1
|
Zuckerman NS, Shulman LM. Next-Generation Sequencing in the Study of Infectious Diseases. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
2
|
Boswell MT, Nazziwa J, Kuroki K, Palm A, Karlson S, Månsson F, Biague A, da Silva ZJ, Onyango CO, de Silva TI, Jaye A, Norrgren H, Medstrand P, Jansson M, Maenaka K, Rowland-Jones SL, Esbjörnsson J. Intrahost evolution of the HIV-2 capsid correlates with progression to AIDS. Virus Evol 2022; 8:veac075. [PMID: 36533148 PMCID: PMC9753047 DOI: 10.1093/ve/veac075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/24/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2023] Open
Abstract
HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino acid polymorphisms are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-specific T cell responses common in slower progressors. Lower virus evolutionary rates, and positive selection on conserved residues in HIV-2 env have been associated with slower progression to AIDS. In this study we analysed 369 heterochronous HIV-2 p26 sequences from 12 participants with a median age of 30 years at enrolment. CD4% change over time was used to stratify participants into relative faster and slower progressor groups. We analysed p26 sequence diversity evolution, measured site-specific selection pressures and evolutionary rates, and determined if these evolutionary parameters were associated with progression status. Faster progressors had lower CD4% and faster CD4% decline rates. Median pairwise sequence diversity was higher in faster progressors (5.7x10-3 versus 1.4x10-3 base substitutions per site, P<0.001). p26 evolved under negative selection in both groups (dN/dS=0.12). Median virus evolutionary rates were higher in faster than slower progressors - synonymous rates: 4.6x10-3 vs. 2.3x10-3; and nonsynonymous rates: 6.9x10-4 vs. 2.7x10-4 substitutions/site/year, respectively. Virus evolutionary rates correlated negatively with CD4% change rates (ρ = -0.8, P=0.02), but not CD4% level. The signature amino acid at p26 positions 6, 12 and 119 differed between faster (6A, 12I, 119A) and slower (6G, 12V, 119P) progressors. These amino acid positions clustered near to the TRIM5α/p26 hexamer interface surface. p26 evolutionary rates were associated with progression to AIDS and were mostly driven by synonymous substitutions. Nonsynonymous evolutionary rates were an order of magnitude lower than synonymous rates, with limited amino acid sequence evolution over time within hosts. These results indicate HIV-2 p26 may be an attractive therapeutic target.
Collapse
Affiliation(s)
- M T Boswell
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, OX3 7FZ, Oxford, UK
| | - J Nazziwa
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - K Kuroki
- Faculty of Pharmaceutical Sciences and Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - A Palm
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - S Karlson
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - F Månsson
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - A Biague
- National Public Health Laboratory, V94M+HM4, Bissau, Guinea-Bissau
| | - Z J da Silva
- National Public Health Laboratory, V94M+HM4, Bissau, Guinea-Bissau
| | - C O Onyango
- US Centres for Disease Control, KEMRI Complex, Mbagathi Road off Mbagathi Way PO Box 606-00621, Kenya
| | - T I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Beech Hill Rd, S10 2RX, Sheffield, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara P. O. Box 273, Banjul, The Gambia
| | - A Jaye
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara P. O. Box 273, Banjul, The Gambia
| | - H Norrgren
- Department of Clinical Sciences Lund, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - P Medstrand
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - M Jansson
- Department of Laboratory Medicine, Lund University, Sölvegatan 19, Sweden
| | - K Maenaka
- Faculty of Pharmaceutical Sciences and Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - S L Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, OX3 7FZ, Oxford, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara P. O. Box 273, Banjul, The Gambia
| | - J Esbjörnsson
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, OX3 7FZ, Oxford, UK
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| |
Collapse
|
3
|
Fan J, Wennmann JT, Wang D, Jehle JA. Single nucleotide polymorphism (SNP) frequencies and distribution reveal complex genetic composition of seven novel natural isolates of Cydia pomonella granulovirus. Virology 2019; 541:32-40. [PMID: 31826844 DOI: 10.1016/j.virol.2019.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022]
Abstract
The co-evolution between baculoviruses and their insect hosts results in selection of virus populations. To explore this phenomenon at the molecular level, seven natural isolates of Cydia pomonella granulovirus (CpGV) collected from orchards in northwest China were studied using Illumina next generation sequencing (NGS). A total of 540 genome positions with single nucleotide polymorphisms (SNPs) were detected in comparison with known CpGV isolates. New members of previously defined phylogenetic genome groups A, D and E of CpGV, as well as two novel phylogenetic lines, termed genome group F and G, were identified. Combining SNP frequency distribution with the prevalence of genome group-specific SNPs, revealed that six isolates of CpGV were mixtures of different ratios of at least two genotypes, whereas only one isolate, CpGV-WW, was genetically highly homogeneous. This study significantly extends our current understanding of the genetic diversity of CpGV and opens new lines of application of this virus.
Collapse
Affiliation(s)
- Jiangbin Fan
- Institute for Biological Control, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Heinrichstraße 243, 64287, Darmstadt, Germany; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Jörg T Wennmann
- Institute for Biological Control, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Heinrichstraße 243, 64287, Darmstadt, Germany
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Johannes A Jehle
- Institute for Biological Control, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Heinrichstraße 243, 64287, Darmstadt, Germany.
| |
Collapse
|
4
|
Doumayrou J, Ryan MG, Wargo AR. Method for serial passage of infectious hematopoietic necrosis virus (IHNV) in rainbow trout. DISEASES OF AQUATIC ORGANISMS 2019; 134:223-236. [PMID: 31169128 DOI: 10.3354/dao03368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transmission is a fundamental component of pathogen fitness. A better understanding of pathogen transmission can greatly improve disease management. In particular, controlled studies of multiple rounds of natural transmission (i.e. serial passage) can provide powerful epidemiological and evolutionary inferences. However, such studies are possible in only a few systems because of the challenges in successfully initiating and maintaining transmission in the laboratory. Here we developed an efficient and reproducible cohabitation method for conducting controlled experiments investigating the effects of serial passage on infectious hematopoietic necrosis virus (IHNV) in rainbow trout. This method was used to investigate the transmission efficiency and kinetics of viral shedding of IHNV over 3 serial passages. Transmission efficiency decreased from 100 to 62.5% over the passage steps and was associated with a decrease in virus shedding into water. A shift in the peak of viral shedding was also observed, from Day 2 post immersion for passage 0 to at least 24 h later for all subsequent passages. Finally, the characterization of viruses after 1 round of transmission and propagation on cells showed no change in glycoprotein (G gene) sequences or viral virulence compared to the ancestral virus stock. The methods developed provide valuable tools for reproducible population-level studies of IHNV epidemiology and evolution.
Collapse
Affiliation(s)
- Juliette Doumayrou
- Virginia Institute of Marine Science, William & Mary, PO Box 1346, Gloucester Point, VA 23062, USA
| | | | | |
Collapse
|
5
|
Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, Tan AL, Paul LM, Brackney DE, Grewal S, Gurfield N, Van Rompay KKA, Isern S, Michael SF, Coffey LL, Loman NJ, Andersen KG. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol 2019; 20:8. [PMID: 30621750 PMCID: PMC6325816 DOI: 10.1186/s13059-018-1618-7] [Citation(s) in RCA: 606] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/26/2018] [Indexed: 01/17/2023] Open
Abstract
How viruses evolve within hosts can dictate infection outcomes; however, reconstructing this process is challenging. We evaluate our multiplexed amplicon approach, PrimalSeq, to demonstrate how virus concentration, sequencing coverage, primer mismatches, and replicates influence the accuracy of measuring intrahost virus diversity. We develop an experimental protocol and computational tool, iVar, for using PrimalSeq to measure virus diversity using Illumina and compare the results to Oxford Nanopore sequencing. We demonstrate the utility of PrimalSeq by measuring Zika and West Nile virus diversity from varied sample types and show that the accumulation of genetic diversity is influenced by experimental and biological systems.
Collapse
Affiliation(s)
- Nathan D Grubaugh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Joshua Quick
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nathaniel L Matteson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jaqueline Goes De Jesus
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Bradley J Main
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, 95616, USA
| | - Amanda L Tan
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Lauren M Paul
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Doug E Brackney
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Saran Grewal
- Department of Environmental Health, San Diego County Vector Control Program, San Diego, CA, 92123, USA
| | - Nikos Gurfield
- Department of Environmental Health, San Diego County Vector Control Program, San Diego, CA, 92123, USA
| | - Koen K A Van Rompay
- California National Primate Research Center and Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, 95616, USA
| | - Sharon Isern
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Scott F Michael
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, 95616, USA
| | - Nicholas J Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
6
|
Lumby CK, Nene NR, Illingworth CJR. A novel framework for inferring parameters of transmission from viral sequence data. PLoS Genet 2018; 14:e1007718. [PMID: 30325921 PMCID: PMC6203404 DOI: 10.1371/journal.pgen.1007718] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/26/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
Transmission between hosts is a critical part of the viral lifecycle. Recent studies of viral transmission have used genome sequence data to evaluate the number of particles transmitted between hosts, and the role of selection as it operates during the transmission process. However, the interpretation of sequence data describing transmission events is a challenging task. We here present a novel and comprehensive framework for using short-read sequence data to understand viral transmission events, designed for influenza virus, but adaptable to other viral species. Our approach solves multiple shortcomings of previous methods for this purpose; for example, we consider transmission as an event involving whole viruses, rather than sets of independent alleles. We demonstrate how selection during transmission and noisy sequence data may each affect naive inferences of the population bottleneck, accounting for these in our framework so as to achieve a correct inference. We identify circumstances in which selection for increased viral transmission may or may not be identified from data. Applying our method to experimental data in which transmission occurs in the presence of strong selection, we show that our framework grants a more quantitative insight into transmission events than previous approaches, inferring the bottleneck in a manner that accounts for selection, both for within-host virulence, and for inherent viral transmissibility. Our work provides new opportunities for studying transmission processes in influenza, and by extension, in other infectious diseases.
Collapse
Affiliation(s)
- Casper K. Lumby
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nuno R. Nene
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Christopher J. R. Illingworth
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Lee GH, Inoue M, Chong RHH, Toh J, Wee SY, Loh KS, Lim SG. Pyrosequencing method for sensitive detection of HBV drug resistance mutations. J Med Virol 2018; 90:1071-1079. [PMID: 29488627 DOI: 10.1002/jmv.25066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/15/2018] [Indexed: 12/17/2022]
Abstract
Hepatitis B (HBV) drug resistance assay is important for guiding therapy after the development of virologic breakthrough for patients receiving nucleoside/-tide analog therapy. However, the existing genotyping tools are either costly or lack sensitivity to detect mixed genotypes, and an improved method of resistant mutation detection is needed. An assay protocol for clinical application using pyrosequencing method was developed, capable of detecting all known validated HBV polymerase gene mutations that impart resistance to lamivudine, adefovir, tenofovir, and entecavir. Sixty-eight serum samples with known HBV resistance genotypes, previously tested with either Sanger sequencing assay or commercial line probe assay, were used for validation. Where there were discrepancies between the two methods, clonal sequencing by Sanger's method was used for confirmation. The modified pyrosequencing method accurately identified all the cloned polymerase genotypes and was able to distinguish as little as 5% of the mutant populations. This assay can be performed on serum sample with HBV DNA as low as 13.5 IU/mL. The cost per test was less than existing commercial assay. HBV drug resistance pyrosequencing assay was accurate, more sensitive and cheaper compared with the existing methods. It can detect minor populations of drug-resistant clones earlier, before the drug resistant clones become dominant, allowing the opportunity for an earlier change of therapy.
Collapse
Affiliation(s)
- Guan-Huei Lee
- Department of Medicine, National University Health System, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Jimmy Toh
- Experimental Therapeutics Centre, Singapore
| | | | - Kah-Sin Loh
- Department of Medicine, National University Health System, Singapore
| | - Seng-Gee Lim
- Department of Medicine, National University Health System, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
Chan IJ, Tharp MD. Comparison of lesional skin c-KIT mutations with clinical phenotype in patients with mastocytosis. Clin Exp Dermatol 2018; 43:416-422. [PMID: 29350409 DOI: 10.1111/ced.13362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Activating c-KIT mutations cause abnormal mast cell growth and appear to play a role in mastocytosis. However, the correlation of c-KIT mutations with disease phenotypes is poorly characterized. AIM To evaluate the correlation of c-KIT mutations with clinical presentations and laboratory findings. METHODS Total cellular RNA was isolated from the skin lesions of 43 adults and 7 children with mastocytosis, and PCR amplicons of cDNA were sequenced for c-KIT mutations. RESULTS The most common activating mutation, KIT-D816V, was identified in 72% of adults and 57% of children. Additional activating mutations, namely, V560G and the internal tandem duplications (ITDs) 502-503dupAY, were detected in 12% of adults and 8% of children. V560G occurred more commonly in our patients than previously reported, and it appeared to be associated with more advanced disease. Otherwise, the presence or absence of activating mutations did not correlate with skin lesion morphology, disease extent or total serum tryptase levels. Four adults had expression only of wild-type KIT, while two others had expression of a truncated KIT lacking tyrosine kinase activity; yet these patients were clinically indistinguishable from those patients with activating c-KIT mutations. CONCLUSIONS Activating c-KIT mutations exist in a significant portion of patients with mastocytosis, but not all patients showed expression of these mutations. Except for V560G, the presence or absence of activating c-KIT mutations did not predict the extent of disease. These observations suggest that although activating c-KIT mutations are associated with mast cell growth, other genes probably play a role in the cause of mastocytosis.
Collapse
Affiliation(s)
- I J Chan
- Department of Dermatology, Rush University Medical Center, Chicago, IL, USA
| | - M D Tharp
- Department of Dermatology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
9
|
Advanced Pathology Techniques for Detecting Emerging Infectious Disease Pathogens. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7120861 DOI: 10.1007/978-3-319-95111-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
10
|
deCamp AC, Rolland M, Edlefsen PT, Sanders-Buell E, Hall B, Magaret CA, Fiore-Gartland AJ, Juraska M, Carpp LN, Karuna ST, Bose M, LePore S, Miller S, O'Sullivan A, Poltavee K, Bai H, Dommaraju K, Zhao H, Wong K, Chen L, Ahmed H, Goodman D, Tay MZ, Gottardo R, Koup RA, Bailer R, Mascola JR, Graham BS, Roederer M, O’Connell RJ, Michael NL, Robb ML, Adams E, D’Souza P, Kublin J, Corey L, Geraghty DE, Frahm N, Tomaras GD, McElrath MJ, Frenkel L, Styrchak S, Tovanabutra S, Sobieszczyk ME, Hammer SM, Kim JH, Mullins JI, Gilbert PB. Sieve analysis of breakthrough HIV-1 sequences in HVTN 505 identifies vaccine pressure targeting the CD4 binding site of Env-gp120. PLoS One 2017; 12:e0185959. [PMID: 29149197 PMCID: PMC5693417 DOI: 10.1371/journal.pone.0185959] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/24/2017] [Indexed: 11/18/2022] Open
Abstract
Although the HVTN 505 DNA/recombinant adenovirus type 5 vector HIV-1 vaccine trial showed no overall efficacy, analysis of breakthrough HIV-1 sequences in participants can help determine whether vaccine-induced immune responses impacted viruses that caused infection. We analyzed 480 HIV-1 genomes sampled from 27 vaccine and 20 placebo recipients and found that intra-host HIV-1 diversity was significantly lower in vaccine recipients (P ≤ 0.04, Q-values ≤ 0.09) in Gag, Pol, Vif and envelope glycoprotein gp120 (Env-gp120). Furthermore, Env-gp120 sequences from vaccine recipients were significantly more distant from the subtype B vaccine insert than sequences from placebo recipients (P = 0.01, Q-value = 0.12). These vaccine effects were associated with signatures mapping to CD4 binding site and CD4-induced monoclonal antibody footprints. These results suggest either (i) no vaccine efficacy to block acquisition of any viral genotype but vaccine-accelerated Env evolution post-acquisition; or (ii) vaccine efficacy against HIV-1s with Env sequences closest to the vaccine insert combined with increased acquisition due to other factors, potentially including the vaccine vector.
Collapse
Affiliation(s)
- Allan C. deCamp
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail: (ACD); (MR); (PBG)
| | - Morgane Rolland
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- * E-mail: (ACD); (MR); (PBG)
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Eric Sanders-Buell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Breana Hall
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Craig A. Magaret
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrew J. Fiore-Gartland
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michal Juraska
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lindsay N. Carpp
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Shelly T. Karuna
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Meera Bose
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Steven LePore
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Shana Miller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Annemarie O'Sullivan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Kultida Poltavee
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Hongjun Bai
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Kalpana Dommaraju
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Hong Zhao
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Kim Wong
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Derrick Goodman
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Matthew Z. Tay
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert J. O’Connell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Elizabeth Adams
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patricia D’Souza
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James Kublin
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lawrence Corey
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Lisa Frenkel
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Sheila Styrchak
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Sodsai Tovanabutra
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Magdalena E. Sobieszczyk
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New York, United States of America
| | - Scott M. Hammer
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New York, United States of America
| | | | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
- * E-mail: (ACD); (MR); (PBG)
| |
Collapse
|
11
|
Illingworth CJR, Roy S, Beale MA, Tutill H, Williams R, Breuer J. On the effective depth of viral sequence data. Virus Evol 2017; 3:vex030. [PMID: 29250429 PMCID: PMC5724399 DOI: 10.1093/ve/vex030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Genome sequence data are of great value in describing evolutionary processes in viral populations. However, in such studies, the extent to which data accurately describes the viral population is a matter of importance. Multiple factors may influence the accuracy of a dataset, including the quantity and nature of the sample collected, and the subsequent steps in viral processing. To investigate this phenomenon, we sequenced replica datasets spanning a range of viruses, and in which the point at which samples were split was different in each case, from a dataset in which independent samples were collected from a single patient to another in which all processing steps up to sequencing were applied to a single sample before splitting the sample and sequencing each replicate. We conclude that neither a high read depth nor a high template number in a sample guarantee the precision of a dataset. Measures of consistency calculated from within a single biological sample may also be insufficient; distortion of the composition of a population by the experimental procedure or genuine within-host diversity between samples may each affect the results. Where it is possible, data from replicate samples should be collected to validate the consistency of short-read sequence data.
Collapse
Affiliation(s)
- Christopher J R Illingworth
- Department of Genetics, University of Cambridge, Cambridge, UK.,Department of Applied Maths and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Sunando Roy
- Division of Infection and Immunity, University College London, London, UK
| | | | - Helena Tutill
- Division of Infection and Immunity, University College London, London, UK
| | - Rachel Williams
- Division of Infection and Immunity, University College London, London, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
12
|
Nolan DJ, Lamers SL, Rose R, Dollar JJ, Salemi M, McGrath MS. Single Genome Sequencing of Expressed and Proviral HIV-1 Envelope Glycoprotein 120 ( gp120) and nef Genes. Bio Protoc 2017; 7:e2334. [PMID: 34541092 PMCID: PMC8410429 DOI: 10.21769/bioprotoc.2334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 01/02/2023] Open
Abstract
The current study provides detailed protocols utilized to amplify the complete HIV-1 gp120 and nef genes from single copies of expressed or integrated HIV present in fresh-frozen autopsy tissues of patients who died while on combined antiretroviral therapy (cART) with no detectable plasma viral load (pVL) at death ( Lamers et al., 2016a and 2016b; Rose et al., 2016 ). This method optimizes protocols from previous publications ( Palmer et al., 2005 ; Norström et al., 2012 ; Lamers et al., 2015 ; 2016a and 2016b; Rife et al., 2016 ) to produce single distinct PCR products that can be directly sequenced and includes several cost-saving and time-efficient modifications.
Collapse
Affiliation(s)
- David J. Nolan
- Bioinfoexperts, LLC, Thibodaux, Louisiana, USA
- Department of Pathology, Immunology and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | | | | | - James J. Dollar
- Bioinfoexperts, LLC, Thibodaux, Louisiana, USA
- Department of Pathology, Immunology and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Michael S. McGrath
- Departments of Laboratory Medicine, Pathology, and Medicine, University of California at San Francisco, San Francisco, California, USA
- The AIDS and Cancer Specimen Resource, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Error rates, PCR recombination, and sampling depth in HIV-1 whole genome deep sequencing. Virus Res 2016; 239:106-114. [PMID: 28039047 DOI: 10.1016/j.virusres.2016.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/25/2016] [Accepted: 12/16/2016] [Indexed: 11/20/2022]
Abstract
Deep sequencing is a powerful and cost-effective tool to characterize the genetic diversity and evolution of virus populations. While modern sequencing instruments readily cover viral genomes many thousand fold and very rare variants can in principle be detected, sequencing errors, amplification biases, and other artifacts can limit sensitivity and complicate data interpretation. For this reason, the number of studies using whole genome deep sequencing to characterize viral quasi-species in clinical samples is still limited. We have previously undertaken a large scale whole genome deep sequencing study of HIV-1 populations. Here we discuss the challenges, error profiles, control experiments, and computational test we developed to quantify the accuracy of variant frequency estimation.
Collapse
|
14
|
Zanini F, Brodin J, Thebo L, Lanz C, Bratt G, Albert J, Neher RA. Population genomics of intrapatient HIV-1 evolution. eLife 2015; 4:e11282. [PMID: 26652000 PMCID: PMC4718817 DOI: 10.7554/elife.11282] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022] Open
Abstract
Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100 bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity.
Collapse
Affiliation(s)
- Fabio Zanini
- Evolutionary Dynamics and Biophysics, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Johanna Brodin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Lina Thebo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Christa Lanz
- Evolutionary Dynamics and Biophysics, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Göran Bratt
- Department of Clinical Science and Education, Stockholm South General Hospital, Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Richard A Neher
- Evolutionary Dynamics and Biophysics, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|