.
| | - Wasan A Gharaibeh
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Ar-Ramtha, Irbid, Jordan
| |
Collapse
|
4
|
Wang YP, Chen YH, Hung IC, Chu PH, Chang YH, Lin YT, Yang HC, Wang JT. Transporter Genes and fosA Associated With Fosfomycin Resistance in Carbapenem-Resistant Klebsiella pneumoniae. Front Microbiol 2022; 13:816806. [PMID: 35173700 PMCID: PMC8841775 DOI: 10.3389/fmicb.2022.816806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
Infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) are of significant clinical concern worldwide. Fosfomycin is one of the limited treatment options for CRKP. However, resistance to fosfomycin in CRKP has been observed. In this study, we aimed to investigate the fosfomycin resistance mechanism of CRKP. Fosfomycin-resistant Klebsiella pneumoniae isolates were collected from four medical centers in Taiwan from 2010 to 2018. The genes that contributed to fosfomycin resistance were amplified and sequenced. Carbohydrate utilization assays and mutagenesis studies were performed to determine the mechanisms underlying fosfomycin resistance. Forty fosfomycin-resistant CRKP strains were collected and used for further analysis. Fourteen strains exhibited low-level resistance (MIC = 256–512 mg/dl), while 26 strains showed high-level resistance (MIC ≥ 1,024 mg/dl). Chromosomal fosAKP I91V was detected in 39/40 fosfomycin-resistant CRKP strains. We observed that amino acid substitution of chromosomal fosAKP I91V increased the MIC of fosfomycin by approximately eight folds, and this was the only mechanism elucidated for low-level fosfomycin resistance. Among the 26 high-level resistance strains, fosAKP I91V combined with transporter deficiencies (18/26, 69.2%) was the most common resistant mechanism, and one strain showed transporter deficiency only. Plasmid-borne fosA3 accounted for 27.0% (7/26) of high-level resistance. Various G3P and G6P transporter gene mutations, including three novel single amino acid mutations (glpT E299D, glpT D274V, and uhpC A393V) were detected in 19 strains. No murA mutation was found in this study. Our study highlights the need for new therapeutic agents for CRKP infections in Taiwan.
Collapse
Affiliation(s)
- Yu-Ping Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Hao Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - I-Cheng Hung
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Hsun Chu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Han Chang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hung-Chih Yang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- *Correspondence: Hung-Chih Yang,
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Jin-Town Wang,
| |
Collapse
|
5
|
Cattoir V, Pourbaix A, Magnan M, Chau F, de Lastours V, Felden B, Fantin B, Guérin F. Novel Chromosomal Mutations Responsible for Fosfomycin Resistance in Escherichia coli. Front Microbiol 2020; 11:575031. [PMID: 33193186 PMCID: PMC7607045 DOI: 10.3389/fmicb.2020.575031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Fosfomycin resistance in Escherichia coli results from chromosomal mutations or acquisition of plasmid-mediated genes. Because these mechanisms may be absent in some resistant isolates, we aimed at decipher the genetic basis of fosfomycin resistance in E. coli. Different groups of isolates were studied: fosfomycin-resistant mutants selected in vitro from E. coli CFT073 (MIC = 1 mg/L) and two groups (wildtype and non-wildtype) of E. coli clinical isolates. Single-nucleotide allelic replacement was performed to confirm the implication of novel mutations into resistance. Induction of uhpT expression by glucose-6-phosphate (G6P) was assessed by RT-qPCR. The genome of all clinical isolates was sequenced by MiSeq (Illumina). Two first-step mutants were obtained in vitro from CFT073 (MICs, 128 mg/L) with single mutations: G469R in uhpB (M3); F384L in uhpC (M4). Second-step mutants (MICs, 256 mg/L) presented additional mutations: R282V in galU (M7 from M3); Q558∗ in lon (M8 from M4). Introduction of uhpB or uhpC mutations by site-directed mutagenesis conferred a 128-fold increase in fosfomycin MICs, whereas single mutations in galU or lon were only responsible for a 2-fold increase. Also, these mutations abolished the induction of uhpT expression by G6P. All 14 fosfomycin-susceptible clinical isolates (MICs, 0.5-8 mg/L) were devoid of any mutation. At least one genetic change was detected in all but one fosfomycin-resistant clinical isolates (MICs, 32 - >256 mg/L) including 8, 17, 18, 5, and 8 in uhpA, uhpB, uhpC, uhpT, and glpT genes, respectively. In conclusion, novel mutations in uhpB and uhpC are associated with fosfomycin resistance in E. coli clinical isolates.
Collapse
Affiliation(s)
- Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France.,Centre National de Référence sur la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France.,Inserm, Bacterial Regulatory RNAs and Medicine - UMR_S 1230, Rennes, France
| | | | - Mélanie Magnan
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France
| | - Françoise Chau
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France
| | - Victoire de Lastours
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Brice Felden
- Inserm, Bacterial Regulatory RNAs and Medicine - UMR_S 1230, Rennes, France
| | - Bruno Fantin
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - François Guérin
- CHU de Caen, Service de Microbiologie, Caen, France.,Université de Caen Normandie, EA4655, Caen, France
| |
Collapse
|
6
|
Pungpian C, Sinwat N, Angkititrakul S, Prathan R, Chuanchuen R. Presence and Transfer of Antimicrobial Resistance Determinants in Escherichia coli in Pigs, Pork, and Humans in Thailand and Lao PDR Border Provinces. Microb Drug Resist 2020; 27:571-584. [PMID: 32898454 DOI: 10.1089/mdr.2019.0438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate antimicrobial resistance (AMR) characteristics of Escherichia coli isolates from pig origin (including pigs, pig carcass, and pork) and humans in Thailand and Lao People's Democratic Republic (PDR) border provinces. The majority of the E. coli isolates from Thailand (69.7%) and Lao PDR (63.3%) exhibited multidrug resistance. Class 1 integrons with resistance gene cassettes were common (n = 43), of which the most predominant resistance gene cassette was aadA1. The percentage of extended-spectrum beta-lactamase (ESBL) producers was 3.4 in Thailand and 3.2 in Lao PDR. The ESBL genes found were blaCTX-M14, blaCTX-M27, and blaCTX-M55, of which blaCTX-M55 was the most common (58.6%). Ser-83-Leu and Asp-87-Asn were the predominant amino acid changes in GyrA of ciprofloxacin-resistant isolates. Twenty-two percent of all isolates were positive for qnrS. Class 1 integrons carrying aadA1 from pigs (n = 1) and ESBL genes (blaCTX-M55 and blaCTX-M14) from pigs (n = 2), pork (n = 1), and humans (n = 7) were located on conjugative plasmids. Most plasmids (29.3%) were typed in the IncFrepB group. In conclusion, AMR E. coli are common in pig origin and humans in these areas. The findings confirm AMR as One Health issue, and highlight the need for comprehensive and unified collaborations within and between sectors on research and policy.
Collapse
Affiliation(s)
- Chanika Pungpian
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nuananong Sinwat
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakornpathom, Thailand
| | - Sunpetch Angkititrakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rangsiya Prathan
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Sorlozano-Puerto A, Lopez-Machado I, Albertuz-Crespo M, Martinez-Gonzalez LJ, Gutierrez-Fernandez J. Characterization of Fosfomycin and Nitrofurantoin Resistance Mechanisms in Escherichia coli Isolated in Clinical Urine Samples. Antibiotics (Basel) 2020; 9:antibiotics9090534. [PMID: 32847131 PMCID: PMC7558542 DOI: 10.3390/antibiotics9090534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 01/29/2023] Open
Abstract
Fosfomycin and nitrofurantoin are antibiotics of choice to orally treat non-complicated urinary tract infections (UTIs) of community origin because they remain active against bacteria resistant to other antibiotics. However, epidemiologic surveillance studies have detected a reduced susceptibility to these drugs. The objective of this study was to determine possible mechanisms of resistance to these antibiotics in clinical isolates of fosfomycin- and/or nitrofurantoin-resistant UTI-producing Escherichia coli. We amplified and sequenced murA, glpT, uhpT, uhpA, ptsI, cyaA, nfsA, nfsB, and ribE genes, and screened plasmid-borne fosfomycin-resistance genes fosA3, fosA4, fosA5, fosA6, and fosC2 and nitrofurantoin-resistance genes oqxA and oqxB by polymerase chain reaction. Among 29 isolates studied, 22 were resistant to fosfomycin due to deletion of uhpT and/or uhpA genes, and 2 also possessed the fosA3 gene. Some modifications detected in sequences of NfsA (His11Tyr, Ser33Arg, Gln67Leu, Cys80Arg, Gly126Arg, Gly154Glu, Arg203Cys), NfsB (Gln44His, Phe84Ser, Arg107Cys, Gly192Ser, Arg207His), and RibE (Pro55His), and the production of truncated NfsA (Gln67 and Gln147) and NfsB (Glu54), were associated with nitrofurantoin resistance in 15/29 isolates; however, the presence of oqxAB plasmid genes was not detected in any isolate. Resistance to fosfomycin was associated with the absence of transporter UhpT expression and/or the presence of antibiotic-modifying enzymes encoded by fosA3 plasmid-mediated gene. Resistance to nitrofurantoin was associated with modifications of NfsA, NfsB, and RibE proteins. The emergence and spread of these resistance mechanisms, including transferable resistance, could compromise the future usefulness of fosfomycin and nitrofurantoin against UTIs. Furthermore, knowledge of the genetic mechanisms underlying resistance may lead to rapid DNA-based testing for resistance.
Collapse
Affiliation(s)
- Antonio Sorlozano-Puerto
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, 18016 Granada, Spain; (A.S.-P.); (I.L.-M.); (M.A.-C.)
| | - Isaac Lopez-Machado
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, 18016 Granada, Spain; (A.S.-P.); (I.L.-M.); (M.A.-C.)
| | - Maria Albertuz-Crespo
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, 18016 Granada, Spain; (A.S.-P.); (I.L.-M.); (M.A.-C.)
| | - Luis Javier Martinez-Gonzalez
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), 18016 Granada, Spain;
| | - Jose Gutierrez-Fernandez
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, 18016 Granada, Spain; (A.S.-P.); (I.L.-M.); (M.A.-C.)
- Laboratory of Microbiology, Virgen de las Nieves University Hospital-ibs, 18014 Granada, Spain
- Correspondence:
| |
Collapse
|
8
|
Hiyama Y, Sato T, Takahashi S, Yamamoto S, Fukushima Y, Nakajima C, Suzuki Y, Yokota SI, Masumori N. Sitafloxacin has a potent activity for eradication of extended spectrum β-lactamase-producing fluoroquinolone-resistant Escherichia coli forming intracellular bacterial communities in uroepithelial cells. J Infect Chemother 2020; 26:1272-1277. [PMID: 32768340 DOI: 10.1016/j.jiac.2020.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/04/2020] [Accepted: 07/19/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Eradication of asymptomatic bacteriuria (ASB) before urological procedures is important to reduce the risk for infectious complications after surgery. However, the appropriate regimen for antimicrobial treatment has not been fully determined. We experienced continuous (over 10 months) isolation of extended spectrum β-lactamase (ESBL)-producing fluoroquinolone-resistant Escherichia coli from urine of an asymptomatic patient. The four isolates obtained (SMESC1 to 4) were international high-risk clones of O25b:H4-ST131-H30R, and originated from one strain, as revealed by the whole genome sequences. Although the patient received meropenem (MEPM) and fosfomycin (FOM), to which the strains were susceptible before the urological procedures, they could not be eradicated. METHODS To explore the reason for the continuous isolation even after MEPM and FOM administration, antimicrobial killing of adherent and/or intracellular bacterial communities (IBC) formed by coculture of the E. coli cells and T24 bladder epithelial cells were examined. RESULTS FOM and levofloxacin did not decrease viable E. coli cells compared with gentamicin. MEPM partly decreased them, and sitafloxacin (STFX) decreased them most potently. These observations indicate that E. coli can survive in the urinary tract under antimicrobial administration, and some antimicrobials such as FOM and MEPM cannot eradicate E. coli in uroepithelial cells. Adhesion on urinary epithelial cells and/or IBC formation might result in continuous isolation from the urinary tract and recurrence of ASB and urinary tract infections. CONCLUSIONS The present study suggests that STFX is a promising optional agent for the eradication of ESBL-producing fluoroquinolone-resistant E. coli in the urinary tract before urological procedures.
Collapse
Affiliation(s)
- Yoshiki Hiyama
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yukari Fukushima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
9
|
Chen L, Ou B, Zhang M, Chou CH, Chang SK, Zhu G. Coexistence of Fosfomycin Resistance Determinant fosA and fosA3 in Enterobacter cloacae Isolated from Pets with Urinary Tract Infection in Taiwan. Microb Drug Resist 2020; 27:415-423. [PMID: 32667841 DOI: 10.1089/mdr.2020.0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To analyze the characteristics of fosA and fosA3 in Enterobacter cloacae isolated from aspirated and catheterized urine culture specimens of companion pets in Taiwan. A total of 19 E. cloacae isolates from pets with urinary tract infection were screened for the presence of fosA, fosA3, and fosC2 and for the genetic context of them by PCR amplification and sequencing. The transferability, resistance phenotypes, plasmid replicon typing properties and genetic environments of fosA- and/or fosA3-positive strains were characterized. Five E. cloacae isolates were positive for fosA and three coharbored fosA and fosA3. No fosC determinant was detected. Transconjugants of fosA3 were successfully acquired, while the acquisition of fosA transconjugants was failed. The minimum inhibitory concentrations (MICs) of the three fosA3-positive isolates and their transconjugants were ≥256 mg/L, whereas the MICs of the five fosA-positive isolates ranged from 64 mg/L to 256 mg/L. Three plasmid replicons (InCFrepB, InCL/M, and InCHI2) were identified in fosA- and fosA3-positive E. cloacae isolates. Different genetic contexts lay in the downstream region of fosA and fosA3, respectively. Eight distinct patterns based on the similarity value of more than 80% were typed for all the 8 fosA-positive isolates. In conclusion, the fosA concomitant with fosA3 were found in E. cloacae isolates. The fosA3 not only exhibits stronger activity of inactivating fosfomycin than fosA but also possesses stronger potential to spread than fosA. Different genetic backgrounds exist in these fosA- and fosA3-positive isolates, and different mobile elements may confer the dissemination of fosA and fosA3.
Collapse
Affiliation(s)
- Lin Chen
- School of Veterinary Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Bingming Ou
- College of Life Science, Zhaoqing University, Zhaoqing, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Minyu Zhang
- College of Life Science, Zhaoqing University, Zhaoqing, China
| | - Chung-Hsi Chou
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Kuang Chang
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Tajik S, Shokri F, Rostamnezhad M, Khoshnood S, Mortazavi SM, Sholeh M, Kouhsari E. Fosfomycin: A look at its various aspects. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Campos ACDC, Andrade NL, Couto N, Mutters NT, de Vos M, Rosa ACDP, Damasco PV, Lo Ten Foe JR, Friedrich AW, Chlebowicz-Flissikowska MA, Rossen JWA. Characterization of fosfomycin heteroresistance among multidrug-resistant Escherichia coli isolates from hospitalized patients in Rio de Janeiro, Brazil. J Glob Antimicrob Resist 2020; 22:584-593. [PMID: 32389792 DOI: 10.1016/j.jgar.2020.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/06/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Urinary tract infections (UTIs) caused by multidrug-resistant Escherichia coli have become a major medical concern. Old antibiotics such as fosfomycin have become an alternative therapeutic option due to their effectiveness and, as a result, fosfomycin is now used as a first-line drug for the treatment of UTIs in many countries. Despite low resistance rates, fosfomycin heteroresistance, defined as a phenomenon where subpopulations of bacteria are resistant to high antibiotic concentrations whereas most of the bacteria are susceptible, is an underestimated problem. METHODS The frequency of heteroresistance in E. coli isolated from hospitalized patients in Brazil and its effect on susceptibility of E. coli in biofilms was studied and the isolates were molecularly characterized to reveal the mechanisms behind their fosfomycin heteroresistance using whole-genome sequencing. RESULTS A higher frequency of fosfomycin heteroresistance compared with other studies was found. In biofilms, most heteroresistant isolates were less sensitive to fosfomycin than control isolates and showed overexpression of metabolic genes thereby increasing their survival rate. Molecular characterization showed that some resistant subpopulations derived from heteroresistant isolates had a defect in their fosfomycin uptake system caused by mutations in transporter and regulatory genes, whereas others overexpressed the murA gene. None to minor effects on bacterial fitness were observed. Oxidative stress protection, virulence and metabolic genes were differentially expressed in resistant subpopulations and heteroresistant isolates. CONCLUSION Frequent detection of heteroresistance in UTIs may play a role in the failure of antibiotic treatments and should therefore be more carefully diagnosed.
Collapse
Affiliation(s)
- Ana Carolina da C Campos
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Inmunologia e Parasitologia, Boulevard 28 de Setembro, 77 - Vila Isabel, RJ-20551-030, Rio de Janeiro, Brazil; University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Nathália L Andrade
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Inmunologia e Parasitologia, Boulevard 28 de Setembro, 77 - Vila Isabel, RJ-20551-030, Rio de Janeiro, Brazil
| | - Natacha Couto
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Nico T Mutters
- Heidelberg University Hospital, Center for Infectious Diseases, Medical Microbiology and Hygiene, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Marjon de Vos
- University of Groningen, Institute for Evolutionary Life Sciences, Linnaeusborg 5(th) floor, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Ana Cláudia de P Rosa
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Inmunologia e Parasitologia, Boulevard 28 de Setembro, 77 - Vila Isabel, RJ-20551-030, Rio de Janeiro, Brazil
| | - Paulo V Damasco
- Universidade do Estado do Rio de Janeiro, Departamento de Doenças Infecciosas e Parasitárias, Boulevard 28 de Setembro, 77 - Vila Isabel, RJ-20551-030, Rio de Janeiro, Brazil; Universidade Federal do Estado do Rio de Janeiro, Departamento de Doenças Infecciosas e Parasitárias, R. Voluntários da Pátria, 107 - Botafogo, RJ- 22270-000, Rio de Janeiro, Brazil
| | - Jerome R Lo Ten Foe
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Alex W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Monika A Chlebowicz-Flissikowska
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - John W A Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
12
|
Huang Y, Lin Q, Zhou Q, Lv L, Wan M, Gao X, Wang C, Liu JH. Identification of fosA10, a Novel Plasmid-Mediated Fosfomycin Resistance Gene of Klebsiella pneumoniae Origin, in Escherichia coli. Infect Drug Resist 2020; 13:1273-1279. [PMID: 32431524 PMCID: PMC7200238 DOI: 10.2147/idr.s251360] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/07/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Several subtypes of plasmid-mediated fosfomycin resistance gene fosA in Enterobacteriaceae have been reported worldwide and have caused concern. The present study characterized a novel member of fosA gene located on a plasmid from Escherichia coli. Materials and Methods A fosfomycin-resistant E. coli isolate PK9 was recovered from a chicken meat sample in 2018. The presence of fosA genes was detected by PCR and sequencing. Whole-genome sequencing (WGS), conjugation, and cloning were performed to identify the mechanism responsible for fosfomycin resistance. Oxford Nanopore MinION sequencing was carried out to characterize the plasmid carrying fosfomycin resistance gene and the genetic context of the novel fosA variant. Results A novel fosA gene with significant homology (>98%) with fosA6 and fosA5 genes was identified by WGS and was named fosA10. FosA10 shared 56.1% to 98.6% amino acid sequence identity with other reported plasmid-mediated FosA enzymes. Fosfomycin resistance and fosA10 gene were successfully transferred to E. coli C600 by conjugation. Cloning confirmed that FosA10 could confer fosfomycin resistance (MIC > 128 μg/mL). The fosA10 gene was localized on a 53kb IncFII (F35:A-:B-) plasmid. The ∆lysR-fosA10-∆hp fragment (4328 bp), located between two copies of IS10R, showed 100% identity with the chromosomal sequences of 17 Klebsiella pneumoniae strains of ST664 and one of ST3821 in GenBank. Conclusion Our findings indicated that the fosA10 gene of E. coli might be captured from the chromosome of K. pneumoniae by IS10, which further demonstrated that K. pneumoniae might act as a reservoir of fosA-like genes acquired by E. coli.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Qingqing Lin
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Qiaoli Zhou
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Luchao Lv
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Miao Wan
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Xun Gao
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chengzhen Wang
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jian-Hua Liu
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Renzhammer R, Loncaric I, Roch FF, Pinior B, Käsbohrer A, Spergser J, Ladinig A, Unterweger C. Prevalence of Virulence Genes and Antimicrobial Resistances in E. coli Associated with Neonatal Diarrhea, Postweaning Diarrhea, and Edema Disease in Pigs from Austria. Antibiotics (Basel) 2020; 9:E208. [PMID: 32344550 PMCID: PMC7235777 DOI: 10.3390/antibiotics9040208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Abstract
Increasing numbers of multi-resistant Escherichia (E.) coli from clinical specimens emphasize the importance of monitoring of their resistance profiles for proper treatment. Furthermore, knowledge on the presence of virulence associated genes in E. coli isolates from European swine stocks is scarce. Consequently, a total of 694 E. coli isolated between 2016 and 2018 from diarrheic piglets of Austrian swine herds were investigated. The isolates were tested for their susceptibility to twelve antibiotics using agar disk diffusion test and for the presence of 22 virulence associated genes via PCR. Overall, 71.9, 67.7, and 49.5% of all isolates were resistant to ampicillin, tetracycline, and trimethoprim-sulfamethoxazole, while resistance levels to gentamicin and fosfomycin were 7.7 and 2.0%, respectively. Resistance frequency to ciprofloxacin was higher than in previous studies. Isolates were more likely to be resistant to ampicillin if they were also resistant to ciprofloxacin. No isolate was resistant to meropenem or amikacin. Virulence genes were detected more frequently in isolates expressing hemolytic activity on blood agar plates. The detection rate of faeG was increased in fimH negative isolates. We assume, that hemolytic activity and absence of fimH could be considered as potential indicators for the virulence of E. coli in piglets.
Collapse
Affiliation(s)
- René Renzhammer
- University Clinic for Swine, University of Veterinary Medicine, 1210 Vienna, Austria (C.U.)
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (I.L.)
| | - Franz-Ferdinand Roch
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Beate Pinior
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Annemarie Käsbohrer
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (I.L.)
| | - Andrea Ladinig
- University Clinic for Swine, University of Veterinary Medicine, 1210 Vienna, Austria (C.U.)
| | - Christine Unterweger
- University Clinic for Swine, University of Veterinary Medicine, 1210 Vienna, Austria (C.U.)
| |
Collapse
|
14
|
Characterization of FosL1, a Plasmid-Encoded Fosfomycin Resistance Protein Identified in Escherichia coli. Antimicrob Agents Chemother 2020; 64:AAC.02042-19. [PMID: 31932373 DOI: 10.1128/aac.02042-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/21/2019] [Indexed: 02/05/2023] Open
Abstract
Fosfomycin is gaining renewed interest for treating urinary tract infections. Monitoring fosfomycin resistance is therefore important in order to detect the emergence of novel resistance mechanisms. Here, we used the Rapid Fosfomycin NP test to screen a collection of extended-spectrum-β-lactamase-producing Escherichia coli isolates from Switzerland and found a fosfomycin-resistant isolate in which a novel plasmid-mediated fosfomycin resistance gene, named fosL1, was identified. The FosL1 protein is a putative glutathione S-transferase enzyme conferring high-level resistance to fosfomycin and sharing between 57% to 63% amino acid identity with other FosA-like family members. Genetic analyses showed that the fosL1 gene was embedded in a mobile insertion cassette and had likely been acquired by transposition through a Tn7-related mechanism. In silico analysis over GenBank databases identified the FosL1-encoding gene in addition to another variant (fosL1 and fosL2, respectively) in two Salmonella enterica isolates from the United States. Our study further highlights the necessity of monitoring fosfomycin resistance in Enterobacteriaceae to identify the emergence of novel mechanisms of resistance.
Collapse
|
15
|
Zaniani FR, Savari M, Montazeri EA, Nejad RM, Khoshnood S. Distribution of fosfomycin and AmpC β-lactamase resistance genes in urinary Escherichia coli isolates obtained from patients admitted to an educational hospital in Ahvaz, southwest Iran. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Mobasseri G, Teh CSJ, Ooi PT, Tan SC, Thong KL. Molecular Characterization of Multidrug-Resistant and Extended-Spectrum Beta-Lactamase-Producing Klebsiella pneumoniae Isolated from Swine Farms in Malaysia. Microb Drug Resist 2019; 25:1087-1098. [PMID: 30844323 DOI: 10.1089/mdr.2018.0184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aims: The high prevalence of multidrug resistance (MDR) and extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae associated with nosocomial infections has caused serious therapeutic challenges. The objectives of this study were to determine the genotypic and phenotypic characteristics of K. pneumoniae strains isolated from Malaysian swine farms and the transferability of ESBL genes by plasmids. Results: A total of 50 K. pneumoniae strains were isolated from 389 samples, which were collected from healthy and unhealthy pigs (swine rectum and oral cavities), healthy farmers (human rectum, urine, and nasal cavities), farm's environment, and animal feeds from seven Malaysian swine farms. Antimicrobial susceptibility analysis of these 50 K. pneumoniae strains showed that the majority (86%) were resistant to tetracycline, while 44% and 36% of these strains were MDR and ESBL producers, respectively. PCR and DNA sequencing of the amplicons showed the occurrence of blaTEM (15/18), blaSHV (15/18), blaCTX-M-1 group (7/18), and blaCTX-M-2 group (2/18), while only class 1 integron-encoded integrase was detected. Conjugation experiments and plasmid analysis indicated that the majority of the ESBL genes were plasmid encoded and the plasmids in 11 strains were conjugative. Genotyping by pulsed-field gel electrophoresis and repetitive extragenic palindrome-polymerase chain reaction (REP-PCR) showed that these 50 strains were genetically diverse with 44 pulsotypes and 43 REP-PCR subtypes. Conclusions: ESBL-producing K. pneumoniae strains showed high resistance to tetracycline as this antibiotic is used for prophylaxis and therapeutic purposes at the swine farms. The findings in this study have drawn attention to the issue of increasing MDR in animal husbandry and it should be taken seriously to prevent the spread and treatment failure due to antimicrobial resistance.
Collapse
Affiliation(s)
- Golnaz Mobasseri
- Faculty of Science, Institute of Biological Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shiang Chiet Tan
- Faculty of Science, Institute of Biological Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Faculty of Science, Institute of Biological Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Abstract
Multidrug resistance in Escherichia coli has become a worrying issue that is increasingly observed in human but also in veterinary medicine worldwide. E. coli is intrinsically susceptible to almost all clinically relevant antimicrobial agents, but this bacterial species has a great capacity to accumulate resistance genes, mostly through horizontal gene transfer. The most problematic mechanisms in E. coli correspond to the acquisition of genes coding for extended-spectrum β-lactamases (conferring resistance to broad-spectrum cephalosporins), carbapenemases (conferring resistance to carbapenems), 16S rRNA methylases (conferring pan-resistance to aminoglycosides), plasmid-mediated quinolone resistance (PMQR) genes (conferring resistance to [fluoro]quinolones), and mcr genes (conferring resistance to polymyxins). Although the spread of carbapenemase genes has been mainly recognized in the human sector but poorly recognized in animals, colistin resistance in E. coli seems rather to be related to the use of colistin in veterinary medicine on a global scale. For the other resistance traits, their cross-transfer between the human and animal sectors still remains controversial even though genomic investigations indicate that extended-spectrum β-lactamase producers encountered in animals are distinct from those affecting humans. In addition, E. coli of animal origin often also show resistances to other-mostly older-antimicrobial agents, including tetracyclines, phenicols, sulfonamides, trimethoprim, and fosfomycin. Plasmids, especially multiresistance plasmids, but also other mobile genetic elements, such as transposons and gene cassettes in class 1 and class 2 integrons, seem to play a major role in the dissemination of resistance genes. Of note, coselection and persistence of resistances to critically important antimicrobial agents in human medicine also occurs through the massive use of antimicrobial agents in veterinary medicine, such as tetracyclines or sulfonamides, as long as all those determinants are located on the same genetic elements.
Collapse
|
18
|
Aghamali M, Sedighi M, Zahedi Bialvaei A, Mohammadzadeh N, Abbasian S, Ghafouri Z, Kouhsari E. Fosfomycin: mechanisms and the increasing prevalence of resistance. J Med Microbiol 2019; 68:11-25. [PMID: 30431421 DOI: 10.1099/jmm.0.000874] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There are challenges regarding increased global rates of microbial resistance and the emergence of new mechanisms that result in microorganisms becoming resistant to antimicrobial drugs. Fosfomycin is a broad-spectrum bactericidal antibiotic effective against Gram-negative and certain Gram-positive bacteria, such as Staphylococci, that interfere with cell wall synthesis. During the last 40 years, fosfomycin has been evaluated in a wide range of applications and fields. Although numerous studies have been done in this area, there remains limited information regarding the prevalence of resistance. Therefore, in this review, we focus on the available data concerning the mechanisms and increasing resistance regarding fosfomycin.
Collapse
Affiliation(s)
- Mina Aghamali
- 1Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Sedighi
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abed Zahedi Bialvaei
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Mohammadzadeh
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Abbasian
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghafouri
- 3Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Kouhsari
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Malekpour Kolbadinezhad. S, Fozouni L. Molecular Monitoring of Fosfomycin Resistance in Escherichia coli Strains Isolated from Patients with Urinary Catheters in north-east of Iran. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2018. [DOI: 10.29252/jommid.6.4.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
20
|
Falagas ME, Athanasaki F, Voulgaris GL, Triarides NA, Vardakas KZ. Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Int J Antimicrob Agents 2018; 53:22-28. [PMID: 30268576 DOI: 10.1016/j.ijantimicag.2018.09.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 12/17/2022]
Abstract
Fosfomycin has been used for the treatment of infections due to susceptible and multidrug-resistant (MDR) bacteria. It inhibits bacterial cell wall synthesis through a unique mechanism of action at a step prior to that inhibited by β-lactams. Fosfomycin enters the bacterium through membrane channels/transporters and inhibits MurA, which initiates peptidoglycan (PG) biosynthesis of the bacterial cell wall. Several bacteria display inherent resistance to fosfomycin mainly through MurA mutations. Acquired resistance involves, in order of decreasing frequency, modifications of membrane transporters that prevent fosfomycin from entering the bacterial cell, acquisition of plasmid-encoded genes that inactivate fosfomycin, and MurA mutations. Fosfomycin resistance develops readily in vitro but less so in vivo. Mutation frequency is higher among Pseudomonas aeruginosa and Klebsiella spp. compared with Escherichia coli and is associated with fosfomycin concentration. Mutations in cAMP regulators, fosfomycin transporters and MurA seem to be associated with higher biological cost in Enterobacteriaceae but not in Pseudomonas spp. The contribution of fosfomycin inactivating enzymes in emergence and spread of fosfomycin resistance currently seems low-to-moderate, but their presence in transferable plasmids may potentially provide the best means for the spread of fosfomycin resistance in the future. Their co-existence with genes conferring resistance to other antibiotic classes may increase the emergence of MDR strains. Although susceptibility rates vary, rates seem to increase in settings with higher fosfomycin use and among multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Matthew E Falagas
- Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece; Department of Medicine, Henry Dunant Hospital Center, Athens, Greece; Tufts University School of Medicine, Boston, Massachusetts, USA.
| | | | - Georgios L Voulgaris
- Laboratory of Pharmacokinetics and Toxicology, Department of Pharmacy, 401 General Military Hospital, Athens, Greece
| | - Nikolaos A Triarides
- Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece; Department of Medicine, Henry Dunant Hospital Center, Athens, Greece
| | - Konstantinos Z Vardakas
- Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece; Department of Medicine, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
21
|
Muloi D, Ward MJ, Pedersen AB, Fèvre EM, Woolhouse ME, van Bunnik BA. Are Food Animals Responsible for Transfer of Antimicrobial-Resistant Escherichia coli or Their Resistance Determinants to Human Populations? A Systematic Review. Foodborne Pathog Dis 2018; 15:467-474. [PMID: 29708778 PMCID: PMC6103250 DOI: 10.1089/fpd.2017.2411] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of farm animals in the emergence and dissemination of both AMR bacteria and their resistance determinants to humans is poorly understood and controversial. Here, we systematically reviewed the current evidence that food animals are responsible for transfer of AMR to humans. We searched PubMed, Web of Science, and EMBASE for literature published between 1940 and 2016. Our results show that eight studies (18%) suggested evidence of transmission of AMR from food animals to humans, 25 studies (56%) suggested transmission between animals and humans with no direction specified and 12 studies (26%) did not support transmission. Quality of evidence was variable among the included studies; one study (2%) used high resolution typing tools, 36 (80%) used intermediate resolution typing tools, six (13%) relied on low resolution typing tools, and two (5%) based conclusions on co-occurrence of resistance. While some studies suggested to provide evidence that transmission of AMR from food animals to humans may occur, robust conclusions on the directionality of transmission cannot be drawn due to limitations in study methodologies. Our findings highlight the need to combine high resolution genomic data analysis with systematically collected epidemiological evidence to reconstruct patterns of AMR transmission between food animals and humans.
Collapse
Affiliation(s)
- Dishon Muloi
- Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Melissa J. Ward
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Amy B. Pedersen
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Eric M. Fèvre
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- International Livestock Research Institute, Nairobi, Kenya
| | - Mark E.J. Woolhouse
- Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bram A.D. van Bunnik
- Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Multiple mutations in lipid-A modification pathway & novel fosA variants in colistin-resistant Klebsiella pneumoniae. Future Sci OA 2018; 4:FSO319. [PMID: 30112189 PMCID: PMC6088269 DOI: 10.4155/fsoa-2018-0011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022] Open
Abstract
Aim: To investigate antimicrobial resistance mechanisms in a cluster of colistin-resistant Klebsiella pneumoniae. Methods: Antimicrobial susceptibility was tested by disk diffusion and broth microdilution. Whole-genome sequencing and genome analysis were performed. Results: The eight colistin-resistant K. pneumoniae isolates belonged to three different clones (ST11, 14 and 231). The eptA and arnT genes from lipid modification pathway had novel (R157S in arnT and Q319R in eptA) and rare mutations (V39L, R152H, S260L and A279G in eptA). Several substitutions were also identified in mgrB, pmrB, phoP and phoQ genes. The mcr genes were absent in all isolates. Isolates had variants from existing classes of fosA gene. Conclusion: Complex combination of mutations might have led to colistin resistance, which suggests that continuous surveillance of molecular mechanisms is required. This study focused on identifying antimicrobial resistant mechanisms behind colistin resistance in clinical Klebsiella pneumoniae isolates. Novel and rare mutations were identified in the genes involved in the mechanism of colistin resistance. In addition, novel variants of fosfomycin resistance genes were identified in the study isolates. These findings provide an argument for continuous surveillance of colistin resistance.
Collapse
|
23
|
Ballestero-Téllez M, Docobo-Pérez F, Portillo-Calderón I, Rodríguez-Martínez JM, Racero L, Ramos-Guelfo MS, Blázquez J, Rodríguez-Baño J, Pascual A. Molecular insights into fosfomycin resistance in Escherichia coli. J Antimicrob Chemother 2018; 72:1303-1309. [PMID: 28093485 DOI: 10.1093/jac/dkw573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/12/2016] [Indexed: 11/12/2022] Open
Abstract
Objectives Fosfomycin activity in Escherichia coli depends on several genes of unknown importance for fosfomycin resistance. The objective was to characterize the role of uhpT , glpT , cyaA and ptsI genes in fosfomycin resistance in E. coli. Methods WT E. coli BW25113 and null mutants, Δ uhpT , Δ glpT , Δ cyaA , Δ ptsI , Δ glpT-uhpT , Δ glpT-cyaA , Δ glpT-ptsI , Δ uhpT-cyaA , Δ uhpT-ptsI and Δ ptsI-cyaA , were studied. Susceptibility to fosfomycin was tested using CLSI guidelines. Fosfomycin mutant frequencies were determined at concentrations of 64 and 256 mg/L. Fosfomycin in vitro activity was tested using time-kill assays at concentrations of 64 and 307 mg/L (human C max ). Results Fosfomycin MICs were: WT E. coli BW25113 (2 mg/L), Δ glpT (2 mg/L), Δ uhpT (64 mg/L), Δ cyaA (8 mg/L), Δ ptsI (2 mg/L), Δ glpT-uhpT (256 mg/L), Δ glpT-cyaA (8 mg/L), Δ glpT-ptsI (2 mg/L), Δ uhpT-cyaA (512 mg/L), Δ uhpT-ptsI (64 mg/L) and Δ ptsI-cyaA (32 mg/L). In the mutant frequency assays, no mutants were recovered from BW25113. Mutants appeared in Δ glpT , Δ uhpT , Δ cyaA and Δ ptsI at 64 mg/L and in Δ uhpT and Δ cyaA at 256 mg/L. Δ glpT-ptsI , but not Δ glpT-cyaA , Δ uhpT-cyaA or Δ uhpT-ptsI , increased the mutant frequency compared with the highest frequency found in each single mutant. In time-kill assays, all mutants regrew at 64 mg/L. Initial bacterial reductions of 2-4 log 10 cfu/mL were observed for all strains, except for Δ uhpT-ptsI , Δ glpT-uhpT and Δ uhpT-cyaA . Only Δ glpT and Δ ptsI mutants were cleared using 307 mg/L. Conclusions Fosfomycin MIC may not be a good efficacy predictor, as highly resistant mutants may appear, depending on other pre-existing mutations with no impact on MIC.
Collapse
Affiliation(s)
| | | | - I Portillo-Calderón
- Unidad intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Sevilla, Spain.,Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | | | - L Racero
- Unidad intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - M S Ramos-Guelfo
- Unidad intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - J Blázquez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro Nacional de Biotecnología, Madrid, Spain
| | - J Rodríguez-Baño
- Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
24
|
ESBL-producing Escherichia coli
and Its Rapid Rise among Healthy People. Food Saf (Tokyo) 2017; 5:122-150. [PMID: 32231938 DOI: 10.14252/foodsafetyfscj.2017011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
Since around the 2000s, Escherichia coli (E. coli) resistant to both oxyimino-cephalosporins and fluoroquinolones has remarkably increased worldwide in clinical settings. The kind of E. coli is also identified in patients suffering from community-onset infectious diseases such as urinary tract infections. Moreover, recoveries of multi-drug resistant E. coli from the feces of healthy people have been increasingly documented in recent years, although the actual state remains uncertain. These E. coli isolates usually produce extended-spectrum β-lactamase (ESBL), as well as acquisition of amino acid substitutions in the quinolone-resistance determining regions (QRDRs) of GyrA and/or ParC, together with plasmid-mediated quinolone resistance determinants such as Qnr, AAC(6')-Ib-cr, and QepA. The actual state of ESBL-producing E. coli in hospitalized patients has been carefully investigated in many countries, while that in healthy people still remains uncertain, although high fecal carriage rates of ESBL producers in healthy people have been reported especially in Asian and South American countries. The issues regarding the ESBL producers have become very complicated and chaotic due to rapid increase of both ESBL variants and plasmids mediating ESBL genes, together with the emergence of various "epidemic strains" or "international clones" of E. coli and Klebsiella pneumoniae harboring transferable-plasmids carrying multiple antimicrobial resistance genes. Thus, the current state of ESBL producers outside hospital settings was overviewed together with the relation among those recovered from livestock, foods, pets, environments and wildlife from the viewpoint of molecular epidemiology. This mini review may contribute to better understanding about ESBL producers among people who are not familiar with the antimicrobial resistance (AMR) threatening rising globally.
Collapse
|
25
|
Frequency and Mechanisms of Spontaneous Fosfomycin Nonsusceptibility Observed upon Disk Diffusion Testing of Escherichia coli. J Clin Microbiol 2017; 56:JCM.01368-17. [PMID: 29093108 DOI: 10.1128/jcm.01368-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
Abstract
Fosfomycin maintains activity against most Escherichia coli clinical isolates, but the growth of E. coli colonies within the zone of inhibition around the fosfomycin disk is occasionally observed upon susceptibility testing. We aimed to estimate the frequency of such nonsusceptible inner colony mutants and identify the underlying resistance mechanisms. Disk diffusion testing of fosfomycin was performed on 649 multidrug-resistant E. coli clinical isolates collected between 2011 and 2015. For those producing inner colonies inside the susceptible range, the parental strains and their representative inner colony mutants were subjected to MIC testing, whole-genome sequencing, reverse transcription-quantitative PCR (qRT-PCR), and carbohydrate utilization studies. Of the 649 E. coli clinical isolates, 5 (0.8%) consistently produced nonsusceptible inner colonies. Whole-genome sequencing revealed the deletion of uhpT encoding hexose-6-phosphate antiporter in 4 of the E. coli inner colony mutants, while the remaining mutant contained a nonsense mutation in uhpA The expression of uhpT was absent in the mutant strains with uhpT deletion and was not inducible in the strain with the uhpA mutation, unlike in its parental strain. All 5 inner colony mutants had reduced growth on minimal medium supplemented with glucose-6-phosphate. In conclusion, fosfomycin-nonsusceptible inner colony mutants can occur due to the loss of function or induction of UhpT but are rare among multidrug-resistant E. coli clinical strains. Considering that these mutants carry high biological costs, we suggest that fosfomycin susceptibility of strains that generate inner colony mutants can be interpreted on the basis of the zone of inhibition without accounting for the inner colonies.
Collapse
|
26
|
Yang TY, Lu PL, Tseng SP. Update on fosfomycin-modified genes in Enterobacteriaceae. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 52:9-21. [PMID: 29198952 DOI: 10.1016/j.jmii.2017.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/17/2017] [Accepted: 10/09/2017] [Indexed: 11/29/2022]
Abstract
The long-used antibiotic fosfomycin has recently been re-evaluated as a potential regimen for treating extended-spectrum β-lactamases (ESBLs) and carbapenem-resistant Enterobacteriaceae (CRE). Fosfomycin is known for its robust bactericidal effect against ESBL-producing Enterobacteriaceae and CRE. However, fosfomycin-modified genes have been reported in transposon elements and conjugative plasmids, resulting in fosfomycin resistance in parts of East Asia. Here we review reports of fosfomycin-modified (fos) genes in Enterobacteriaceae and assess the efficacy of fosfomycin against multidrug-resistant Enterobacteriaceae infections. At least 10 kinds of fos genes have been identified in the past decade; of these, fosA (and fosA subtypes) and fosC2 are primarily found in Enterobacteriaceae. All fosA subtypes except fosA2 are found in plasmids and transposons, nearby insertion sequence elements, or integrons, indicating that mobilizing elements also play an important role in plasmid-mediated fos genes in Enterobacteriaceae. fosA3, which is prevalent in East Asia, has been transmitted (mostly by animals) within and across continents via IS26 mobile elements. The acquisition of multiple antibiotic resistance genes via plasmids and mobile elements has resulted in a need for combined treatments for Enterobacteriaceae cases. The combination of fosfomycin and carbapenem has been the focus of many in vitro studies, but there is a clear need for additional in vivo investigations involving pharmacokinetics.
Collapse
Affiliation(s)
- Tsung-Ying Yang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
27
|
Chen CM, Ke SC, Li CR, Wu YC, Chen TH, Lai CH, Wu XX, Wu LT. High Diversity of Antimicrobial Resistance Genes, Class 1 Integrons, and Genotypes of Multidrug-ResistantEscherichia coliin Beef Carcasses. Microb Drug Resist 2017; 23:915-924. [DOI: 10.1089/mdr.2016.0223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Chih-Ming Chen
- Department of Health Food, Chung Chou University of Science and Technology, Changhua, Taiwan
- Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Se-Chin Ke
- Infection Control Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chia-Ru Li
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Ying-Chen Wu
- Graduate Institute of Veterinary Pathology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Ho Lai
- Institute of Basic Medical Science, School of Medicine, China Medical University and Hospital, Taichung, Taiwan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| | - Xin-Xia Wu
- Department of Microbiology, The Institute of Medical Science, China Medical University Hospital, Taichung, Taiwan
| | - Lii-Tzu Wu
- Department of Microbiology, The Institute of Medical Science, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
28
|
Liu Y, Cheng Y, Yang H, Hu L, Cheng J, Ye Y, Li J. Characterization of Extended-Spectrum β-Lactamase Genes of Shigella flexneri Isolates With Fosfomycin Resistance From Patients in China. Ann Lab Med 2017; 37:415-419. [PMID: 28643490 PMCID: PMC5500740 DOI: 10.3343/alm.2017.37.5.415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/18/2017] [Accepted: 05/10/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The emergence of fosfomycin resistance and extended-spectrum β-lactamase (ESBL) genes is a serious threat to public health and a new challenge in shigellosis treatment. The purpose of this study was to identify fosfomycin resistance and characterize β-lactamase genes in fos-carrying isolates of Shigella flexneri from patients in China. METHODS A total of 263 S. flexneri isolates were collected from 34 hospitals in the Anhui Province of China during September 2012-September 2015 and screened for fosA3, fosA, and fosC2 by PCR amplification and sequencing. The fos-carrying isolates were then screened for β-lactamase genes. The clonal relationships between fosA3-carrying isolates, the transmissibility of fosfomycin resistance, replicon types of plasmids carrying fosfomycin resistance genes and other associated resistance genes were investigated. RESULTS Twenty-five of the 263 isolates (9.5%) showed resistance to fosfomycin, and 18 (6.8%) were positive for fosA3. None of the isolates was positive for fosA or fosC2. Seventeen of the isolates carrying fosA3 (94%) were CTX-M producers (seven CTX-M-55, five CTX-M-14, and five CTX-M-123), while three (16.7%) were TEM producers (TEM-1).Sixteen (88.9%) fosA3-carrying isolates exhibited multi-drug resistance. The replicon types of the 13 fosA3-carrying plasmids were IncF (n=13), IncHI2 (n=3), IncIl-Ir (n=2), and IncN (n=1). CONCLUSIONS Our results indicated that fosA3 could spread through plasmids in S. flexneri isolates, along with the bla(CTX-M) and bla(TEM), which facilitate its quick dispersal. To the best of our knowledge, this is the first report of CTX-M-123-type ESBLs in S. flexneri isolates from patients in China.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui 230022, China
| | - Yue Cheng
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Haifei Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Lifen Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui 230022, China
| | - Jun Cheng
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui 230022, China
| | - Ying Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui 230022, China.
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui 230022, China
- Department of Infectious Diseases, Chaohu Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
29
|
Mechanisms of fosfomycin resistance in carbapenem-resistant Enterobacter sp. Int J Antimicrob Agents 2017; 50:690-692. [PMID: 28688955 DOI: 10.1016/j.ijantimicag.2017.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/01/2017] [Indexed: 11/24/2022]
Abstract
We report on fosfomycin susceptibility and mechanisms of resistance in clinical strains of blaKPC-positive Enterobacter sp. (n = 19). A total of 14 strains (74%) were susceptible to fosfomycin; 8 strains (42%) were positive for fosA and no strains were positive for FosA3 or FosC2. FosA presence does not appear to correlate with susceptibility.
Collapse
|
30
|
Tseng SP, Wang SF, Ma L, Wang TY, Yang TY, Siu LK, Chuang YC, Lee PS, Wang JT, Wu TL, Lin JC, Lu PL. The plasmid-mediated fosfomycin resistance determinants and synergy of fosfomycin and meropenem in carbapenem-resistant Klebsiella pneumoniae isolates in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:653-661. [PMID: 28705769 DOI: 10.1016/j.jmii.2017.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/13/2017] [Accepted: 03/13/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Epidemiology of fosfomycin susceptibility and the plasmid-mediated fosfomycinase genes of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates in Taiwan remain unclear. METHODS 642 CRKP clinical isolates were collected from a nation-wide surveillance study (16 hospitals) in Taiwan in 2012-2013. Antimicrobial susceptibilities were determined. PFGE and MLST determined the clonal relatedness. Carbapenemases and fosfomycinases genes were detected by PCR, and their flanking regions were determined by PCR and sequencing. Synergistic activity of meropenem with fosfomycin was examined by the checkerboard method. RESULTS In total, 36.4% (234/642) of CRKP isolates in Taiwan were resistant to fosfomycin. Among 234 fosfomycin-resistant CRKP isolates, PFGE analysis revealed 81 pulsotypes. Pulsotype XXIII (n = 63) was predominant and belonged to ST11. 71 had carbapnemases (65 blaKPC-2-positive, 1 blaVIM-1-positive and 5 blaIMP-8-positive) and 62 had fosfomycinases (35 fosA3-positive and 27 foskp96-positive). Only 18.5% (5/27) of foskp96-positive isolates carried foskp96 and blaKPC-2, while 71.4% (25/35) of fosA3-positive isolates contained fosA3 and blaKPC-2. There were five types of flanking sequences for fosA3, and 85.7% (30/35) of fosA3 genes were flanked by IS26, suggesting possible horizontal gene transfer. Synergistic effect of fosfomycin and meropenem was observed in all 25 randomly selected pulsotype XXIII strains (100%; 25/25), even those containing fosfomycinase (48%, 12/25) or carbapnemase (96%, 24/25). CONCLUSIONS A clone (pulsotype XXIII, ST11) has been found to be prevailing among fosfomycin-resistant CRKP in Taiwan. According to the in vitro data, the combination of fosfomycin and meropenem is a potentially alternative choice.
Collapse
Affiliation(s)
- Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling Ma
- National Institutes of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ting-Yin Wang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Ying Yang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - L Kristopher Siu
- National Institutes of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yin-Ching Chuang
- Department of Internal Medicine and Medical Research, Chi Mei Medical Center, Tainan, Taiwan; Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Pei-Shan Lee
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsu-Lan Wu
- Department of Clinical Pathology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Liang Lu
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
31
|
Jiang W, Men S, Kong L, Ma S, Yang Y, Wang Y, Yuan Q, Cheng G, Zou W, Wang H. Prevalence of Plasmid-Mediated Fosfomycin Resistance Gene fosA3 Among CTX-M-Producing Escherichia coli Isolates from Chickens in China. Foodborne Pathog Dis 2017; 14:210-218. [PMID: 28379732 DOI: 10.1089/fpd.2016.2230] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate the prevalence of fosfomycin resistance gene fosA3 and characterize plasmids harboring fosA3 among CTX-M-producing Escherichia coli from chickens in China. A total of 234 CTX-M-producing E. coli isolates collected from chickens from 2014 to 2016 were screened for the presence of plasmid-mediated fosfomycin resistance genes (fosA, fosA3, and fosC2). Clonal relatedness of fosA3-positive isolates was determined by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The genetic environment of fosA3 was analyzed by polymerase chain reaction (PCR) mapping. Plasmids were studied by using conjugation experiments, PCR-based replicon typing and plasmid MLST. Sixty-four (27.4%) fosA3-positive E. coli isolates were identified in this study. The gene blaCTX-M-55 (31/64) was predominant among these strains, followed by blaCTX-M-14 (18/64) and blaCTX-M-65 (14/64). Various PFGE patterns and sequence types (STs) indicated that these isolates were clonally unrelated. Seven different genetic environments of fosA3 were identified and two new combinations (ISEcp1-blaCTX-M-65-ΔIS903D-IS26-fosA3-orf1-orf2-Δorf3-IS26 and IS26-ISEcp1-blaCTX-M-3-orf477-blaTEM-1-IS26-fosA3-orf1-orf2-Δorf3-IS26) were discovered for the first time. Conjugation experiments were successful for 47 isolates and 33 transconjugants harbored a single plasmid. Plasmids carrying fosA3 belonged to incompatibility group IncFII (17/33), IncI1 (2/33), IncHI2 (3/33), and IncB/O (1/33). F33:A-:B- plasmids carrying blaCTX-M-55, IncHI2/ST3 plasmids carrying blaCTX-M-65, and F2:A-:B-plasmids carrying blaCTX-M-55 were found in E. coli isolates from different provinces. Our results revealed a considerable prevalence of fosA3 gene among CTX-M-producing E. coli with clonal diversity from chickens in China. The transmission of different kinds of plasmids is responsible for the dissemination of fosA3 in chicken farms in China.
Collapse
Affiliation(s)
- Wei Jiang
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Shuai Men
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Linghan Kong
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Suzhen Ma
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Yongqiang Yang
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Yongxiang Wang
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Qiwu Yuan
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Guangyang Cheng
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Wencheng Zou
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Hongning Wang
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China .,3 "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern China, Sichuan University , Chengdu, China
| |
Collapse
|
32
|
Ohkoshi Y, Sato T, Suzuki Y, Yamamoto S, Shiraishi T, Ogasawara N, Yokota SI. Mechanism of Reduced Susceptibility to Fosfomycin in Escherichia coli Clinical Isolates. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5470241. [PMID: 28197413 PMCID: PMC5288514 DOI: 10.1155/2017/5470241] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 11/29/2022]
Abstract
In recent years, multidrug resistance of Escherichia coli has become a serious problem. However, resistance to fosfomycin (FOM) has been low. We screened E. coli clinical isolates with reduced susceptibility to FOM and characterized molecular mechanisms of resistance and reduced susceptibility of these strains. Ten strains showing reduced FOM susceptibility (MIC ≥ 8 μg/mL) in 211 clinical isolates were found and examined. Acquisition of genes encoding FOM-modifying enzyme genes (fos genes) and mutations in murA that underlie high resistance to FOM were not observed. We examined ability of FOM incorporation via glucose-6-phosphate (G6P) transporter and sn-glycerol-3-phosphate transporter. In ten strains, nine showed lack of growth on M9 minimum salt agar supplemented with G6P. Eight of the ten strains showed fluctuated induction by G6P of uhpT that encodes G6P transporter expression. Nucleotide sequences of the uhpT, uhpA, glpT, ptsI, and cyaA shared several deletions and amino acid mutations in the nine strains with lack of growth on G6P-supplemented M9 agar. In conclusion, reduction of uhpT function is largely responsible for the reduced sensitivity to FOM in clinical isolates that have not acquired FOM-modifying genes or mutations in murA. However, there are a few strains whose mechanisms of reduced susceptibility to FOM are still unclear.
Collapse
Affiliation(s)
- Yasuo Ohkoshi
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
- Department of Clinical Laboratory, NTT East Sapporo Hospital, Chuo-ku, Sapporo 060-0061, Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Yuuki Suzuki
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Noriko Ogasawara
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
33
|
Hoang TAV, Nguyen TNH, Ueda S, Le QP, Tran TTN, Nguyen TND, Dao TVK, Tran MT, Le TTT, Le TL, Nakayama T, Hirai I, Do TH, Vien QM, Yamamoto Y. Common findings of bla
CTX-M-55-encoding 104–139 kbp plasmids harbored by extended-spectrum β-lactamase-producing Escherichia coli in pork meat, wholesale market workers, and patients with urinary tract infection in Vietnam. Curr Microbiol 2016; 74:203-211. [DOI: 10.1007/s00284-016-1174-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/25/2016] [Indexed: 11/28/2022]
|
34
|
Abstract
The treatment of bacterial infections suffers from two major problems: spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) pathogens and lack of development of new antibiotics active against such MDR and XDR bacteria. As a result, physicians have turned to older antibiotics, such as polymyxins, tetracyclines, and aminoglycosides. Lately, due to development of resistance to these agents, fosfomycin has gained attention, as it has remained active against both Gram-positive and Gram-negative MDR and XDR bacteria. New data of higher quality have become available, and several issues were clarified further. In this review, we summarize the available fosfomycin data regarding pharmacokinetic and pharmacodynamic properties, the in vitro activity against susceptible and antibiotic-resistant bacteria, mechanisms of resistance and development of resistance during treatment, synergy and antagonism with other antibiotics, clinical effectiveness, and adverse events. Issues that need to be studied further are also discussed.
Collapse
|
35
|
Characterisation of fosfomycin resistance mechanisms and molecular epidemiology in extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates. Int J Antimicrob Agents 2016; 48:564-568. [PMID: 27765412 DOI: 10.1016/j.ijantimicag.2016.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 11/24/2022]
Abstract
Although fosfomycin is a treatment option for infections caused by extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, fosfomycin resistance has been documented. To our knowledge, fosfomycin resistance mechanisms in Klebsiella pneumoniae have not been systematically investigated. A total of 108 ESBL-producing K. pneumoniae isolates collected from Kaohsiung Medical University Hospital, Taiwan, from August 2012 to May 2013 were analysed in this study. Pulsed-field gel electrophoresis (PFGE) revealed 64 pulsotypes and six non-typeable isolates, indicating high genetic diversity. Moreover, pulsotypes V (n = 6), VII (n = 11) and LI (n = 4) belonging to ST11 were major types. Among 30 (27.8%) fosfomycin-non-susceptible isolates, 21 (70%) had a MurA amino acid substitution, and seven new variations increased the fosfomycin minimum inhibitory concentration (MIC) by 8- to 16-fold compared with wild-type MurA in Escherichia coli DH5α.strain. Functionless transporters (GlpT and UhpT) with various mutations were found in 29 isolates (97%). No known fosfomycin-modifying enzymes were detected in this study. The major resistance mechanisms to fosfomycin in K. pneumoniae were amino acid variations in the drug target and transporters.
Collapse
|
36
|
Yao H, Wu D, Lei L, Shen Z, Wang Y, Liao K. The detection of fosfomycin resistance genes in Enterobacteriaceae from pets and their owners. Vet Microbiol 2016; 193:67-71. [DOI: 10.1016/j.vetmic.2016.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/12/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
|
37
|
Wyrsch ER, Roy Chowdhury P, Chapman TA, Charles IG, Hammond JM, Djordjevic SP. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis. Front Microbiol 2016; 7:843. [PMID: 27379026 PMCID: PMC4908116 DOI: 10.3389/fmicb.2016.00843] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/22/2016] [Indexed: 11/18/2022] Open
Abstract
Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Ethan R Wyrsch
- The ithree Institute, University of Technology Sydney, Sydney NSW, Australia
| | - Piklu Roy Chowdhury
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia; NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, SydneyNSW, Australia
| | - Toni A Chapman
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Sydney NSW, Australia
| | - Ian G Charles
- Institute of Food Research, Norwich Research Park Norwich, UK
| | - Jeffrey M Hammond
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Sydney NSW, Australia
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Sydney NSW, Australia
| |
Collapse
|
38
|
Guo Q, Tomich AD, McElheny CL, Cooper VS, Stoesser N, Wang M, Sluis-Cremer N, Doi Y. Glutathione-S-transferase FosA6 of Klebsiella pneumoniae origin conferring fosfomycin resistance in ESBL-producing Escherichia coli. J Antimicrob Chemother 2016; 71:2460-5. [PMID: 27261267 PMCID: PMC4992852 DOI: 10.1093/jac/dkw177] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/17/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The objectives of this study were to elucidate the genetic context of a novel plasmid-mediated fosA variant, fosA6, conferring fosfomycin resistance and to characterize the kinetic properties of FosA6. METHODS The genome of fosfomycin-resistant Escherichia coli strain YD786 was sequenced. Homologues of FosA6 were identified through BLAST searches. FosA6 and FosA(ST258) were purified and characterized using a steady-state kinetic approach. Inhibition of FosA activity was examined with sodium phosphonoformate. RESULTS Plasmid-encoded glutathione-S-transferase (GST) FosA6 conferring high-level fosfomycin resistance was identified in a CTX-M-2-producing E. coli clinical strain at a US hospital. fosA6 was carried on a self-conjugative, 69 kb IncFII plasmid. The ΔlysR-fosA6-ΔyjiR_1 fragment, located between IS10R and ΔIS26, was nearly identical to those on the chromosomes of some Klebsiella pneumoniae strains (MGH78578, PMK1 and KPPR1). FosA6 shared >99% identity with chromosomally encoded FosA(PMK1) in K. pneumoniae of various STs and 98% identity with FosA(ST258), which is commonly found in K. pneumoniae clonal complex (CC) 258 including ST258. FosA6 and FosA(ST258) demonstrated robust GST activities that were comparable to each other. Sodium phosphonoformate, a GST inhibitor, reduced the fosfomycin MICs by 6- to 24-fold for K. pneumoniae and E. coli strains carrying fosA genes on the chromosomes and plasmids, respectively. CONCLUSIONS fosA6, probably captured from the chromosome of K. pneumoniae, conferred high-level fosfomycin resistance in E. coli. FosA6 functioned as a GST and inactivated fosfomycin efficiently. K. pneumoniae may serve as a reservoir of fosfomycin resistance for E. coli.
Collapse
Affiliation(s)
- Qinglan Guo
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Adam D Tomich
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christi L McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicole Stoesser
- Modernizing Medical Microbiology Consortium, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|